OnDiskHashTable.h 22 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
//===--- OnDiskHashTable.h - On-Disk Hash Table Implementation --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Defines facilities for reading and writing on-disk hash tables.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_ONDISKHASHTABLE_H
#define LLVM_SUPPORT_ONDISKHASHTABLE_H

#include "llvm/Support/Alignment.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdlib>

namespace llvm {

/// Generates an on disk hash table.
///
/// This needs an \c Info that handles storing values into the hash table's
/// payload and computes the hash for a given key. This should provide the
/// following interface:
///
/// \code
/// class ExampleInfo {
/// public:
///   typedef ExampleKey key_type;   // Must be copy constructible
///   typedef ExampleKey &key_type_ref;
///   typedef ExampleData data_type; // Must be copy constructible
///   typedef ExampleData &data_type_ref;
///   typedef uint32_t hash_value_type; // The type the hash function returns.
///   typedef uint32_t offset_type; // The type for offsets into the table.
///
///   /// Calculate the hash for Key
///   static hash_value_type ComputeHash(key_type_ref Key);
///   /// Return the lengths, in bytes, of the given Key/Data pair.
///   static std::pair<offset_type, offset_type>
///   EmitKeyDataLength(raw_ostream &Out, key_type_ref Key, data_type_ref Data);
///   /// Write Key to Out.  KeyLen is the length from EmitKeyDataLength.
///   static void EmitKey(raw_ostream &Out, key_type_ref Key,
///                       offset_type KeyLen);
///   /// Write Data to Out.  DataLen is the length from EmitKeyDataLength.
///   static void EmitData(raw_ostream &Out, key_type_ref Key,
///                        data_type_ref Data, offset_type DataLen);
///   /// Determine if two keys are equal. Optional, only needed by contains.
///   static bool EqualKey(key_type_ref Key1, key_type_ref Key2);
/// };
/// \endcode
template <typename Info> class OnDiskChainedHashTableGenerator {
  /// A single item in the hash table.
  class Item {
  public:
    typename Info::key_type Key;
    typename Info::data_type Data;
    Item *Next;
    const typename Info::hash_value_type Hash;

    Item(typename Info::key_type_ref Key, typename Info::data_type_ref Data,
         Info &InfoObj)
        : Key(Key), Data(Data), Next(nullptr), Hash(InfoObj.ComputeHash(Key)) {}
  };

  typedef typename Info::offset_type offset_type;
  offset_type NumBuckets;
  offset_type NumEntries;
  llvm::SpecificBumpPtrAllocator<Item> BA;

  /// A linked list of values in a particular hash bucket.
  struct Bucket {
    offset_type Off;
    unsigned Length;
    Item *Head;
  };

  Bucket *Buckets;

private:
  /// Insert an item into the appropriate hash bucket.
  void insert(Bucket *Buckets, size_t Size, Item *E) {
    Bucket &B = Buckets[E->Hash & (Size - 1)];
    E->Next = B.Head;
    ++B.Length;
    B.Head = E;
  }

  /// Resize the hash table, moving the old entries into the new buckets.
  void resize(size_t NewSize) {
    Bucket *NewBuckets = static_cast<Bucket *>(
        safe_calloc(NewSize, sizeof(Bucket)));
    // Populate NewBuckets with the old entries.
    for (size_t I = 0; I < NumBuckets; ++I)
      for (Item *E = Buckets[I].Head; E;) {
        Item *N = E->Next;
        E->Next = nullptr;
        insert(NewBuckets, NewSize, E);
        E = N;
      }

    free(Buckets);
    NumBuckets = NewSize;
    Buckets = NewBuckets;
  }

public:
  /// Insert an entry into the table.
  void insert(typename Info::key_type_ref Key,
              typename Info::data_type_ref Data) {
    Info InfoObj;
    insert(Key, Data, InfoObj);
  }

  /// Insert an entry into the table.
  ///
  /// Uses the provided Info instead of a stack allocated one.
  void insert(typename Info::key_type_ref Key,
              typename Info::data_type_ref Data, Info &InfoObj) {
    ++NumEntries;
    if (4 * NumEntries >= 3 * NumBuckets)
      resize(NumBuckets * 2);
    insert(Buckets, NumBuckets, new (BA.Allocate()) Item(Key, Data, InfoObj));
  }

  /// Determine whether an entry has been inserted.
  bool contains(typename Info::key_type_ref Key, Info &InfoObj) {
    unsigned Hash = InfoObj.ComputeHash(Key);
    for (Item *I = Buckets[Hash & (NumBuckets - 1)].Head; I; I = I->Next)
      if (I->Hash == Hash && InfoObj.EqualKey(I->Key, Key))
        return true;
    return false;
  }

