OnDiskHashTable.h
22 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
//===--- OnDiskHashTable.h - On-Disk Hash Table Implementation --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Defines facilities for reading and writing on-disk hash tables.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_ONDISKHASHTABLE_H
#define LLVM_SUPPORT_ONDISKHASHTABLE_H
#include "llvm/Support/Alignment.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdlib>
namespace llvm {
/// Generates an on disk hash table.
///
/// This needs an \c Info that handles storing values into the hash table's
/// payload and computes the hash for a given key. This should provide the
/// following interface:
///
/// \code
/// class ExampleInfo {
/// public:
/// typedef ExampleKey key_type; // Must be copy constructible
/// typedef ExampleKey &key_type_ref;
/// typedef ExampleData data_type; // Must be copy constructible
/// typedef ExampleData &data_type_ref;
/// typedef uint32_t hash_value_type; // The type the hash function returns.
/// typedef uint32_t offset_type; // The type for offsets into the table.
///
/// /// Calculate the hash for Key
/// static hash_value_type ComputeHash(key_type_ref Key);
/// /// Return the lengths, in bytes, of the given Key/Data pair.
/// static std::pair<offset_type, offset_type>
/// EmitKeyDataLength(raw_ostream &Out, key_type_ref Key, data_type_ref Data);
/// /// Write Key to Out. KeyLen is the length from EmitKeyDataLength.
/// static void EmitKey(raw_ostream &Out, key_type_ref Key,
/// offset_type KeyLen);
/// /// Write Data to Out. DataLen is the length from EmitKeyDataLength.
/// static void EmitData(raw_ostream &Out, key_type_ref Key,
/// data_type_ref Data, offset_type DataLen);
/// /// Determine if two keys are equal. Optional, only needed by contains.
/// static bool EqualKey(key_type_ref Key1, key_type_ref Key2);
/// };
/// \endcode
template <typename Info> class OnDiskChainedHashTableGenerator {
/// A single item in the hash table.
class Item {
public:
typename Info::key_type Key;
typename Info::data_type Data;
Item *Next;
const typename Info::hash_value_type Hash;
Item(typename Info::key_type_ref Key, typename Info::data_type_ref Data,
Info &InfoObj)
: Key(Key), Data(Data), Next(nullptr), Hash(InfoObj.ComputeHash(Key)) {}
};
typedef typename Info::offset_type offset_type;
offset_type NumBuckets;
offset_type NumEntries;
llvm::SpecificBumpPtrAllocator<Item> BA;
/// A linked list of values in a particular hash bucket.
struct Bucket {
offset_type Off;
unsigned Length;
Item *Head;
};
Bucket *Buckets;
private:
/// Insert an item into the appropriate hash bucket.
void insert(Bucket *Buckets, size_t Size, Item *E) {
Bucket &B = Buckets[E->Hash & (Size - 1)];
E->Next = B.Head;
++B.Length;
B.Head = E;
}
/// Resize the hash table, moving the old entries into the new buckets.
void resize(size_t NewSize) {
Bucket *NewBuckets = static_cast<Bucket *>(
safe_calloc(NewSize, sizeof(Bucket)));
// Populate NewBuckets with the old entries.
for (size_t I = 0; I < NumBuckets; ++I)
for (Item *E = Buckets[I].Head; E;) {
Item *N = E->Next;
E->Next = nullptr;
insert(NewBuckets, NewSize, E);
E = N;
}
free(Buckets);
NumBuckets = NewSize;
Buckets = NewBuckets;
}
public:
/// Insert an entry into the table.
void insert(typename Info::key_type_ref Key,
typename Info::data_type_ref Data) {
Info InfoObj;
insert(Key, Data, InfoObj);
}
/// Insert an entry into the table.
///
/// Uses the provided Info instead of a stack allocated one.
void insert(typename Info::key_type_ref Key,
typename Info::data_type_ref Data, Info &InfoObj) {
++NumEntries;
if (4 * NumEntries >= 3 * NumBuckets)
resize(NumBuckets * 2);
insert(Buckets, NumBuckets, new (BA.Allocate()) Item(Key, Data, InfoObj));
}
/// Determine whether an entry has been inserted.
bool contains(typename Info::key_type_ref Key, Info &InfoObj) {
unsigned Hash = InfoObj.ComputeHash(Key);
for (Item *I = Buckets[Hash & (NumBuckets - 1)].Head; I; I = I->Next)
if (I->Hash == Hash && InfoObj.EqualKey(I->Key, Key))
return true;
return false;
}
/// Emit the table to Out, which must not be at offset 0.
offset_type Emit(raw_ostream &Out) {
Info InfoObj;
return Emit(Out, InfoObj);
}
/// Emit the table to Out, which must not be at offset 0.
