GIMatchTree.cpp 30.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
//===- GIMatchTree.cpp - A decision tree to match GIMatchDag's ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "GIMatchTree.h"

#include "../CodeGenInstruction.h"

#include "llvm/Support/Format.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"

#define DEBUG_TYPE "gimatchtree"

using namespace llvm;

void GIMatchTree::writeDOTGraph(raw_ostream &OS) const {
  OS << "digraph \"matchtree\" {\n";
  writeDOTGraphNode(OS);
  OS << "}\n";
}

void GIMatchTree::writeDOTGraphNode(raw_ostream &OS) const {
  OS << format("  Node%p", this) << " [shape=record,label=\"{";
  if (Partitioner) {
    Partitioner->emitDescription(OS);
    OS << "|" << Partitioner->getNumPartitions() << " partitions|";
  } else
    OS << "No partitioner|";
  bool IsFullyTraversed = true;
  bool IsFullyTested = true;
  StringRef Separator = "";
  for (const auto &Leaf : PossibleLeaves) {
    OS << Separator << Leaf.getName();
    Separator = ",";
    if (!Leaf.isFullyTraversed())
      IsFullyTraversed = false;
    if (!Leaf.isFullyTested())
      IsFullyTested = false;
  }
  if (!Partitioner && !IsFullyTraversed)
    OS << "|Not fully traversed";
  if (!Partitioner && !IsFullyTested) {
    OS << "|Not fully tested";
    if (IsFullyTraversed) {
      for (const GIMatchTreeLeafInfo &Leaf : PossibleLeaves) {
        if (Leaf.isFullyTested())
          continue;
        OS << "\\n" << Leaf.getName() << ": " << &Leaf;
        for (const GIMatchDagPredicate *P : Leaf.untested_predicates())
          OS << *P;
      }
    }
  }
  OS << "}\"";
  if (!Partitioner &&
      (!IsFullyTraversed || !IsFullyTested || PossibleLeaves.size() > 1))
    OS << ",color=red";
  OS << "]\n";
  for (const auto &C : Children)
    C.writeDOTGraphNode(OS);
  writeDOTGraphEdges(OS);
}

void GIMatchTree::writeDOTGraphEdges(raw_ostream &OS) const {
  for (const auto &Child : enumerate(Children)) {
    OS << format("  Node%p", this) << " -> " << format("Node%p", &Child.value())
       << " [label=\"#" << Child.index() << " ";
    Partitioner->emitPartitionName(OS, Child.index());
    OS << "\"]\n";
  }
}

GIMatchTreeBuilderLeafInfo::GIMatchTreeBuilderLeafInfo(
    GIMatchTreeBuilder &Builder, StringRef Name, unsigned RootIdx,
    const GIMatchDag &MatchDag, void *Data)
    : Builder(Builder), Info(Name, RootIdx, Data), MatchDag(MatchDag),
      InstrNodeToInfo(),
      RemainingInstrNodes(BitVector(MatchDag.getNumInstrNodes(), true)),
      RemainingEdges(BitVector(MatchDag.getNumEdges(), true)),
      RemainingPredicates(BitVector(MatchDag.getNumPredicates(), true)),
      TraversableEdges(MatchDag.getNumEdges()),
      TestablePredicates(MatchDag.getNumPredicates()) {
  // Number all the predicates in this DAG
  for (auto &P : enumerate(MatchDag.predicates())) {
    PredicateIDs.insert(std::make_pair(P.value(), P.index()));
  }

  // Number all the predicate dependencies in this DAG and set up a bitvector
  // for each predicate indicating the unsatisfied dependencies.
  for (auto &Dep : enumerate(MatchDag.predicate_edges())) {
    PredicateDepIDs.insert(std::make_pair(Dep.value(), Dep.index()));
  }
  UnsatisfiedPredDepsForPred.resize(MatchDag.getNumPredicates(),
                                    BitVector(PredicateDepIDs.size()));
  for (auto &Dep : enumerate(MatchDag.predicate_edges())) {
    unsigned ID = PredicateIDs.lookup(Dep.value()->getPredicate());
    UnsatisfiedPredDepsForPred[ID].set(Dep.index());
  }
}

void GIMatchTreeBuilderLeafInfo::declareInstr(const GIMatchDagInstr *Instr, unsigned ID) {
  // Record the assignment of this instr to the given ID.
  auto InfoI = InstrNodeToInfo.insert(std::make_pair(
      Instr, GIMatchTreeInstrInfo(ID, Instr)));
  InstrIDToInfo.insert(std::make_pair(ID, &InfoI.first->second));

  if (Instr == nullptr)
    return;

  if (!Instr->getUserAssignedName().empty())
    Info.bindInstrVariable(Instr->getUserAssignedName(), ID);
  for (const auto &VarBinding : Instr->user_assigned_operand_names())
    Info.bindOperandVariable(VarBinding.second, ID, VarBinding.first);