  /// Emit the table to Out, which must not be at offset 0.
  offset_type Emit(raw_ostream &Out) {
    Info InfoObj;
    return Emit(Out, InfoObj);
  }

  /// Emit the table to Out, which must not be at offset 0.
  ///
  /// Uses the provided Info instead of a stack allocated one.
  offset_type Emit(raw_ostream &Out, Info &InfoObj) {
    using namespace llvm::support;
    endian::Writer LE(Out, little);

    // Now we're done adding entries, resize the bucket list if it's
    // significantly too large. (This only happens if the number of
    // entries is small and we're within our initial allocation of
    // 64 buckets.) We aim for an occupancy ratio in [3/8, 3/4).
    //
    // As a special case, if there are two or fewer entries, just
    // form a single bucket. A linear scan is fine in that case, and
    // this is very common in C++ class lookup tables. This also
    // guarantees we produce at least one bucket for an empty table.
    //
    // FIXME: Try computing a perfect hash function at this point.
    unsigned TargetNumBuckets =
        NumEntries <= 2 ? 1 : NextPowerOf2(NumEntries * 4 / 3);
    if (TargetNumBuckets != NumBuckets)
      resize(TargetNumBuckets);

    // Emit the payload of the table.
    for (offset_type I = 0; I < NumBuckets; ++I) {
      Bucket &B = Buckets[I];
      if (!B.Head)
        continue;

      // Store the offset for the data of this bucket.
      B.Off = Out.tell();
      assert(B.Off && "Cannot write a bucket at offset 0. Please add padding.");

      // Write out the number of items in the bucket.
      LE.write<uint16_t>(B.Length);
      assert(B.Length != 0 && "Bucket has a head but zero length?");

      // Write out the entries in the bucket.
      for (Item *I = B.Head; I; I = I->Next) {
        LE.write<typename Info::hash_value_type>(I->Hash);
        const std::pair<offset_type, offset_type> &Len =
            InfoObj.EmitKeyDataLength(Out, I->Key, I->Data);
#ifdef NDEBUG
        InfoObj.EmitKey(Out, I->Key, Len.first);
        InfoObj.EmitData(Out, I->Key, I->Data, Len.second);
#else
        // In asserts mode, check that the users length matches the data they
        // wrote.
        uint64_t KeyStart = Out.tell();
        InfoObj.EmitKey(Out, I->Key, Len.first);
        uint64_t DataStart = Out.tell();
        InfoObj.EmitData(Out, I->Key, I->Data, Len.second);
        uint64_t End = Out.tell();
        assert(offset_type(DataStart - KeyStart) == Len.first &&
               "key length does not match bytes written");
        assert(offset_type(End - DataStart) == Len.second &&
               "data length does not match bytes written");
#endif
      }
    }

    // Pad with zeros so that we can start the hashtable at an aligned address.
    offset_type TableOff = Out.tell();
    uint64_t N = offsetToAlignment(TableOff, Align(alignof(offset_type)));
    TableOff += N;
    while (N--)
      LE.write<uint8_t>(0);

    // Emit the hashtable itself.
    LE.write<offset_type>(NumBuckets);
    LE.write<offset_type>(NumEntries);
    for (offset_type I = 0; I < NumBuckets; ++I)
      LE.write<offset_type>(Buckets[I].Off);

    return TableOff;
  }

  OnDiskChainedHashTableGenerator() {
    NumEntries = 0;
    NumBuckets = 64;
    // Note that we do not need to run the constructors of the individual
    // Bucket objects since 'calloc' returns bytes that are all 0.
    Buckets = static_cast<Bucket *>(safe_calloc(NumBuckets, sizeof(Bucket)));
  }

  ~OnDiskChainedHashTableGenerator() { std::free(Buckets); }
};

