STLExtrasTest.cpp 13.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
//===- STLExtrasTest.cpp - Unit tests for STL extras ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/STLExtras.h"
#include "gtest/gtest.h"

#include <list>
#include <vector>

using namespace llvm;

namespace {

int f(rank<0>) { return 0; }
int f(rank<1>) { return 1; }
int f(rank<2>) { return 2; }
int f(rank<4>) { return 4; }

TEST(STLExtrasTest, Rank) {
  // We shouldn't get ambiguities and should select the overload of the same
  // rank as the argument.
  EXPECT_EQ(0, f(rank<0>()));
  EXPECT_EQ(1, f(rank<1>()));
  EXPECT_EQ(2, f(rank<2>()));

  // This overload is missing so we end up back at 2.
  EXPECT_EQ(2, f(rank<3>()));

  // But going past 3 should work fine.
  EXPECT_EQ(4, f(rank<4>()));

  // And we can even go higher and just fall back to the last overload.
  EXPECT_EQ(4, f(rank<5>()));
  EXPECT_EQ(4, f(rank<6>()));
}

TEST(STLExtrasTest, EnumerateLValue) {
  // Test that a simple LValue can be enumerated and gives correct results with
  // multiple types, including the empty container.
  std::vector<char> foo = {'a', 'b', 'c'};
  typedef std::pair<std::size_t, char> CharPairType;
  std::vector<CharPairType> CharResults;

  for (auto X : llvm::enumerate(foo)) {
    CharResults.emplace_back(X.index(), X.value());
  }
  ASSERT_EQ(3u, CharResults.size());
  EXPECT_EQ(CharPairType(0u, 'a'), CharResults[0]);
  EXPECT_EQ(CharPairType(1u, 'b'), CharResults[1]);
  EXPECT_EQ(CharPairType(2u, 'c'), CharResults[2]);

  // Test a const range of a different type.
  typedef std::pair<std::size_t, int> IntPairType;
  std::vector<IntPairType> IntResults;
  const std::vector<int> bar = {1, 2, 3};
  for (auto X : llvm::enumerate(bar)) {
    IntResults.emplace_back(X.index(), X.value());
  }
  ASSERT_EQ(3u, IntResults.size());
  EXPECT_EQ(IntPairType(0u, 1), IntResults[0]);
  EXPECT_EQ(IntPairType(1u, 2), IntResults[1]);
  EXPECT_EQ(IntPairType(2u, 3), IntResults[2]);

  // Test an empty range.
  IntResults.clear();
  const std::vector<int> baz{};
  for (auto X : llvm::enumerate(baz)) {
    IntResults.emplace_back(X.index(), X.value());
  }
  EXPECT_TRUE(IntResults.empty());
}

TEST(STLExtrasTest, EnumerateModifyLValue) {
  // Test that you can modify the underlying entries of an lvalue range through
  // the enumeration iterator.
  std::vector<char> foo = {'a', 'b', 'c'};

  for (auto X : llvm::enumerate(foo)) {
    ++X.value();
  }
  EXPECT_EQ('b', foo[0]);
  EXPECT_EQ('c', foo[1]);
  EXPECT_EQ('d', foo[2]);
}

TEST(STLExtrasTest, EnumerateRValueRef) {
  // Test that an rvalue can be enumerated.
  typedef std::pair<std::size_t, int> PairType;
  std::vector<PairType> Results;

  auto Enumerator = llvm::enumerate(std::vector<int>{1, 2, 3});

  for (auto X : llvm::enumerate(std::vector<int>{1, 2, 3})) {
    Results.emplace_back(X.index(), X.value());
  }

  ASSERT_EQ(3u, Results.size());
  EXPECT_EQ(PairType(0u, 1), Results[0]);
  EXPECT_EQ(PairType(1u, 2), Results[1]);
  EXPECT_EQ(PairType(2u, 3), Results[2]);
}

TEST(STLExtrasTest, EnumerateModifyRValue) {
  // Test that when enumerating an rvalue, modification still works (even if
  // this isn't terribly useful, it at least shows that we haven't snuck an
  // extra const in there somewhere.
  typedef std::pair<std::size_t, char> PairType;
  std::vector<PairType> Results;

  for (auto X : llvm::enumerate(std::vector<char>{'1', '2', '3'})) {
    ++X.value();
    Results.emplace_back(X.index(), X.value());
  }