  // Clear the bit indicating we haven't visited this instr.
  const auto &NodeI = std::find(MatchDag.instr_nodes_begin(),
                            MatchDag.instr_nodes_end(), Instr);
  assert(NodeI != MatchDag.instr_nodes_end() && "Instr isn't in this DAG");
  unsigned InstrIdx = MatchDag.getInstrNodeIdx(NodeI);
  RemainingInstrNodes.reset(InstrIdx);

  // When we declare an instruction, we don't expose any traversable edges just
  // yet. A partitioner has to check they exist and are registers before they
  // are traversable.

  // When we declare an instruction, we potentially activate some predicates.
  // Mark the dependencies that are now satisfied as a result of this
  // instruction and mark any predicates whose dependencies are fully
  // satisfied.
  for (auto &Dep : enumerate(MatchDag.predicate_edges())) {
    if (Dep.value()->getRequiredMI() == Instr &&
        Dep.value()->getRequiredMO() == nullptr) {
      for (auto &DepsFor : enumerate(UnsatisfiedPredDepsForPred)) {
        DepsFor.value().reset(Dep.index());
        if (DepsFor.value().none())
          TestablePredicates.set(DepsFor.index());
      }
    }
  }
}

void GIMatchTreeBuilderLeafInfo::declareOperand(unsigned InstrID,
                                                unsigned OpIdx) {
  const GIMatchDagInstr *Instr = InstrIDToInfo.lookup(InstrID)->getInstrNode();

  OperandIDToInfo.insert(std::make_pair(
      std::make_pair(InstrID, OpIdx),
      GIMatchTreeOperandInfo(Instr, OpIdx)));

  // When an operand becomes reachable, we potentially activate some traversals.
  // Record the edges that can now be followed as a result of this
  // instruction.
  for (auto &E : enumerate(MatchDag.edges())) {
    if (E.value()->getFromMI() == Instr &&
        E.value()->getFromMO()->getIdx() == OpIdx) {
      TraversableEdges.set(E.index());
    }
  }

  // When an operand becomes reachable, we potentially activate some predicates.
  // Clear the dependencies that are now satisfied as a result of this
  // operand and activate any predicates whose dependencies are fully
  // satisfied.
  for (auto &Dep : enumerate(MatchDag.predicate_edges())) {
    if (Dep.value()->getRequiredMI() == Instr && Dep.value()->getRequiredMO() &&
        Dep.value()->getRequiredMO()->getIdx() == OpIdx) {
      for (auto &DepsFor : enumerate(UnsatisfiedPredDepsForPred)) {
        DepsFor.value().reset(Dep.index());
        if (DepsFor.value().none())
          TestablePredicates.set(DepsFor.index());
      }
    }
  }
}

void GIMatchTreeBuilder::addPartitionersForInstr(unsigned InstrIdx) {
  // Find the partitioners that can be used now that this node is
  // uncovered. Our choices are:
  // - Test the opcode
  addPartitioner(std::make_unique<GIMatchTreeOpcodePartitioner>(InstrIdx));
}

void GIMatchTreeBuilder::addPartitionersForOperand(unsigned InstrID,
                                                   unsigned OpIdx) {
  LLVM_DEBUG(dbgs() << "Add partitioners for Instrs[" << InstrID
                    << "].getOperand(" << OpIdx << ")\n");
  addPartitioner(
      std::make_unique<GIMatchTreeVRegDefPartitioner>(InstrID, OpIdx));
}

void GIMatchTreeBuilder::filterRedundantPartitioners() {
  // TODO: Filter partitioners for facts that are already known
  // - If we know the opcode, we can elide the num operand check so long as
  //   the instruction has a fixed number of operands.
  // - If we know an exact number of operands then we can elide further number
  //   of operand checks.
  // - If the current min number of operands exceeds the one we want to check
  //   then we can elide it.
}

