modeling_utils.py
75.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import os
import re
from dataclasses import dataclass
from typing import Callable, Dict, List, Optional, Set, Tuple, Union
import torch
from torch import Tensor, device, dtype, nn
from torch.nn import CrossEntropyLoss
from torch.nn import functional as F
from transformers.activations import get_activation
from transformers.configuration_utils import PretrainedConfig
from transformers.file_utils import (
DUMMY_INPUTS,
TF2_WEIGHTS_NAME,
TF_WEIGHTS_NAME,
WEIGHTS_NAME,
ModelOutput,
cached_path,
hf_bucket_url,
is_remote_url,
is_torch_tpu_available,
replace_return_docstrings,
)
from .generation_utils import GenerationMixin
import logging
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
try:
from torch.nn import Identity
except ImportError:
# Older PyTorch compatibility
class Identity(nn.Module):
r"""A placeholder identity operator that is argument-insensitive."""
def __init__(self, *args, **kwargs):
super().__init__()
def forward(self, input):
return input
def find_pruneable_heads_and_indices(
heads: List[int], n_heads: int, head_size: int, already_pruned_heads: Set[int]
) -> Tuple[Set[int], torch.LongTensor]:
"""
Finds the heads and their indices taking :obj:`already_pruned_heads` into account.
Args:
heads (:obj:`List[int]`): List of the indices of heads to prune.
n_heads (:obj:`int`): The number of heads in the model.
head_size (:obj:`int`): The size of each head.
already_pruned_heads (:obj:`Set[int]`): A set of already pruned heads.
Returns:
:obj:`Tuple[Set[int], torch.LongTensor]`: A tuple with the remaining heads and their corresponding indices.
"""
mask = torch.ones(n_heads, head_size)
heads = set(heads) - already_pruned_heads # Convert to set and remove already pruned heads
for head in heads:
# Compute how many pruned heads are before the head and move the index accordingly
head = head - sum(1 if h < head else 0 for h in already_pruned_heads)
mask[head] = 0
mask = mask.view(-1).contiguous().eq(1)
index: torch.LongTensor = torch.arange(len(mask))[mask].long()
return heads, index
class ModuleUtilsMixin:
"""
A few utilities for :obj:`torch.nn.Modules`, to be used as a mixin.
"""
def num_parameters(self, only_trainable: bool = False) -> int:
"""
Get the number of (optionally, trainable) parameters in the model.
Args:
only_trainable (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to return only the number of trainable parameters
Returns:
:obj:`int`: The number of parameters.
"""
params = filter(lambda x: x.requires_grad, self.parameters()) if only_trainable else self.parameters()
return sum(p.numel() for p in params)
@staticmethod
def _hook_rss_memory_pre_forward(module, *args, **kwargs):
try:
import psutil
except (ImportError):
raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")
process = psutil.Process(os.getpid())
mem = process.memory_info()
module.mem_rss_pre_forward = mem.rss
return None
@staticmethod
def _hook_rss_memory_post_forward(module, *args, **kwargs):
try:
import psutil
except (ImportError):
raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")
process = psutil.Process(os.getpid())
mem = process.memory_info()
module.mem_rss_post_forward = mem.rss
mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward
module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0)
return None
def add_memory_hooks(self):
"""
Add a memory hook before and after each sub-module forward pass to record increase in memory consumption.
Increase in memory consumption is stored in a :obj:`mem_rss_diff` attribute for each module and can be reset to
zero with :obj:`model.reset_memory_hooks_state()`.
"""
for module in self.modules():
module.register_forward_pre_hook(self._hook_rss_memory_pre_forward)
module.register_forward_hook(self._hook_rss_memory_post_forward)
self.reset_memory_hooks_state()
def reset_memory_hooks_state(self):
"""
Reset the :obj:`mem_rss_diff` attribute of each module (see
:func:`~transformers.modeling_utils.ModuleUtilsMixin.add_memory_hooks`).
"""
for module in self.modules():
module.mem_rss_diff = 0
module.mem_rss_post_forward = 0
module.mem_rss_pre_forward = 0
@property
def device(self) -> device:
"""
:obj:`torch.device`: The device on which the module is (assuming that all the module parameters are on the same
device).
"""
try:
return next(self.parameters()).device
except StopIteration:
# For nn.DataParallel compatibility in PyTorch 1.5
def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
return tuples
gen = self._named_members(get_members_fn=find_tensor_attributes)
first_tuple = next(gen)
return first_tuple[1].device
@property
def dtype(self) -> dtype:
"""
:obj:`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
"""
try:
return next(self.parameters()).dtype
except StopIteration:
# For nn.DataParallel compatibility in PyTorch 1.5
def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
return tuples
gen = self._named_members(get_members_fn=find_tensor_attributes)
first_tuple = next(gen)
return first_tuple[1].dtype
def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor:
"""
Invert an attention mask (e.g., switches 0. and 1.).
Args:
encoder_attention_mask (:obj:`torch.Tensor`): An attention mask.
Returns:
:obj:`torch.Tensor`: The inverted attention mask.
"""
if encoder_attention_mask.dim() == 3:
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.dim() == 2:
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
if self.dtype == torch.float16:
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e4
elif self.dtype == torch.float32:
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e9
else:
raise ValueError(
"{} not recognized. `dtype` should be set to either `torch.float32` or `torch.float16`".format(
self.dtype
)
)
return encoder_extended_attention_mask
def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device) -> Tensor:
"""
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
Arguments:
attention_mask (:obj:`torch.Tensor`):
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
input_shape (:obj:`Tuple[int]`):
The shape of the input to the model.
device: (:obj:`torch.device`):
The device of the input to the model.