///
/// Uses the provided Info instead of a stack allocated one.
offset_type Emit(raw_ostream &Out, Info &InfoObj) {
using namespace llvm::support;
endian::Writer LE(Out, little);
// Now we're done adding entries, resize the bucket list if it's
// significantly too large. (This only happens if the number of
// entries is small and we're within our initial allocation of
// 64 buckets.) We aim for an occupancy ratio in [3/8, 3/4).
//
// As a special case, if there are two or fewer entries, just
// form a single bucket. A linear scan is fine in that case, and
// this is very common in C++ class lookup tables. This also
// guarantees we produce at least one bucket for an empty table.
//
// FIXME: Try computing a perfect hash function at this point.
unsigned TargetNumBuckets =
NumEntries <= 2 ? 1 : NextPowerOf2(NumEntries * 4 / 3);
if (TargetNumBuckets != NumBuckets)
resize(TargetNumBuckets);
// Emit the payload of the table.
for (offset_type I = 0; I < NumBuckets; ++I) {
Bucket &B = Buckets[I];
if (!B.Head)
continue;
// Store the offset for the data of this bucket.
B.Off = Out.tell();
assert(B.Off && "Cannot write a bucket at offset 0. Please add padding.");
// Write out the number of items in the bucket.
LE.write<uint16_t>(B.Length);
assert(B.Length != 0 && "Bucket has a head but zero length?");
// Write out the entries in the bucket.
for (Item *I = B.Head; I; I = I->Next) {
LE.write<typename Info::hash_value_type>(I->Hash);
const std::pair<offset_type, offset_type> &Len =
InfoObj.EmitKeyDataLength(Out, I->Key, I->Data);
#ifdef NDEBUG
InfoObj.EmitKey(Out, I->Key, Len.first);
InfoObj.EmitData(Out, I->Key, I->Data, Len.second);
#else
// In asserts mode, check that the users length matches the data they
// wrote.
uint64_t KeyStart = Out.tell();
InfoObj.EmitKey(Out, I->Key, Len.first);
uint64_t DataStart = Out.tell();
InfoObj.EmitData(Out, I->Key, I->Data, Len.second);
uint64_t End = Out.tell();
assert(offset_type(DataStart - KeyStart) == Len.first &&
"key length does not match bytes written");
assert(offset_type(End - DataStart) == Len.second &&
"data length does not match bytes written");
#endif
}
}
// Pad with zeros so that we can start the hashtable at an aligned address.
offset_type TableOff = Out.tell();
uint64_t N = offsetToAlignment(TableOff, Align(alignof(offset_type)));
TableOff += N;
while (N--)
LE.write<uint8_t>(0);
// Emit the hashtable itself.
LE.write<offset_type>(NumBuckets);
LE.write<offset_type>(NumEntries);
for (offset_type I = 0; I < NumBuckets; ++I)
LE.write<offset_type>(Buckets[I].Off);
return TableOff;
}
OnDiskChainedHashTableGenerator() {
NumEntries = 0;
NumBuckets = 64;
// Note that we do not need to run the constructors of the individual
// Bucket objects since 'calloc' returns bytes that are all 0.
Buckets = static_cast<Bucket *>(safe_calloc(NumBuckets, sizeof(Bucket)));
}
~OnDiskChainedHashTableGenerator() { std::free(Buckets); }
};
/// Provides lookup on an on disk hash table.
///
/// This needs an \c Info that handles reading values from the hash table's
/// payload and computes the hash for a given key. This should provide the
/// following interface:
///
/// \code
/// class ExampleLookupInfo {
/// public:
/// typedef ExampleData data_type;
/// typedef ExampleInternalKey internal_key_type; // The stored key type.
/// typedef ExampleKey external_key_type; // The type to pass to find().
/// typedef uint32_t hash_value_type; // The type the hash function returns.
/// typedef uint32_t offset_type; // The type for offsets into the table.