void GIMatchTreeBuilder::evaluatePartitioners() {
  // Determine the partitioning the partitioner would produce
  for (auto &Partitioner : Partitioners) {
    LLVM_DEBUG(dbgs() << "    Weighing up ";
               Partitioner->emitDescription(dbgs()); dbgs() << "\n");
    Partitioner->repartition(Leaves);
    LLVM_DEBUG(Partitioner->emitPartitionResults(dbgs()));
  }
}

void GIMatchTreeBuilder::runStep() {
  LLVM_DEBUG(dbgs() << "Building match tree node for " << TreeNode << "\n");
  LLVM_DEBUG(dbgs() << "  Rules reachable at this node:\n");
  for (const auto &Leaf : Leaves) {
    LLVM_DEBUG(dbgs() << "    " << Leaf.getName() << " (" << &Leaf.getInfo() << "\n");
    TreeNode->addPossibleLeaf(Leaf.getInfo(), Leaf.isFullyTraversed(),
                              Leaf.isFullyTested());
  }

  LLVM_DEBUG(dbgs() << "  Partitioners available at this node:\n");
#ifndef NDEBUG
  for (const auto &Partitioner : Partitioners)
    LLVM_DEBUG(dbgs() << "    "; Partitioner->emitDescription(dbgs());
               dbgs() << "\n");
#endif // ifndef NDEBUG

  // Check for unreachable rules. Rules are unreachable if they are preceeded by
  // a fully tested rule.
  // Note: This is only true for the current algorithm, if we allow the
  //       algorithm to compare equally valid rules then they will become
  //       reachable.
  {
    auto FullyTestedLeafI = Leaves.end();
    for (auto LeafI = Leaves.begin(), LeafE = Leaves.end();
         LeafI != LeafE; ++LeafI) {
      if (LeafI->isFullyTraversed() && LeafI->isFullyTested())
        FullyTestedLeafI = LeafI;
      else if (FullyTestedLeafI != Leaves.end()) {
        PrintError("Leaf " + LeafI->getName() + " is unreachable");
        PrintNote("Leaf " + FullyTestedLeafI->getName() +
                  " will have already matched");
      }
    }
  }

  LLVM_DEBUG(dbgs() << "  Eliminating redundant partitioners:\n");
  filterRedundantPartitioners();
  LLVM_DEBUG(dbgs() << "  Partitioners remaining:\n");
#ifndef NDEBUG
  for (const auto &Partitioner : Partitioners)
    LLVM_DEBUG(dbgs() << "    "; Partitioner->emitDescription(dbgs());
               dbgs() << "\n");
#endif // ifndef NDEBUG

  if (Partitioners.empty()) {
    // Nothing left to do but check we really did identify a single rule.
    if (Leaves.size() > 1) {
      LLVM_DEBUG(dbgs() << "Leaf contains multiple rules, drop after the first "
                           "fully tested rule\n");
      auto FirstFullyTested =
          std::find_if(Leaves.begin(), Leaves.end(),
                       [](const GIMatchTreeBuilderLeafInfo &X) {
                         return X.isFullyTraversed() && X.isFullyTested() &&
                                !X.getMatchDag().hasPostMatchPredicate();
                       });
      if (FirstFullyTested != Leaves.end())
        FirstFullyTested++;

#ifndef NDEBUG
      for (auto &Leaf : make_range(Leaves.begin(), FirstFullyTested))
        LLVM_DEBUG(dbgs() << "  Kept " << Leaf.getName() << "\n");
      for (const auto &Leaf : make_range(FirstFullyTested, Leaves.end()))
        LLVM_DEBUG(dbgs() << "  Dropped " << Leaf.getName() << "\n");
#endif // ifndef NDEBUG
      TreeNode->dropLeavesAfter(
          std::distance(Leaves.begin(), FirstFullyTested));
    }
    for (const auto &Leaf : Leaves) {
      if (!Leaf.isFullyTraversed()) {
        PrintError("Leaf " + Leaf.getName() + " is not fully traversed");
        PrintNote("This indicates a missing partitioner within tblgen");
        Leaf.dump(errs());
        for (unsigned InstrIdx : Leaf.untested_instrs())
          PrintNote("Instr " + llvm::to_string(*Leaf.getInstr(InstrIdx)));
        for (unsigned EdgeIdx : Leaf.untested_edges())
          PrintNote("Edge " + llvm::to_string(*Leaf.getEdge(EdgeIdx)));
      }
    }