Returns:
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
"""
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
elif attention_mask.dim() == 2:
# Provided a padding mask of dimensions [batch_size, seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder:
batch_size, seq_length = input_shape
seq_ids = torch.arange(seq_length, device=device)
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
# causal and attention masks must have same type with pytorch version < 1.3
causal_mask = causal_mask.to(attention_mask.dtype)
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
else:
extended_attention_mask = attention_mask[:, None, None, :]
else:
raise ValueError(
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
input_shape, attention_mask.shape
)
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
return extended_attention_mask
def get_head_mask(
self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
) -> Tensor:
"""
Prepare the head mask if needed.
Args:
head_mask (:obj:`torch.Tensor` with shape :obj:`[num_heads]` or :obj:`[num_hidden_layers x num_heads]`, `optional`):
The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
num_hidden_layers (:obj:`int`):
The number of hidden layers in the model.
is_attention_chunked: (:obj:`bool`, `optional, defaults to :obj:`False`):
Whether or not the attentions scores are computed by chunks or not.
Returns:
:obj:`torch.Tensor` with shape :obj:`[num_hidden_layers x batch x num_heads x seq_length x seq_length]`
or list with :obj:`[None]` for each layer.
"""
if head_mask is not None:
head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
if is_attention_chunked is True:
head_mask = head_mask.unsqueeze(-1)
else:
head_mask = [None] * num_hidden_layers
return head_mask
def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
"""-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
if head_mask.dim() == 1:
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1)
elif head_mask.dim() == 2:
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer
assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
head_mask = head_mask.to(dtype=self.dtype) # switch to fload if need + fp16 compatibility
return head_mask
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin):
r"""
Base class for all models.
:class:`~transformers.PreTrainedModel` takes care of storing the configuration of the models and handles methods
for loading, downloading and saving models as well as a few methods common to all models to:
* resize the input embeddings,
* prune heads in the self-attention heads.
Class attributes (overridden by derived classes):
- **config_class** (:class:`~transformers.PretrainedConfig`) -- A subclass of
:class:`~transformers.PretrainedConfig` to use as configuration class for this model architecture.
- **load_tf_weights** (:obj:`Callable`) -- A python `method` for loading a TensorFlow checkpoint in a
PyTorch model, taking as arguments:
- **model** (:class:`~transformers.PreTrainedModel`) -- An instance of the model on which to load the
TensorFlow checkpoint.
- **config** (:class:`~transformers.PreTrainedConfig`) -- An instance of the configuration associated
to the model.
- **path** (:obj:`str`) -- A path to the TensorFlow checkpoint.
- **base_model_prefix** (:obj:`str`) -- A string indicating the attribute associated to the base model in
derived classes of the same architecture adding modules on top of the base model.
- **authorized_missing_keys** (:obj:`Optional[List[str]]`) -- A list of re pattern of tensor names to ignore
when loading the model (and avoid unnecessary warnings).
"""
config_class = None
base_model_prefix = ""
authorized_missing_keys = None
@property
def dummy_inputs(self) -> Dict[str, torch.Tensor]:
"""
:obj:`Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network.
"""
return {"input_ids": torch.tensor(DUMMY_INPUTS)}
def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
super().__init__()
if not isinstance(config, PretrainedConfig):
raise ValueError(
"Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. "
"To create a model from a pretrained model use "
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
self.__class__.__name__, self.__class__.__name__
)
)
# Save config in model
self.config = config
@property
def base_model(self) -> nn.Module:
"""
:obj:`torch.nn.Module`: The main body of the model.
"""
return getattr(self, self.base_model_prefix, self)
def get_input_embeddings(self) -> nn.Module:
"""
Returns the model's input embeddings.
Returns:
:obj:`nn.Module`: A torch module mapping vocabulary to hidden states.
"""
base_model = getattr(self, self.base_model_prefix, self)
if base_model is not self:
return base_model.get_input_embeddings()
else:
raise NotImplementedError
def set_input_embeddings(self, value: nn.Module):
"""
Set model's input embeddings
Args:
value (:obj:`nn.Module`): A module mapping vocabulary to hidden states.
"""
base_model = getattr(self, self.base_model_prefix, self)
if base_model is not self:
base_model.set_input_embeddings(value)
else:
raise NotImplementedError
def get_output_embeddings(self) -> nn.Module:
"""
Returns the model's output embeddings.
Returns:
:obj:`nn.Module`: A torch module mapping hidden states to vocabulary.
"""
return None # Overwrite for models with output embeddings
def tie_weights(self):
"""
Tie the weights between the input embeddings and the output embeddings.
If the :obj:`torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning
the weights instead.
"""
output_embeddings = self.get_output_embeddings()
if output_embeddings is not None and self.config.tie_word_embeddings:
self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
if self.config.is_encoder_decoder and self.config.tie_encoder_decoder:
self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix)
@staticmethod
def _tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str):
uninitialized_encoder_weights: List[str] = []
assert decoder.__class__ == encoder.__class__, f"{decoder.__class__} and {encoder.__class__} have to be equal."