/// Provides lookup on an on disk hash table.
///
/// This needs an \c Info that handles reading values from the hash table's
/// payload and computes the hash for a given key. This should provide the
/// following interface:
///
/// \code
/// class ExampleLookupInfo {
/// public:
///   typedef ExampleData data_type;
///   typedef ExampleInternalKey internal_key_type; // The stored key type.
///   typedef ExampleKey external_key_type; // The type to pass to find().
///   typedef uint32_t hash_value_type; // The type the hash function returns.
///   typedef uint32_t offset_type; // The type for offsets into the table.
///
///   /// Compare two keys for equality.
///   static bool EqualKey(internal_key_type &Key1, internal_key_type &Key2);
///   /// Calculate the hash for the given key.
///   static hash_value_type ComputeHash(internal_key_type &IKey);
///   /// Translate from the semantic type of a key in the hash table to the
///   /// type that is actually stored and used for hashing and comparisons.
///   /// The internal and external types are often the same, in which case this
///   /// can simply return the passed in value.
///   static const internal_key_type &GetInternalKey(external_key_type &EKey);
///   /// Read the key and data length from Buffer, leaving it pointing at the
///   /// following byte.
///   static std::pair<offset_type, offset_type>
///   ReadKeyDataLength(const unsigned char *&Buffer);
///   /// Read the key from Buffer, given the KeyLen as reported from
///   /// ReadKeyDataLength.
///   const internal_key_type &ReadKey(const unsigned char *Buffer,
///                                    offset_type KeyLen);
///   /// Read the data for Key from Buffer, given the DataLen as reported from
///   /// ReadKeyDataLength.
///   data_type ReadData(StringRef Key, const unsigned char *Buffer,
///                      offset_type DataLen);
/// };
/// \endcode
template <typename Info> class OnDiskChainedHashTable {
  const typename Info::offset_type NumBuckets;
  const typename Info::offset_type NumEntries;
  const unsigned char *const Buckets;
  const unsigned char *const Base;
  Info InfoObj;

public:
  typedef Info InfoType;
  typedef typename Info::internal_key_type internal_key_type;
  typedef typename Info::external_key_type external_key_type;
  typedef typename Info::data_type data_type;
  typedef typename Info::hash_value_type hash_value_type;
  typedef typename Info::offset_type offset_type;

  OnDiskChainedHashTable(offset_type NumBuckets, offset_type NumEntries,
                         const unsigned char *Buckets,
                         const unsigned char *Base,
                         const Info &InfoObj = Info())
      : NumBuckets(NumBuckets), NumEntries(NumEntries), Buckets(Buckets),
        Base(Base), InfoObj(InfoObj) {
    assert((reinterpret_cast<uintptr_t>(Buckets) & 0x3) == 0 &&
           "'buckets' must have a 4-byte alignment");
  }

  /// Read the number of buckets and the number of entries from a hash table
  /// produced by OnDiskHashTableGenerator::Emit, and advance the Buckets
  /// pointer past them.
  static std::pair<offset_type, offset_type>
  readNumBucketsAndEntries(const unsigned char *&Buckets) {
    assert((reinterpret_cast<uintptr_t>(Buckets) & 0x3) == 0 &&
           "buckets should be 4-byte aligned.");
    using namespace llvm::support;
    offset_type NumBuckets =
        endian::readNext<offset_type, little, aligned>(Buckets);
    offset_type NumEntries =
        endian::readNext<offset_type, little, aligned>(Buckets);
    return std::make_pair(NumBuckets, NumEntries);
  }

  offset_type getNumBuckets() const { return NumBuckets; }
  offset_type getNumEntries() const { return NumEntries; }
  const unsigned char *getBase() const { return Base; }
  const unsigned char *getBuckets() const { return Buckets; }

  bool isEmpty() const { return NumEntries == 0; }

  class iterator {
    internal_key_type Key;
    const unsigned char *const Data;
    const offset_type Len;
    Info *InfoObj;

  public:
    iterator() : Key(), Data(nullptr), Len(0), InfoObj(nullptr) {}
    iterator(const internal_key_type K, const unsigned char *D, offset_type L,
             Info *InfoObj)
        : Key(K), Data(D), Len(L), InfoObj(InfoObj) {}

    data_type operator*() const { return InfoObj->ReadData(Key, Data, Len); }

    const unsigned char *getDataPtr() const { return Data; }
    offset_type getDataLen() const { return Len; }

    bool operator==(const iterator &X) const { return X.Data == Data; }
    bool operator!=(const iterator &X) const { return X.Data != Data; }
  };

  /// Look up the stored data for a particular key.
  iterator find(const external_key_type &EKey, Info *InfoPtr = nullptr) {
    const internal_key_type &IKey = InfoObj.GetInternalKey(EKey);
    hash_value_type KeyHash = InfoObj.ComputeHash(IKey);
    return find_hashed(IKey, KeyHash, InfoPtr);
  }

  /// Look up the stored data for a particular key with a known hash.
  iterator find_hashed(const internal_key_type &IKey, hash_value_type KeyHash,
                       Info *InfoPtr = nullptr) {
    using namespace llvm::support;

    if (!InfoPtr)
      InfoPtr = &InfoObj;

    // Each bucket is just an offset into the hash table file.
    offset_type Idx = KeyHash & (NumBuckets - 1);
    const unsigned char *Bucket = Buckets + sizeof(offset_type) * Idx;

    offset_type Offset = endian::readNext<offset_type, little, aligned>(Bucket);
    if (Offset == 0)
      return iterator(); // Empty bucket.
    const unsigned char *Items = Base + Offset;

