v1.d.ts 135 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
/**
 * Copyright 2019 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
import { OAuth2Client, JWT, Compute, UserRefreshClient } from 'google-auth-library';
import { GoogleConfigurable, MethodOptions, GlobalOptions, BodyResponseCallback, APIRequestContext } from 'googleapis-common';
import { GaxiosPromise } from 'gaxios';
export declare namespace ml_v1 {
    export interface Options extends GlobalOptions {
        version: 'v1';
    }
    interface StandardParameters {
        /**
         * V1 error format.
         */
        '$.xgafv'?: string;
        /**
         * OAuth access token.
         */
        access_token?: string;
        /**
         * Data format for response.
         */
        alt?: string;
        /**
         * JSONP
         */
        callback?: string;
        /**
         * Selector specifying which fields to include in a partial response.
         */
        fields?: string;
        /**
         * API key. Your API key identifies your project and provides you with API access, quota, and reports. Required unless you provide an OAuth 2.0 token.
         */
        key?: string;
        /**
         * OAuth 2.0 token for the current user.
         */
        oauth_token?: string;
        /**
         * Returns response with indentations and line breaks.
         */
        prettyPrint?: boolean;
        /**
         * Available to use for quota purposes for server-side applications. Can be any arbitrary string assigned to a user, but should not exceed 40 characters.
         */
        quotaUser?: string;
        /**
         * Legacy upload protocol for media (e.g. "media", "multipart").
         */
        uploadType?: string;
        /**
         * Upload protocol for media (e.g. "raw", "multipart").
         */
        upload_protocol?: string;
    }
    /**
     * AI Platform Training & Prediction API
     *
     * An API to enable creating and using machine learning models.
     *
     * @example
     * const {google} = require('googleapis');
     * const ml = google.ml('v1');
     *
     * @namespace ml
     * @type {Function}
     * @version v1
     * @variation v1
     * @param {object=} options Options for Ml
     */
    export class Ml {
        context: APIRequestContext;
        projects: Resource$Projects;
        constructor(options: GlobalOptions, google?: GoogleConfigurable);
    }
    /**
     * Message that represents an arbitrary HTTP body. It should only be used for payload formats that can't be represented as JSON, such as raw binary or an HTML page.   This message can be used both in streaming and non-streaming API methods in the request as well as the response.  It can be used as a top-level request field, which is convenient if one wants to extract parameters from either the URL or HTTP template into the request fields and also want access to the raw HTTP body.  Example:      message GetResourceRequest {       // A unique request id.       string request_id = 1;        // The raw HTTP body is bound to this field.       google.api.HttpBody http_body = 2;     }      service ResourceService {       rpc GetResource(GetResourceRequest) returns (google.api.HttpBody);       rpc UpdateResource(google.api.HttpBody) returns       (google.protobuf.Empty);     }  Example with streaming methods:      service CaldavService {       rpc GetCalendar(stream google.api.HttpBody)         returns (stream google.api.HttpBody);       rpc UpdateCalendar(stream google.api.HttpBody)         returns (stream google.api.HttpBody);     }  Use of this type only changes how the request and response bodies are handled, all other features will continue to work unchanged.
     */
    export interface Schema$GoogleApi__HttpBody {
        /**
         * The HTTP Content-Type header value specifying the content type of the body.
         */
        contentType?: string | null;
        /**
         * The HTTP request/response body as raw binary.
         */
        data?: string | null;
        /**
         * Application specific response metadata. Must be set in the first response for streaming APIs.
         */
        extensions?: Array<{
            [key: string]: any;
        }> | null;
    }
    /**
     * An observed value of a metric.
     */
    export interface Schema$GoogleCloudMlV1_HyperparameterOutput_HyperparameterMetric {
        /**
         * The objective value at this training step.
         */
        objectiveValue?: number | null;
        /**
         * The global training step for this metric.
         */
        trainingStep?: string | null;
    }
    /**
     * Represents a hardware accelerator request config. Note that the AcceleratorConfig can be used in both Jobs and Versions. Learn more about [accelerators for training](/ml-engine/docs/using-gpus) and [accelerators for online prediction](/ml-engine/docs/machine-types-online-prediction#gpus).
     */
    export interface Schema$GoogleCloudMlV1__AcceleratorConfig {
        /**
         * The number of accelerators to attach to each machine running the job.
         */
        count?: string | null;
        /**
         * The type of accelerator to use.
         */
        type?: string | null;
    }
    /**
     * Options for automatically scaling a model.
     */
    export interface Schema$GoogleCloudMlV1__AutoScaling {
        /**
         * Optional. The minimum number of nodes to allocate for this model. These nodes are always up, starting from the time the model is deployed. Therefore, the cost of operating this model will be at least `rate` * `min_nodes` * number of hours since last billing cycle, where `rate` is the cost per node-hour as documented in the [pricing guide](/ml-engine/docs/pricing), even if no predictions are performed. There is additional cost for each prediction performed.  Unlike manual scaling, if the load gets too heavy for the nodes that are up, the service will automatically add nodes to handle the increased load as well as scale back as traffic drops, always maintaining at least `min_nodes`. You will be charged for the time in which additional nodes are used.  If `min_nodes` is not specified and AutoScaling is used with a [legacy (MLS1) machine type](/ml-engine/docs/machine-types-online-prediction), `min_nodes` defaults to 0, in which case, when traffic to a model stops (and after a cool-down period), nodes will be shut down and no charges will be incurred until traffic to the model resumes.  If `min_nodes` is not specified and AutoScaling is used with a [Compute Engine (N1) machine type](/ml-engine/docs/machine-types-online-prediction), `min_nodes` defaults to 1. `min_nodes` must be at least 1 for use with a Compute Engine machine type.  Note that you cannot use AutoScaling if your version uses [GPUs](#Version.FIELDS.accelerator_config). Instead, you must use ManualScaling.  You can set `min_nodes` when creating the model version, and you can also update `min_nodes` for an existing version: &lt;pre&gt; update_body.json: {   &#39;autoScaling&#39;: {     &#39;minNodes&#39;: 5   } } &lt;/pre&gt; HTTP request: &lt;pre style=&quot;max-width: 626px;&quot;&gt; PATCH https://ml.googleapis.com/v1/{name=projects/x/models/x/versions/*}?update_mask=autoScaling.minNodes -d @./update_body.json &lt;/pre&gt;
         */
        minNodes?: number | null;
    }
    /**
     * Represents output related to a built-in algorithm Job.
     */
    export interface Schema$GoogleCloudMlV1__BuiltInAlgorithmOutput {
        /**
         * Framework on which the built-in algorithm was trained.
         */
        framework?: string | null;
        /**
         * The Cloud Storage path to the `model/` directory where the training job saves the trained model. Only set for successful jobs that don&#39;t use hyperparameter tuning.
         */
        modelPath?: string | null;
        /**
         * Python version on which the built-in algorithm was trained.
         */
        pythonVersion?: string | null;
        /**
         * AI Platform runtime version on which the built-in algorithm was trained.
         */
        runtimeVersion?: string | null;
    }
    /**
     * Request message for the CancelJob method.
     */
    export interface Schema$GoogleCloudMlV1__CancelJobRequest {
    }
    export interface Schema$GoogleCloudMlV1__Capability {
        /**
         * Available accelerators for the capability.
         */
        availableAccelerators?: string[] | null;
        type?: string | null;
    }
    export interface Schema$GoogleCloudMlV1__Config {
        /**
         * The service account Cloud ML uses to run on TPU node.
         */
        tpuServiceAccount?: string | null;
    }
    /**
     * Returns service account information associated with a project.
     */
    export interface Schema$GoogleCloudMlV1__GetConfigResponse {
        config?: Schema$GoogleCloudMlV1__Config;
        /**
         * The service account Cloud ML uses to access resources in the project.
         */
        serviceAccount?: string | null;
        /**
         * The project number for `service_account`.
         */
        serviceAccountProject?: string | null;
    }
    /**
     * Represents the result of a single hyperparameter tuning trial from a training job. The TrainingOutput object that is returned on successful completion of a training job with hyperparameter tuning includes a list of HyperparameterOutput objects, one for each successful trial.
     */
    export interface Schema$GoogleCloudMlV1__HyperparameterOutput {
        /**
         * All recorded object metrics for this trial. This field is not currently populated.
         */
        allMetrics?: Schema$GoogleCloudMlV1_HyperparameterOutput_HyperparameterMetric[];
        /**
         * Details related to built-in algorithms jobs. Only set for trials of built-in algorithms jobs that have succeeded.
         */
        builtInAlgorithmOutput?: Schema$GoogleCloudMlV1__BuiltInAlgorithmOutput;
        /**
         * Output only. End time for the trial.
         */
        endTime?: string | null;
        /**
         * The final objective metric seen for this trial.
         */
        finalMetric?: Schema$GoogleCloudMlV1_HyperparameterOutput_HyperparameterMetric;
        /**
         * The hyperparameters given to this trial.
         */
        hyperparameters?: {
            [key: string]: string;
        } | null;
        /**
         * True if the trial is stopped early.
         */
        isTrialStoppedEarly?: boolean | null;
        /**
         * Output only. Start time for the trial.
         */
        startTime?: string | null;
        /**
         * Output only. The detailed state of the trial.
         */
        state?: string | null;
        /**
         * The trial id for these results.
         */
        trialId?: string | null;
    }
    /**
     * Represents a set of hyperparameters to optimize.
     */
    export interface Schema$GoogleCloudMlV1__HyperparameterSpec {
        /**
         * Optional. The search algorithm specified for the hyperparameter tuning job. Uses the default AI Platform hyperparameter tuning algorithm if unspecified.
         */
        algorithm?: string | null;
        /**
         * Optional. Indicates if the hyperparameter tuning job enables auto trial early stopping.
         */
        enableTrialEarlyStopping?: boolean | null;
        /**
         * Required. The type of goal to use for tuning. Available types are `MAXIMIZE` and `MINIMIZE`.  Defaults to `MAXIMIZE`.
         */
        goal?: string | null;
        /**
         * Optional. The TensorFlow summary tag name to use for optimizing trials. For current versions of TensorFlow, this tag name should exactly match what is shown in TensorBoard, including all scopes.  For versions of TensorFlow prior to 0.12, this should be only the tag passed to tf.Summary. By default, &quot;training/hptuning/metric&quot; will be used.
         */
        hyperparameterMetricTag?: string | null;
        /**
         * Optional. The number of failed trials that need to be seen before failing the hyperparameter tuning job. You can specify this field to override the default failing criteria for AI Platform hyperparameter tuning jobs.  Defaults to zero, which means the service decides when a hyperparameter job should fail.
         */
        maxFailedTrials?: number | null;
        /**
         * Optional. The number of training trials to run concurrently. You can reduce the time it takes to perform hyperparameter tuning by adding trials in parallel. However, each trail only benefits from the information gained in completed trials. That means that a trial does not get access to the results of trials running at the same time, which could reduce the quality of the overall optimization.  Each trial will use the same scale tier and machine types.  Defaults to one.
         */
        maxParallelTrials?: number | null;
        /**
         * Optional. How many training trials should be attempted to optimize the specified hyperparameters.  Defaults to one.
         */
        maxTrials?: number | null;
        /**
         * Required. The set of parameters to tune.
         */
        params?: Schema$GoogleCloudMlV1__ParameterSpec[];
        /**
         * Optional. The prior hyperparameter tuning job id that users hope to continue with. The job id will be used to find the corresponding vizier study guid and resume the study.
         */
        resumePreviousJobId?: string | null;
    }
    /**
     * Represents a training or prediction job.
     */
    export interface Schema$GoogleCloudMlV1__Job {
        /**
         * Output only. When the job was created.
         */
        createTime?: string | null;
        /**
         * Output only. When the job processing was completed.
         */
        endTime?: string | null;
        /**
         * Output only. The details of a failure or a cancellation.
         */
        errorMessage?: string | null;
        /**
         * `etag` is used for optimistic concurrency control as a way to help prevent simultaneous updates of a job from overwriting each other. It is strongly suggested that systems make use of the `etag` in the read-modify-write cycle to perform job updates in order to avoid race conditions: An `etag` is returned in the response to `GetJob`, and systems are expected to put that etag in the request to `UpdateJob` to ensure that their change will be applied to the same version of the job.
         */
        etag?: string | null;
        /**
         * Required. The user-specified id of the job.
         */
        jobId?: string | null;
        /**
         * Optional. One or more labels that you can add, to organize your jobs. Each label is a key-value pair, where both the key and the value are arbitrary strings that you supply. For more information, see the documentation on &lt;a href=&quot;/ml-engine/docs/tensorflow/resource-labels&quot;&gt;using labels&lt;/a&gt;.
         */
        labels?: {
            [key: string]: string;
        } | null;
        /**
         * Input parameters to create a prediction job.
         */
        predictionInput?: Schema$GoogleCloudMlV1__PredictionInput;
        /**
         * The current prediction job result.
         */
        predictionOutput?: Schema$GoogleCloudMlV1__PredictionOutput;
        /**
         * Output only. When the job processing was started.
         */
        startTime?: string | null;
        /**
         * Output only. The detailed state of a job.
         */
        state?: string | null;
        /**
         * Input parameters to create a training job.