def tie_encoder_to_decoder_recursively(
decoder_pointer: nn.Module,
encoder_pointer: nn.Module,
module_name: str,
uninitialized_encoder_weights: List[str],
depth=0,
):
assert isinstance(decoder_pointer, nn.Module) and isinstance(
encoder_pointer, nn.Module
), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
if hasattr(decoder_pointer, "weight"):
assert hasattr(encoder_pointer, "weight")
encoder_pointer.weight = decoder_pointer.weight
if hasattr(decoder_pointer, "bias"):
assert hasattr(encoder_pointer, "bias")
encoder_pointer.bias = decoder_pointer.bias
return
encoder_modules = encoder_pointer._modules
decoder_modules = decoder_pointer._modules
if len(decoder_modules) > 0:
assert (
len(encoder_modules) > 0
), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"
all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()])
encoder_layer_pos = 0
for name, module in decoder_modules.items():
if name.isdigit():
encoder_name = str(int(name) + encoder_layer_pos)
decoder_name = name
if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])):
# this can happen if the name corresponds to the position in a list module list of layers
# in this case the decoder has added a cross-attention that the encoder does not have
# thus skip this step and substract one layer pos from encoder
encoder_layer_pos -= 1
continue
elif name not in encoder_modules:
continue
elif depth > 500:
raise ValueError(
"Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
)
else:
decoder_name = encoder_name = name
tie_encoder_to_decoder_recursively(
decoder_modules[decoder_name],
encoder_modules[encoder_name],
module_name + "/" + name,
uninitialized_encoder_weights,
depth=depth + 1,
)
all_encoder_weights.remove(module_name + "/" + encoder_name)
uninitialized_encoder_weights += list(all_encoder_weights)
# tie weights recursively
tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights)
if len(uninitialized_encoder_weights) > 0:
logger.warning(
f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}"
)
def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
"""Tie or clone module weights depending of whether we are using TorchScript or not"""
if self.config.torchscript:
output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
else:
output_embeddings.weight = input_embeddings.weight
if getattr(output_embeddings, "bias", None) is not None:
output_embeddings.bias.data = torch.nn.functional.pad(
output_embeddings.bias.data,
(
0,
output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],
),
"constant",
0,
)
if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
output_embeddings.out_features = input_embeddings.num_embeddings
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> torch.nn.Embedding:
"""
Resizes input token embeddings matrix of the model if :obj:`new_num_tokens != config.vocab_size`.
Takes care of tying weights embeddings afterwards if the model class has a :obj:`tie_weights()` method.
Arguments:
new_num_tokens (:obj:`int`, `optional`):
The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
vectors at the end. Reducing the size will remove vectors from the end. If not provided or :obj:`None`,
just returns a pointer to the input tokens :obj:`torch.nn.Embedding` module of the model wihtout doing
anything.
Return:
:obj:`torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
"""
base_model = getattr(self, self.base_model_prefix, self) # get the base model if needed
model_embeds = base_model._resize_token_embeddings(new_num_tokens)
if new_num_tokens is None:
return model_embeds
# Update base model and current model config
self.config.vocab_size = new_num_tokens
base_model.vocab_size = new_num_tokens
# Tie weights again if needed
self.tie_weights()
return model_embeds
def _resize_token_embeddings(self, new_num_tokens):
old_embeddings = self.get_input_embeddings()
new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
self.set_input_embeddings(new_embeddings)
return self.get_input_embeddings()
def _get_resized_embeddings(
self, old_embeddings: torch.nn.Embedding, new_num_tokens: Optional[int] = None
) -> torch.nn.Embedding:
"""
Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly
initialized vectors at the end. Reducing the size will remove vectors from the end
Args:
old_embeddings (:obj:`torch.nn.Embedding`):
Old embeddings to be resized.
new_num_tokens (:obj:`int`, `optional`):
New number of tokens in the embedding matrix.
Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
vectors from the end. If not provided or :obj:`None`, just returns a pointer to the input tokens
:obj:`torch.nn.Embedding`` module of the model wihtout doing anything.
Return:
:obj:`torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if
:obj:`new_num_tokens` is :obj:`None`
"""
if new_num_tokens is None:
return old_embeddings
old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
if old_num_tokens == new_num_tokens:
return old_embeddings
# Build new embeddings
new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim)
new_embeddings.to(old_embeddings.weight.device)
# initialize all new embeddings (in particular added tokens)
self._init_weights(new_embeddings)
# Copy token embeddings from the previous weights
num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
new_embeddings.weight.data[:num_tokens_to_copy, :] = old_embeddings.weight.data[:num_tokens_to_copy, :]
return new_embeddings
def init_weights(self):
"""
Initializes and prunes weights if needed.
"""
# Initialize weights
self.apply(self._init_weights)
# Prune heads if needed
if self.config.pruned_heads:
self.prune_heads(self.config.pruned_heads)
# Tie weights if needed
self.tie_weights()
def prune_heads(self, heads_to_prune: Dict[int, List[int]]):
"""
Prunes heads of the base model.
Arguments:
heads_to_prune (:obj:`Dict[int, List[int]]`):
Dictionary with keys being selected layer indices (:obj:`int`) and associated values being the list
of heads to prune in said layer (list of :obj:`int`). For instance {1: [0, 2], 2: [2, 3]} will
prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2.
"""
# save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
for layer, heads in heads_to_prune.items():
union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
self.config.pruned_heads[layer] = list(union_heads) # Unfortunately we have to store it as list for JSON
self.base_model._prune_heads(heads_to_prune)
def save_pretrained(self, save_directory):
"""
Save a model and its configuration file to a directory, so that it can be re-loaded using the
`:func:`~transformers.PreTrainedModel.from_pretrained`` class method.
Arguments:
save_directory (:obj:`str`):
Directory to which to save. Will be created if it doesn't exist.
"""
if os.path.isfile(save_directory):
logger.error("Provided path ({}) should be a directory, not a file".format(save_directory))
return
os.makedirs(save_directory, exist_ok=True)
# Only save the model itself if we are using distributed training
model_to_save = self.module if hasattr(self, "module") else self
# Attach architecture to the config
model_to_save.config.architectures = [model_to_save.__class__.__name__]
# If we save using the predefined names, we can load using `from_pretrained`
output_model_file = os.path.join(save_directory, WEIGHTS_NAME)
if getattr(self.config, "xla_device", False):
import torch_xla.core.xla_model as xm
if xm.is_master_ordinal():
# Save configuration file
model_to_save.config.save_pretrained(save_directory)
# xm.save takes care of saving only from master
xm.save(model_to_save.state_dict(), output_model_file)
else:
model_to_save.config.save_pretrained(save_directory)
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Model weights saved in {}".format(output_model_file))
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r"""
Instantiate a pretrained pytorch model from a pre-trained model configuration.