  ASSERT_EQ(3u, Results.size());
  EXPECT_EQ(PairType(0u, '2'), Results[0]);
  EXPECT_EQ(PairType(1u, '3'), Results[1]);
  EXPECT_EQ(PairType(2u, '4'), Results[2]);
}

template <bool B> struct CanMove {};
template <> struct CanMove<false> {
  CanMove(CanMove &&) = delete;

  CanMove() = default;
  CanMove(const CanMove &) = default;
};

template <bool B> struct CanCopy {};
template <> struct CanCopy<false> {
  CanCopy(const CanCopy &) = delete;

  CanCopy() = default;
  CanCopy(CanCopy &&) = default;
};

template <bool Moveable, bool Copyable>
struct Range : CanMove<Moveable>, CanCopy<Copyable> {
  explicit Range(int &C, int &M, int &D) : C(C), M(M), D(D) {}
  Range(const Range &R) : CanCopy<Copyable>(R), C(R.C), M(R.M), D(R.D) { ++C; }
  Range(Range &&R) : CanMove<Moveable>(std::move(R)), C(R.C), M(R.M), D(R.D) {
    ++M;
  }
  ~Range() { ++D; }

  int &C;
  int &M;
  int &D;

  int *begin() { return nullptr; }
  int *end() { return nullptr; }
};

TEST(STLExtrasTest, EnumerateLifetimeSemantics) {
  // Test that when enumerating lvalues and rvalues, there are no surprise
  // copies or moves.

  // With an rvalue, it should not be destroyed until the end of the scope.
  int Copies = 0;
  int Moves = 0;
  int Destructors = 0;
  {
    auto E1 = enumerate(Range<true, false>(Copies, Moves, Destructors));
    // Doesn't compile.  rvalue ranges must be moveable.
    // auto E2 = enumerate(Range<false, true>(Copies, Moves, Destructors));
    EXPECT_EQ(0, Copies);
    EXPECT_EQ(1, Moves);
    EXPECT_EQ(1, Destructors);
  }
  EXPECT_EQ(0, Copies);
  EXPECT_EQ(1, Moves);
  EXPECT_EQ(2, Destructors);

  Copies = Moves = Destructors = 0;
  // With an lvalue, it should not be destroyed even after the end of the scope.
  // lvalue ranges need be neither copyable nor moveable.
  Range<false, false> R(Copies, Moves, Destructors);
  {
    auto Enumerator = enumerate(R);
    (void)Enumerator;
    EXPECT_EQ(0, Copies);
    EXPECT_EQ(0, Moves);
    EXPECT_EQ(0, Destructors);
  }
  EXPECT_EQ(0, Copies);
  EXPECT_EQ(0, Moves);
  EXPECT_EQ(0, Destructors);
}

TEST(STLExtrasTest, ApplyTuple) {
  auto T = std::make_tuple(1, 3, 7);
  auto U = llvm::apply_tuple(
      [](int A, int B, int C) { return std::make_tuple(A - B, B - C, C - A); },
      T);

  EXPECT_EQ(-2, std::get<0>(U));
  EXPECT_EQ(-4, std::get<1>(U));
  EXPECT_EQ(6, std::get<2>(U));

  auto V = llvm::apply_tuple(
      [](int A, int B, int C) {
        return std::make_tuple(std::make_pair(A, char('A' + A)),
                               std::make_pair(B, char('A' + B)),
                               std::make_pair(C, char('A' + C)));
      },
      T);

  EXPECT_EQ(std::make_pair(1, 'B'), std::get<0>(V));
  EXPECT_EQ(std::make_pair(3, 'D'), std::get<1>(V));
  EXPECT_EQ(std::make_pair(7, 'H'), std::get<2>(V));
}

class apply_variadic {
  static int apply_one(int X) { return X + 1; }
  static char apply_one(char C) { return C + 1; }
  static StringRef apply_one(StringRef S) { return S.drop_back(); }

public:
  template <typename... Ts>
  auto operator()(Ts &&... Items)
      -> decltype(std::make_tuple(apply_one(Items)...)) {
    return std::make_tuple(apply_one(Items)...);
  }
};

TEST(STLExtrasTest, ApplyTupleVariadic) {
  auto Items = std::make_tuple(1, llvm::StringRef("Test"), 'X');
  auto Values = apply_tuple(apply_variadic(), Items);