         */
        trainingInput?: Schema$GoogleCloudMlV1__TrainingInput;
        /**
         * The current training job result.
         */
        trainingOutput?: Schema$GoogleCloudMlV1__TrainingOutput;
    }
    /**
     * Response message for the ListJobs method.
     */
    export interface Schema$GoogleCloudMlV1__ListJobsResponse {
        /**
         * The list of jobs.
         */
        jobs?: Schema$GoogleCloudMlV1__Job[];
        /**
         * Optional. Pass this token as the `page_token` field of the request for a subsequent call.
         */
        nextPageToken?: string | null;
    }
    export interface Schema$GoogleCloudMlV1__ListLocationsResponse {
        /**
         * Locations where at least one type of CMLE capability is available.
         */
        locations?: Schema$GoogleCloudMlV1__Location[];
        /**
         * Optional. Pass this token as the `page_token` field of the request for a subsequent call.
         */
        nextPageToken?: string | null;
    }
    /**
     * Response message for the ListModels method.
     */
    export interface Schema$GoogleCloudMlV1__ListModelsResponse {
        /**
         * The list of models.
         */
        models?: Schema$GoogleCloudMlV1__Model[];
        /**
         * Optional. Pass this token as the `page_token` field of the request for a subsequent call.
         */
        nextPageToken?: string | null;
    }
    /**
     * Response message for the ListVersions method.
     */
    export interface Schema$GoogleCloudMlV1__ListVersionsResponse {
        /**
         * Optional. Pass this token as the `page_token` field of the request for a subsequent call.
         */
        nextPageToken?: string | null;
        /**
         * The list of versions.
         */
        versions?: Schema$GoogleCloudMlV1__Version[];
    }
    export interface Schema$GoogleCloudMlV1__Location {
        /**
         * Capabilities available in the location.
         */
        capabilities?: Schema$GoogleCloudMlV1__Capability[];
        name?: string | null;
    }
    /**
     * Options for manually scaling a model.
     */
    export interface Schema$GoogleCloudMlV1__ManualScaling {
        /**
         * The number of nodes to allocate for this model. These nodes are always up, starting from the time the model is deployed, so the cost of operating this model will be proportional to `nodes` * number of hours since last billing cycle plus the cost for each prediction performed.
         */
        nodes?: number | null;
    }
    /**
     * Represents a machine learning solution.  A model can have multiple versions, each of which is a deployed, trained model ready to receive prediction requests. The model itself is just a container.
     */
    export interface Schema$GoogleCloudMlV1__Model {
        /**
         * Output only. The default version of the model. This version will be used to handle prediction requests that do not specify a version.  You can change the default version by calling [projects.methods.versions.setDefault](/ml-engine/reference/rest/v1/projects.models.versions/setDefault).
         */
        defaultVersion?: Schema$GoogleCloudMlV1__Version;
        /**
         * Optional. The description specified for the model when it was created.
         */
        description?: string | null;
        /**
         * `etag` is used for optimistic concurrency control as a way to help prevent simultaneous updates of a model from overwriting each other. It is strongly suggested that systems make use of the `etag` in the read-modify-write cycle to perform model updates in order to avoid race conditions: An `etag` is returned in the response to `GetModel`, and systems are expected to put that etag in the request to `UpdateModel` to ensure that their change will be applied to the model as intended.
         */
        etag?: string | null;
        /**
         * Optional. One or more labels that you can add, to organize your models. Each label is a key-value pair, where both the key and the value are arbitrary strings that you supply. For more information, see the documentation on &lt;a href=&quot;/ml-engine/docs/tensorflow/resource-labels&quot;&gt;using labels&lt;/a&gt;.
         */
        labels?: {
            [key: string]: string;
        } | null;
        /**
         * Required. The name specified for the model when it was created.  The model name must be unique within the project it is created in.
         */
        name?: string | null;
        /**
         * Optional. If true, online prediction nodes send `stderr` and `stdout` streams to Stackdriver Logging. These can be more verbose than the standard access logs (see `onlinePredictionLogging`) and can incur higher cost. However, they are helpful for debugging. Note that [Stackdriver logs may incur a cost](/stackdriver/pricing), especially if your project receives prediction requests at a high QPS. Estimate your costs before enabling this option.  Default is false.
         */
        onlinePredictionConsoleLogging?: boolean | null;
        /**
         * Optional. If true, online prediction access logs are sent to StackDriver Logging. These logs are like standard server access logs, containing information like timestamp and latency for each request. Note that [Stackdriver logs may incur a cost](/stackdriver/pricing), especially if your project receives prediction requests at a high queries per second rate (QPS). Estimate your costs before enabling this option.  Default is false.
         */
        onlinePredictionLogging?: boolean | null;
        /**
         * Optional. The list of regions where the model is going to be deployed. Currently only one region per model is supported. Defaults to &#39;us-central1&#39; if nothing is set. See the &lt;a href=&quot;/ml-engine/docs/tensorflow/regions&quot;&gt;available regions&lt;/a&gt; for AI Platform services. Note: *   No matter where a model is deployed, it can always be accessed by     users from anywhere, both for online and batch prediction. *   The region for a batch prediction job is set by the region field when     submitting the batch prediction job and does not take its value from     this field.
         */
        regions?: string[] | null;
    }
    /**
     * Represents the metadata of the long-running operation.
     */
    export interface Schema$GoogleCloudMlV1__OperationMetadata {
        /**
         * The time the operation was submitted.
         */
        createTime?: string | null;
        /**
         * The time operation processing completed.
         */
        endTime?: string | null;
        /**
         * Indicates whether a request to cancel this operation has been made.
         */
        isCancellationRequested?: boolean | null;
        /**
         * The user labels, inherited from the model or the model version being operated on.
         */
        labels?: {
            [key: string]: string;
        } | null;
        /**
         * Contains the name of the model associated with the operation.
         */
        modelName?: string | null;
        /**
         * The operation type.
         */
        operationType?: string | null;
        /**
         * Contains the project number associated with the operation.
         */
        projectNumber?: string | null;
        /**
         * The time operation processing started.
         */
        startTime?: string | null;
        /**
         * Contains the version associated with the operation.
         */
        version?: Schema$GoogleCloudMlV1__Version;
    }
    /**
     * Represents a single hyperparameter to optimize.
     */
    export interface Schema$GoogleCloudMlV1__ParameterSpec {
        /**
         * Required if type is `CATEGORICAL`. The list of possible categories.
         */
        categoricalValues?: string[] | null;
        /**
         * Required if type is `DISCRETE`. A list of feasible points. The list should be in strictly increasing order. For instance, this parameter might have possible settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 values.
         */
        discreteValues?: number[] | null;
        /**
         * Required if type is `DOUBLE` or `INTEGER`. This field should be unset if type is `CATEGORICAL`. This value should be integers if type is `INTEGER`.
         */
        maxValue?: number | null;
        /**
         * Required if type is `DOUBLE` or `INTEGER`. This field should be unset if type is `CATEGORICAL`. This value should be integers if type is INTEGER.
         */
        minValue?: number | null;
        /**
         * Required. The parameter name must be unique amongst all ParameterConfigs in a HyperparameterSpec message. E.g., &quot;learning_rate&quot;.
         */
        parameterName?: string | null;
        /**
         * Optional. How the parameter should be scaled to the hypercube. Leave unset for categorical parameters. Some kind of scaling is strongly recommended for real or integral parameters (e.g., `UNIT_LINEAR_SCALE`).
         */
        scaleType?: string | null;
        /**
         * Required. The type of the parameter.
         */
        type?: string | null;
    }
    /**
     * Represents input parameters for a prediction job.
     */
    export interface Schema$GoogleCloudMlV1__PredictionInput {
        /**
         * Optional. Number of records per batch, defaults to 64. The service will buffer batch_size number of records in memory before invoking one Tensorflow prediction call internally. So take the record size and memory available into consideration when setting this parameter.
         */
        batchSize?: string | null;
        /**
         * Required. The format of the input data files.
         */
        dataFormat?: string | null;
        /**
         * Required. The Cloud Storage location of the input data files. May contain &lt;a href=&quot;/storage/docs/gsutil/addlhelp/WildcardNames&quot;&gt;wildcards&lt;/a&gt;.
         */
        inputPaths?: string[] | null;
        /**
         * Optional. The maximum number of workers to be used for parallel processing. Defaults to 10 if not specified.
         */
        maxWorkerCount?: string | null;
        /**
         * Use this field if you want to use the default version for the specified model. The string must use the following format:  `&quot;projects/YOUR_PROJECT/models/YOUR_MODEL&quot;`
         */
        modelName?: string | null;
        /**
         * Optional. Format of the output data files, defaults to JSON.
         */
        outputDataFormat?: string | null;
        /**
         * Required. The output Google Cloud Storage location.
         */
        outputPath?: string | null;
        /**
         * Required. The Google Compute Engine region to run the prediction job in. See the &lt;a href=&quot;/ml-engine/docs/tensorflow/regions&quot;&gt;available regions&lt;/a&gt; for AI Platform services.
         */
        region?: string | null;
        /**
         * Optional. The AI Platform runtime version to use for this batch prediction. If not set, AI Platform will pick the runtime version used during the CreateVersion request for this model version, or choose the latest stable version when model version information is not available such as when the model is specified by uri.
         */
        runtimeVersion?: string | null;
        /**
         * Optional. The name of the signature defined in the SavedModel to use for this job. Please refer to [SavedModel](https://tensorflow.github.io/serving/serving_basic.html) for information about how to use signatures.  Defaults to [DEFAULT_SERVING_SIGNATURE_DEF_KEY](https://www.tensorflow.org/api_docs/python/tf/saved_model/signature_constants) , which is &quot;serving_default&quot;.
         */
        signatureName?: string | null;
        /**
         * Use this field if you want to specify a Google Cloud Storage path for the model to use.
         */
        uri?: string | null;
        /**
         * Use this field if you want to specify a version of the model to use. The string is formatted the same way as `model_version`, with the addition of the version information:  `&quot;projects/YOUR_PROJECT/models/YOUR_MODEL/versions/YOUR_VERSION&quot;`
         */
        versionName?: string | null;
    }
    /**
     * Represents results of a prediction job.
     */
    export interface Schema$GoogleCloudMlV1__PredictionOutput {
        /**
         * The number of data instances which resulted in errors.
         */
        errorCount?: string | null;
        /**
         * Node hours used by the batch prediction job.
         */
        nodeHours?: number | null;
        /**
         * The output Google Cloud Storage location provided at the job creation time.
         */
        outputPath?: string | null;
        /**
         * The number of generated predictions.
         */
        predictionCount?: string | null;
    }
    /**
     * Request for predictions to be issued against a trained model.
     */
    export interface Schema$GoogleCloudMlV1__PredictRequest {
        /**
         *  Required. The prediction request body.
         */
        httpBody?: Schema$GoogleApi__HttpBody;
    }
    /**
     * Represents the configuration for a replica in a cluster.
     */
    export interface Schema$GoogleCloudMlV1__ReplicaConfig {
        /**
         * Represents the type and number of accelerators used by the replica. [Learn about restrictions on accelerator configurations for training.](/ml-engine/docs/tensorflow/using-gpus#compute-engine-machine-types-with-gpu)
         */
        acceleratorConfig?: Schema$GoogleCloudMlV1__AcceleratorConfig;
        /**
         * The Docker image to run on the replica. This image must be in Container Registry. Learn more about [configuring custom containers](/ml-engine/docs/distributed-training-containers).
         */
        imageUri?: string | null;
        /**
         * The AI Platform runtime version that includes a TensorFlow version matching the one used in the custom container. This field is required if the replica is a TPU worker that uses a custom container. Otherwise, do not specify this field. This must be a [runtime version that currently supports training with TPUs](/ml-engine/docs/tensorflow/runtime-version-list#tpu-support).  Note that the version of TensorFlow included in a runtime version may differ from the numbering of the runtime version itself, because it may have a different [patch version](https://www.tensorflow.org/guide/version_compat#semantic_versioning_20). In this field, you must specify the runtime version (TensorFlow minor version). For example, if your custom container runs TensorFlow `1.x.y`, specify `1.x`.
         */
        tpuTfVersion?: string | null;
    }
    /**
     * Configuration for logging request-response pairs to a BigQuery table. Online prediction requests to a model version and the responses to these requests are converted to raw strings and saved to the specified BigQuery table. Logging is constrained by [BigQuery quotas and limits](/bigquery/quotas). If your project exceeds BigQuery quotas or limits, AI Platform Prediction does not log request-response pairs, but it continues to serve predictions.  If you are using [continuous evaluation](/ml-engine/docs/continuous-evaluation/), you do not need to specify this configuration manually. Setting up continuous evaluation automatically enables logging of request-response pairs.