    // Copy out information about untested predicates so the user of the tree
    // can deal with them.
    for (auto LeafPair : zip(Leaves, TreeNode->possible_leaves())) {
      const GIMatchTreeBuilderLeafInfo &BuilderLeaf = std::get<0>(LeafPair);
      GIMatchTreeLeafInfo &TreeLeaf = std::get<1>(LeafPair);
      if (!BuilderLeaf.isFullyTested())
        for (unsigned PredicateIdx : BuilderLeaf.untested_predicates())
          TreeLeaf.addUntestedPredicate(BuilderLeaf.getPredicate(PredicateIdx));
    }
    return;
  }

  LLVM_DEBUG(dbgs() << "  Weighing up partitioners:\n");
  evaluatePartitioners();

  // Select the best partitioner by its ability to partition
  // - Prefer partitioners that don't distinguish between partitions. This
  //   is to fail early on decisions that must go a single way.
  auto PartitionerI = std::max_element(
      Partitioners.begin(), Partitioners.end(),
      [](const std::unique_ptr<GIMatchTreePartitioner> &A,
         const std::unique_ptr<GIMatchTreePartitioner> &B) {
        // We generally want partitioners that subdivide the
        // ruleset as much as possible since these take fewer
        // checks to converge on a particular rule. However,
        // it's important to note that one leaf can end up in
        // multiple partitions if the check isn't mutually
        // exclusive (e.g. getVRegDef() vs isReg()).
        // We therefore minimize average leaves per partition.
        return (double)A->getNumLeavesWithDupes() / A->getNumPartitions() >
               (double)B->getNumLeavesWithDupes() / B->getNumPartitions();
      });

  // Select a partitioner and partition the ruleset
  // Note that it's possible for a single rule to end up in multiple
  // partitions. For example, an opcode test on a rule without an opcode
  // predicate will result in it being passed to all partitions.
  std::unique_ptr<GIMatchTreePartitioner> Partitioner = std::move(*PartitionerI);
  Partitioners.erase(PartitionerI);
  LLVM_DEBUG(dbgs() << "  Selected partitioner: ";
             Partitioner->emitDescription(dbgs()); dbgs() << "\n");

  assert(Partitioner->getNumPartitions() > 0 &&
         "Must always partition into at least one partition");

  TreeNode->setNumChildren(Partitioner->getNumPartitions());
  for (auto &C : enumerate(TreeNode->children())) {
    SubtreeBuilders.emplace_back(&C.value(), NextInstrID);
    Partitioner->applyForPartition(C.index(), *this, SubtreeBuilders.back());
  }

  TreeNode->setPartitioner(std::move(Partitioner));

  // Recurse into the subtree builders. Each one must get a copy of the
  // remaining partitioners as each path has to check everything.
  for (auto &SubtreeBuilder : SubtreeBuilders) {
    for (const auto &Partitioner : Partitioners)
      SubtreeBuilder.addPartitioner(Partitioner->clone());
    SubtreeBuilder.runStep();
  }
}

std::unique_ptr<GIMatchTree> GIMatchTreeBuilder::run() {
  unsigned NewInstrID = allocInstrID();
  // Start by recording the root instruction as instr #0 and set up the initial
  // partitioners.
  for (auto &Leaf : Leaves) {
    LLVM_DEBUG(Leaf.getMatchDag().writeDOTGraph(dbgs(), Leaf.getName()));
    GIMatchDagInstr *Root =
        *(Leaf.getMatchDag().roots().begin() + Leaf.getRootIdx());
    Leaf.declareInstr(Root, NewInstrID);
  }

  addPartitionersForInstr(NewInstrID);

  std::unique_ptr<GIMatchTree> TreeRoot = std::make_unique<GIMatchTree>();
  TreeNode = TreeRoot.get();
  runStep();

  return TreeRoot;
}

void GIMatchTreeOpcodePartitioner::emitPartitionName(raw_ostream &OS, unsigned Idx) const {
  if (PartitionToInstr[Idx] == nullptr) {
    OS << "* or nullptr";
    return;
  }
  OS << PartitionToInstr[Idx]->Namespace
     << "::" << PartitionToInstr[Idx]->TheDef->getName();
}

void GIMatchTreeOpcodePartitioner::repartition(
    GIMatchTreeBuilder::LeafVec &Leaves) {
  Partitions.clear();
  InstrToPartition.clear();
  PartitionToInstr.clear();
  TestedPredicates.clear();

  for (const auto &Leaf : enumerate(Leaves)) {
    bool AllOpcodes = true;
    GIMatchTreeInstrInfo *InstrInfo = Leaf.value().getInstrInfo(InstrID);
    BitVector TestedPredicatesForLeaf(
        Leaf.value().getMatchDag().getNumPredicates());