The model is set in evaluation mode by default using ``model.eval()`` (Dropout modules are deactivated).
To train the model, you should first set it back in training mode with ``model.train()``.
The warning `Weights from XXX not initialized from pretrained model` means that the weights of XXX do not come
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
task.
The warning `Weights from XXX not used in YYY` means that the layer XXX is not used by YYY, therefore those
weights are discarded.
Parameters:
pretrained_model_name_or_path (:obj:`str`, `optional`):
Can be either:
- A string with the `shortcut name` of a pretrained model to load from cache or download, e.g.,
``bert-base-uncased``.
- A string with the `identifier name` of a pretrained model that was user-uploaded to our S3, e.g.,
``dbmdz/bert-base-german-cased``.
- A path to a `directory` containing model weights saved using
:func:`~transformers.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
- A path or url to a `tensorflow index checkpoint file` (e.g, ``./tf_model/model.ckpt.index``). In
this case, ``from_tf`` should be set to :obj:`True` and a configuration object should be provided
as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in
a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- :obj:`None` if you are both providing the configuration and state dictionary (resp. with keyword
arguments ``config`` and ``state_dict``).
model_args (sequence of positional arguments, `optional`):
All remaning positional arguments will be passed to the underlying model's ``__init__`` method.
config (:obj:`Union[PretrainedConfig, str]`, `optional`):
Can be either:
- an instance of a class derived from :class:`~transformers.PretrainedConfig`,
- a string valid as input to :func:`~transformers.PretrainedConfig.from_pretrained`.
Configuration for the model to use instead of an automatically loaded configuation. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the `shortcut name` string of a
pretrained model).
- The model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded
by suppling the save directory.
- The model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a
configuration JSON file named `config.json` is found in the directory.
state_dict (:obj:`Dict[str, torch.Tensor]`, `optional`):
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own
weights. In this case though, you should check if using
:func:`~transformers.PreTrainedModel.save_pretrained` and
:func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
cache_dir (:obj:`str`, `optional`):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
from_tf (:obj:`bool`, `optional`, defaults to :obj:`False`):
Load the model weights from a TensorFlow checkpoint save file (see docstring of
``pretrained_model_name_or_path`` argument).
force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
file exists.
proxies (:obj:`Dict[str, str], `optional`):
A dictionary of proxy servers to use by protocol or endpoint, e.g.,
:obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each
request.
output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether ot not to also return a dictionnary containing missing keys, unexpected keys and error
messages.
local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to only look at local files (e.g., not try doanloading the model).
use_cdn(:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to use Cloudfront (a Content Delivery Network, or CDN) when searching for the model on
our S3 (faster). Should be set to :obj:`False` for checkpoints larger than 20GB.
kwargs (remaining dictionary of keyword arguments, `optional`):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
:obj:`output_attention=True`). Behaves differently depending on whether a ``config`` is provided or
automatically loaded:
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the
underlying model's ``__init__`` method (we assume all relevant updates to the configuration have
already been done)
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class
initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of
``kwargs`` that corresponds to a configuration attribute will be used to override said attribute
with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration
attribute will be passed to the underlying model's ``__init__`` function.
Examples::
from transformers import BertConfig, BertModel
# Download model and configuration from S3 and cache.
model = BertModel.from_pretrained('bert-base-uncased')
# Model was saved using `save_pretrained('./test/saved_model/')` (for example purposes, not runnable).
model = BertModel.from_pretrained('./test/saved_model/')
# Update configuration during loading.
model = BertModel.from_pretrained('bert-base-uncased', output_attention=True)
assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json')
model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
config = kwargs.pop("config", None)
state_dict = kwargs.pop("state_dict", None)
cache_dir = kwargs.pop("cache_dir", None)
from_tf = kwargs.pop("from_tf", False)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
output_loading_info = kwargs.pop("output_loading_info", False)
local_files_only = kwargs.pop("local_files_only", False)
use_cdn = kwargs.pop("use_cdn", True)
# Load config if we don't provide a configuration
if not isinstance(config, PretrainedConfig):
config_path = config if config is not None else pretrained_model_name_or_path
config, model_kwargs = cls.config_class.from_pretrained(
config_path,
*model_args,
cache_dir=cache_dir,
return_unused_kwargs=True,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
**kwargs,
)
else:
model_kwargs = kwargs
# Load model
if pretrained_model_name_or_path is not None:
if os.path.isdir(pretrained_model_name_or_path):
if from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")):
# Load from a TF 1.0 checkpoint
archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
elif from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
# Load from a TF 2.0 checkpoint
archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)
elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
# Load from a PyTorch checkpoint
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
else:
raise EnvironmentError(
"Error no file named {} found in directory {} or `from_tf` set to False".format(
[WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME + ".index"],
pretrained_model_name_or_path,
)
)
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
archive_file = pretrained_model_name_or_path
elif os.path.isfile(pretrained_model_name_or_path + ".index"):
assert (
from_tf
), "We found a TensorFlow checkpoint at {}, please set from_tf to True to load from this checkpoint".format(
pretrained_model_name_or_path + ".index"
)
archive_file = pretrained_model_name_or_path + ".index"
else:
archive_file = hf_bucket_url(
pretrained_model_name_or_path,
filename=(TF2_WEIGHTS_NAME if from_tf else WEIGHTS_NAME),
use_cdn=use_cdn,
)
try:
# Load from URL or cache if already cached
resolved_archive_file = cached_path(
archive_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
)
if resolved_archive_file is None:
raise EnvironmentError
except EnvironmentError:
msg = (
f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named one of {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME}.\n\n"
)
raise EnvironmentError(msg)
if resolved_archive_file == archive_file:
logger.info("loading weights file {}".format(archive_file))
else:
logger.info("loading weights file {} from cache at {}".format(archive_file, resolved_archive_file))
else:
resolved_archive_file = None
# Instantiate model.
model = cls(config, *model_args, **model_kwargs)
if state_dict is None and not from_tf:
try:
state_dict = torch.load(resolved_archive_file, map_location="cpu")
except Exception:
raise OSError(
"Unable to load weights from pytorch checkpoint file. "
"If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. "
)
missing_keys = []
unexpected_keys = []
error_msgs = []
if from_tf:
if resolved_archive_file.endswith(".index"):
# Load from a TensorFlow 1.X checkpoint - provided by original authors
model = cls.load_tf_weights(model, config, resolved_archive_file[:-6]) # Remove the '.index'
else:
# Load from our TensorFlow 2.0 checkpoints
try:
from transformers import load_tf2_checkpoint_in_pytorch_model
model = load_tf2_checkpoint_in_pytorch_model(model, resolved_archive_file, allow_missing_keys=True)
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see "
"https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions."
)
raise
else:
# Convert old format to new format if needed from a PyTorch state_dict
old_keys = []
new_keys = []
for key in state_dict.keys():
new_key = None
if "gamma" in key:
new_key = key.replace("gamma", "weight")
if "beta" in key:
new_key = key.replace("beta", "bias")
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
state_dict[new_key] = state_dict.pop(old_key)
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, "_metadata", None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
# PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
# so we need to apply the function recursively.
def load(module: nn.Module, prefix=""):
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
module._load_from_state_dict(
state_dict,
prefix,
local_metadata,
True,
missing_keys,
unexpected_keys,
error_msgs,
)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + ".")
# Make sure we are able to load base models as well as derived models (with heads)
start_prefix = ""
model_to_load = model
has_prefix_module = any(s.startswith(cls.base_model_prefix) for s in state_dict.keys())
if not hasattr(model, cls.base_model_prefix) and has_prefix_module:
start_prefix = cls.base_model_prefix + "."
if hasattr(model, cls.base_model_prefix) and not has_prefix_module:
model_to_load = getattr(model, cls.base_model_prefix)
load(model_to_load, prefix=start_prefix)
if model.__class__.__name__ != model_to_load.__class__.__name__:
base_model_state_dict = model_to_load.state_dict().keys()
head_model_state_dict_without_base_prefix = [
key.split(cls.base_model_prefix + ".")[-1] for key in model.state_dict().keys()
]
missing_keys.extend(head_model_state_dict_without_base_prefix - base_model_state_dict)
# Some models may have keys that are not in the state by design, removing them before needlessly warning
# the user.
if cls.authorized_missing_keys is not None:
for pat in cls.authorized_missing_keys:
missing_keys = [k for k in missing_keys if re.search(pat, k) is None]
if len(unexpected_keys) > 0:
logger.warning(
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when "
f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPretraining model).\n"
f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect "
f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
)
else:
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
if len(missing_keys) > 0:
logger.warning(
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
f"and are newly initialized: {missing_keys}\n"
f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
)
else:
logger.info(
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n"
f"If your task is similar to the task the model of the checkpoint was trained on, "
f"you can already use {model.__class__.__name__} for predictions without further training."
)
if len(error_msgs) > 0:
raise RuntimeError(
"Error(s) in loading state_dict for {}:\n\t{}".format(
model.__class__.__name__, "\n\t".join(error_msgs)
)
)
# make sure token embedding weights are still tied if needed
model.tie_weights()
# Set model in evaluation mode to deactivate DropOut modules by default
model.eval()
if output_loading_info:
loading_info = {
"missing_keys": missing_keys,
"unexpected_keys": unexpected_keys,
"error_msgs": error_msgs,
}
return model, loading_info
if hasattr(config, "xla_device") and config.xla_device and is_torch_tpu_available():
import torch_xla.core.xla_model as xm
model = xm.send_cpu_data_to_device(model, xm.xla_device())
model.to(xm.xla_device())
return model
class Conv1D(nn.Module):
"""
1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).
Basically works like a linear layer but the weights are transposed.
Args:
nf (:obj:`int`): The number of output features.
nx (:obj:`int`): The number of input features.
"""
def __init__(self, nf, nx):
super().__init__()
self.nf = nf
w = torch.empty(nx, nf)
nn.init.normal_(w, std=0.02)
self.weight = nn.Parameter(w)
self.bias = nn.Parameter(torch.zeros(nf))
def forward(self, x):
size_out = x.size()[:-1] + (self.nf,)
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
x = x.view(*size_out)
return x
class PoolerStartLogits(nn.Module):
"""
Compute SQuAD start logits from sequence hidden states.
Args:
config (:class:`~transformers.PretrainedConfig`):
The config used by the model, will be used to grab the :obj:`hidden_size` of the model.
"""
def __init__(self, config: PretrainedConfig):
super().__init__()
self.dense = nn.Linear(config.hidden_size, 1)
def forward(
self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None
) -> torch.FloatTensor:
"""
Args:
hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`):
The final hidden states of the model.
p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`):
Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS).
1.0 means token should be masked.
Returns:
:obj:`torch.FloatTensor`: The start logits for SQuAD.
"""
x = self.dense(hidden_states).squeeze(-1)
if p_mask is not None:
if next(self.parameters()).dtype == torch.float16:
x = x * (1 - p_mask) - 65500 * p_mask
else:
x = x * (1 - p_mask) - 1e30 * p_mask
return x
class PoolerEndLogits(nn.Module):
"""
Compute SQuAD end logits from sequence hidden states.