     */
    export interface Schema$GoogleCloudMlV1__RequestLoggingConfig {
        /**
         * Required. Fully qualified BigQuery table name in the following format: &quot;&lt;var&gt;project_id&lt;/var&gt;.&lt;var&gt;dataset_name&lt;/var&gt;.&lt;var&gt;table_name&lt;/var&gt;&quot;  The specifcied table must already exist, and the &quot;Cloud ML Service Agent&quot; for your project must have permission to write to it. The table must have the following [schema](/bigquery/docs/schemas):  &lt;table&gt;   &lt;tr&gt;&lt;th&gt;Field name&lt;/th&gt;&lt;th style=&quot;display: table-cell&quot;&gt;Type&lt;/th&gt;     &lt;th style=&quot;display: table-cell&quot;&gt;Mode&lt;/th&gt;&lt;/tr&gt;   &lt;tr&gt;&lt;td&gt;model&lt;/td&gt;&lt;td&gt;STRING&lt;/td&gt;&lt;td&gt;REQUIRED&lt;/td&gt;&lt;/tr&gt;   &lt;tr&gt;&lt;td&gt;model_version&lt;/td&gt;&lt;td&gt;STRING&lt;/td&gt;&lt;td&gt;REQUIRED&lt;/td&gt;&lt;/tr&gt;   &lt;tr&gt;&lt;td&gt;time&lt;/td&gt;&lt;td&gt;TIMESTAMP&lt;/td&gt;&lt;td&gt;REQUIRED&lt;/td&gt;&lt;/tr&gt;   &lt;tr&gt;&lt;td&gt;raw_data&lt;/td&gt;&lt;td&gt;STRING&lt;/td&gt;&lt;td&gt;REQUIRED&lt;/td&gt;&lt;/tr&gt;   &lt;tr&gt;&lt;td&gt;raw_prediction&lt;/td&gt;&lt;td&gt;STRING&lt;/td&gt;&lt;td&gt;NULLABLE&lt;/td&gt;&lt;/tr&gt;   &lt;tr&gt;&lt;td&gt;groundtruth&lt;/td&gt;&lt;td&gt;STRING&lt;/td&gt;&lt;td&gt;NULLABLE&lt;/td&gt;&lt;/tr&gt; &lt;/table&gt;
         */
        bigqueryTableName?: string | null;
        /**
         * Percentage of requests to be logged, expressed as a fraction from 0 to 1. For example, if you want to log 10% of requests, enter `0.1`. The sampling window is the lifetime of the model version. Defaults to 0.
         */
        samplingPercentage?: number | null;
    }
    /**
     * Request message for the SetDefaultVersion request.
     */
    export interface Schema$GoogleCloudMlV1__SetDefaultVersionRequest {
    }
    /**
     * Represents input parameters for a training job. When using the gcloud command to submit your training job, you can specify the input parameters as command-line arguments and/or in a YAML configuration file referenced from the --config command-line argument. For details, see the guide to &lt;a href=&quot;/ml-engine/docs/tensorflow/training-jobs&quot;&gt;submitting a training job&lt;/a&gt;.
     */
    export interface Schema$GoogleCloudMlV1__TrainingInput {
        /**
         * Optional. Command line arguments to pass to the program.
         */
        args?: string[] | null;
        /**
         * Optional. The set of Hyperparameters to tune.
         */
        hyperparameters?: Schema$GoogleCloudMlV1__HyperparameterSpec;
        /**
         * Optional. A Google Cloud Storage path in which to store training outputs and other data needed for training. This path is passed to your TensorFlow program as the &#39;--job-dir&#39; command-line argument. The benefit of specifying this field is that Cloud ML validates the path for use in training.
         */
        jobDir?: string | null;
        /**
         * Optional. The configuration for your master worker.  You should only set `masterConfig.acceleratorConfig` if `masterType` is set to a Compute Engine machine type. Learn about [restrictions on accelerator configurations for training.](/ml-engine/docs/tensorflow/using-gpus#compute-engine-machine-types-with-gpu)  Set `masterConfig.imageUri` only if you build a custom image. Only one of `masterConfig.imageUri` and `runtimeVersion` should be set. Learn more about [configuring custom containers](/ml-engine/docs/distributed-training-containers).
         */
        masterConfig?: Schema$GoogleCloudMlV1__ReplicaConfig;
        /**
         * Optional. Specifies the type of virtual machine to use for your training job&#39;s master worker.  The following types are supported:  &lt;dl&gt;   &lt;dt&gt;standard&lt;/dt&gt;   &lt;dd&gt;   A basic machine configuration suitable for training simple models with   small to moderate datasets.   &lt;/dd&gt;   &lt;dt&gt;large_model&lt;/dt&gt;   &lt;dd&gt;   A machine with a lot of memory, specially suited for parameter servers   when your model is large (having many hidden layers or layers with very   large numbers of nodes).   &lt;/dd&gt;   &lt;dt&gt;complex_model_s&lt;/dt&gt;   &lt;dd&gt;   A machine suitable for the master and workers of the cluster when your   model requires more computation than the standard machine can handle   satisfactorily.   &lt;/dd&gt;   &lt;dt&gt;complex_model_m&lt;/dt&gt;   &lt;dd&gt;   A machine with roughly twice the number of cores and roughly double the   memory of &lt;i&gt;complex_model_s&lt;/i&gt;.   &lt;/dd&gt;   &lt;dt&gt;complex_model_l&lt;/dt&gt;   &lt;dd&gt;   A machine with roughly twice the number of cores and roughly double the   memory of &lt;i&gt;complex_model_m&lt;/i&gt;.   &lt;/dd&gt;   &lt;dt&gt;standard_gpu&lt;/dt&gt;   &lt;dd&gt;   A machine equivalent to &lt;i&gt;standard&lt;/i&gt; that   also includes a single NVIDIA Tesla K80 GPU. See more about   &lt;a href=&quot;/ml-engine/docs/tensorflow/using-gpus&quot;&gt;using GPUs to   train your model&lt;/a&gt;.   &lt;/dd&gt;   &lt;dt&gt;complex_model_m_gpu&lt;/dt&gt;   &lt;dd&gt;   A machine equivalent to &lt;i&gt;complex_model_m&lt;/i&gt; that also includes   four NVIDIA Tesla K80 GPUs.   &lt;/dd&gt;   &lt;dt&gt;complex_model_l_gpu&lt;/dt&gt;   &lt;dd&gt;   A machine equivalent to &lt;i&gt;complex_model_l&lt;/i&gt; that also includes   eight NVIDIA Tesla K80 GPUs.   &lt;/dd&gt;   &lt;dt&gt;standard_p100&lt;/dt&gt;   &lt;dd&gt;   A machine equivalent to &lt;i&gt;standard&lt;/i&gt; that   also includes a single NVIDIA Tesla P100 GPU.   &lt;/dd&gt;   &lt;dt&gt;complex_model_m_p100&lt;/dt&gt;   &lt;dd&gt;   A machine equivalent to &lt;i&gt;complex_model_m&lt;/i&gt; that also includes   four NVIDIA Tesla P100 GPUs.   &lt;/dd&gt;   &lt;dt&gt;standard_v100&lt;/dt&gt;   &lt;dd&gt;   A machine equivalent to &lt;i&gt;standard&lt;/i&gt; that   also includes a single NVIDIA Tesla V100 GPU.   &lt;/dd&gt;   &lt;dt&gt;large_model_v100&lt;/dt&gt;   &lt;dd&gt;   A machine equivalent to &lt;i&gt;large_model&lt;/i&gt; that   also includes a single NVIDIA Tesla V100 GPU.   &lt;/dd&gt;   &lt;dt&gt;complex_model_m_v100&lt;/dt&gt;   &lt;dd&gt;   A machine equivalent to &lt;i&gt;complex_model_m&lt;/i&gt; that   also includes four NVIDIA Tesla V100 GPUs.   &lt;/dd&gt;   &lt;dt&gt;complex_model_l_v100&lt;/dt&gt;   &lt;dd&gt;   A machine equivalent to &lt;i&gt;complex_model_l&lt;/i&gt; that   also includes eight NVIDIA Tesla V100 GPUs.   &lt;/dd&gt;   &lt;dt&gt;cloud_tpu&lt;/dt&gt;   &lt;dd&gt;   A TPU VM including one Cloud TPU. See more about   &lt;a href=&quot;/ml-engine/docs/tensorflow/using-tpus&quot;&gt;using TPUs to train   your model&lt;/a&gt;.   &lt;/dd&gt; &lt;/dl&gt;  You may also use certain Compute Engine machine types directly in this field. The following types are supported:  - `n1-standard-4` - `n1-standard-8` - `n1-standard-16` - `n1-standard-32` - `n1-standard-64` - `n1-standard-96` - `n1-highmem-2` - `n1-highmem-4` - `n1-highmem-8` - `n1-highmem-16` - `n1-highmem-32` - `n1-highmem-64` - `n1-highmem-96` - `n1-highcpu-16` - `n1-highcpu-32` - `n1-highcpu-64` - `n1-highcpu-96`  See more about [using Compute Engine machine types](/ml-engine/docs/tensorflow/machine-types#compute-engine-machine-types).  You must set this value when `scaleTier` is set to `CUSTOM`.
         */
        masterType?: string | null;
        /**
         * Required. The Google Cloud Storage location of the packages with the training program and any additional dependencies. The maximum number of package URIs is 100.
         */
        packageUris?: string[] | null;
        /**
         * Optional. The configuration for parameter servers.  You should only set `parameterServerConfig.acceleratorConfig` if `parameterServerConfigType` is set to a Compute Engine machine type. [Learn about restrictions on accelerator configurations for training.](/ml-engine/docs/tensorflow/using-gpus#compute-engine-machine-types-with-gpu)  Set `parameterServerConfig.imageUri` only if you build a custom image for your parameter server. If `parameterServerConfig.imageUri` has not been set, AI Platform uses the value of `masterConfig.imageUri`. Learn more about [configuring custom containers](/ml-engine/docs/distributed-training-containers).
         */
        parameterServerConfig?: Schema$GoogleCloudMlV1__ReplicaConfig;
        /**
         * Optional. The number of parameter server replicas to use for the training job. Each replica in the cluster will be of the type specified in `parameter_server_type`.  This value can only be used when `scale_tier` is set to `CUSTOM`.If you set this value, you must also set `parameter_server_type`.  The default value is zero.
         */
        parameterServerCount?: string | null;
        /**
         * Optional. Specifies the type of virtual machine to use for your training job&#39;s parameter server.  The supported values are the same as those described in the entry for `master_type`.  This value must be consistent with the category of machine type that `masterType` uses. In other words, both must be AI Platform machine types or both must be Compute Engine machine types.  This value must be present when `scaleTier` is set to `CUSTOM` and `parameter_server_count` is greater than zero.
         */
        parameterServerType?: string | null;
        /**
         * Required. The Python module name to run after installing the packages.
         */
        pythonModule?: string | null;
        /**
         * Optional. The version of Python used in training. If not set, the default version is &#39;2.7&#39;. Python &#39;3.5&#39; is available when `runtime_version` is set to &#39;1.4&#39; and above. Python &#39;2.7&#39; works with all supported &lt;a href=&quot;/ml-engine/docs/runtime-version-list&quot;&gt;runtime versions&lt;/a&gt;.
         */
        pythonVersion?: string | null;
        /**
         * Required. The Google Compute Engine region to run the training job in. See the &lt;a href=&quot;/ml-engine/docs/tensorflow/regions&quot;&gt;available regions&lt;/a&gt; for AI Platform services.
         */
        region?: string | null;
        /**
         * Optional. The AI Platform runtime version to use for training. If not set, AI Platform uses the default stable version, 1.0. For more information, see the &lt;a href=&quot;/ml-engine/docs/runtime-version-list&quot;&gt;runtime version list&lt;/a&gt; and &lt;a href=&quot;/ml-engine/docs/versioning&quot;&gt;how to manage runtime versions&lt;/a&gt;.
         */
        runtimeVersion?: string | null;
        /**
         * Required. Specifies the machine types, the number of replicas for workers and parameter servers.
         */
        scaleTier?: string | null;
        /**
         * Optional. Use &#39;chief&#39; instead of &#39;master&#39; in TF_CONFIG when Custom Container is used and evaluator is not specified.  Defaults to false.
         */
        useChiefInTfConfig?: boolean | null;
        /**
         * Optional. The configuration for workers.  You should only set `workerConfig.acceleratorConfig` if `workerType` is set to a Compute Engine machine type. [Learn about restrictions on accelerator configurations for training.](/ml-engine/docs/tensorflow/using-gpus#compute-engine-machine-types-with-gpu)  Set `workerConfig.imageUri` only if you build a custom image for your worker. If `workerConfig.imageUri` has not been set, AI Platform uses the value of `masterConfig.imageUri`. Learn more about [configuring custom containers](/ml-engine/docs/distributed-training-containers).
         */
        workerConfig?: Schema$GoogleCloudMlV1__ReplicaConfig;
        /**
         * Optional. The number of worker replicas to use for the training job. Each replica in the cluster will be of the type specified in `worker_type`.  This value can only be used when `scale_tier` is set to `CUSTOM`. If you set this value, you must also set `worker_type`.  The default value is zero.
         */
        workerCount?: string | null;
        /**
         * Optional. Specifies the type of virtual machine to use for your training job&#39;s worker nodes.  The supported values are the same as those described in the entry for `masterType`.  This value must be consistent with the category of machine type that `masterType` uses. In other words, both must be AI Platform machine types or both must be Compute Engine machine types.  If you use `cloud_tpu` for this value, see special instructions for [configuring a custom TPU machine](/ml-engine/docs/tensorflow/using-tpus#configuring_a_custom_tpu_machine).  This value must be present when `scaleTier` is set to `CUSTOM` and `workerCount` is greater than zero.