    // If the instruction isn't declared then we don't care about it. Ignore
    // it for now and add it to all partitions later once we know what
    // partitions we have.
    if (!InstrInfo) {
      LLVM_DEBUG(dbgs() << "      " << Leaf.value().getName()
                        << " doesn't care about Instr[" << InstrID << "]\n");
      assert(TestedPredicatesForLeaf.size() == Leaf.value().getMatchDag().getNumPredicates());
      TestedPredicates.push_back(TestedPredicatesForLeaf);
      continue;
    }

    // If the opcode is available to test then any opcode predicates will have
    // been enabled too.
    for (unsigned PIdx : Leaf.value().TestablePredicates.set_bits()) {
      const auto &P = Leaf.value().getPredicate(PIdx);
      SmallVector<const CodeGenInstruction *, 1> OpcodesForThisPredicate;
      if (const auto *OpcodeP = dyn_cast<const GIMatchDagOpcodePredicate>(P)) {
        // We've found _an_ opcode predicate, but we don't know if it's
        // checking this instruction yet.
        bool IsThisPredicate = false;
        for (const auto &PDep : Leaf.value().getMatchDag().predicate_edges()) {
          if (PDep->getRequiredMI() == InstrInfo->getInstrNode() &&
              PDep->getRequiredMO() == nullptr && PDep->getPredicate() == P) {
            IsThisPredicate = true;
            break;
          }
        }
        if (!IsThisPredicate)
          continue;

        // If we get here twice then we've somehow ended up with two opcode
        // predicates for one instruction in the same DAG. That should be
        // impossible.
        assert(AllOpcodes && "Conflicting opcode predicates");
        const CodeGenInstruction *Expected = OpcodeP->getInstr();
        OpcodesForThisPredicate.push_back(Expected);
      }

      if (const auto *OpcodeP =
              dyn_cast<const GIMatchDagOneOfOpcodesPredicate>(P)) {
        // We've found _an_ oneof(opcodes) predicate, but we don't know if it's
        // checking this instruction yet.
        bool IsThisPredicate = false;
        for (const auto &PDep : Leaf.value().getMatchDag().predicate_edges()) {
          if (PDep->getRequiredMI() == InstrInfo->getInstrNode() &&
              PDep->getRequiredMO() == nullptr && PDep->getPredicate() == P) {
            IsThisPredicate = true;
            break;
          }
        }
        if (!IsThisPredicate)
          continue;

        // If we get here twice then we've somehow ended up with two opcode
        // predicates for one instruction in the same DAG. That should be
        // impossible.
        assert(AllOpcodes && "Conflicting opcode predicates");
        for (const CodeGenInstruction *Expected : OpcodeP->getInstrs())
          OpcodesForThisPredicate.push_back(Expected);
      }

      for (const CodeGenInstruction *Expected : OpcodesForThisPredicate) {
        // Mark this predicate as one we're testing.
        TestedPredicatesForLeaf.set(PIdx);

        // Partitions must be numbered 0, 1, .., N but instructions don't meet
        // that requirement. Assign a partition number to each opcode if we
        // lack one ...
        auto Partition = InstrToPartition.find(Expected);
        if (Partition == InstrToPartition.end()) {
          BitVector Contents(Leaves.size());
          Partition = InstrToPartition
                          .insert(std::make_pair(Expected, Partitions.size()))
                          .first;
          PartitionToInstr.push_back(Expected);
          Partitions.insert(std::make_pair(Partitions.size(), Contents));
        }
        // ... and mark this leaf as being in that partition.
        Partitions.find(Partition->second)->second.set(Leaf.index());
        AllOpcodes = false;
        LLVM_DEBUG(dbgs() << "      " << Leaf.value().getName()
                          << " is in partition " << Partition->second << "\n");
      }