Args:
config (:class:`~transformers.PretrainedConfig`):
The config used by the model, will be used to grab the :obj:`hidden_size` of the model and the
:obj:`layer_norm_eps` to use.
"""
def __init__(self, config: PretrainedConfig):
super().__init__()
self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
self.activation = nn.Tanh()
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dense_1 = nn.Linear(config.hidden_size, 1)
def forward(
self,
hidden_states: torch.FloatTensor,
start_states: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
p_mask: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
"""
Args:
hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`):
The final hidden states of the model.
start_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`, `optional`):
The hidden states of the first tokens for the labeled span.
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
The position of the first token for the labeled span.
p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`):
Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS).
1.0 means token should be masked.
.. note::
One of ``start_states`` or ``start_positions`` should be not obj:`None`. If both are set,
``start_positions`` overrides ``start_states``.
Returns:
:obj:`torch.FloatTensor`: The end logits for SQuAD.
"""
assert (
start_states is not None or start_positions is not None
), "One of start_states, start_positions should be not None"
if start_positions is not None:
slen, hsz = hidden_states.shape[-2:]
start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
start_states = hidden_states.gather(-2, start_positions) # shape (bsz, 1, hsz)
start_states = start_states.expand(-1, slen, -1) # shape (bsz, slen, hsz)
x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
x = self.activation(x)
x = self.LayerNorm(x)
x = self.dense_1(x).squeeze(-1)
if p_mask is not None:
if next(self.parameters()).dtype == torch.float16:
x = x * (1 - p_mask) - 65500 * p_mask
else:
x = x * (1 - p_mask) - 1e30 * p_mask
return x
class PoolerAnswerClass(nn.Module):
"""
Compute SQuAD 2.0 answer class from classification and start tokens hidden states.
Args:
config (:class:`~transformers.PretrainedConfig`):
The config used by the model, will be used to grab the :obj:`hidden_size` of the model.
"""
def __init__(self, config):
super().__init__()
self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
self.activation = nn.Tanh()
self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)
def forward(
self,
hidden_states: torch.FloatTensor,
start_states: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
cls_index: Optional[torch.LongTensor] = None,
) -> torch.FloatTensor:
"""
Args:
hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`):
The final hidden states of the model.
start_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`, `optional`):
The hidden states of the first tokens for the labeled span.
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
The position of the first token for the labeled span.
cls_index (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Position of the CLS token for each sentence in the batch. If :obj:`None`, takes the last token.
.. note::
One of ``start_states`` or ``start_positions`` should be not obj:`None`. If both are set,
``start_positions`` overrides ``start_states``.
Returns:
:obj:`torch.FloatTensor`: The SQuAD 2.0 answer class.
"""
# No dependency on end_feature so that we can obtain one single `cls_logits` for each sample.
hsz = hidden_states.shape[-1]
assert (
start_states is not None or start_positions is not None
), "One of start_states, start_positions should be not None"
if start_positions is not None:
start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
start_states = hidden_states.gather(-2, start_positions).squeeze(-2) # shape (bsz, hsz)
if cls_index is not None:
cls_index = cls_index[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, hsz)
else:
cls_token_state = hidden_states[:, -1, :] # shape (bsz, hsz)
x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
x = self.activation(x)
x = self.dense_1(x).squeeze(-1)
return x
@dataclass
class SquadHeadOutput(ModelOutput):
"""
Base class for outputs of question answering models using a :class:`~transformers.modeling_utils.SQuADHead`.
Args:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned if both :obj:`start_positions` and :obj:`end_positions` are provided):
Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses.
start_top_log_probs (``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
Log probabilities for the top config.start_n_top start token possibilities (beam-search).
start_top_index (``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
Indices for the top config.start_n_top start token possibilities (beam-search).
end_top_log_probs (``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
end_top_index (``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
cls_logits (``torch.FloatTensor`` of shape ``(batch_size,)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
Log probabilities for the ``is_impossible`` label of the answers.
"""
loss: Optional[torch.FloatTensor] = None
start_top_log_probs: Optional[torch.FloatTensor] = None
start_top_index: Optional[torch.LongTensor] = None
end_top_log_probs: Optional[torch.FloatTensor] = None
end_top_index: Optional[torch.LongTensor] = None
cls_logits: Optional[torch.FloatTensor] = None
class SQuADHead(nn.Module):
r"""
A SQuAD head inspired by XLNet.
Args:
config (:class:`~transformers.PretrainedConfig`):
The config used by the model, will be used to grab the :obj:`hidden_size` of the model and the
:obj:`layer_norm_eps` to use.
"""
def __init__(self, config):
super().__init__()
self.start_n_top = config.start_n_top
self.end_n_top = config.end_n_top
self.start_logits = PoolerStartLogits(config)
self.end_logits = PoolerEndLogits(config)
self.answer_class = PoolerAnswerClass(config)
@replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig)
def forward(
self,
hidden_states: torch.FloatTensor,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
cls_index: Optional[torch.LongTensor] = None,
is_impossible: Optional[torch.LongTensor] = None,
p_mask: Optional[torch.FloatTensor] = None,
return_dict: bool = False,
) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]:
"""
Args:
hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`):
Final hidden states of the model on the sequence tokens.
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Positions of the first token for the labeled span.
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Positions of the last token for the labeled span.
cls_index (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Position of the CLS token for each sentence in the batch. If :obj:`None`, takes the last token.
is_impossible (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Whether the question has a possible answer in the paragraph or not.
p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`):
Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS).
1.0 means token should be masked.
return_dict (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to return a :class:`~transformers.file_utils.ModelOuput` instead of a plain tuple.