         */
        workerType?: string | null;
    }
    /**
     * Represents results of a training job. Output only.
     */
    export interface Schema$GoogleCloudMlV1__TrainingOutput {
        /**
         * Details related to built-in algorithms jobs. Only set for built-in algorithms jobs.
         */
        builtInAlgorithmOutput?: Schema$GoogleCloudMlV1__BuiltInAlgorithmOutput;
        /**
         * The number of hyperparameter tuning trials that completed successfully. Only set for hyperparameter tuning jobs.
         */
        completedTrialCount?: string | null;
        /**
         * The amount of ML units consumed by the job.
         */
        consumedMLUnits?: number | null;
        /**
         * The TensorFlow summary tag name used for optimizing hyperparameter tuning trials. See [`HyperparameterSpec.hyperparameterMetricTag`](#HyperparameterSpec.FIELDS.hyperparameter_metric_tag) for more information. Only set for hyperparameter tuning jobs.
         */
        hyperparameterMetricTag?: string | null;
        /**
         * Whether this job is a built-in Algorithm job.
         */
        isBuiltInAlgorithmJob?: boolean | null;
        /**
         * Whether this job is a hyperparameter tuning job.
         */
        isHyperparameterTuningJob?: boolean | null;
        /**
         * Results for individual Hyperparameter trials. Only set for hyperparameter tuning jobs.
         */
        trials?: Schema$GoogleCloudMlV1__HyperparameterOutput[];
    }
    /**
     * Represents a version of the model.  Each version is a trained model deployed in the cloud, ready to handle prediction requests. A model can have multiple versions. You can get information about all of the versions of a given model by calling [projects.models.versions.list](/ml-engine/reference/rest/v1/projects.models.versions/list).
     */
    export interface Schema$GoogleCloudMlV1__Version {
        /**
         * Optional. Accelerator config for using GPUs for online prediction (beta). Only specify this field if you have specified a Compute Engine (N1) machine type in the `machineType` field. Learn more about [using GPUs for online prediction](/ml-engine/docs/machine-types-online-prediction#gpus).
         */
        acceleratorConfig?: Schema$GoogleCloudMlV1__AcceleratorConfig;
        /**
         * Automatically scale the number of nodes used to serve the model in response to increases and decreases in traffic. Care should be taken to ramp up traffic according to the model&#39;s ability to scale or you will start seeing increases in latency and 429 response codes.  Note that you cannot use AutoScaling if your version uses [GPUs](#Version.FIELDS.accelerator_config). Instead, you must use specify `manual_scaling`.
         */
        autoScaling?: Schema$GoogleCloudMlV1__AutoScaling;
        /**
         * Output only. The time the version was created.
         */
        createTime?: string | null;
        /**
         * Required. The Cloud Storage location of the trained model used to create the version. See the [guide to model deployment](/ml-engine/docs/tensorflow/deploying-models) for more information.  When passing Version to [projects.models.versions.create](/ml-engine/reference/rest/v1/projects.models.versions/create) the model service uses the specified location as the source of the model. Once deployed, the model version is hosted by the prediction service, so this location is useful only as a historical record. The total number of model files can&#39;t exceed 1000.
         */
        deploymentUri?: string | null;
        /**
         * Optional. The description specified for the version when it was created.
         */
        description?: string | null;
        /**
         * Output only. The details of a failure or a cancellation.
         */
        errorMessage?: string | null;
        /**
         * `etag` is used for optimistic concurrency control as a way to help prevent simultaneous updates of a model from overwriting each other. It is strongly suggested that systems make use of the `etag` in the read-modify-write cycle to perform model updates in order to avoid race conditions: An `etag` is returned in the response to `GetVersion`, and systems are expected to put that etag in the request to `UpdateVersion` to ensure that their change will be applied to the model as intended.
         */
        etag?: string | null;
        /**
         * Optional. The machine learning framework AI Platform uses to train this version of the model. Valid values are `TENSORFLOW`, `SCIKIT_LEARN`, `XGBOOST`. If you do not specify a framework, AI Platform will analyze files in the deployment_uri to determine a framework. If you choose `SCIKIT_LEARN` or `XGBOOST`, you must also set the runtime version of the model to 1.4 or greater.  Do **not** specify a framework if you&#39;re deploying a [custom prediction routine](/ml-engine/docs/tensorflow/custom-prediction-routines).  If you specify a [Compute Engine (N1) machine type](/ml-engine/docs/machine-types-online-prediction) in the `machineType` field, you must specify `TENSORFLOW` for the framework.
         */
        framework?: string | null;
        /**
         * Output only. If true, this version will be used to handle prediction requests that do not specify a version.  You can change the default version by calling [projects.methods.versions.setDefault](/ml-engine/reference/rest/v1/projects.models.versions/setDefault).
         */
        isDefault?: boolean | null;
        /**
         * Optional. One or more labels that you can add, to organize your model versions. Each label is a key-value pair, where both the key and the value are arbitrary strings that you supply. For more information, see the documentation on &lt;a href=&quot;/ml-engine/docs/tensorflow/resource-labels&quot;&gt;using labels&lt;/a&gt;.
         */
        labels?: {
            [key: string]: string;
        } | null;
        /**
         * Output only. The time the version was last used for prediction.
         */
        lastUseTime?: string | null;
        /**
         * Optional. The type of machine on which to serve the model. Currently only applies to online prediction service. If this field is not specified, it defaults to `mls1-c1-m2`.  Online prediction supports the following machine types:  * `mls1-c1-m2` * `mls1-c4-m2` * `n1-standard-2` * `n1-standard-4` * `n1-standard-8` * `n1-standard-16` * `n1-standard-32` * `n1-highmem-2` * `n1-highmem-4` * `n1-highmem-8` * `n1-highmem-16` * `n1-highmem-32` * `n1-highcpu-2` * `n1-highcpu-4` * `n1-highcpu-8` * `n1-highcpu-16` * `n1-highcpu-32`  `mls1-c1-m2` is generally available. All other machine types are available in beta. Learn more about the [differences between machine types](/ml-engine/docs/machine-types-online-prediction).
         */
        machineType?: string | null;
        /**
         * Manually select the number of nodes to use for serving the model. You should generally use `auto_scaling` with an appropriate `min_nodes` instead, but this option is available if you want more predictable billing. Beware that latency and error rates will increase if the traffic exceeds that capability of the system to serve it based on the selected number of nodes.
         */
        manualScaling?: Schema$GoogleCloudMlV1__ManualScaling;
        /**
         * Required. The name specified for the version when it was created.  The version name must be unique within the model it is created in.
         */
        name?: string | null;
        /**
         * Optional. Cloud Storage paths (`gs://…`) of packages for [custom prediction routines](/ml-engine/docs/tensorflow/custom-prediction-routines) or [scikit-learn pipelines with custom code](/ml-engine/docs/scikit/exporting-for-prediction#custom-pipeline-code).  For a custom prediction routine, one of these packages must contain your Predictor class (see [`predictionClass`](#Version.FIELDS.prediction_class)). Additionally, include any dependencies used by your Predictor or scikit-learn pipeline uses that are not already included in your selected [runtime version](/ml-engine/docs/tensorflow/runtime-version-list).  If you specify this field, you must also set [`runtimeVersion`](#Version.FIELDS.runtime_version) to 1.4 or greater.
         */
        packageUris?: string[] | null;
        /**
         * Optional. The fully qualified name (&lt;var&gt;module_name&lt;/var&gt;.&lt;var&gt;class_name&lt;/var&gt;) of a class that implements the Predictor interface described in this reference field. The module containing this class should be included in a package provided to the [`packageUris` field](#Version.FIELDS.package_uris).  Specify this field if and only if you are deploying a [custom prediction routine (beta)](/ml-engine/docs/tensorflow/custom-prediction-routines). If you specify this field, you must set [`runtimeVersion`](#Version.FIELDS.runtime_version) to 1.4 or greater and you must set `machineType` to a [legacy (MLS1) machine type](/ml-engine/docs/machine-types-online-prediction).  The following code sample provides the Predictor interface:  &lt;pre style=&quot;max-width: 626px;&quot;&gt; class Predictor(object): &quot;&quot;&quot;Interface for constructing custom predictors.&quot;&quot;&quot;  def predict(self, instances, **kwargs):     &quot;&quot;&quot;Performs custom prediction.      Instances are the decoded values from the request. They have already     been deserialized from JSON.      Args:         instances: A list of prediction input instances.         **kwargs: A dictionary of keyword args provided as additional             fields on the predict request body.      Returns:         A list of outputs containing the prediction results. This list must         be JSON serializable.     &quot;&quot;&quot;     raise NotImplementedError()  @classmethod def from_path(cls, model_dir):     &quot;&quot;&quot;Creates an instance of Predictor using the given path.      Loading of the predictor should be done in this method.      Args:         model_dir: The local directory that contains the exported model             file along with any additional files uploaded when creating the             version resource.      Returns:         An instance implementing this Predictor class.     &quot;&quot;&quot;     raise NotImplementedError() &lt;/pre&gt;  Learn more about [the Predictor interface and custom prediction routines](/ml-engine/docs/tensorflow/custom-prediction-routines).
         */
        predictionClass?: string | null;
        /**
         * Optional. The version of Python used in prediction. If not set, the default version is &#39;2.7&#39;. Python &#39;3.5&#39; is available when `runtime_version` is set to &#39;1.4&#39; and above. Python &#39;2.7&#39; works with all supported runtime versions.
         */
        pythonVersion?: string | null;
        /**
         * Optional. Configures the request-response pair logging on predictions from this Version.
         */
        requestLoggingConfig?: Schema$GoogleCloudMlV1__RequestLoggingConfig;
        /**
         * Optional. The AI Platform runtime version to use for this deployment. If not set, AI Platform uses the default stable version, 1.0. For more information, see the [runtime version list](/ml-engine/docs/runtime-version-list) and [how to manage runtime versions](/ml-engine/docs/versioning).
         */
        runtimeVersion?: string | null;
        /**
         * Optional. Specifies the service account for resource access control.
         */
        serviceAccount?: string | null;
        /**
         * Output only. The state of a version.
         */
        state?: string | null;
    }
    /**
     * Specifies the audit configuration for a service. The configuration determines which permission types are logged, and what identities, if any, are exempted from logging. An AuditConfig must have one or more AuditLogConfigs.  If there are AuditConfigs for both `allServices` and a specific service, the union of the two AuditConfigs is used for that service: the log_types specified in each AuditConfig are enabled, and the exempted_members in each AuditLogConfig are exempted.  Example Policy with multiple AuditConfigs:      {       &quot;audit_configs&quot;: [         {           &quot;service&quot;: &quot;allServices&quot;           &quot;audit_log_configs&quot;: [             {               &quot;log_type&quot;: &quot;DATA_READ&quot;,               &quot;exempted_members&quot;: [                 &quot;user:jose@example.com&quot;               ]             },             {               &quot;log_type&quot;: &quot;DATA_WRITE&quot;,             },             {               &quot;log_type&quot;: &quot;ADMIN_READ&quot;,             }           ]         },         {           &quot;service&quot;: &quot;sampleservice.googleapis.com&quot;           &quot;audit_log_configs&quot;: [             {               &quot;log_type&quot;: &quot;DATA_READ&quot;,             },             {               &quot;log_type&quot;: &quot;DATA_WRITE&quot;,               &quot;exempted_members&quot;: [                 &quot;user:aliya@example.com&quot;               ]             }           ]         }       ]     }  For sampleservice, this policy enables DATA_READ, DATA_WRITE and ADMIN_READ logging. It also exempts jose@example.com from DATA_READ logging, and aliya@example.com from DATA_WRITE logging.
     */
    export interface Schema$GoogleIamV1__AuditConfig {
        /**
         * The configuration for logging of each type of permission.
         */
        auditLogConfigs?: Schema$GoogleIamV1__AuditLogConfig[];
        /**
         * Specifies a service that will be enabled for audit logging. For example, `storage.googleapis.com`, `cloudsql.googleapis.com`. `allServices` is a special value that covers all services.
         */
        service?: string | null;
    }
    /**
     * Provides the configuration for logging a type of permissions. Example:      {       &quot;audit_log_configs&quot;: [         {           &quot;log_type&quot;: &quot;DATA_READ&quot;,           &quot;exempted_members&quot;: [             &quot;user:jose@example.com&quot;           ]         },         {           &quot;log_type&quot;: &quot;DATA_WRITE&quot;,         }       ]     }  This enables &#39;DATA_READ&#39; and &#39;DATA_WRITE&#39; logging, while exempting jose@example.com from DATA_READ logging.
     */
    export interface Schema$GoogleIamV1__AuditLogConfig {
        /**
         * Specifies the identities that do not cause logging for this type of permission. Follows the same format of Binding.members.
         */
        exemptedMembers?: string[] | null;
        /**
         * The log type that this config enables.
         */
        logType?: string | null;
    }
    /**
     * Associates `members` with a `role`.
     */
    export interface Schema$GoogleIamV1__Binding {
        /**
         * The condition that is associated with this binding. NOTE: An unsatisfied condition will not allow user access via current binding. Different bindings, including their conditions, are examined independently.
