commit_autosuggestions.ipynb
15.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "commit-autosuggestions.ipynb",
"provenance": [],
"collapsed_sections": [],
"toc_visible": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "DZ7rFp2gzuNS"
},
"source": [
"## Start commit-autosuggestions server\n",
"Running flask app server in Google Colab for people without GPU"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "d8Lyin2I3wHq"
},
"source": [
"#### Clone github repository"
]
},
{
"cell_type": "code",
"metadata": {
"id": "e_cu9igvzjcs"
},
"source": [
"!git clone https://github.com/graykode/commit-autosuggestions.git\n",
"%cd commit-autosuggestions\n",
"!pip install -r requirements.txt"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "PFKn5QZr0dQx"
},
"source": [
"#### Download model weights\n",
"\n",
"Download the two weights of model from the google drive through the gdown module.\n",
"1. Added model : A model trained Code2NL on Python using pre-trained CodeBERT (Feng at al, 2020).\n",
"2. Diff model : A model retrained by initializing with the weight of model (1), adding embedding of the added and deleted parts(`patch_ids_embedding`) of the code.\n",
"\n",
"Download pre-trained weight\n",
"\n",
"Language | Added | Diff\n",
"--- | --- | ---\n",
"python | 1YrkwfM-0VBCJaa9NYaXUQPODdGPsmQY4 | 1--gcVVix92_Fp75A-mWH0pJS0ahlni5m\n",
"javascript | 1-F68ymKxZ-htCzQ8_Y9iHexs2SJmP5Gc | 1-39rmu-3clwebNURMQGMt-oM4HsAkbsf"
]
},
{
"cell_type": "code",
"metadata": {
"id": "P9-EBpxt0Dp0"
},
"source": [
"ADD_MODEL='1YrkwfM-0VBCJaa9NYaXUQPODdGPsmQY4'\n",
"DIFF_MODEL='1--gcVVix92_Fp75A-mWH0pJS0ahlni5m'\n",
"\n",
"!pip install gdown \\\n",
" && mkdir -p weight/added \\\n",
" && mkdir -p weight/diff \\\n",
" && gdown \"https://drive.google.com/uc?id=$ADD_MODEL\" -O weight/added/pytorch_model.bin \\\n",
" && gdown \"https://drive.google.com/uc?id=$DIFF_MODEL\" -O weight/diff/pytorch_model.bin"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "org4Gqdv3iUu"
},
"source": [
"#### ngrok setting with flask\n",
"\n",
"Before starting the server, you need to configure ngrok to open this notebook to the outside. I have referred [this jupyter notebook](https://github.com/alievk/avatarify/blob/master/avatarify.ipynb) in detail."
]
},
{
"cell_type": "code",
"metadata": {
"id": "lZA3kuuG1Crj"
},
"source": [
"!pip install flask-ngrok"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "hR78FRCMcqrZ"
},
"source": [
"Go to https://dashboard.ngrok.com/auth/your-authtoken (sign up if required), copy your authtoken and put it below.\n",
"\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "L_mInbOKcoc2"
},
"source": [
"# Paste your authtoken here in quotes\n",
"authtoken = \"21KfrFEW1BptdPPM4SS_7s1Z4HwozyXX9NP2fHC12\""
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "QwCN4YFUc0M8"
},
"source": [
"Set your region\n",
"\n",
"Code | Region\n",
"--- | ---\n",
"us | United States\n",
"eu | Europe\n",
"ap | Asia/Pacific\n",
"au | Australia\n",
"sa | South America\n",
"jp | Japan\n",
"in | India"
]
},
{
"cell_type": "code",
"metadata": {
"id": "p4LSNN2xc0dQ"
},
"source": [
"# Set your region here in quotes\n",
"region = \"jp\"\n",
"\n",
"# Input and output ports for communication\n",
"local_in_port = 5000\n",
"local_out_port = 5000"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "kg56PVrOdhi1"
},
"source": [
"config =\\\n",
"f\"\"\"\n",
"authtoken: {authtoken}\n",
"region: {region}\n",
"console_ui: False\n",
"tunnels:\n",
" input:\n",
" addr: {local_in_port}\n",
" proto: http \n",
" output:\n",
" addr: {local_out_port}\n",
" proto: http\n",
"\"\"\"\n",
"\n",
"with open('ngrok.conf', 'w') as f:\n",
" f.write(config)"
],
"execution_count": 1,
"outputs": [
{
"output_type": "error",
"ename": "NameError",