      // TODO: This is where we would handle multiple choices of opcode
      //       the end result will be that this leaf ends up in multiple
      //       partitions similarly to AllOpcodes.
    }

    // If we never check the opcode, add it to every partition.
    if (AllOpcodes) {
      // Add a partition for the default case if we don't already have one.
      if (InstrToPartition.insert(std::make_pair(nullptr, 0)).second) {
        PartitionToInstr.push_back(nullptr);
        BitVector Contents(Leaves.size());
        Partitions.insert(std::make_pair(Partitions.size(), Contents));
      }
      LLVM_DEBUG(dbgs() << "      " << Leaf.value().getName()
                        << " is in all partitions (opcode not checked)\n");
      for (auto &Partition : Partitions)
        Partition.second.set(Leaf.index());
    }

    assert(TestedPredicatesForLeaf.size() == Leaf.value().getMatchDag().getNumPredicates());
    TestedPredicates.push_back(TestedPredicatesForLeaf);
  }

  if (Partitions.size() == 0) {
    // Add a partition for the default case if we don't already have one.
    if (InstrToPartition.insert(std::make_pair(nullptr, 0)).second) {
      PartitionToInstr.push_back(nullptr);
      BitVector Contents(Leaves.size());
      Partitions.insert(std::make_pair(Partitions.size(), Contents));
    }
  }

  // Add any leaves that don't care about this instruction to all partitions.
  for (const auto &Leaf : enumerate(Leaves)) {
    GIMatchTreeInstrInfo *InstrInfo = Leaf.value().getInstrInfo(InstrID);
    if (!InstrInfo) {
      // Add a partition for the default case if we don't already have one.
      if (InstrToPartition.insert(std::make_pair(nullptr, 0)).second) {
        PartitionToInstr.push_back(nullptr);
        BitVector Contents(Leaves.size());
        Partitions.insert(std::make_pair(Partitions.size(), Contents));
      }
      for (auto &Partition : Partitions)
        Partition.second.set(Leaf.index());
    }
  }

}

void GIMatchTreeOpcodePartitioner::applyForPartition(
    unsigned PartitionIdx, GIMatchTreeBuilder &Builder, GIMatchTreeBuilder &SubBuilder) {
  LLVM_DEBUG(dbgs() << "  Making partition " << PartitionIdx << "\n");
  const CodeGenInstruction *CGI = PartitionToInstr[PartitionIdx];

  BitVector PossibleLeaves = getPossibleLeavesForPartition(PartitionIdx);
  // Consume any predicates we handled.
  for (auto &EnumeratedLeaf : enumerate(Builder.getPossibleLeaves())) {
    if (!PossibleLeaves[EnumeratedLeaf.index()])
      continue;

    auto &Leaf = EnumeratedLeaf.value();
    const auto &TestedPredicatesForLeaf =
        TestedPredicates[EnumeratedLeaf.index()];

    for (unsigned PredIdx : TestedPredicatesForLeaf.set_bits()) {
      LLVM_DEBUG(dbgs() << "    " << Leaf.getName() << " tested predicate #"
                        << PredIdx << " of " << TestedPredicatesForLeaf.size()
                        << " " << *Leaf.getPredicate(PredIdx) << "\n");
      Leaf.RemainingPredicates.reset(PredIdx);
      Leaf.TestablePredicates.reset(PredIdx);
    }
    SubBuilder.addLeaf(Leaf);
  }

  // Nothing to do, we don't know anything about this instruction as a result
  // of this partitioner.
  if (CGI == nullptr)
    return;

  GIMatchTreeBuilder::LeafVec &NewLeaves = SubBuilder.getPossibleLeaves();
  // Find all the operands we know to exist and are referenced. This will
  // usually be all the referenced operands but there are some cases where
  // instructions are variadic. Such operands must be handled by partitioners
  // that check the number of operands.
  BitVector ReferencedOperands(1);
  for (auto &Leaf : NewLeaves) {
    GIMatchTreeInstrInfo *InstrInfo = Leaf.getInstrInfo(InstrID);
    // Skip any leaves that don't care about this instruction.
    if (!InstrInfo)
      continue;
    const GIMatchDagInstr *Instr = InstrInfo->getInstrNode();
    for (auto &E : enumerate(Leaf.getMatchDag().edges())) {
      if (E.value()->getFromMI() == Instr &&
          E.value()->getFromMO()->getIdx() < CGI->Operands.size()) {
        ReferencedOperands.resize(E.value()->getFromMO()->getIdx() + 1);
        ReferencedOperands.set(E.value()->getFromMO()->getIdx());
      }
    }
  }
  for (auto &Leaf : NewLeaves) {
    for (unsigned OpIdx : ReferencedOperands.set_bits()) {
      Leaf.declareOperand(InstrID, OpIdx);
    }
  }
  for (unsigned OpIdx : ReferencedOperands.set_bits()) {
    SubBuilder.addPartitionersForOperand(InstrID, OpIdx);
  }
}

