AVL.h 16.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
/*  Copyright (C) 2010-2012  kaosu (qiupf2000@gmail.com)
 *  This file is part of the Interactive Text Hooker.

 *  Interactive Text Hooker is free software: you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License as published
 *  by the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.

 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.

 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
#pragma once
#include <ITH\string.h>
#define STACK_SIZE 32
#ifndef ITH_STACK
#define ITH_STACK
template<class T, int stack_size>
class MyStack
{
public:
	MyStack(): index(0) {}
	void push_back(const T& e)
	{
		if (index<stack_size)
		s[index++]=e;
	}
	void pop_back()
	{
		index--;
	}
	T& back()
	{
		return s[index-1];
	}
	T& operator[](int i) {return s[i];}
	int size() {return index;}
private:
	int index;
	T s[stack_size];
};
#endif
template <class T, class D>
class TreeNode
{
public:
	TreeNode():key(),data(),Left(0),Right(0),Parent(0),rank(1),factor(0) {}
	TreeNode(const T& k, const D& d)
		:key(k),data(d),Left(0),Right(0),Parent(0),rank(1),factor(0) {}
	TreeNode* Successor() 
	{
		TreeNode* Node,*ParentNode;
		Node=Right;
		if (Node==0)
		{
			Node=this;
			for (;;)
			{
				ParentNode=Node->Parent;
				if (ParentNode==0) return 0;
				if (ParentNode->Left==Node) break;
				Node=ParentNode;
			}
			return ParentNode;
		}
		else
			while (Node->Left) Node=Node->Left;
		return Node;
	}
	TreeNode* Predecessor()
	{
		TreeNode* Node, *ParentNode;
		Node=Left;
		if (Node==0)
		{
			Node=this;
			for(;;)
			{
				ParentNode=Node->Parent;
				if (ParentNode==0) return 0;
				if (ParentNode->Right==Node) break;
				Node=ParentNode;
			}
			return ParentNode;
		}
		else
			while (Node->Right) Node=Node->Right;
		return Node;
	}
	int height()
	{
		if (this==0) return 0;
		int l,r,f;
		l=Left->height();
		r=Right->height();
		f=factor;
		if (l-r+f!=0) __debugbreak();
		f=l>r?l:r;
		return f+1;
	}
	TreeNode *Left,*Right,*Parent;
	unsigned short rank;
	char factor,reserve;
	T key;
	D data;
};
template<class T,class D>
class NodePath
{
public:
	NodePath(){memset(this,0,sizeof(NodePath));}
	NodePath(TreeNode<T,D> *n,int f):Node(n),fact(f) {}
	TreeNode<T,D> *Node;
	union {
	char factor;
	int fact;
	};
};

template <class T,class D, class fComp, class fCopy, class fLength>
class AVLTree
{
public:
	AVLTree() {}
	~AVLTree()
	{
		DeleteAll();
	}
	void DeleteAll()
	{
		while (head.Left)
			DeleteRoot();
	}
	TreeNode<T*,D>* TreeRoot() const {return head.Left;}
	TreeNode<T*,D>* Insert(const T* key, const D& data)
	{
		if (head.Left)
		{
			MyStack<TreeNode<T*,D>*,STACK_SIZE> path; 
			TreeNode<T*,D> *DownNode,*ParentNode,*BalanceNode,*TryNode,*NewNode; //P,T,S,Q
			ParentNode = &head;
			path.push_back(ParentNode);
			char factor,f;
			BalanceNode = DownNode = head.Left;
			for(;;) //The first part of AVL tree insert. Just do as binary tree insert routine and record some nodes.
			{
				factor = fCmp(key,DownNode->key);
				if (factor == 0 ) return DownNode; //Duplicate key. Return and do nothing.
				TryNode = _FactorLink(DownNode,factor);
				if (factor == -1) path.push_back(DownNode);
				if (TryNode) //DownNode has a child.
				{
					if (TryNode->factor != 0) //Keep track of unbalance node and its parent.