         */
        condition?: Schema$GoogleType__Expr;
        /**
         * Specifies the identities requesting access for a Cloud Platform resource. `members` can have the following values:  * `allUsers`: A special identifier that represents anyone who is    on the internet; with or without a Google account.  * `allAuthenticatedUsers`: A special identifier that represents anyone    who is authenticated with a Google account or a service account.  * `user:{emailid}`: An email address that represents a specific Google    account. For example, `alice@example.com` .   * `serviceAccount:{emailid}`: An email address that represents a service    account. For example, `my-other-app@appspot.gserviceaccount.com`.  * `group:{emailid}`: An email address that represents a Google group.    For example, `admins@example.com`.   * `domain:{domain}`: The G Suite domain (primary) that represents all the    users of that domain. For example, `google.com` or `example.com`.
         */
        members?: string[] | null;
        /**
         * Role that is assigned to `members`. For example, `roles/viewer`, `roles/editor`, or `roles/owner`.
         */
        role?: string | null;
    }
    /**
     * Defines an Identity and Access Management (IAM) policy. It is used to specify access control policies for Cloud Platform resources.   A `Policy` is a collection of `bindings`. A `binding` binds one or more `members` to a single `role`. Members can be user accounts, service accounts, Google groups, and domains (such as G Suite). A `role` is a named list of permissions (defined by IAM or configured by users). A `binding` can optionally specify a `condition`, which is a logic expression that further constrains the role binding based on attributes about the request and/or target resource.  **JSON Example**      {       &quot;bindings&quot;: [         {           &quot;role&quot;: &quot;roles/resourcemanager.organizationAdmin&quot;,           &quot;members&quot;: [             &quot;user:mike@example.com&quot;,             &quot;group:admins@example.com&quot;,             &quot;domain:google.com&quot;,             &quot;serviceAccount:my-project-id@appspot.gserviceaccount.com&quot;           ]         },         {           &quot;role&quot;: &quot;roles/resourcemanager.organizationViewer&quot;,           &quot;members&quot;: [&quot;user:eve@example.com&quot;],           &quot;condition&quot;: {             &quot;title&quot;: &quot;expirable access&quot;,             &quot;description&quot;: &quot;Does not grant access after Sep 2020&quot;,             &quot;expression&quot;: &quot;request.time &lt;             timestamp(&#39;2020-10-01T00:00:00.000Z&#39;)&quot;,           }         }       ]     }  **YAML Example**      bindings:     - members:       - user:mike@example.com       - group:admins@example.com       - domain:google.com       - serviceAccount:my-project-id@appspot.gserviceaccount.com       role: roles/resourcemanager.organizationAdmin     - members:       - user:eve@example.com       role: roles/resourcemanager.organizationViewer       condition:         title: expirable access         description: Does not grant access after Sep 2020         expression: request.time &lt; timestamp(&#39;2020-10-01T00:00:00.000Z&#39;)  For a description of IAM and its features, see the [IAM developer&#39;s guide](https://cloud.google.com/iam/docs).
     */
    export interface Schema$GoogleIamV1__Policy {
        /**
         * Specifies cloud audit logging configuration for this policy.
         */
        auditConfigs?: Schema$GoogleIamV1__AuditConfig[];
        /**
         * Associates a list of `members` to a `role`. Optionally may specify a `condition` that determines when binding is in effect. `bindings` with no members will result in an error.
         */
        bindings?: Schema$GoogleIamV1__Binding[];
        /**
         * `etag` is used for optimistic concurrency control as a way to help prevent simultaneous updates of a policy from overwriting each other. It is strongly suggested that systems make use of the `etag` in the read-modify-write cycle to perform policy updates in order to avoid race conditions: An `etag` is returned in the response to `getIamPolicy`, and systems are expected to put that etag in the request to `setIamPolicy` to ensure that their change will be applied to the same version of the policy.  If no `etag` is provided in the call to `setIamPolicy`, then the existing policy is overwritten. Due to blind-set semantics of an etag-less policy, &#39;setIamPolicy&#39; will not fail even if either of incoming or stored policy does not meet the version requirements.
         */
        etag?: string | null;
        /**
         * Specifies the format of the policy.  Valid values are 0, 1, and 3. Requests specifying an invalid value will be rejected.  Operations affecting conditional bindings must specify version 3. This can be either setting a conditional policy, modifying a conditional binding, or removing a conditional binding from the stored conditional policy. Operations on non-conditional policies may specify any valid value or leave the field unset.  If no etag is provided in the call to `setIamPolicy`, any version compliance checks on the incoming and/or stored policy is skipped.
         */
        version?: number | null;
    }
    /**
     * Request message for `SetIamPolicy` method.
     */
    export interface Schema$GoogleIamV1__SetIamPolicyRequest {
        /**
         * REQUIRED: The complete policy to be applied to the `resource`. The size of the policy is limited to a few 10s of KB. An empty policy is a valid policy but certain Cloud Platform services (such as Projects) might reject them.
         */
        policy?: Schema$GoogleIamV1__Policy;
        /**
         * OPTIONAL: A FieldMask specifying which fields of the policy to modify. Only the fields in the mask will be modified. If no mask is provided, the following default mask is used: paths: &quot;bindings, etag&quot; This field is only used by Cloud IAM.
         */
        updateMask?: string | null;
    }
    /**
     * Request message for `TestIamPermissions` method.
     */
    export interface Schema$GoogleIamV1__TestIamPermissionsRequest {
        /**
         * The set of permissions to check for the `resource`. Permissions with wildcards (such as &#39;*&#39; or &#39;storage.*&#39;) are not allowed. For more information see [IAM Overview](https://cloud.google.com/iam/docs/overview#permissions).
         */
        permissions?: string[] | null;
    }
    /**
     * Response message for `TestIamPermissions` method.
     */
    export interface Schema$GoogleIamV1__TestIamPermissionsResponse {
        /**
         * A subset of `TestPermissionsRequest.permissions` that the caller is allowed.
         */
        permissions?: string[] | null;
    }
    /**
     * The response message for Operations.ListOperations.
     */
    export interface Schema$GoogleLongrunning__ListOperationsResponse {
        /**
         * The standard List next-page token.
         */
        nextPageToken?: string | null;
        /**
         * A list of operations that matches the specified filter in the request.
         */
        operations?: Schema$GoogleLongrunning__Operation[];
    }
    /**
     * This resource represents a long-running operation that is the result of a network API call.
     */
    export interface Schema$GoogleLongrunning__Operation {
        /**
         * If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
         */
        done?: boolean | null;
        /**
         * The error result of the operation in case of failure or cancellation.
         */
        error?: Schema$GoogleRpc__Status;
        /**
         * Service-specific metadata associated with the operation.  It typically contains progress information and common metadata such as create time. Some services might not provide such metadata.  Any method that returns a long-running operation should document the metadata type, if any.
         */
        metadata?: {
            [key: string]: any;
        } | null;
        /**
         * The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
         */
        name?: string | null;
        /**
         * The normal response of the operation in case of success.  If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`.  If the original method is standard `Get`/`Create`/`Update`, the response should be the resource.  For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name.  For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
         */
        response?: {
            [key: string]: any;
        } | null;
    }
    /**
     * A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance:      service Foo {       rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);     }  The JSON representation for `Empty` is empty JSON object `{}`.
     */
    export interface Schema$GoogleProtobuf__Empty {
    }
    /**
     * The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details.  You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors).
     */
    export interface Schema$GoogleRpc__Status {
        /**
         * The status code, which should be an enum value of google.rpc.Code.
         */
        code?: number | null;
        /**
         * A list of messages that carry the error details.  There is a common set of message types for APIs to use.
         */
        details?: Array<{
            [key: string]: any;
        }> | null;
        /**
         * A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
         */
        message?: string | null;
    }
    /**
     * Represents an expression text. Example:      title: &quot;User account presence&quot;     description: &quot;Determines whether the request has a user account&quot;     expression: &quot;size(request.user) &gt; 0&quot;
     */
    export interface Schema$GoogleType__Expr {
        /**
         * An optional description of the expression. This is a longer text which describes the expression, e.g. when hovered over it in a UI.
         */
        description?: string | null;
        /**
         * Textual representation of an expression in Common Expression Language syntax.  The application context of the containing message determines which well-known feature set of CEL is supported.
         */
        expression?: string | null;
        /**
         * An optional string indicating the location of the expression for error reporting, e.g. a file name and a position in the file.
         */
        location?: string | null;
        /**
         * An optional title for the expression, i.e. a short string describing its purpose. This can be used e.g. in UIs which allow to enter the expression.
         */
        title?: string | null;
    }
    export class Resource$Projects {
        context: APIRequestContext;
        jobs: Resource$Projects$Jobs;
        locations: Resource$Projects$Locations;
        models: Resource$Projects$Models;
        operations: Resource$Projects$Operations;
        constructor(context: APIRequestContext);
        /**
         * ml.projects.getConfig
         * @desc Get the service account information associated with your project. You need this information in order to grant the service account permissions for the Google Cloud Storage location where you put your model training code for training the model with Google Cloud Machine Learning.
         * @alias ml.projects.getConfig
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.name Required. The project name.
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        getConfig(params?: Params$Resource$Projects$Getconfig, options?: MethodOptions): GaxiosPromise<Schema$GoogleCloudMlV1__GetConfigResponse>;
        getConfig(params: Params$Resource$Projects$Getconfig, options: MethodOptions | BodyResponseCallback<Schema$GoogleCloudMlV1__GetConfigResponse>, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__GetConfigResponse>): void;
        getConfig(params: Params$Resource$Projects$Getconfig, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__GetConfigResponse>): void;
        getConfig(callback: BodyResponseCallback<Schema$GoogleCloudMlV1__GetConfigResponse>): void;
        /**
         * ml.projects.predict
         * @desc Performs prediction on the data in the request. AI Platform implements a custom `predict` verb on top of an HTTP POST method. <p>For details of the request and response format, see the **guide to the [predict request format](/ml-engine/docs/v1/predict-request)**.
         * @alias ml.projects.predict
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.name Required. The resource name of a model or a version.  Authorization: requires the `predict` permission on the specified resource.
         * @param {().GoogleCloudMlV1__PredictRequest} params.resource Request body data
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        predict(params?: Params$Resource$Projects$Predict, options?: MethodOptions): GaxiosPromise<Schema$GoogleApi__HttpBody>;
        predict(params: Params$Resource$Projects$Predict, options: MethodOptions | BodyResponseCallback<Schema$GoogleApi__HttpBody>, callback: BodyResponseCallback<Schema$GoogleApi__HttpBody>): void;
        predict(params: Params$Resource$Projects$Predict, callback: BodyResponseCallback<Schema$GoogleApi__HttpBody>): void;
        predict(callback: BodyResponseCallback<Schema$GoogleApi__HttpBody>): void;
    }
    export interface Params$Resource$Projects$Getconfig extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * Required. The project name.
         */
        name?: string;
    }
    export interface Params$Resource$Projects$Predict extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * Required. The resource name of a model or a version.  Authorization: requires the `predict` permission on the specified resource.
         */
        name?: string;
        /**
         * Request body metadata
         */
        requestBody?: Schema$GoogleCloudMlV1__PredictRequest;
    }
    export class Resource$Projects$Jobs {
        context: APIRequestContext;
        constructor(context: APIRequestContext);
        /**
         * ml.projects.jobs.cancel
         * @desc Cancels a running job.
         * @alias ml.projects.jobs.cancel
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.name Required. The name of the job to cancel.
         * @param {().GoogleCloudMlV1__CancelJobRequest} params.resource Request body data
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        cancel(params?: Params$Resource$Projects$Jobs$Cancel, options?: MethodOptions): GaxiosPromise<Schema$GoogleProtobuf__Empty>;
        cancel(params: Params$Resource$Projects$Jobs$Cancel, options: MethodOptions | BodyResponseCallback<Schema$GoogleProtobuf__Empty>, callback: BodyResponseCallback<Schema$GoogleProtobuf__Empty>): void;
        cancel(params: Params$Resource$Projects$Jobs$Cancel, callback: BodyResponseCallback<Schema$GoogleProtobuf__Empty>): void;
        cancel(callback: BodyResponseCallback<Schema$GoogleProtobuf__Empty>): void;
        /**
         * ml.projects.jobs.create
         * @desc Creates a training or a batch prediction job.
         * @alias ml.projects.jobs.create
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.parent Required. The project name.
         * @param {().GoogleCloudMlV1__Job} params.resource Request body data
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        create(params?: Params$Resource$Projects$Jobs$Create, options?: MethodOptions): GaxiosPromise<Schema$GoogleCloudMlV1__Job>;
        create(params: Params$Resource$Projects$Jobs$Create, options: MethodOptions | BodyResponseCallback<Schema$GoogleCloudMlV1__Job>, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__Job>): void;
        create(params: Params$Resource$Projects$Jobs$Create, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__Job>): void;
        create(callback: BodyResponseCallback<Schema$GoogleCloudMlV1__Job>): void;
        /**
         * ml.projects.jobs.get
         * @desc Describes a job.
         * @alias ml.projects.jobs.get
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.name Required. The name of the job to get the description of.