void GIMatchTreeOpcodePartitioner::emitPartitionResults(
    raw_ostream &OS) const {
  OS << "Partitioning by opcode would produce " << Partitions.size()
     << " partitions\n";
  for (const auto &Partition : InstrToPartition) {
    if (Partition.first == nullptr)
      OS << "Default: ";
    else
      OS << Partition.first->TheDef->getName() << ": ";
    StringRef Separator = "";
    for (unsigned I : Partitions.find(Partition.second)->second.set_bits()) {
      OS << Separator << I;
      Separator = ", ";
    }
    OS << "\n";
  }
}

void GIMatchTreeOpcodePartitioner::generatePartitionSelectorCode(
    raw_ostream &OS, StringRef Indent) const {
  OS << Indent << "Partition = -1;\n"
     << Indent << "switch (MIs[" << InstrID << "]->getOpcode()) {\n";
  for (const auto &EnumInstr : enumerate(PartitionToInstr)) {
    if (EnumInstr.value() == nullptr)
      OS << Indent << "default:";
    else
      OS << Indent << "case " << EnumInstr.value()->Namespace
         << "::" << EnumInstr.value()->TheDef->getName() << ":";
    OS << " Partition = " << EnumInstr.index() << "; break;\n";
  }
  OS << Indent << "}\n"
     << Indent
     << "// Default case but without conflicting with potential default case "
        "in selection.\n"
     << Indent << "if (Partition == -1) return false;\n";
}

void GIMatchTreeVRegDefPartitioner::addToPartition(bool Result,
                                                   unsigned LeafIdx) {
  auto I = ResultToPartition.find(Result);
  if (I == ResultToPartition.end()) {
    ResultToPartition.insert(std::make_pair(Result, PartitionToResult.size()));
    PartitionToResult.push_back(Result);
  }
  I = ResultToPartition.find(Result);
  auto P = Partitions.find(I->second);
  if (P == Partitions.end())
    P = Partitions.insert(std::make_pair(I->second, BitVector())).first;
  P->second.resize(LeafIdx + 1);
  P->second.set(LeafIdx);
}

void GIMatchTreeVRegDefPartitioner::repartition(
    GIMatchTreeBuilder::LeafVec &Leaves) {
  Partitions.clear();

  for (const auto &Leaf : enumerate(Leaves)) {
    GIMatchTreeInstrInfo *InstrInfo = Leaf.value().getInstrInfo(InstrID);
    BitVector TraversedEdgesForLeaf(Leaf.value().getMatchDag().getNumEdges());

    // If the instruction isn't declared then we don't care about it. Ignore
    // it for now and add it to all partitions later once we know what
    // partitions we have.
    if (!InstrInfo) {
      TraversedEdges.push_back(TraversedEdgesForLeaf);
      continue;
    }

    // If this node has an use -> def edge from this operand then this
    // instruction must be in partition 1 (isVRegDef()).
    bool WantsEdge = false;
    for (unsigned EIdx : Leaf.value().TraversableEdges.set_bits()) {
      const auto &E = Leaf.value().getEdge(EIdx);
      if (E->getFromMI() != InstrInfo->getInstrNode() ||
          E->getFromMO()->getIdx() != OpIdx || E->isDefToUse())
        continue;

      // We're looking at the right edge. This leaf wants a vreg def so we'll
      // put it in partition 1.
      addToPartition(true, Leaf.index());
      TraversedEdgesForLeaf.set(EIdx);
      WantsEdge = true;
    }

    bool isNotReg = false;
    if (!WantsEdge && isNotReg) {
      // If this leaf doesn't have an edge and we _don't_ want a register,
      // then add it to partition 0.
      addToPartition(false, Leaf.index());
    } else if (!WantsEdge) {
      // If this leaf doesn't have an edge and we don't know what we want,
      // then add it to partition 0 and 1.
      addToPartition(false, Leaf.index());
      addToPartition(true, Leaf.index());
    }