"evalue": "name 'authtoken' is not defined",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-1-7305b3f78ded>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[0mconfig\u001b[0m \u001b[1;33m=\u001b[0m\u001b[0;31m\\\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2\u001b[0m f\"\"\"\n\u001b[1;32m----> 3\u001b[1;33m \u001b[0mauthtoken\u001b[0m\u001b[1;33m:\u001b[0m \u001b[1;33m{\u001b[0m\u001b[0mauthtoken\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 4\u001b[0m \u001b[0mregion\u001b[0m\u001b[1;33m:\u001b[0m \u001b[1;33m{\u001b[0m\u001b[0mregion\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mconsole_ui\u001b[0m\u001b[1;33m:\u001b[0m \u001b[1;32mFalse\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;31mNameError\u001b[0m: name 'authtoken' is not defined"
]
}
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from subprocess import Popen, PIPE\n",
"import shlex\n",
"import json\n",
"import time\n",
"\n",
"\n",
"def run_with_pipe(command):\n",
" commands = list(map(shlex.split,command.split(\"|\")))\n",
" ps = Popen(commands[0], stdout=PIPE, stderr=PIPE)\n",
" for command in commands[1:]:\n",
" ps = Popen(command, stdin=ps.stdout, stdout=PIPE, stderr=PIPE)\n",
" return ps.stdout.readlines()\n",
"\n",
"\n",
"def get_tunnel_adresses():\n",
" info = run_with_pipe(\"curl http://localhost:4040/api/tunnels\")\n",
" assert info\n",
"\n",
" info = json.loads(info[0])\n",
" for tunnel in info['tunnels']:\n",
" url = tunnel['public_url']\n",
" port = url.split(':')[-1]\n",
" local_port = tunnel['config']['addr'].split(':')[-1]\n",
" print(f'{url} -> {local_port} [{tunnel[\"name\"]}]')\n",
" if tunnel['name'] == 'input':\n",
" in_addr = url\n",
" elif tunnel['name'] == 'output':\n",
" out_addr = url\n",
" else:\n",
" print(f'unknown tunnel: {tunnel[\"name\"]}')\n",
"\n",
" return in_addr, out_addr"
]
},
{
"cell_type": "code",
"metadata": {
"id": "hrWDrw_YdjIy"
},
"source": [
"import time\n",
"from subprocess import Popen, PIPE\n",
"\n",
"# (Re)Open tunnel\n",
"ps = Popen('./scripts/open_tunnel_ngrok.sh', stdout=PIPE, stderr=PIPE)\n",
"time.sleep(3)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "pJgdFr0Fdjoq",
"outputId": "3948f70b-d4f3-4ed8-a864-fe5c6df50809",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"source": [
"# Get tunnel addresses\n",
"try:\n",
" in_addr, out_addr = get_tunnel_adresses()\n",
" print(\"Tunnel opened\")\n",
"except Exception as e:\n",
" [print(l.decode(), end='') for l in ps.stdout.readlines()]\n",
" print(\"Something went wrong, reopen the tunnel\")"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"Opening tunnel\n",
"Something went wrong, reopen the tunnel\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "cEZ-O0wz74OJ"
},
"source": [
"#### Run you server!"
]
},
{
"cell_type": "code",
"metadata": {
"id": "7PRkeYTL8Y_6"
},
"source": [
"import os\n",
"import torch\n",
"import argparse\n",
"from tqdm import tqdm\n",
"import torch.nn as nn\n",
"from torch.utils.data import TensorDataset, DataLoader, SequentialSampler\n",
"from transformers import (RobertaConfig, RobertaTokenizer)\n",
"\n",
"from commit.model import Seq2Seq\n",
"from commit.utils import (Example, convert_examples_to_features)\n",
"from commit.model.diff_roberta import RobertaModel\n",
"\n",
"from flask import Flask, jsonify, request\n",
"\n",
"MODEL_CLASSES = {'roberta': (RobertaConfig, RobertaModel, RobertaTokenizer)}"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "CiJKucX17qb4"
},
"source": [
"def get_model(model_class, config, tokenizer, mode):\n",
" encoder = model_class(config=config)\n",
" decoder_layer = nn.TransformerDecoderLayer(\n",
" d_model=config.hidden_size, nhead=config.num_attention_heads\n",
" )\n",
" decoder = nn.TransformerDecoder(decoder_layer, num_layers=6)\n",
" model = Seq2Seq(encoder=encoder, decoder=decoder, config=config,\n",
" beam_size=args.beam_size, max_length=args.max_target_length,\n",
" sos_id=tokenizer.cls_token_id, eos_id=tokenizer.sep_token_id)\n",
"\n",
" assert args.load_model_path\n",
" assert os.path.exists(os.path.join(args.load_model_path, mode, 'pytorch_model.bin'))\n",
"\n",
" model.load_state_dict(\n",
" torch.load(\n",
" os.path.join(args.load_model_path, mode, 'pytorch_model.bin'),\n",
" map_location=torch.device('cpu')\n",
" ),\n",
" strict=False\n",
" )\n",
" return model\n",
"\n",
"def get_features(examples):\n",
" features = convert_examples_to_features(examples, args.tokenizer, args, stage='test')\n",