Returns:
"""
start_logits = self.start_logits(hidden_states, p_mask=p_mask)
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, let's remove the dimension added by batch splitting
for x in (start_positions, end_positions, cls_index, is_impossible):
if x is not None and x.dim() > 1:
x.squeeze_(-1)
# during training, compute the end logits based on the ground truth of the start position
end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)
loss_fct = CrossEntropyLoss()
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if cls_index is not None and is_impossible is not None:
# Predict answerability from the representation of CLS and START
cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
loss_fct_cls = nn.BCEWithLogitsLoss()
cls_loss = loss_fct_cls(cls_logits, is_impossible)
# note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
total_loss += cls_loss * 0.5
return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,)
else:
# during inference, compute the end logits based on beam search
bsz, slen, hsz = hidden_states.size()
start_log_probs = F.softmax(start_logits, dim=-1) # shape (bsz, slen)
start_top_log_probs, start_top_index = torch.topk(
start_log_probs, self.start_n_top, dim=-1
) # shape (bsz, start_n_top)
start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz)
start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz)
start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz)
hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
start_states
) # shape (bsz, slen, start_n_top, hsz)
p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
end_log_probs = F.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top)
end_top_log_probs, end_top_index = torch.topk(
end_log_probs, self.end_n_top, dim=1
) # shape (bsz, end_n_top, start_n_top)
end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)
start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)
if not return_dict:
return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
else:
return SquadHeadOutput(
start_top_log_probs=start_top_log_probs,
start_top_index=start_top_index,
end_top_log_probs=end_top_log_probs,
end_top_index=end_top_index,
cls_logits=cls_logits,
)
class SequenceSummary(nn.Module):
r"""
Compute a single vector summary of a sequence hidden states.
Args:
config (:class:`~transformers.PretrainedConfig`):
The config used by the model. Relevant arguments in the config class of the model are (refer to the
actual config class of your model for the default values it uses):
- **summary_type** (:obj:`str`) -- The method to use to make this summary. Accepted values are:
- :obj:`"last"` -- Take the last token hidden state (like XLNet)
- :obj:`"first"` -- Take the first token hidden state (like Bert)
- :obj:`"mean"` -- Take the mean of all tokens hidden states
- :obj:`"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
- :obj:`"attn"` -- Not implemented now, use multi-head attention
- **summary_use_proj** (:obj:`bool`) -- Add a projection after the vector extraction.
- **summary_proj_to_labels** (:obj:`bool`) -- If :obj:`True`, the projection outputs to
:obj:`config.num_labels` classes (otherwise to :obj:`config.hidden_size`).
- **summary_activation** (:obj:`Optional[str]`) -- Set to :obj:`"tanh"` to add a tanh activation to the
output, another string or :obj:`None` will add no activation.
- **summary_first_dropout** (:obj:`float`) -- Optional dropout probability before the projection and
activation.
- **summary_last_dropout** (:obj:`float`)-- Optional dropout probability after the projection and
activation.
"""
def __init__(self, config: PretrainedConfig):
super().__init__()
self.summary_type = getattr(config, "summary_type", "last")
if self.summary_type == "attn":
# We should use a standard multi-head attention module with absolute positional embedding for that.
# Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
# We can probably just use the multi-head attention module of PyTorch >=1.1.0
raise NotImplementedError
self.summary = Identity()
if hasattr(config, "summary_use_proj") and config.summary_use_proj:
if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
num_classes = config.num_labels
else:
num_classes = config.hidden_size
self.summary = nn.Linear(config.hidden_size, num_classes)
activation_string = getattr(config, "summary_activation", None)
self.activation: Callable = get_activation(activation_string) if activation_string else Identity()
self.first_dropout = Identity()
if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
self.first_dropout = nn.Dropout(config.summary_first_dropout)
self.last_dropout = Identity()
if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
self.last_dropout = nn.Dropout(config.summary_last_dropout)
def forward(
self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None
) -> torch.FloatTensor:
"""
Compute a single vector summary of a sequence hidden states.
Args:
hidden_states (:obj:`torch.FloatTensor` of shape :obj:`[batch_size, seq_len, hidden_size]`):
The hidden states of the last layer.
cls_index (:obj:`torch.LongTensor` of shape :obj:`[batch_size]` or :obj:`[batch_size, ...]` where ... are optional leading dimensions of :obj:`hidden_states`, `optional`):
Used if :obj:`summary_type == "cls_index"` and takes the last token of the sequence as classification
token.
Returns:
:obj:`torch.FloatTensor`: The summary of the sequence hidden states.
"""
if self.summary_type == "last":
output = hidden_states[:, -1]
elif self.summary_type == "first":
output = hidden_states[:, 0]
elif self.summary_type == "mean":
output = hidden_states.mean(dim=1)
elif self.summary_type == "cls_index":
if cls_index is None:
cls_index = torch.full_like(
hidden_states[..., :1, :],
hidden_states.shape[-2] - 1,
dtype=torch.long,
)
else:
cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
# shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
output = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, XX, hidden_size)
elif self.summary_type == "attn":
raise NotImplementedError
output = self.first_dropout(output)
output = self.summary(output)
output = self.activation(output)
output = self.last_dropout(output)
return output
def prune_linear_layer(layer: torch.nn.Linear, index: torch.LongTensor, dim: int = 0) -> torch.nn.Linear:
"""
Prune a linear layer to keep only entries in index.
Used to remove heads.
Args:
layer (:obj:`torch.nn.Linear`): The layer to prune.
index (:obj:`torch.LongTensor`): The indices to keep in the layer.
dim (:obj:`int`, `optional`, defaults to 0): The dimension on which to keep the indices.
Returns:
:obj:`torch.nn.Linear`: The pruned layer as a new layer with :obj:`requires_grad=True`.