///
/// /// Compare two keys for equality.
/// static bool EqualKey(internal_key_type &Key1, internal_key_type &Key2);
/// /// Calculate the hash for the given key.
/// static hash_value_type ComputeHash(internal_key_type &IKey);
/// /// Translate from the semantic type of a key in the hash table to the
/// /// type that is actually stored and used for hashing and comparisons.
/// /// The internal and external types are often the same, in which case this
/// /// can simply return the passed in value.
/// static const internal_key_type &GetInternalKey(external_key_type &EKey);
/// /// Read the key and data length from Buffer, leaving it pointing at the
/// /// following byte.
/// static std::pair<offset_type, offset_type>
/// ReadKeyDataLength(const unsigned char *&Buffer);
/// /// Read the key from Buffer, given the KeyLen as reported from
/// /// ReadKeyDataLength.
/// const internal_key_type &ReadKey(const unsigned char *Buffer,
/// offset_type KeyLen);
/// /// Read the data for Key from Buffer, given the DataLen as reported from
/// /// ReadKeyDataLength.
/// data_type ReadData(StringRef Key, const unsigned char *Buffer,
/// offset_type DataLen);
/// };
/// \endcode
template <typename Info> class OnDiskChainedHashTable {
const typename Info::offset_type NumBuckets;
const typename Info::offset_type NumEntries;
const unsigned char *const Buckets;
const unsigned char *const Base;
Info InfoObj;
public:
typedef Info InfoType;
typedef typename Info::internal_key_type internal_key_type;
typedef typename Info::external_key_type external_key_type;
typedef typename Info::data_type data_type;
typedef typename Info::hash_value_type hash_value_type;
typedef typename Info::offset_type offset_type;
OnDiskChainedHashTable(offset_type NumBuckets, offset_type NumEntries,
const unsigned char *Buckets,
const unsigned char *Base,
const Info &InfoObj = Info())
: NumBuckets(NumBuckets), NumEntries(NumEntries), Buckets(Buckets),
Base(Base), InfoObj(InfoObj) {
assert((reinterpret_cast<uintptr_t>(Buckets) & 0x3) == 0 &&
"'buckets' must have a 4-byte alignment");
}
/// Read the number of buckets and the number of entries from a hash table
/// produced by OnDiskHashTableGenerator::Emit, and advance the Buckets
/// pointer past them.
static std::pair<offset_type, offset_type>
readNumBucketsAndEntries(const unsigned char *&Buckets) {
assert((reinterpret_cast<uintptr_t>(Buckets) & 0x3) == 0 &&
"buckets should be 4-byte aligned.");
using namespace llvm::support;
offset_type NumBuckets =
endian::readNext<offset_type, little, aligned>(Buckets);
offset_type NumEntries =
endian::readNext<offset_type, little, aligned>(Buckets);
return std::make_pair(NumBuckets, NumEntries);
}
offset_type getNumBuckets() const { return NumBuckets; }
offset_type getNumEntries() const { return NumEntries; }
const unsigned char *getBase() const { return Base; }
const unsigned char *getBuckets() const { return Buckets; }
bool isEmpty() const { return NumEntries == 0; }
class iterator {
internal_key_type Key;
const unsigned char *const Data;
const offset_type Len;
Info *InfoObj;
public:
iterator() : Key(), Data(nullptr), Len(0), InfoObj(nullptr) {}
iterator(const internal_key_type K, const unsigned char *D, offset_type L,
Info *InfoObj)
: Key(K), Data(D), Len(L), InfoObj(InfoObj) {}
data_type operator*() const { return InfoObj->ReadData(Key, Data, Len); }
const unsigned char *getDataPtr() const { return Data; }
offset_type getDataLen() const { return Len; }
bool operator==(const iterator &X) const { return X.Data == Data; }
bool operator!=(const iterator &X) const { return X.Data != Data; }
};
/// Look up the stored data for a particular key.
iterator find(const external_key_type &EKey, Info *InfoPtr = nullptr) {
const internal_key_type &IKey = InfoObj.GetInternalKey(EKey);
hash_value_type KeyHash = InfoObj.ComputeHash(IKey);
return find_hashed(IKey, KeyHash, InfoPtr);
}
/// Look up the stored data for a particular key with a known hash.