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        get(params?: Params$Resource$Projects$Jobs$Get, options?: MethodOptions): GaxiosPromise<Schema$GoogleCloudMlV1__Job>;
        get(params: Params$Resource$Projects$Jobs$Get, options: MethodOptions | BodyResponseCallback<Schema$GoogleCloudMlV1__Job>, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__Job>): void;
        get(params: Params$Resource$Projects$Jobs$Get, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__Job>): void;
        get(callback: BodyResponseCallback<Schema$GoogleCloudMlV1__Job>): void;
        /**
         * ml.projects.jobs.getIamPolicy
         * @desc Gets the access control policy for a resource. Returns an empty policy if the resource exists and does not have a policy set.
         * @alias ml.projects.jobs.getIamPolicy
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {integer=} params.options.requestedPolicyVersion Optional. The policy format version to be returned.  Valid values are 0, 1, and 3. Requests specifying an invalid value will be rejected.  Requests for policies with any conditional bindings must specify version 3. Policies without any conditional bindings may specify any valid value or leave the field unset.
         * @param {string} params.resource_ REQUIRED: The resource for which the policy is being requested. See the operation documentation for the appropriate value for this field.
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        getIamPolicy(params?: Params$Resource$Projects$Jobs$Getiampolicy, options?: MethodOptions): GaxiosPromise<Schema$GoogleIamV1__Policy>;
        getIamPolicy(params: Params$Resource$Projects$Jobs$Getiampolicy, options: MethodOptions | BodyResponseCallback<Schema$GoogleIamV1__Policy>, callback: BodyResponseCallback<Schema$GoogleIamV1__Policy>): void;
        getIamPolicy(params: Params$Resource$Projects$Jobs$Getiampolicy, callback: BodyResponseCallback<Schema$GoogleIamV1__Policy>): void;
        getIamPolicy(callback: BodyResponseCallback<Schema$GoogleIamV1__Policy>): void;
        /**
         * ml.projects.jobs.list
         * @desc Lists the jobs in the project.  If there are no jobs that match the request parameters, the list request returns an empty response body: {}.
         * @alias ml.projects.jobs.list
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string=} params.filter Optional. Specifies the subset of jobs to retrieve. You can filter on the value of one or more attributes of the job object. For example, retrieve jobs with a job identifier that starts with 'census': <p><code>gcloud ai-platform jobs list --filter='jobId:census*'</code> <p>List all failed jobs with names that start with 'rnn': <p><code>gcloud ai-platform jobs list --filter='jobId:rnn* AND state:FAILED'</code> <p>For more examples, see the guide to <a href="/ml-engine/docs/tensorflow/monitor-training">monitoring jobs</a>.
         * @param {integer=} params.pageSize Optional. The number of jobs to retrieve per "page" of results. If there are more remaining results than this number, the response message will contain a valid value in the `next_page_token` field.  The default value is 20, and the maximum page size is 100.
         * @param {string=} params.pageToken Optional. A page token to request the next page of results.  You get the token from the `next_page_token` field of the response from the previous call.
         * @param {string} params.parent Required. The name of the project for which to list jobs.
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        list(params?: Params$Resource$Projects$Jobs$List, options?: MethodOptions): GaxiosPromise<Schema$GoogleCloudMlV1__ListJobsResponse>;
        list(params: Params$Resource$Projects$Jobs$List, options: MethodOptions | BodyResponseCallback<Schema$GoogleCloudMlV1__ListJobsResponse>, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__ListJobsResponse>): void;
        list(params: Params$Resource$Projects$Jobs$List, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__ListJobsResponse>): void;
        list(callback: BodyResponseCallback<Schema$GoogleCloudMlV1__ListJobsResponse>): void;
        /**
         * ml.projects.jobs.patch
         * @desc Updates a specific job resource.  Currently the only supported fields to update are `labels`.
         * @alias ml.projects.jobs.patch
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.name Required. The job name.
         * @param {string=} params.updateMask Required. Specifies the path, relative to `Job`, of the field to update. To adopt etag mechanism, include `etag` field in the mask, and include the `etag` value in your job resource.  For example, to change the labels of a job, the `update_mask` parameter would be specified as `labels`, `etag`, and the `PATCH` request body would specify the new value, as follows:     {       "labels": {          "owner": "Google",          "color": "Blue"       }       "etag": "33a64df551425fcc55e4d42a148795d9f25f89d4"     } If `etag` matches the one on the server, the labels of the job will be replaced with the given ones, and the server end `etag` will be recalculated.  Currently the only supported update masks are `labels` and `etag`.
         * @param {().GoogleCloudMlV1__Job} params.resource Request body data
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        patch(params?: Params$Resource$Projects$Jobs$Patch, options?: MethodOptions): GaxiosPromise<Schema$GoogleCloudMlV1__Job>;
        patch(params: Params$Resource$Projects$Jobs$Patch, options: MethodOptions | BodyResponseCallback<Schema$GoogleCloudMlV1__Job>, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__Job>): void;
        patch(params: Params$Resource$Projects$Jobs$Patch, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__Job>): void;
        patch(callback: BodyResponseCallback<Schema$GoogleCloudMlV1__Job>): void;
        /**
         * ml.projects.jobs.setIamPolicy
         * @desc Sets the access control policy on the specified resource. Replaces any existing policy.  Can return Public Errors: NOT_FOUND, INVALID_ARGUMENT and PERMISSION_DENIED
         * @alias ml.projects.jobs.setIamPolicy
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.resource_ REQUIRED: The resource for which the policy is being specified. See the operation documentation for the appropriate value for this field.
         * @param {().GoogleIamV1__SetIamPolicyRequest} params.resource Request body data
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        setIamPolicy(params?: Params$Resource$Projects$Jobs$Setiampolicy, options?: MethodOptions): GaxiosPromise<Schema$GoogleIamV1__Policy>;
        setIamPolicy(params: Params$Resource$Projects$Jobs$Setiampolicy, options: MethodOptions | BodyResponseCallback<Schema$GoogleIamV1__Policy>, callback: BodyResponseCallback<Schema$GoogleIamV1__Policy>): void;
        setIamPolicy(params: Params$Resource$Projects$Jobs$Setiampolicy, callback: BodyResponseCallback<Schema$GoogleIamV1__Policy>): void;
        setIamPolicy(callback: BodyResponseCallback<Schema$GoogleIamV1__Policy>): void;
        /**
         * ml.projects.jobs.testIamPermissions
         * @desc Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a NOT_FOUND error.  Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning.
         * @alias ml.projects.jobs.testIamPermissions
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.resource_ REQUIRED: The resource for which the policy detail is being requested. See the operation documentation for the appropriate value for this field.
         * @param {().GoogleIamV1__TestIamPermissionsRequest} params.resource Request body data
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        testIamPermissions(params?: Params$Resource$Projects$Jobs$Testiampermissions, options?: MethodOptions): GaxiosPromise<Schema$GoogleIamV1__TestIamPermissionsResponse>;
        testIamPermissions(params: Params$Resource$Projects$Jobs$Testiampermissions, options: MethodOptions | BodyResponseCallback<Schema$GoogleIamV1__TestIamPermissionsResponse>, callback: BodyResponseCallback<Schema$GoogleIamV1__TestIamPermissionsResponse>): void;
        testIamPermissions(params: Params$Resource$Projects$Jobs$Testiampermissions, callback: BodyResponseCallback<Schema$GoogleIamV1__TestIamPermissionsResponse>): void;
        testIamPermissions(callback: BodyResponseCallback<Schema$GoogleIamV1__TestIamPermissionsResponse>): void;
    }
    export interface Params$Resource$Projects$Jobs$Cancel extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * Required. The name of the job to cancel.
         */
        name?: string;
        /**
         * Request body metadata
         */
        requestBody?: Schema$GoogleCloudMlV1__CancelJobRequest;
    }
    export interface Params$Resource$Projects$Jobs$Create extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * Required. The project name.
         */
        parent?: string;
        /**
         * Request body metadata
         */
        requestBody?: Schema$GoogleCloudMlV1__Job;
    }
    export interface Params$Resource$Projects$Jobs$Get extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * Required. The name of the job to get the description of.
         */
        name?: string;
    }
    export interface Params$Resource$Projects$Jobs$Getiampolicy extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * Optional. The policy format version to be returned.  Valid values are 0, 1, and 3. Requests specifying an invalid value will be rejected.  Requests for policies with any conditional bindings must specify version 3. Policies without any conditional bindings may specify any valid value or leave the field unset.
         */
        'options.requestedPolicyVersion'?: number;
        /**
         * REQUIRED: The resource for which the policy is being requested. See the operation documentation for the appropriate value for this field.
         */
        resource?: string;
    }
    export interface Params$Resource$Projects$Jobs$List extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * Optional. Specifies the subset of jobs to retrieve. You can filter on the value of one or more attributes of the job object. For example, retrieve jobs with a job identifier that starts with 'census': <p><code>gcloud ai-platform jobs list --filter='jobId:census*'</code> <p>List all failed jobs with names that start with 'rnn': <p><code>gcloud ai-platform jobs list --filter='jobId:rnn* AND state:FAILED'</code> <p>For more examples, see the guide to <a href="/ml-engine/docs/tensorflow/monitor-training">monitoring jobs</a>.
         */
        filter?: string;
        /**
         * Optional. The number of jobs to retrieve per "page" of results. If there are more remaining results than this number, the response message will contain a valid value in the `next_page_token` field.  The default value is 20, and the maximum page size is 100.
         */
        pageSize?: number;
        /**
         * Optional. A page token to request the next page of results.  You get the token from the `next_page_token` field of the response from the previous call.
         */
        pageToken?: string;
        /**
         * Required. The name of the project for which to list jobs.
         */
        parent?: string;
    }
    export interface Params$Resource$Projects$Jobs$Patch extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * Required. The job name.
         */
        name?: string;
        /**
         * Required. Specifies the path, relative to `Job`, of the field to update. To adopt etag mechanism, include `etag` field in the mask, and include the `etag` value in your job resource.  For example, to change the labels of a job, the `update_mask` parameter would be specified as `labels`, `etag`, and the `PATCH` request body would specify the new value, as follows:     {       "labels": {          "owner": "Google",          "color": "Blue"       }       "etag": "33a64df551425fcc55e4d42a148795d9f25f89d4"     } If `etag` matches the one on the server, the labels of the job will be replaced with the given ones, and the server end `etag` will be recalculated.  Currently the only supported update masks are `labels` and `etag`.
         */
        updateMask?: string;
        /**
         * Request body metadata
         */
        requestBody?: Schema$GoogleCloudMlV1__Job;
    }
    export interface Params$Resource$Projects$Jobs$Setiampolicy extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * REQUIRED: The resource for which the policy is being specified. See the operation documentation for the appropriate value for this field.
         */
        resource?: string;
        /**
         * Request body metadata
         */
        requestBody?: Schema$GoogleIamV1__SetIamPolicyRequest;
    }
    export interface Params$Resource$Projects$Jobs$Testiampermissions extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * REQUIRED: The resource for which the policy detail is being requested. See the operation documentation for the appropriate value for this field.
         */
        resource?: string;
        /**
         * Request body metadata
         */
        requestBody?: Schema$GoogleIamV1__TestIamPermissionsRequest;
    }
    export class Resource$Projects$Locations {
        context: APIRequestContext;
        constructor(context: APIRequestContext);
        /**
         * ml.projects.locations.get
         * @desc Get the complete list of CMLE capabilities in a location, along with their location-specific properties.
         * @alias ml.projects.locations.get
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.name Required. The name of the location.
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        get(params?: Params$Resource$Projects$Locations$Get, options?: MethodOptions): GaxiosPromise<Schema$GoogleCloudMlV1__Location>;
        get(params: Params$Resource$Projects$Locations$Get, options: MethodOptions | BodyResponseCallback<Schema$GoogleCloudMlV1__Location>, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__Location>): void;
        get(params: Params$Resource$Projects$Locations$Get, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__Location>): void;
        get(callback: BodyResponseCallback<Schema$GoogleCloudMlV1__Location>): void;
        /**
         * ml.projects.locations.list
         * @desc List all locations that provides at least one type of CMLE capability.
         * @alias ml.projects.locations.list
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {integer=} params.pageSize Optional. The number of locations to retrieve per "page" of results. If there are more remaining results than this number, the response message will contain a valid value in the `next_page_token` field.  The default value is 20, and the maximum page size is 100.
         * @param {string=} params.pageToken Optional. A page token to request the next page of results.  You get the token from the `next_page_token` field of the response from the previous call.
         * @param {string} params.parent Required. The name of the project for which available locations are to be listed (since some locations might be whitelisted for specific projects).
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        list(params?: Params$Resource$Projects$Locations$List, options?: MethodOptions): GaxiosPromise<Schema$GoogleCloudMlV1__ListLocationsResponse>;
        list(params: Params$Resource$Projects$Locations$List, options: MethodOptions | BodyResponseCallback<Schema$GoogleCloudMlV1__ListLocationsResponse>, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__ListLocationsResponse>): void;
        list(params: Params$Resource$Projects$Locations$List, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__ListLocationsResponse>): void;
        list(callback: BodyResponseCallback<Schema$GoogleCloudMlV1__ListLocationsResponse>): void;
    }
    export interface Params$Resource$Projects$Locations$Get extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * Required. The name of the location.
         */
        name?: string;
    }
    export interface Params$Resource$Projects$Locations$List extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * Optional. The number of locations to retrieve per "page" of results. If there are more remaining results than this number, the response message will contain a valid value in the `next_page_token` field.  The default value is 20, and the maximum page size is 100.