"""
index = index.to(layer.weight.device)
W = layer.weight.index_select(dim, index).clone().detach()
if layer.bias is not None:
if dim == 1:
b = layer.bias.clone().detach()
else:
b = layer.bias[index].clone().detach()
new_size = list(layer.weight.size())
new_size[dim] = len(index)
new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device)
new_layer.weight.requires_grad = False
new_layer.weight.copy_(W.contiguous())
new_layer.weight.requires_grad = True
if layer.bias is not None:
new_layer.bias.requires_grad = False
new_layer.bias.copy_(b.contiguous())
new_layer.bias.requires_grad = True
return new_layer
def prune_conv1d_layer(layer: Conv1D, index: torch.LongTensor, dim: int = 1) -> Conv1D:
"""
Prune a Conv1D layer to keep only entries in index. A Conv1D work as a Linear layer (see e.g. BERT) but the weights
are transposed.
Used to remove heads.
Args:
layer (:class:`~transformers.modeling_utils.Conv1D`): The layer to prune.
index (:obj:`torch.LongTensor`): The indices to keep in the layer.
dim (:obj:`int`, `optional`, defaults to 1): The dimension on which to keep the indices.
Returns:
:class:`~transformers.modeling_utils.Conv1D`: The pruned layer as a new layer with :obj:`requires_grad=True`.
"""
index = index.to(layer.weight.device)
W = layer.weight.index_select(dim, index).clone().detach()
if dim == 0:
b = layer.bias.clone().detach()
else:
b = layer.bias[index].clone().detach()
new_size = list(layer.weight.size())
new_size[dim] = len(index)
new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device)
new_layer.weight.requires_grad = False
new_layer.weight.copy_(W.contiguous())
new_layer.weight.requires_grad = True
new_layer.bias.requires_grad = False
new_layer.bias.copy_(b.contiguous())
new_layer.bias.requires_grad = True
return new_layer
def prune_layer(
layer: Union[torch.nn.Linear, Conv1D], index: torch.LongTensor, dim: Optional[int] = None
) -> Union[torch.nn.Linear, Conv1D]:
"""
Prune a Conv1D or linear layer to keep only entries in index.
Used to remove heads.
Args:
layer (:obj:`Union[torch.nn.Linear, Conv1D]`): The layer to prune.
index (:obj:`torch.LongTensor`): The indices to keep in the layer.
dim (:obj:`int`, `optional`): The dimension on which to keep the indices.
Returns:
:obj:`torch.nn.Linear` or :class:`~transformers.modeling_utils.Conv1D`:
The pruned layer as a new layer with :obj:`requires_grad=True`.
"""
if isinstance(layer, nn.Linear):
return prune_linear_layer(layer, index, dim=0 if dim is None else dim)
elif isinstance(layer, Conv1D):
return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim)
else:
raise ValueError("Can't prune layer of class {}".format(layer.__class__))
def apply_chunking_to_forward(
forward_fn: Callable[..., torch.Tensor], chunk_size: int, chunk_dim: int, *input_tensors
) -> torch.Tensor:
"""
This function chunks the :obj:`input_tensors` into smaller input tensor parts of size :obj:`chunk_size` over the
dimension :obj:`chunk_dim`. It then applies a layer :obj:`forward_fn` to each chunk independently to save memory.
If the :obj:`forward_fn` is independent across the :obj:`chunk_dim` this function will yield the same result as
directly applying :obj:`forward_fn` to :obj:`input_tensors`.
Args:
forward_fn (:obj:`Callable[..., torch.Tensor]`):
The forward function of the model.
chunk_size (:obj:`int`):
The chunk size of a chunked tensor: :obj:`num_chunks = len(input_tensors[0]) / chunk_size`.
chunk_dim (:obj:`int`):
The dimension over which the :obj:`input_tensors` should be chunked.
input_tensors (:obj:`Tuple[torch.Tensor]`):
The input tensors of ``forward_fn`` which will be chunked.
Returns:
:obj:`torch.Tensor`: A tensor with the same shape as the :obj:`foward_fn` would have given if applied`.
Examples::
# rename the usual forward() fn to forward_chunk()
def forward_chunk(self, hidden_states):
hidden_states = self.decoder(hidden_states)
return hidden_states
# implement a chunked forward function
def forward(self, hidden_states):
return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states)
"""
assert len(input_tensors) > 0, "{} has to be a tuple/list of tensors".format(input_tensors)
tensor_shape = input_tensors[0].shape
assert all(
input_tensor.shape == tensor_shape for input_tensor in input_tensors
), "All input tenors have to be of the same shape"
# inspect.signature exist since python 3.5 and is a python method -> no problem with backward compability
num_args_in_forward_chunk_fn = len(inspect.signature(forward_fn).parameters)
assert num_args_in_forward_chunk_fn == len(
input_tensors
), "forward_chunk_fn expects {} arguments, but only {} input tensors are given".format(
num_args_in_forward_chunk_fn, len(input_tensors)
)
if chunk_size > 0:
assert (
input_tensors[0].shape[chunk_dim] % chunk_size == 0
), "The dimension to be chunked {} has to be a multiple of the chunk size {}".format(
input_tensors[0].shape[chunk_dim], chunk_size
)
num_chunks = input_tensors[0].shape[chunk_dim] // chunk_size
# chunk input tensor into tuples
input_tensors_chunks = tuple(input_tensor.chunk(num_chunks, dim=chunk_dim) for input_tensor in input_tensors)
# apply forward fn to every tuple
output_chunks = tuple(forward_fn(*input_tensors_chunk) for input_tensors_chunk in zip(*input_tensors_chunks))
# concatenate output at same dimension
return torch.cat(output_chunks, dim=chunk_dim)
return forward_fn(*input_tensors)