gitcommit.py
8.92 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# Copyright 2020-present Tae Hwan Jung
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
import enum
import random
import logging
import tempfile
import argparse
import numpy as np
from tqdm import *
import whatthepatch
from git import Repo
from functools import partial
from multiprocessing.pool import Pool
from transformers import AutoTokenizer
from matorage import *
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
class PATCH(enum.Enum):
PLUS = 1
MINUS = 2
def truncate(tuple, max_length, value=0):
ls = []
for t in tuple:
if isinstance(t, int):
t = [t]
ls.extend(t)
ls = ls[: max_length - 1]
ls.insert(0, value)
if len(ls) < max_length:
ls.extend([0] * (max_length - len(ls)))
assert len(ls) == max_length
return ls
def encode_line(tokenizer, line, patch):
line = re.sub(r"[\u0100-\uFFFF\U00010000-\U0010FFFF]+", "", line).strip()
tokens = tokenizer.tokenize(line)
tokens = tokenizer.convert_tokens_to_ids(tokens)
return (tokens, [1] * len(tokens), len(tokens) * [patch.value])
def diff_parse(diff, tokenizer):
chunks = []
for diff in whatthepatch.parse_patch(diff):
if diff.header.old_path != diff.header.new_path:
chunks.append(encode_line(tokenizer, diff.header.old_path, PATCH.MINUS))
chunks.append(encode_line(tokenizer, diff.header.new_path, PATCH.PLUS))
if not diff.changes:
continue
for change in diff.changes:
if change.old == None and change.new != None:
chunks.append(encode_line(tokenizer, change.line, PATCH.PLUS))
elif change.old != None and change.new == None:
chunks.append(encode_line(tokenizer, change.line, PATCH.MINUS))
return chunks
def sha_parse(sha, tokenizer, max_length=1024):
chunks = diff_parse(diff=repo.git.show(sha), tokenizer=tokenizer)
if not chunks:
return None
input_ids, attention_masks, patch_ids = zip(*chunks)
input_ids = truncate(input_ids, max_length, value=0)
attention_masks = truncate(attention_masks, max_length, value=1)
patch_ids = truncate(patch_ids, max_length, value=0)
return (input_ids, attention_masks, patch_ids)
def message_parse(msg, tokenizer, max_length=56):
msg = re.sub(r"(\(|)#([0-9])+(\)|)", "", msg)
msg = re.sub(r"[\u0100-\uFFFF\U00010000-\U0010FFFF]+", "", msg).strip()
msg = tokenizer.tokenize(msg)
msg = tokenizer.convert_tokens_to_ids(msg)
msg = truncate(msg, max_length, value=0)
return msg
def jobs(sha_msgs, args, data_config, train=True):
input_ids, attention_masks, patch_ids, targets = [], [], [], []
data_saver = DataSaver(config=data_config)
for sha_msg in sha_msgs:
sha, msg = sha_msg
source = sha_parse(
sha, tokenizer=args.tokenizer, max_length=args.max_source_length
)
if not source:
continue
input_id, attention_mask, patch_id = source
target = message_parse(
msg,
tokenizer=args.tokenizer,
max_length=(
args.max_target_length if train else args.val_max_target_length
),
)
input_ids.append(input_id)
attention_masks.append(attention_mask)
patch_ids.append(patch_id)
targets.append(target)
data_saver(
{
"input_ids": np.asarray(input_ids),
"attention_masks": np.asarray(attention_masks),
"patch_ids": np.asarray(patch_ids),
"targets": np.asarray(targets),
}
)
data_saver.disconnect()
def start(chunked_sha_msgs, train=True):
logger.info(f"Start %s pre-processing" % ("training" if train else "evaluation"))
max_target_length = args.max_target_length if train else args.val_max_target_length
data_config = DataConfig(
endpoint=args.endpoint,
access_key=os.environ["access_key"],
secret_key=os.environ["secret_key"],
region=args.region,
dataset_name="commit-autosuggestions",
additional={
"mode": ("training" if train else "evaluation"),
"max_source_length": args.max_source_length,
"max_target_length": max_target_length,
"url": args.url,
},
attributes=[
("input_ids", "int32", (args.max_source_length,)),
("attention_masks", "int32", (args.max_source_length,)),
("patch_ids", "int32", (args.max_source_length,)),
("targets", "int32", (max_target_length,)),
],
)
func = partial(jobs, args=args, data_config=data_config, train=train)
with Pool(processes=args.num_workers) as pool:
with tqdm(total=len(chunked_sha_msgs)) as pbar:
for i, _ in tqdm(enumerate(pool.imap_unordered(func, chunked_sha_msgs))):
pbar.update()
def main(args):
if "access_key" not in os.environ or "secret_key" not in os.environ:
raise OSError("access_key or secret_key are not found.")
sha_msgs = [(c.hexsha, c.summary) for c in repo.iter_commits()]
random.shuffle(sha_msgs)
chunked_sha_msgs = [
sha_msgs[x : x + args.matorage_batch]
for x in range(0, len(sha_msgs), args.matorage_batch)
]
barrier = int(len(chunked_sha_msgs) * (1 - args.p_val))
if args.do_train:
start(chunked_sha_msgs[:barrier], train=True)
if args.do_predict:
start(chunked_sha_msgs[barrier:], train=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Code to collect commits on github")
parser.add_argument("--url", type=str, required=True, help="github url")
parser.add_argument(
"--endpoint",
type=str,
required=True,
help="matorage endpoint, check document of matorage: https://matorage.readthedocs.io/en/stable/storage.html",
)
parser.add_argument(
"--region",
type=str,
default=None,
help="matorage s3 region, check document of matorage: https://matorage.readthedocs.io/en/stable/storage.html",
)
parser.add_argument(
"--tokenizer_name",
default="sshleifer/distilbart-xsum-6-6",
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--matorage_batch",
default=1024,
type=int,
help="The smallest batch size stored atomically in matorage.",
)
parser.add_argument(
"--num_workers", default=4, type=int, help="number of process",
)
parser.add_argument(
"--max_source_length",
default=1024,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument(
"--max_target_length",
default=56,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument(
"--val_max_target_length",
default=142, # these defaults are optimized for CNNDM. For xsum, see README.md.
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument(
"--p_val", type=float, default=0.25, help="percent of validation dataset"
)
parser.add_argument("--do_train", action="store_true", default=False)
parser.add_argument("--do_predict", action="store_true", default=False)
args = parser.parse_args()
args.local_path = args.url.split("/")[-1]
logger.info(f"master branch of {args.url} will be downloaded to {args.local_path}")
repo = (
Repo(args.local_path)
if os.path.exists(args.local_path)
else Repo.clone_from(args.url, to_path=args.local_path, branch="master")
)
args.tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name)
main(args)