  EXPECT_EQ(2, std::get<0>(Values));
  EXPECT_EQ("Tes", std::get<1>(Values));
  EXPECT_EQ('Y', std::get<2>(Values));
}

TEST(STLExtrasTest, CountAdaptor) {
  std::vector<int> v;

  v.push_back(1);
  v.push_back(2);
  v.push_back(1);
  v.push_back(4);
  v.push_back(3);
  v.push_back(2);
  v.push_back(1);

  EXPECT_EQ(3, count(v, 1));
  EXPECT_EQ(2, count(v, 2));
  EXPECT_EQ(1, count(v, 3));
  EXPECT_EQ(1, count(v, 4));
}

TEST(STLExtrasTest, for_each) {
  std::vector<int> v{0, 1, 2, 3, 4};
  int count = 0;

  llvm::for_each(v, [&count](int) { ++count; });
  EXPECT_EQ(5, count);
}

TEST(STLExtrasTest, ToVector) {
  std::vector<char> v = {'a', 'b', 'c'};
  auto Enumerated = to_vector<4>(enumerate(v));
  ASSERT_EQ(3u, Enumerated.size());
  for (size_t I = 0; I < v.size(); ++I) {
    EXPECT_EQ(I, Enumerated[I].index());
    EXPECT_EQ(v[I], Enumerated[I].value());
  }
}

TEST(STLExtrasTest, ConcatRange) {
  std::vector<int> Expected = {1, 2, 3, 4, 5, 6, 7, 8};
  std::vector<int> Test;

  std::vector<int> V1234 = {1, 2, 3, 4};
  std::list<int> L56 = {5, 6};
  SmallVector<int, 2> SV78 = {7, 8};

  // Use concat across different sized ranges of different types with different
  // iterators.
  for (int &i : concat<int>(V1234, L56, SV78))
    Test.push_back(i);
  EXPECT_EQ(Expected, Test);

  // Use concat between a temporary, an L-value, and an R-value to make sure
  // complex lifetimes work well.
  Test.clear();
  for (int &i : concat<int>(std::vector<int>(V1234), L56, std::move(SV78)))
    Test.push_back(i);
  EXPECT_EQ(Expected, Test);
}

TEST(STLExtrasTest, PartitionAdaptor) {
  std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};

  auto I = partition(V, [](int i) { return i % 2 == 0; });
  ASSERT_EQ(V.begin() + 4, I);

  // Sort the two halves as partition may have messed with the order.
  llvm::sort(V.begin(), I);
  llvm::sort(I, V.end());

  EXPECT_EQ(2, V[0]);
  EXPECT_EQ(4, V[1]);
  EXPECT_EQ(6, V[2]);
  EXPECT_EQ(8, V[3]);
  EXPECT_EQ(1, V[4]);
  EXPECT_EQ(3, V[5]);
  EXPECT_EQ(5, V[6]);
  EXPECT_EQ(7, V[7]);
}

TEST(STLExtrasTest, EraseIf) {
  std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};

  erase_if(V, [](int i) { return i % 2 == 0; });
  EXPECT_EQ(4u, V.size());
  EXPECT_EQ(1, V[0]);
  EXPECT_EQ(3, V[1]);
  EXPECT_EQ(5, V[2]);
  EXPECT_EQ(7, V[3]);
}

namespace some_namespace {
struct some_struct {
  std::vector<int> data;
  std::string swap_val;
};

std::vector<int>::const_iterator begin(const some_struct &s) {
  return s.data.begin();
}

std::vector<int>::const_iterator end(const some_struct &s) {
  return s.data.end();
}

void swap(some_struct &lhs, some_struct &rhs) {
  // make swap visible as non-adl swap would even seem to
  // work with std::swap which defaults to moving
  lhs.swap_val = "lhs";
  rhs.swap_val = "rhs";
}
} // namespace some_namespace

TEST(STLExtrasTest, ADLTest) {
  some_namespace::some_struct s{{1, 2, 3, 4, 5}, ""};
  some_namespace::some_struct s2{{2, 4, 6, 8, 10}, ""};

  EXPECT_EQ(*adl_begin(s), 1);
  EXPECT_EQ(*(adl_end(s) - 1), 5);

  adl_swap(s, s2);
  EXPECT_EQ(s.swap_val, "lhs");
  EXPECT_EQ(s2.swap_val, "rhs");

  int count = 0;
  llvm::for_each(s, [&count](int) { ++count; });
  EXPECT_EQ(5, count);
}