" all_source_ids = torch.tensor(\n",
" [f.source_ids[:args.max_source_length] for f in features], dtype=torch.long\n",
" )\n",
" all_source_mask = torch.tensor(\n",
" [f.source_mask[:args.max_source_length] for f in features], dtype=torch.long\n",
" )\n",
" all_patch_ids = torch.tensor(\n",
" [f.patch_ids[:args.max_source_length] for f in features], dtype=torch.long\n",
" )\n",
" return TensorDataset(all_source_ids, all_source_mask, all_patch_ids)\n",
"\n",
"def create_app():\n",
" @app.route('/')\n",
" def index():\n",
" return jsonify(hello=\"world\")\n",
"\n",
" @app.route('/added', methods=['POST'])\n",
" def added():\n",
" if request.method == 'POST':\n",
" payload = request.get_json()\n",
" example = [\n",
" Example(\n",
" idx=payload['idx'],\n",
" added=payload['added'],\n",
" deleted=payload['deleted'],\n",
" target=None\n",
" )\n",
" ]\n",
" message = inference(model=args.added_model, data=get_features(example))\n",
" return jsonify(idx=payload['idx'], message=message)\n",
"\n",
" @app.route('/diff', methods=['POST'])\n",
" def diff():\n",
" if request.method == 'POST':\n",
" payload = request.get_json()\n",
" example = [\n",
" Example(\n",
" idx=payload['idx'],\n",
" added=payload['added'],\n",
" deleted=payload['deleted'],\n",
" target=None\n",
" )\n",
" ]\n",
" message = inference(model=args.diff_model, data=get_features(example))\n",
" return jsonify(idx=payload['idx'], message=message)\n",
"\n",
" @app.route('/tokenizer', methods=['POST'])\n",
" def tokenizer():\n",
" if request.method == 'POST':\n",
" payload = request.get_json()\n",
" tokens = args.tokenizer.tokenize(payload['code'])\n",
" return jsonify(tokens=tokens)\n",
"\n",
" return app\n",
"\n",
"def inference(model, data):\n",
" # Calculate bleu\n",
" eval_sampler = SequentialSampler(data)\n",
" eval_dataloader = DataLoader(data, sampler=eval_sampler, batch_size=len(data))\n",
"\n",
" model.eval()\n",
" p=[]\n",
" for batch in tqdm(eval_dataloader, total=len(eval_dataloader)):\n",
" batch = tuple(t.to(args.device) for t in batch)\n",
" source_ids, source_mask, patch_ids = batch\n",
" with torch.no_grad():\n",
" preds = model(source_ids=source_ids, source_mask=source_mask, patch_ids=patch_ids)\n",
" for pred in preds:\n",
" t = pred[0].cpu().numpy()\n",
" t = list(t)\n",
" if 0 in t:\n",
" t = t[:t.index(0)]\n",
" text = args.tokenizer.decode(t, clean_up_tokenization_spaces=False)\n",
" p.append(text)\n",
" return p"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "Esf4r-Ai8cG3"
},
"source": [
"**Set enviroment**"
]
},
{
"cell_type": "code",
"metadata": {
"id": "mR7gVmSoSUoy"
},
"source": [
"import easydict \n",
"\n",
"args = easydict.EasyDict({\n",
" 'load_model_path': 'weight/', \n",
" 'model_type': 'roberta',\n",
" 'config_name' : 'microsoft/codebert-base',\n",
" 'tokenizer_name' : 'microsoft/codebert-base',\n",
" 'max_source_length' : 512,\n",
" 'max_target_length' : 128,\n",
" 'beam_size' : 10,\n",
" 'do_lower_case' : False,\n",
" 'device' : torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
"})"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "e8dk5RwvToOv"
},
"source": [
"# flask_ngrok_example.py\n",
"from flask_ngrok import run_with_ngrok\n",
"\n",
"app = Flask(__name__)\n",
"run_with_ngrok(app) # Start ngrok when app is run\n",
"\n",
"config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]\n",
"config = config_class.from_pretrained(args.config_name)\n",
"args.tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name, do_lower_case=args.do_lower_case)\n",
"\n",
"# budild model\n",
"args.added_model =get_model(model_class=model_class, config=config,\n",
" tokenizer=args.tokenizer, mode='added').to(args.device)\n",
"args.diff_model = get_model(model_class=model_class, config=config,\n",
" tokenizer=args.tokenizer, mode='diff').to(args.device)\n",
"\n",
"app = create_app()\n",
"app.run()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "DXkBcO_sU_VN"
},
"source": [
"## Set commit configure\n",
"Now, set commit configure on your local computer.\n",
"```shell\n",
"$ commit configure --endpoint http://********.ngrok.io\n",
"```"
]
}
]
}