         */
        pageSize?: number;
        /**
         * Optional. A page token to request the next page of results.  You get the token from the `next_page_token` field of the response from the previous call.
         */
        pageToken?: string;
        /**
         * Required. The name of the project for which available locations are to be listed (since some locations might be whitelisted for specific projects).
         */
        parent?: string;
    }
    export class Resource$Projects$Models {
        context: APIRequestContext;
        versions: Resource$Projects$Models$Versions;
        constructor(context: APIRequestContext);
        /**
         * ml.projects.models.create
         * @desc Creates a model which will later contain one or more versions.  You must add at least one version before you can request predictions from the model. Add versions by calling [projects.models.versions.create](/ml-engine/reference/rest/v1/projects.models.versions/create).
         * @alias ml.projects.models.create
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.parent Required. The project name.
         * @param {().GoogleCloudMlV1__Model} params.resource Request body data
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        create(params?: Params$Resource$Projects$Models$Create, options?: MethodOptions): GaxiosPromise<Schema$GoogleCloudMlV1__Model>;
        create(params: Params$Resource$Projects$Models$Create, options: MethodOptions | BodyResponseCallback<Schema$GoogleCloudMlV1__Model>, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__Model>): void;
        create(params: Params$Resource$Projects$Models$Create, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__Model>): void;
        create(callback: BodyResponseCallback<Schema$GoogleCloudMlV1__Model>): void;
        /**
         * ml.projects.models.delete
         * @desc Deletes a model.  You can only delete a model if there are no versions in it. You can delete versions by calling [projects.models.versions.delete](/ml-engine/reference/rest/v1/projects.models.versions/delete).
         * @alias ml.projects.models.delete
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.name Required. The name of the model.
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        delete(params?: Params$Resource$Projects$Models$Delete, options?: MethodOptions): GaxiosPromise<Schema$GoogleLongrunning__Operation>;
        delete(params: Params$Resource$Projects$Models$Delete, options: MethodOptions | BodyResponseCallback<Schema$GoogleLongrunning__Operation>, callback: BodyResponseCallback<Schema$GoogleLongrunning__Operation>): void;
        delete(params: Params$Resource$Projects$Models$Delete, callback: BodyResponseCallback<Schema$GoogleLongrunning__Operation>): void;
        delete(callback: BodyResponseCallback<Schema$GoogleLongrunning__Operation>): void;
        /**
         * ml.projects.models.get
         * @desc Gets information about a model, including its name, the description (if set), and the default version (if at least one version of the model has been deployed).
         * @alias ml.projects.models.get
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.name Required. The name of the model.
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        get(params?: Params$Resource$Projects$Models$Get, options?: MethodOptions): GaxiosPromise<Schema$GoogleCloudMlV1__Model>;
        get(params: Params$Resource$Projects$Models$Get, options: MethodOptions | BodyResponseCallback<Schema$GoogleCloudMlV1__Model>, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__Model>): void;
        get(params: Params$Resource$Projects$Models$Get, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__Model>): void;
        get(callback: BodyResponseCallback<Schema$GoogleCloudMlV1__Model>): void;
        /**
         * ml.projects.models.getIamPolicy
         * @desc Gets the access control policy for a resource. Returns an empty policy if the resource exists and does not have a policy set.
         * @alias ml.projects.models.getIamPolicy
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {integer=} params.options.requestedPolicyVersion Optional. The policy format version to be returned.  Valid values are 0, 1, and 3. Requests specifying an invalid value will be rejected.  Requests for policies with any conditional bindings must specify version 3. Policies without any conditional bindings may specify any valid value or leave the field unset.
         * @param {string} params.resource_ REQUIRED: The resource for which the policy is being requested. See the operation documentation for the appropriate value for this field.
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        getIamPolicy(params?: Params$Resource$Projects$Models$Getiampolicy, options?: MethodOptions): GaxiosPromise<Schema$GoogleIamV1__Policy>;
        getIamPolicy(params: Params$Resource$Projects$Models$Getiampolicy, options: MethodOptions | BodyResponseCallback<Schema$GoogleIamV1__Policy>, callback: BodyResponseCallback<Schema$GoogleIamV1__Policy>): void;
        getIamPolicy(params: Params$Resource$Projects$Models$Getiampolicy, callback: BodyResponseCallback<Schema$GoogleIamV1__Policy>): void;
        getIamPolicy(callback: BodyResponseCallback<Schema$GoogleIamV1__Policy>): void;
        /**
         * ml.projects.models.list
         * @desc Lists the models in a project.  Each project can contain multiple models, and each model can have multiple versions.  If there are no models that match the request parameters, the list request returns an empty response body: {}.
         * @alias ml.projects.models.list
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string=} params.filter Optional. Specifies the subset of models to retrieve.
         * @param {integer=} params.pageSize Optional. The number of models to retrieve per "page" of results. If there are more remaining results than this number, the response message will contain a valid value in the `next_page_token` field.  The default value is 20, and the maximum page size is 100.
         * @param {string=} params.pageToken Optional. A page token to request the next page of results.  You get the token from the `next_page_token` field of the response from the previous call.
         * @param {string} params.parent Required. The name of the project whose models are to be listed.
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        list(params?: Params$Resource$Projects$Models$List, options?: MethodOptions): GaxiosPromise<Schema$GoogleCloudMlV1__ListModelsResponse>;
        list(params: Params$Resource$Projects$Models$List, options: MethodOptions | BodyResponseCallback<Schema$GoogleCloudMlV1__ListModelsResponse>, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__ListModelsResponse>): void;
        list(params: Params$Resource$Projects$Models$List, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__ListModelsResponse>): void;
        list(callback: BodyResponseCallback<Schema$GoogleCloudMlV1__ListModelsResponse>): void;
        /**
         * ml.projects.models.patch
         * @desc Updates a specific model resource.  Currently the only supported fields to update are `description` and `default_version.name`.
         * @alias ml.projects.models.patch
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.name Required. The project name.
         * @param {string=} params.updateMask Required. Specifies the path, relative to `Model`, of the field to update.  For example, to change the description of a model to "foo" and set its default version to "version_1", the `update_mask` parameter would be specified as `description`, `default_version.name`, and the `PATCH` request body would specify the new value, as follows:     {       "description": "foo",       "defaultVersion": {         "name":"version_1"       }     }  Currently the supported update masks are `description` and `default_version.name`.
         * @param {().GoogleCloudMlV1__Model} params.resource Request body data
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        patch(params?: Params$Resource$Projects$Models$Patch, options?: MethodOptions): GaxiosPromise<Schema$GoogleLongrunning__Operation>;
        patch(params: Params$Resource$Projects$Models$Patch, options: MethodOptions | BodyResponseCallback<Schema$GoogleLongrunning__Operation>, callback: BodyResponseCallback<Schema$GoogleLongrunning__Operation>): void;
        patch(params: Params$Resource$Projects$Models$Patch, callback: BodyResponseCallback<Schema$GoogleLongrunning__Operation>): void;
        patch(callback: BodyResponseCallback<Schema$GoogleLongrunning__Operation>): void;
        /**
         * ml.projects.models.setIamPolicy
         * @desc Sets the access control policy on the specified resource. Replaces any existing policy.  Can return Public Errors: NOT_FOUND, INVALID_ARGUMENT and PERMISSION_DENIED
         * @alias ml.projects.models.setIamPolicy
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.resource_ REQUIRED: The resource for which the policy is being specified. See the operation documentation for the appropriate value for this field.
         * @param {().GoogleIamV1__SetIamPolicyRequest} params.resource Request body data
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        setIamPolicy(params?: Params$Resource$Projects$Models$Setiampolicy, options?: MethodOptions): GaxiosPromise<Schema$GoogleIamV1__Policy>;
        setIamPolicy(params: Params$Resource$Projects$Models$Setiampolicy, options: MethodOptions | BodyResponseCallback<Schema$GoogleIamV1__Policy>, callback: BodyResponseCallback<Schema$GoogleIamV1__Policy>): void;
        setIamPolicy(params: Params$Resource$Projects$Models$Setiampolicy, callback: BodyResponseCallback<Schema$GoogleIamV1__Policy>): void;
        setIamPolicy(callback: BodyResponseCallback<Schema$GoogleIamV1__Policy>): void;
        /**
         * ml.projects.models.testIamPermissions
         * @desc Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a NOT_FOUND error.  Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning.
         * @alias ml.projects.models.testIamPermissions
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.resource_ REQUIRED: The resource for which the policy detail is being requested. See the operation documentation for the appropriate value for this field.
         * @param {().GoogleIamV1__TestIamPermissionsRequest} params.resource Request body data
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        testIamPermissions(params?: Params$Resource$Projects$Models$Testiampermissions, options?: MethodOptions): GaxiosPromise<Schema$GoogleIamV1__TestIamPermissionsResponse>;
        testIamPermissions(params: Params$Resource$Projects$Models$Testiampermissions, options: MethodOptions | BodyResponseCallback<Schema$GoogleIamV1__TestIamPermissionsResponse>, callback: BodyResponseCallback<Schema$GoogleIamV1__TestIamPermissionsResponse>): void;
        testIamPermissions(params: Params$Resource$Projects$Models$Testiampermissions, callback: BodyResponseCallback<Schema$GoogleIamV1__TestIamPermissionsResponse>): void;
        testIamPermissions(callback: BodyResponseCallback<Schema$GoogleIamV1__TestIamPermissionsResponse>): void;
    }
    export interface Params$Resource$Projects$Models$Create extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * Required. The project name.
         */
        parent?: string;
        /**
         * Request body metadata
         */
        requestBody?: Schema$GoogleCloudMlV1__Model;
    }
    export interface Params$Resource$Projects$Models$Delete extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * Required. The name of the model.
         */
        name?: string;
    }
    export interface Params$Resource$Projects$Models$Get extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * Required. The name of the model.
         */
        name?: string;
    }
    export interface Params$Resource$Projects$Models$Getiampolicy extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * Optional. The policy format version to be returned.  Valid values are 0, 1, and 3. Requests specifying an invalid value will be rejected.  Requests for policies with any conditional bindings must specify version 3. Policies without any conditional bindings may specify any valid value or leave the field unset.
         */
        'options.requestedPolicyVersion'?: number;
        /**
         * REQUIRED: The resource for which the policy is being requested. See the operation documentation for the appropriate value for this field.
         */
        resource?: string;
    }
    export interface Params$Resource$Projects$Models$List extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * Optional. Specifies the subset of models to retrieve.
         */
        filter?: string;
        /**
         * Optional. The number of models to retrieve per "page" of results. If there are more remaining results than this number, the response message will contain a valid value in the `next_page_token` field.  The default value is 20, and the maximum page size is 100.
         */
        pageSize?: number;
        /**
         * Optional. A page token to request the next page of results.  You get the token from the `next_page_token` field of the response from the previous call.
         */
        pageToken?: string;
        /**
         * Required. The name of the project whose models are to be listed.
         */
        parent?: string;
    }
    export interface Params$Resource$Projects$Models$Patch extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * Required. The project name.
         */
        name?: string;
        /**
         * Required. Specifies the path, relative to `Model`, of the field to update.  For example, to change the description of a model to "foo" and set its default version to "version_1", the `update_mask` parameter would be specified as `description`, `default_version.name`, and the `PATCH` request body would specify the new value, as follows:     {       "description": "foo",       "defaultVersion": {         "name":"version_1"       }     }  Currently the supported update masks are `description` and `default_version.name`.
         */
        updateMask?: string;
        /**
         * Request body metadata
         */
        requestBody?: Schema$GoogleCloudMlV1__Model;
    }
    export interface Params$Resource$Projects$Models$Setiampolicy extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * REQUIRED: The resource for which the policy is being specified. See the operation documentation for the appropriate value for this field.
         */
        resource?: string;
        /**
         * Request body metadata
         */
        requestBody?: Schema$GoogleIamV1__SetIamPolicyRequest;
    }
    export interface Params$Resource$Projects$Models$Testiampermissions extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * REQUIRED: The resource for which the policy detail is being requested. See the operation documentation for the appropriate value for this field.
         */
        resource?: string;
        /**
         * Request body metadata
         */
        requestBody?: Schema$GoogleIamV1__TestIamPermissionsRequest;
    }
    export class Resource$Projects$Models$Versions {
        context: APIRequestContext;
        constructor(context: APIRequestContext);
        /**
         * ml.projects.models.versions.create
         * @desc Creates a new version of a model from a trained TensorFlow model.  If the version created in the cloud by this call is the first deployed version of the specified model, it will be made the default version of the model. When you add a version to a model that already has one or more versions, the default version does not automatically change. If you want a new version to be the default, you must call [projects.models.versions.setDefault](/ml-engine/reference/rest/v1/projects.models.versions/setDefault).
         * @alias ml.projects.models.versions.create
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.parent Required. The name of the model.