    TraversedEdges.push_back(TraversedEdgesForLeaf);
  }

  // Add any leaves that don't care about this instruction to all partitions.
  for (const auto &Leaf : enumerate(Leaves)) {
    GIMatchTreeInstrInfo *InstrInfo = Leaf.value().getInstrInfo(InstrID);
    if (!InstrInfo)
      for (auto &Partition : Partitions)
        Partition.second.set(Leaf.index());
  }
}

void GIMatchTreeVRegDefPartitioner::applyForPartition(
    unsigned PartitionIdx, GIMatchTreeBuilder &Builder,
    GIMatchTreeBuilder &SubBuilder) {
  BitVector PossibleLeaves = getPossibleLeavesForPartition(PartitionIdx);

  std::vector<BitVector> TraversedEdgesByNewLeaves;
  // Consume any edges we handled.
  for (auto &EnumeratedLeaf : enumerate(Builder.getPossibleLeaves())) {
    if (!PossibleLeaves[EnumeratedLeaf.index()])
      continue;

    auto &Leaf = EnumeratedLeaf.value();
    const auto &TraversedEdgesForLeaf = TraversedEdges[EnumeratedLeaf.index()];
    TraversedEdgesByNewLeaves.push_back(TraversedEdgesForLeaf);
    Leaf.RemainingEdges.reset(TraversedEdgesForLeaf);
    Leaf.TraversableEdges.reset(TraversedEdgesForLeaf);
    SubBuilder.addLeaf(Leaf);
  }

  // Nothing to do. The only thing we know is that it isn't a vreg-def.
  if (PartitionToResult[PartitionIdx] == false)
    return;

  NewInstrID = SubBuilder.allocInstrID();

  GIMatchTreeBuilder::LeafVec &NewLeaves = SubBuilder.getPossibleLeaves();
  for (const auto I : zip(NewLeaves, TraversedEdgesByNewLeaves)) {
    auto &Leaf = std::get<0>(I);
    auto &TraversedEdgesForLeaf = std::get<1>(I);
    GIMatchTreeInstrInfo *InstrInfo = Leaf.getInstrInfo(InstrID);
    // Skip any leaves that don't care about this instruction.
    if (!InstrInfo)
      continue;
    for (unsigned EIdx : TraversedEdgesForLeaf.set_bits()) {
      const GIMatchDagEdge *E = Leaf.getEdge(EIdx);
      Leaf.declareInstr(E->getToMI(), NewInstrID);
    }
  }
  SubBuilder.addPartitionersForInstr(NewInstrID);
}

void GIMatchTreeVRegDefPartitioner::emitPartitionResults(
    raw_ostream &OS) const {
  OS << "Partitioning by vreg-def would produce " << Partitions.size()
     << " partitions\n";
  for (const auto &Partition : Partitions) {
    OS << Partition.first << " (";
    emitPartitionName(OS, Partition.first);
    OS << "): ";
    StringRef Separator = "";
    for (unsigned I : Partition.second.set_bits()) {
      OS << Separator << I;
      Separator = ", ";
    }
    OS << "\n";
  }
}

void GIMatchTreeVRegDefPartitioner::generatePartitionSelectorCode(
    raw_ostream &OS, StringRef Indent) const {
  OS << Indent << "Partition = -1\n"
     << Indent << "if (MIs.size() <= NewInstrID) MIs.resize(NewInstrID + 1);\n"
     << Indent << "MIs[" << NewInstrID << "] = nullptr;\n"
     << Indent << "if (MIs[" << InstrID << "].getOperand(" << OpIdx
     << ").isReg()))\n"
     << Indent << "  MIs[" << NewInstrID << "] = MRI.getVRegDef(MIs[" << InstrID
     << "].getOperand(" << OpIdx << ").getReg()));\n";

  for (const auto &Pair : ResultToPartition)
    OS << Indent << "if (MIs[" << NewInstrID << "] "
       << (Pair.first ? "==" : "!=")
       << " nullptr) Partition = " << Pair.second << ";\n";

  OS << Indent << "if (Partition == -1) return false;\n";
}