					{
						ParentNode = DownNode;
						BalanceNode = TryNode;
					}	
					DownNode=TryNode;
				}
				else break; //Finished binary tree search;
			}
			while(path.size())
			{
				path.back()->rank++;
				path.pop_back();
			}
			T* new_key = new T[fLen(key) + 1];
			fCpy(new_key,key);
			TryNode = new TreeNode<T*,D>(new_key,data);
			_FactorLink(DownNode,factor) = TryNode;
			TryNode->Parent = DownNode;
			NewNode = TryNode;
			//Finished binary tree insert. Next to do is to modify balance factors between 
			//BalanceNode and the new node.
			TreeNode<T*,D>* ModifyNode;
			factor = fCmp(key, BalanceNode->key);
			//factor=key<BalanceNode->key ? factor=-1:1; //Determine the balance factor at BalanceNode.
			ModifyNode = DownNode = _FactorLink(BalanceNode,factor); 
			//ModifyNode will be the 1st child.
			//DownNode will travel from here to the recent inserted node (TryNode).
			while(DownNode != TryNode) //Check if we reach the bottom.
			{
				f = fCmp(key,DownNode->key);
				//f=_FactorCompare(key,DownNode->key);
				DownNode->factor = f;
				DownNode = _FactorLink(DownNode, f);//Modify balance factor and travels down.
			}
			//Finshed modifying balance factor.
			//Next to do is check the tree if it's unbalance and recover balance.
			if (BalanceNode->factor == 0)  //Tree has grown higher. 
			{
				BalanceNode->factor = factor;
				_IncreaseHeight(); //Modify balance factor and increase the height.
				return NewNode;
			}
			if (BalanceNode->factor + factor == 0) //Tree has gotten more balanced.
			{
				BalanceNode->factor = 0; //Set balance factor to 0.
				return NewNode;
			}
			//Tree has gotten out of balance.
			if (ModifyNode->factor == factor) //A node and its child has same factor. Single rotation.
				DownNode = _SingleRotation(BalanceNode,ModifyNode, factor);	
			else //A node and its child has converse factor. Double rotation.
				DownNode = _DoubleRotation(BalanceNode, ModifyNode, factor);
			//Finished the balancing work. Set child field to the root of the new child tree.
			if (BalanceNode == ParentNode->Left) ParentNode->Left = DownNode;
			else ParentNode->Right = DownNode;
			return NewNode;
		}
		else //root null?
		{
			T* new_key=new T[fLen(key) + 1];
			fCpy(new_key,key);
			head.Left=new TreeNode<T*,D>(new_key,data);
			head.rank++;
			_IncreaseHeight();
			return head.Left;
		}
	}
	bool Delete(T* key)
	{
		NodePath<T*,D> PathNode;
		MyStack<NodePath<T*,D>,STACK_SIZE> path; //Use to record a path to the destination node.
		path.push_back(NodePath<T*,D>(&head,-1));
		TreeNode<T*,D> *TryNode,*ChildNode,*BalanceNode,*SuccNode; 
		TryNode=head.Left;
		char factor;
		while (1) //Search for the 
		{
			if (TryNode==0) return false; //Not found.
			factor = fCmp(key,TryNode->key);
			if (factor==0) break; //Key found, continue to delete.
			//factor = _FactorCompare( key, TryNode->key );
			path.push_back(NodePath<T*,D>(TryNode,factor));
			TryNode=_FactorLink(TryNode,factor); //Move to left.
		}
		SuccNode=TryNode->Right; //Find a successor.
		factor=1;
		if (SuccNode==0) 
		{
			SuccNode=TryNode->Left;
			factor=-1;
		}
		path.push_back(NodePath<T*,D>(TryNode,factor));
		while (SuccNode)
		{
			path.push_back(NodePath<T*,D>(SuccNode,-factor));
			SuccNode=_FactorLink(SuccNode,-factor);
		}
		PathNode=path.back();
		delete TryNode->key;
		TryNode->key=PathNode.Node->key; //Replace key and data field with the successor or predecessor.