TEST(STLExtrasTest, EmptyTest) {
  std::vector<void*> V;
  EXPECT_TRUE(llvm::empty(V));
  V.push_back(nullptr);
  EXPECT_FALSE(llvm::empty(V));

  std::initializer_list<int> E = {};
  std::initializer_list<int> NotE = {7, 13, 42};
  EXPECT_TRUE(llvm::empty(E));
  EXPECT_FALSE(llvm::empty(NotE));

  auto R0 = make_range(V.begin(), V.begin());
  EXPECT_TRUE(llvm::empty(R0));
  auto R1 = make_range(V.begin(), V.end());
  EXPECT_FALSE(llvm::empty(R1));
}

TEST(STLExtrasTest, DropBeginTest) {
  SmallVector<int, 5> vec{0, 1, 2, 3, 4};

  for (int n = 0; n < 5; ++n) {
    int i = n;
    for (auto &v : drop_begin(vec, n)) {
      EXPECT_EQ(v, i);
      i += 1;
    }
    EXPECT_EQ(i, 5);
  }
}

TEST(STLExtrasTest, EarlyIncrementTest) {
  std::list<int> L = {1, 2, 3, 4};

  auto EIR = make_early_inc_range(L);

  auto I = EIR.begin();
  auto EI = EIR.end();
  EXPECT_NE(I, EI);

  EXPECT_EQ(1, *I);
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
#ifndef NDEBUG
  // Repeated dereferences are not allowed.
  EXPECT_DEATH(*I, "Cannot dereference");
  // Comparison after dereference is not allowed.
  EXPECT_DEATH((void)(I == EI), "Cannot compare");
  EXPECT_DEATH((void)(I != EI), "Cannot compare");
#endif
#endif

  ++I;
  EXPECT_NE(I, EI);
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
#ifndef NDEBUG
  // You cannot increment prior to dereference.
  EXPECT_DEATH(++I, "Cannot increment");
#endif
#endif
  EXPECT_EQ(2, *I);
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
#ifndef NDEBUG
  // Repeated dereferences are not allowed.
  EXPECT_DEATH(*I, "Cannot dereference");
#endif
#endif

  // Inserting shouldn't break anything. We should be able to keep dereferencing
  // the currrent iterator and increment. The increment to go to the "next"
  // iterator from before we inserted.
  L.insert(std::next(L.begin(), 2), -1);
  ++I;
  EXPECT_EQ(3, *I);

  // Erasing the front including the current doesn't break incrementing.
  L.erase(L.begin(), std::prev(L.end()));
  ++I;
  EXPECT_EQ(4, *I);
  ++I;
  EXPECT_EQ(EIR.end(), I);
}

TEST(STLExtrasTest, splat) {
  std::vector<int> V;
  EXPECT_FALSE(is_splat(V));

  V.push_back(1);
  EXPECT_TRUE(is_splat(V));

  V.push_back(1);
  V.push_back(1);
  EXPECT_TRUE(is_splat(V));

  V.push_back(2);
  EXPECT_FALSE(is_splat(V));
}

TEST(STLExtrasTest, to_address) {
  int *V1 = new int;
  EXPECT_EQ(V1, to_address(V1));

  // Check fancy pointer overload for unique_ptr
  std::unique_ptr<int> V2 = std::make_unique<int>(0);
  EXPECT_EQ(V2.get(), to_address(V2));

  V2.reset(V1);
  EXPECT_EQ(V1, to_address(V2));
  V2.release();

  // Check fancy pointer overload for shared_ptr
  std::shared_ptr<int> V3 = std::make_shared<int>(0);
  std::shared_ptr<int> V4 = V3;
  EXPECT_EQ(V3.get(), V4.get());
  EXPECT_EQ(V3.get(), to_address(V3));
  EXPECT_EQ(V4.get(), to_address(V4));

  V3.reset(V1);
  EXPECT_EQ(V1, to_address(V3));
}

TEST(STLExtrasTest, partition_point) {
  std::vector<int> V = {1, 3, 5, 7, 9};

  // Range version.
  EXPECT_EQ(V.begin() + 3,
            partition_point(V, [](unsigned X) { return X < 7; }));
  EXPECT_EQ(V.begin(), partition_point(V, [](unsigned X) { return X < 1; }));
  EXPECT_EQ(V.end(), partition_point(V, [](unsigned X) { return X < 50; }));
}

} // namespace