         * @param {().GoogleCloudMlV1__Version} params.resource Request body data
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        create(params?: Params$Resource$Projects$Models$Versions$Create, options?: MethodOptions): GaxiosPromise<Schema$GoogleLongrunning__Operation>;
        create(params: Params$Resource$Projects$Models$Versions$Create, options: MethodOptions | BodyResponseCallback<Schema$GoogleLongrunning__Operation>, callback: BodyResponseCallback<Schema$GoogleLongrunning__Operation>): void;
        create(params: Params$Resource$Projects$Models$Versions$Create, callback: BodyResponseCallback<Schema$GoogleLongrunning__Operation>): void;
        create(callback: BodyResponseCallback<Schema$GoogleLongrunning__Operation>): void;
        /**
         * ml.projects.models.versions.delete
         * @desc Deletes a model version.  Each model can have multiple versions deployed and in use at any given time. Use this method to remove a single version.  Note: You cannot delete the version that is set as the default version of the model unless it is the only remaining version.
         * @alias ml.projects.models.versions.delete
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.name Required. The name of the version. You can get the names of all the versions of a model by calling [projects.models.versions.list](/ml-engine/reference/rest/v1/projects.models.versions/list).
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        delete(params?: Params$Resource$Projects$Models$Versions$Delete, options?: MethodOptions): GaxiosPromise<Schema$GoogleLongrunning__Operation>;
        delete(params: Params$Resource$Projects$Models$Versions$Delete, options: MethodOptions | BodyResponseCallback<Schema$GoogleLongrunning__Operation>, callback: BodyResponseCallback<Schema$GoogleLongrunning__Operation>): void;
        delete(params: Params$Resource$Projects$Models$Versions$Delete, callback: BodyResponseCallback<Schema$GoogleLongrunning__Operation>): void;
        delete(callback: BodyResponseCallback<Schema$GoogleLongrunning__Operation>): void;
        /**
         * ml.projects.models.versions.get
         * @desc Gets information about a model version.  Models can have multiple versions. You can call [projects.models.versions.list](/ml-engine/reference/rest/v1/projects.models.versions/list) to get the same information that this method returns for all of the versions of a model.
         * @alias ml.projects.models.versions.get
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.name Required. The name of the version.
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        get(params?: Params$Resource$Projects$Models$Versions$Get, options?: MethodOptions): GaxiosPromise<Schema$GoogleCloudMlV1__Version>;
        get(params: Params$Resource$Projects$Models$Versions$Get, options: MethodOptions | BodyResponseCallback<Schema$GoogleCloudMlV1__Version>, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__Version>): void;
        get(params: Params$Resource$Projects$Models$Versions$Get, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__Version>): void;
        get(callback: BodyResponseCallback<Schema$GoogleCloudMlV1__Version>): void;
        /**
         * ml.projects.models.versions.list
         * @desc Gets basic information about all the versions of a model.  If you expect that a model has many versions, or if you need to handle only a limited number of results at a time, you can request that the list be retrieved in batches (called pages).  If there are no versions that match the request parameters, the list request returns an empty response body: {}.
         * @alias ml.projects.models.versions.list
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string=} params.filter Optional. Specifies the subset of versions to retrieve.
         * @param {integer=} params.pageSize Optional. The number of versions to retrieve per "page" of results. If there are more remaining results than this number, the response message will contain a valid value in the `next_page_token` field.  The default value is 20, and the maximum page size is 100.
         * @param {string=} params.pageToken Optional. A page token to request the next page of results.  You get the token from the `next_page_token` field of the response from the previous call.
         * @param {string} params.parent Required. The name of the model for which to list the version.
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        list(params?: Params$Resource$Projects$Models$Versions$List, options?: MethodOptions): GaxiosPromise<Schema$GoogleCloudMlV1__ListVersionsResponse>;
        list(params: Params$Resource$Projects$Models$Versions$List, options: MethodOptions | BodyResponseCallback<Schema$GoogleCloudMlV1__ListVersionsResponse>, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__ListVersionsResponse>): void;
        list(params: Params$Resource$Projects$Models$Versions$List, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__ListVersionsResponse>): void;
        list(callback: BodyResponseCallback<Schema$GoogleCloudMlV1__ListVersionsResponse>): void;
        /**
         * ml.projects.models.versions.patch
         * @desc Updates the specified Version resource.  Currently the only update-able fields are `description` and `autoScaling.minNodes`.
         * @alias ml.projects.models.versions.patch
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.name Required. The name of the model.
         * @param {string=} params.updateMask Required. Specifies the path, relative to `Version`, of the field to update. Must be present and non-empty.  For example, to change the description of a version to "foo", the `update_mask` parameter would be specified as `description`, and the `PATCH` request body would specify the new value, as follows:  ``` {   "description": "foo" } ```  Currently the only supported update mask fields are `description`, `autoScaling.minNodes`, and `manualScaling.nodes`. However, you can only update `manualScaling.nodes` if the version uses a [Compute Engine (N1) machine type](/ml-engine/docs/machine-types-online-prediction).
         * @param {().GoogleCloudMlV1__Version} params.resource Request body data
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        patch(params?: Params$Resource$Projects$Models$Versions$Patch, options?: MethodOptions): GaxiosPromise<Schema$GoogleLongrunning__Operation>;
        patch(params: Params$Resource$Projects$Models$Versions$Patch, options: MethodOptions | BodyResponseCallback<Schema$GoogleLongrunning__Operation>, callback: BodyResponseCallback<Schema$GoogleLongrunning__Operation>): void;
        patch(params: Params$Resource$Projects$Models$Versions$Patch, callback: BodyResponseCallback<Schema$GoogleLongrunning__Operation>): void;
        patch(callback: BodyResponseCallback<Schema$GoogleLongrunning__Operation>): void;
        /**
         * ml.projects.models.versions.setDefault
         * @desc Designates a version to be the default for the model.  The default version is used for prediction requests made against the model that don't specify a version.  The first version to be created for a model is automatically set as the default. You must make any subsequent changes to the default version setting manually using this method.
         * @alias ml.projects.models.versions.setDefault
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.name Required. The name of the version to make the default for the model. You can get the names of all the versions of a model by calling [projects.models.versions.list](/ml-engine/reference/rest/v1/projects.models.versions/list).
         * @param {().GoogleCloudMlV1__SetDefaultVersionRequest} params.resource Request body data
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        setDefault(params?: Params$Resource$Projects$Models$Versions$Setdefault, options?: MethodOptions): GaxiosPromise<Schema$GoogleCloudMlV1__Version>;
        setDefault(params: Params$Resource$Projects$Models$Versions$Setdefault, options: MethodOptions | BodyResponseCallback<Schema$GoogleCloudMlV1__Version>, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__Version>): void;
        setDefault(params: Params$Resource$Projects$Models$Versions$Setdefault, callback: BodyResponseCallback<Schema$GoogleCloudMlV1__Version>): void;
        setDefault(callback: BodyResponseCallback<Schema$GoogleCloudMlV1__Version>): void;
    }
    export interface Params$Resource$Projects$Models$Versions$Create extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * Required. The name of the model.
         */
        parent?: string;
        /**
         * Request body metadata
         */
        requestBody?: Schema$GoogleCloudMlV1__Version;
    }
    export interface Params$Resource$Projects$Models$Versions$Delete extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * Required. The name of the version. You can get the names of all the versions of a model by calling [projects.models.versions.list](/ml-engine/reference/rest/v1/projects.models.versions/list).
         */
        name?: string;
    }
    export interface Params$Resource$Projects$Models$Versions$Get extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * Required. The name of the version.
         */
        name?: string;
    }
    export interface Params$Resource$Projects$Models$Versions$List extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * Optional. Specifies the subset of versions to retrieve.
         */
        filter?: string;
        /**
         * Optional. The number of versions to retrieve per "page" of results. If there are more remaining results than this number, the response message will contain a valid value in the `next_page_token` field.  The default value is 20, and the maximum page size is 100.
         */
        pageSize?: number;
        /**
         * Optional. A page token to request the next page of results.  You get the token from the `next_page_token` field of the response from the previous call.
         */
        pageToken?: string;
        /**
         * Required. The name of the model for which to list the version.
         */
        parent?: string;
    }
    export interface Params$Resource$Projects$Models$Versions$Patch extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * Required. The name of the model.
         */
        name?: string;
        /**
         * Required. Specifies the path, relative to `Version`, of the field to update. Must be present and non-empty.  For example, to change the description of a version to "foo", the `update_mask` parameter would be specified as `description`, and the `PATCH` request body would specify the new value, as follows:  ``` {   "description": "foo" } ```  Currently the only supported update mask fields are `description`, `autoScaling.minNodes`, and `manualScaling.nodes`. However, you can only update `manualScaling.nodes` if the version uses a [Compute Engine (N1) machine type](/ml-engine/docs/machine-types-online-prediction).
         */
        updateMask?: string;
        /**
         * Request body metadata
         */
        requestBody?: Schema$GoogleCloudMlV1__Version;
    }
    export interface Params$Resource$Projects$Models$Versions$Setdefault extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * Required. The name of the version to make the default for the model. You can get the names of all the versions of a model by calling [projects.models.versions.list](/ml-engine/reference/rest/v1/projects.models.versions/list).
         */
        name?: string;
        /**
         * Request body metadata
         */
        requestBody?: Schema$GoogleCloudMlV1__SetDefaultVersionRequest;
    }
    export class Resource$Projects$Operations {
        context: APIRequestContext;
        constructor(context: APIRequestContext);
        /**
         * ml.projects.operations.cancel
         * @desc Starts asynchronous cancellation on a long-running operation.  The server makes a best effort to cancel the operation, but success is not guaranteed.  If the server doesn't support this method, it returns `google.rpc.Code.UNIMPLEMENTED`.  Clients can use Operations.GetOperation or other methods to check whether the cancellation succeeded or whether the operation completed despite cancellation. On successful cancellation, the operation is not deleted; instead, it becomes an operation with an Operation.error value with a google.rpc.Status.code of 1, corresponding to `Code.CANCELLED`.
         * @alias ml.projects.operations.cancel
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.name The name of the operation resource to be cancelled.
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        cancel(params?: Params$Resource$Projects$Operations$Cancel, options?: MethodOptions): GaxiosPromise<Schema$GoogleProtobuf__Empty>;
        cancel(params: Params$Resource$Projects$Operations$Cancel, options: MethodOptions | BodyResponseCallback<Schema$GoogleProtobuf__Empty>, callback: BodyResponseCallback<Schema$GoogleProtobuf__Empty>): void;
        cancel(params: Params$Resource$Projects$Operations$Cancel, callback: BodyResponseCallback<Schema$GoogleProtobuf__Empty>): void;
        cancel(callback: BodyResponseCallback<Schema$GoogleProtobuf__Empty>): void;
        /**
         * ml.projects.operations.get
         * @desc Gets the latest state of a long-running operation.  Clients can use this method to poll the operation result at intervals as recommended by the API service.
         * @alias ml.projects.operations.get
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.name The name of the operation resource.
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        get(params?: Params$Resource$Projects$Operations$Get, options?: MethodOptions): GaxiosPromise<Schema$GoogleLongrunning__Operation>;
        get(params: Params$Resource$Projects$Operations$Get, options: MethodOptions | BodyResponseCallback<Schema$GoogleLongrunning__Operation>, callback: BodyResponseCallback<Schema$GoogleLongrunning__Operation>): void;
        get(params: Params$Resource$Projects$Operations$Get, callback: BodyResponseCallback<Schema$GoogleLongrunning__Operation>): void;
        get(callback: BodyResponseCallback<Schema$GoogleLongrunning__Operation>): void;
        /**
         * ml.projects.operations.list
         * @desc Lists operations that match the specified filter in the request. If the server doesn't support this method, it returns `UNIMPLEMENTED`.  NOTE: the `name` binding allows API services to override the binding to use different resource name schemes, such as `users/x/operations`. To override the binding, API services can add a binding such as `"/v1/{name=users/x}/operations"` to their service configuration. For backwards compatibility, the default name includes the operations collection id, however overriding users must ensure the name binding is the parent resource, without the operations collection id.
         * @alias ml.projects.operations.list
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string=} params.filter The standard list filter.
         * @param {string} params.name The name of the operation's parent resource.
         * @param {integer=} params.pageSize The standard list page size.
         * @param {string=} params.pageToken The standard list page token.
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        list(params?: Params$Resource$Projects$Operations$List, options?: MethodOptions): GaxiosPromise<Schema$GoogleLongrunning__ListOperationsResponse>;
        list(params: Params$Resource$Projects$Operations$List, options: MethodOptions | BodyResponseCallback<Schema$GoogleLongrunning__ListOperationsResponse>, callback: BodyResponseCallback<Schema$GoogleLongrunning__ListOperationsResponse>): void;
        list(params: Params$Resource$Projects$Operations$List, callback: BodyResponseCallback<Schema$GoogleLongrunning__ListOperationsResponse>): void;
        list(callback: BodyResponseCallback<Schema$GoogleLongrunning__ListOperationsResponse>): void;
    }
    export interface Params$Resource$Projects$Operations$Cancel extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * The name of the operation resource to be cancelled.
         */
        name?: string;
    }
    export interface Params$Resource$Projects$Operations$Get extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * The name of the operation resource.
         */
        name?: string;
    }
    export interface Params$Resource$Projects$Operations$List extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * The standard list filter.
         */
        filter?: string;
        /**
         * The name of the operation's parent resource.
         */
        name?: string;
        /**
         * The standard list page size.
         */
        pageSize?: number;
        /**
         * The standard list page token.
         */
        pageToken?: string;
    }
    export {};
}