		PathNode.Node->key=0;
		TryNode->data=PathNode.Node->data;
		path.pop_back();
		_FactorLink(path.back().Node,path.back().factor) = _FactorLink(PathNode.Node,-PathNode.factor); 
		delete PathNode.Node; //Remove the successor from the tree and release memory.
		PathNode=path.back();
		for (int i=0;i<path.size();i++)
			if (path[i].factor==-1) path[i].Node->rank--;
		while (1) //Rebalance the tree along the path back to the root.
		{
			if (path.size()==1)
			{
				_DecreaseHeight(); break;
			}
			BalanceNode=PathNode.Node;
			if (BalanceNode->factor==0) 
				//A balance node, just need to adjust the factor. Don't have to recurve since subtree height stays.
			{
				BalanceNode->factor=-PathNode.factor;
				break;
			}
			if (BalanceNode->factor==PathNode.factor) //Node get more balance. Subtree height decrease, need to recurve.
			{
				BalanceNode->factor=0;
				path.pop_back();
				PathNode=path.back();
				continue;
			}
			//Node get out of balance. Here raises 3 cases.
			ChildNode = _FactorLink(BalanceNode, -PathNode.factor);
			if (ChildNode->factor == 0) //New case different to insert operation.
			{
				TryNode = _SingleRotation2( BalanceNode, ChildNode, BalanceNode->factor );
				path.pop_back();
				PathNode=path.back();
				_FactorLink(PathNode.Node, PathNode.factor) = TryNode;
				break;
			}
			else
			{
				if ( ChildNode->factor == BalanceNode->factor ) //Analogous to insert operation case 1.
					TryNode = _SingleRotation( BalanceNode, ChildNode, BalanceNode->factor );
				else if ( ChildNode->factor + BalanceNode->factor == 0 ) //Analogous to insert operation case 2.
					TryNode = _DoubleRotation( BalanceNode, ChildNode, BalanceNode->factor );
			}
			path.pop_back(); //Recurse back along the path.
			PathNode=path.back();
			_FactorLink(PathNode.Node, PathNode.factor) = TryNode;
		}
		return true;
	}
	D& operator [] (T* key)
	{
		return (Insert(key,D())->data);
	}
	TreeNode<T*,D>* Search(const T* key)
	{
		TreeNode<T*,D>* Find=head.Left;
		char k;
		while (Find!=0)//&&Find->key!=key)
		{
			k=fCmp(key, Find->key);
			if (k==0) break;
			Find = _FactorLink(Find, k);
		}
		return Find;
	}
	TreeNode<T*,D>* SearchIndex(unsigned int rank)
	{
		unsigned int r = head.rank;
		if (rank == -1) return 0;
		if (++rank>=r) return 0;
		TreeNode<T*,D>* n=&head;
		while (r!=rank)
		{
			if (rank>r)
			{
				n=n->Right;
				rank-=r;
				r=n->rank;
			}
			else
			{
				n=n->Left;
				r=n->rank;
			}
		}
		return n;
	}
	TreeNode<T*,D>* Begin()
	{
		TreeNode<T*,D>* Node=head.Left;
		if (Node)
			while (Node->Left) Node=Node->Left;
		return Node;
	}
	TreeNode<T*,D>* End()
	{
		TreeNode<T*,D>* Node=head.Left;
		if (Node)
			while (Node->Right) Node=Node->Right;
		return Node;
	}
	unsigned int Count() const {return head.rank-1;}
	template <class Fn>
	Fn TraverseTree(Fn& f)
	{
		return TraverseTreeNode(head.Left,f);
	}
protected:
	bool DeleteRoot()
	{
		NodePath<T*,D> PathNode;
		MyStack<NodePath<T*,D>,STACK_SIZE> path; //Use to record a path to the destination node.
		path.push_back(NodePath<T*,D>(&head,-1));
		TreeNode<T*,D> *TryNode,*ChildNode,*BalanceNode,*SuccNode; 
		TryNode=head.Left;
		char factor;
		SuccNode=TryNode->Right; //Find a successor.
		factor=1;
		if (SuccNode==0) 
		{
			SuccNode=TryNode->Left;
			factor=-1;
		}
		path.push_back(NodePath<T*,D>(TryNode,factor));
		while (SuccNode)
		{
			path.push_back(NodePath<T*,D>(SuccNode,-factor));
			SuccNode=_FactorLink(SuccNode,-factor);
		}
		PathNode=path.back();
		delete[] TryNode->key;
		TryNode->key=PathNode.Node->key; //Replace key and data field with the successor.