iterator find_hashed(const internal_key_type &IKey, hash_value_type KeyHash,
Info *InfoPtr = nullptr) {
using namespace llvm::support;
if (!InfoPtr)
InfoPtr = &InfoObj;
// Each bucket is just an offset into the hash table file.
offset_type Idx = KeyHash & (NumBuckets - 1);
const unsigned char *Bucket = Buckets + sizeof(offset_type) * Idx;
offset_type Offset = endian::readNext<offset_type, little, aligned>(Bucket);
if (Offset == 0)
return iterator(); // Empty bucket.
const unsigned char *Items = Base + Offset;
// 'Items' starts with a 16-bit unsigned integer representing the
// number of items in this bucket.
unsigned Len = endian::readNext<uint16_t, little, unaligned>(Items);
for (unsigned i = 0; i < Len; ++i) {
// Read the hash.
hash_value_type ItemHash =
endian::readNext<hash_value_type, little, unaligned>(Items);
// Determine the length of the key and the data.
const std::pair<offset_type, offset_type> &L =
Info::ReadKeyDataLength(Items);
offset_type ItemLen = L.first + L.second;
// Compare the hashes. If they are not the same, skip the entry entirely.
if (ItemHash != KeyHash) {
Items += ItemLen;
continue;
}
// Read the key.
const internal_key_type &X =
InfoPtr->ReadKey((const unsigned char *const)Items, L.first);
// If the key doesn't match just skip reading the value.
if (!InfoPtr->EqualKey(X, IKey)) {
Items += ItemLen;
continue;
}
// The key matches!
return iterator(X, Items + L.first, L.second, InfoPtr);
}
return iterator();
}
iterator end() const { return iterator(); }
Info &getInfoObj() { return InfoObj; }
/// Create the hash table.
///
/// \param Buckets is the beginning of the hash table itself, which follows
/// the payload of entire structure. This is the value returned by
/// OnDiskHashTableGenerator::Emit.
///
/// \param Base is the point from which all offsets into the structure are
/// based. This is offset 0 in the stream that was used when Emitting the
/// table.
static OnDiskChainedHashTable *Create(const unsigned char *Buckets,
const unsigned char *const Base,
const Info &InfoObj = Info()) {
assert(Buckets > Base);
auto NumBucketsAndEntries = readNumBucketsAndEntries(Buckets);
return new OnDiskChainedHashTable<Info>(NumBucketsAndEntries.first,
NumBucketsAndEntries.second,
Buckets, Base, InfoObj);
}
};
/// Provides lookup and iteration over an on disk hash table.
///
/// \copydetails llvm::OnDiskChainedHashTable
template <typename Info>
class OnDiskIterableChainedHashTable : public OnDiskChainedHashTable<Info> {
const unsigned char *Payload;
public:
typedef OnDiskChainedHashTable<Info> base_type;
typedef typename base_type::internal_key_type internal_key_type;
typedef typename base_type::external_key_type external_key_type;
typedef typename base_type::data_type data_type;
typedef typename base_type::hash_value_type hash_value_type;
typedef typename base_type::offset_type offset_type;
private:
/// Iterates over all of the keys in the table.
class iterator_base {
const unsigned char *Ptr;
offset_type NumItemsInBucketLeft;
offset_type NumEntriesLeft;
public:
typedef external_key_type value_type;
iterator_base(const unsigned char *const Ptr, offset_type NumEntries)
: Ptr(Ptr), NumItemsInBucketLeft(0), NumEntriesLeft(NumEntries) {}
iterator_base()
: Ptr(nullptr), NumItemsInBucketLeft(0), NumEntriesLeft(0) {}
friend bool operator==(const iterator_base &X, const iterator_base &Y) {
return X.NumEntriesLeft == Y.NumEntriesLeft;
}
friend bool operator!=(const iterator_base &X, const iterator_base &Y) {
return X.NumEntriesLeft != Y.NumEntriesLeft;
}
/// Move to the next item.
void advance() {
using namespace llvm::support;
if (!NumItemsInBucketLeft) {
// 'Items' starts with a 16-bit unsigned integer representing the
// number of items in this bucket.
NumItemsInBucketLeft =
endian::readNext<uint16_t, little, unaligned>(Ptr);
}
Ptr += sizeof(hash_value_type); // Skip the hash.