		PathNode.Node->key=0;
		TryNode->data=PathNode.Node->data;
		path.pop_back();
		_FactorLink(path.back().Node,path.back().factor) = _FactorLink(PathNode.Node,-PathNode.factor); 
		delete PathNode.Node; //Remove the successor from the tree and release memory.
		PathNode=path.back();
		for (int i=0;i<path.size();i++)
			if (path[i].factor==-1) path[i].Node->rank--;
		while (1) //Rebalance the tree along the path back to the root.
		{
			if (path.size()==1)
			{
				_DecreaseHeight(); break;
			}
			BalanceNode=PathNode.Node;
			if (BalanceNode->factor==0) 
				//A balance node, just need to adjust the factor. Don't have to recurse since subtree height not changed.
			{
				BalanceNode->factor=-PathNode.factor;
				break;
			}
			if (BalanceNode->factor==PathNode.factor) //Node get more balance. Subtree height decrease, need to recurse.
			{
				BalanceNode->factor=0;
				path.pop_back();
				PathNode=path.back();
				continue;
			}
			//Node get out of balance. Here raises 3 cases.
			ChildNode = _FactorLink(BalanceNode, -PathNode.factor);
			if (ChildNode->factor == 0) //New case different to insert operation.
			{
				TryNode = _SingleRotation2( BalanceNode, ChildNode, BalanceNode->factor );
				path.pop_back();
				PathNode=path.back();
				_FactorLink(PathNode.Node, PathNode.factor) = TryNode;
				break;
			}
			else
			{
				if ( ChildNode->factor == BalanceNode->factor ) //Analogous to insert operation case 1.
					TryNode = _SingleRotation( BalanceNode, ChildNode, BalanceNode->factor );
				else if ( ChildNode->factor + BalanceNode->factor == 0 ) //Analogous to insert operation case 2.
					TryNode = _DoubleRotation( BalanceNode, ChildNode, BalanceNode->factor );
			}
			path.pop_back(); //Recurve back along the path.
			PathNode=path.back();
			_FactorLink(PathNode.Node, PathNode.factor) = TryNode;
		}
		return true;
	}
	template <class Fn>
	Fn TraverseTreeNode(TreeNode<T*,D>* Node, Fn& f)
	{
		if (Node)
		{
			if (Node->Left) TraverseTreeNode(Node->Left,f);
			f(Node);
			if (Node->Right) TraverseTreeNode(Node->Right,f);
		}
		return f;	
	}
	inline TreeNode<T*,D>* _SingleRotation(TreeNode<T*,D>* BalanceNode, TreeNode<T*,D>* ModifyNode, char factor)
	{
		TreeNode<T*,D>* Node = _FactorLink(ModifyNode, -factor);
		_FactorLink(BalanceNode, factor) = Node;
		_FactorLink(ModifyNode, -factor) = BalanceNode;
		if (Node) Node->Parent = BalanceNode;
		ModifyNode->Parent = BalanceNode->Parent;
		BalanceNode->Parent = ModifyNode;
		BalanceNode->factor = ModifyNode->factor = 0; //After single rotation, set all factor of 3 node to 0.