// Determine the length of the key and the data.
const std::pair<offset_type, offset_type> &L =
Info::ReadKeyDataLength(Ptr);
Ptr += L.first + L.second;
assert(NumItemsInBucketLeft);
--NumItemsInBucketLeft;
assert(NumEntriesLeft);
--NumEntriesLeft;
}
/// Get the start of the item as written by the trait (after the hash and
/// immediately before the key and value length).
const unsigned char *getItem() const {
return Ptr + (NumItemsInBucketLeft ? 0 : 2) + sizeof(hash_value_type);
}
};
public:
OnDiskIterableChainedHashTable(offset_type NumBuckets, offset_type NumEntries,
const unsigned char *Buckets,
const unsigned char *Payload,
const unsigned char *Base,
const Info &InfoObj = Info())
: base_type(NumBuckets, NumEntries, Buckets, Base, InfoObj),
Payload(Payload) {}
/// Iterates over all of the keys in the table.
class key_iterator : public iterator_base {
Info *InfoObj;
public:
typedef external_key_type value_type;
key_iterator(const unsigned char *const Ptr, offset_type NumEntries,
Info *InfoObj)
: iterator_base(Ptr, NumEntries), InfoObj(InfoObj) {}
key_iterator() : iterator_base(), InfoObj() {}
key_iterator &operator++() {
this->advance();
return *this;
}
key_iterator operator++(int) { // Postincrement
key_iterator tmp = *this;
++*this;
return tmp;
}
internal_key_type getInternalKey() const {
auto *LocalPtr = this->getItem();
// Determine the length of the key and the data.
auto L = Info::ReadKeyDataLength(LocalPtr);
// Read the key.
return InfoObj->ReadKey(LocalPtr, L.first);
}
value_type operator*() const {
return InfoObj->GetExternalKey(getInternalKey());
}
};
key_iterator key_begin() {
return key_iterator(Payload, this->getNumEntries(), &this->getInfoObj());
}
key_iterator key_end() { return key_iterator(); }
iterator_range<key_iterator> keys() {
return make_range(key_begin(), key_end());
}
/// Iterates over all the entries in the table, returning the data.
class data_iterator : public iterator_base {
Info *InfoObj;
public:
typedef data_type value_type;
data_iterator(const unsigned char *const Ptr, offset_type NumEntries,
Info *InfoObj)
: iterator_base(Ptr, NumEntries), InfoObj(InfoObj) {}
data_iterator() : iterator_base(), InfoObj() {}
data_iterator &operator++() { // Preincrement
this->advance();
return *this;
}
data_iterator operator++(int) { // Postincrement
data_iterator tmp = *this;
++*this;
return tmp;
}
value_type operator*() const {
auto *LocalPtr = this->getItem();
// Determine the length of the key and the data.
auto L = Info::ReadKeyDataLength(LocalPtr);
// Read the key.
const internal_key_type &Key = InfoObj->ReadKey(LocalPtr, L.first);
return InfoObj->ReadData(Key, LocalPtr + L.first, L.second);
}
};
data_iterator data_begin() {
return data_iterator(Payload, this->getNumEntries(), &this->getInfoObj());
}
data_iterator data_end() { return data_iterator(); }
iterator_range<data_iterator> data() {
return make_range(data_begin(), data_end());
}
/// Create the hash table.
///
/// \param Buckets is the beginning of the hash table itself, which follows
/// the payload of entire structure. This is the value returned by
/// OnDiskHashTableGenerator::Emit.
///
/// \param Payload is the beginning of the data contained in the table. This
/// is Base plus any padding or header data that was stored, ie, the offset
/// that the stream was at when calling Emit.
///
/// \param Base is the point from which all offsets into the structure are
/// based. This is offset 0 in the stream that was used when Emitting the
/// table.
static OnDiskIterableChainedHashTable *
Create(const unsigned char *Buckets, const unsigned char *const Payload,
const unsigned char *const Base, const Info &InfoObj = Info()) {
assert(Buckets > Base);
auto NumBucketsAndEntries =
OnDiskIterableChainedHashTable<Info>::readNumBucketsAndEntries(Buckets);
return new OnDiskIterableChainedHashTable<Info>(
NumBucketsAndEntries.first, NumBucketsAndEntries.second,
Buckets, Payload, Base, InfoObj);
}
};
} // end namespace llvm
#endif