		if (factor == 1) ModifyNode->rank += BalanceNode->rank;
		else BalanceNode->rank -= ModifyNode->rank;
		return ModifyNode;
	}
	inline TreeNode<T*,D>* _SingleRotation2(TreeNode<T*,D>* BalanceNode, TreeNode<T*,D>* ModifyNode, char factor)
	{
		TreeNode<T*,D>* Node = _FactorLink(ModifyNode, -factor);
		_FactorLink(BalanceNode, factor) = Node;
		_FactorLink(ModifyNode, -factor) = BalanceNode;
		if (Node) Node->Parent = BalanceNode;
		ModifyNode->Parent = BalanceNode->Parent;
		BalanceNode->Parent = ModifyNode;
		ModifyNode->factor = -factor;
		if (factor==1) ModifyNode->rank+=BalanceNode->rank;
		else BalanceNode->rank-=ModifyNode->rank;
		return ModifyNode;
	}
	inline TreeNode<T*,D>* _DoubleRotation(TreeNode<T*,D>* BalanceNode, TreeNode<T*,D>* ModifyNode, char factor)
	{
		TreeNode<T*,D>* DownNode = _FactorLink(ModifyNode, -factor);
		TreeNode<T*,D>* Node1, *Node2;
		Node1 = _FactorLink(DownNode, factor);
		Node2 = _FactorLink(DownNode, -factor);
		_FactorLink(ModifyNode, -factor) = Node1;
		_FactorLink(DownNode, factor) = ModifyNode;
		_FactorLink(BalanceNode, factor) = Node2;
		_FactorLink(DownNode, -factor) = BalanceNode;
		if (Node1) Node1->Parent = ModifyNode;
		if (Node2) Node2->Parent = BalanceNode;
		DownNode->Parent = BalanceNode->Parent;
		BalanceNode->Parent = DownNode;
		ModifyNode->Parent = DownNode;
		//Set factor according to the result.
		if (DownNode->factor==factor)
		{
			BalanceNode->factor=-factor;
			ModifyNode->factor=0;
		}
		else if (DownNode->factor==0)
		{
			BalanceNode->factor=ModifyNode->factor=0;
		}
		else
		{
			BalanceNode->factor=0;
			ModifyNode->factor=factor;
		}
		DownNode->factor=0;
		if (factor==1) {ModifyNode->rank-=DownNode->rank;DownNode->rank+=BalanceNode->rank;}
		else {DownNode->rank+=ModifyNode->rank;BalanceNode->rank-=DownNode->rank;}
		return DownNode;
	}
	inline TreeNode<T*,D>*& __fastcall _FactorLink(TreeNode<T*,D>* Node, char factor)
		//Private helper method to retrieve child according to factor.
		//Return right child if factor>0 and left child otherwise.
	{
		return factor>0? Node->Right : Node->Left;
	}
	void Check()
	{
		unsigned int k=(unsigned int)head.Right;
		unsigned int t=head.Left->height();
		if (k!=t) __debugbreak();
	}
	void _IncreaseHeight()
	{
		unsigned int k=(unsigned int)head.Right;
		head.Right=(TreeNode<T*,D>*)++k;
	}
	void _DecreaseHeight()
	{
		unsigned int k=(unsigned int)head.Right;
		head.Right=(TreeNode<T*,D>*)--k;
	}
	TreeNode<T*,D> head;
	fComp fCmp;
	fCopy fCpy;
	fLength fLen;
};

class SCMP
{
public:
	__forceinline char operator()(const char* s1,const char* s2)
	{
		int t=_stricmp(s1,s2);
		if (t==0) return 0;		
		return t>0? 1:-1;
	}
};
class SCPY
{
public:
	char* operator()(char* dest, const char* src)
	{
		return strcpy(dest,src);
	}
};
class SLEN
{
public:
	int operator()(const char* str)
	{
		return strlen(str);
	}
};

class WCMP
{
public:
	__forceinline char operator()(const wchar_t* s1,const wchar_t* s2)
	{
		int t=_wcsicmp(s1,s2);
		if (t==0) return 0;
		return t>0? 1:-1;
	}
};
class WCPY
{
public:
	wchar_t* operator()(wchar_t* dest, const wchar_t* src)
	{

		return wcscpy(dest,src);
	}
};
class WLEN
{
public:
	int operator()(const wchar_t* str)
	{
		return wcslen(str);
	}
};