    // 'Items' starts with a 16-bit unsigned integer representing the
    // number of items in this bucket.
    unsigned Len = endian::readNext<uint16_t, little, unaligned>(Items);

    for (unsigned i = 0; i < Len; ++i) {
      // Read the hash.
      hash_value_type ItemHash =
          endian::readNext<hash_value_type, little, unaligned>(Items);

      // Determine the length of the key and the data.
      const std::pair<offset_type, offset_type> &L =
          Info::ReadKeyDataLength(Items);
      offset_type ItemLen = L.first + L.second;

      // Compare the hashes.  If they are not the same, skip the entry entirely.
      if (ItemHash != KeyHash) {
        Items += ItemLen;
        continue;
      }

      // Read the key.
      const internal_key_type &X =
          InfoPtr->ReadKey((const unsigned char *const)Items, L.first);

      // If the key doesn't match just skip reading the value.
      if (!InfoPtr->EqualKey(X, IKey)) {
        Items += ItemLen;
        continue;
      }

      // The key matches!
      return iterator(X, Items + L.first, L.second, InfoPtr);
    }

    return iterator();
  }

  iterator end() const { return iterator(); }

  Info &getInfoObj() { return InfoObj; }

  /// Create the hash table.
  ///
  /// \param Buckets is the beginning of the hash table itself, which follows
  /// the payload of entire structure. This is the value returned by
  /// OnDiskHashTableGenerator::Emit.
  ///
  /// \param Base is the point from which all offsets into the structure are
  /// based. This is offset 0 in the stream that was used when Emitting the
  /// table.
  static OnDiskChainedHashTable *Create(const unsigned char *Buckets,
                                        const unsigned char *const Base,
                                        const Info &InfoObj = Info()) {
    assert(Buckets > Base);
    auto NumBucketsAndEntries = readNumBucketsAndEntries(Buckets);
    return new OnDiskChainedHashTable<Info>(NumBucketsAndEntries.first,
                                            NumBucketsAndEntries.second,
                                            Buckets, Base, InfoObj);
  }
};

/// Provides lookup and iteration over an on disk hash table.
///
/// \copydetails llvm::OnDiskChainedHashTable
template <typename Info>
class OnDiskIterableChainedHashTable : public OnDiskChainedHashTable<Info> {
  const unsigned char *Payload;

public:
  typedef OnDiskChainedHashTable<Info>          base_type;
  typedef typename base_type::internal_key_type internal_key_type;
  typedef typename base_type::external_key_type external_key_type;
  typedef typename base_type::data_type         data_type;
  typedef typename base_type::hash_value_type   hash_value_type;
  typedef typename base_type::offset_type       offset_type;

private:
  /// Iterates over all of the keys in the table.
  class iterator_base {
    const unsigned char *Ptr;
    offset_type NumItemsInBucketLeft;
    offset_type NumEntriesLeft;

  public:
    typedef external_key_type value_type;

    iterator_base(const unsigned char *const Ptr, offset_type NumEntries)
        : Ptr(Ptr), NumItemsInBucketLeft(0), NumEntriesLeft(NumEntries) {}
    iterator_base()
        : Ptr(nullptr), NumItemsInBucketLeft(0), NumEntriesLeft(0) {}

    friend bool operator==(const iterator_base &X, const iterator_base &Y) {
      return X.NumEntriesLeft == Y.NumEntriesLeft;
    }
    friend bool operator!=(const iterator_base &X, const iterator_base &Y) {
      return X.NumEntriesLeft != Y.NumEntriesLeft;
    }

    /// Move to the next item.
    void advance() {
      using namespace llvm::support;
      if (!NumItemsInBucketLeft) {
        // 'Items' starts with a 16-bit unsigned integer representing the
        // number of items in this bucket.
        NumItemsInBucketLeft =
            endian::readNext<uint16_t, little, unaligned>(Ptr);
      }
      Ptr += sizeof(hash_value_type); // Skip the hash.
      // Determine the length of the key and the data.
      const std::pair<offset_type, offset_type> &L =
          Info::ReadKeyDataLength(Ptr);
      Ptr += L.first + L.second;
      assert(NumItemsInBucketLeft);
      --NumItemsInBucketLeft;
      assert(NumEntriesLeft);
      --NumEntriesLeft;
    }

    /// Get the start of the item as written by the trait (after the hash and
    /// immediately before the key and value length).
    const unsigned char *getItem() const {
      return Ptr + (NumItemsInBucketLeft ? 0 : 2) + sizeof(hash_value_type);
    }
  };

public:
  OnDiskIterableChainedHashTable(offset_type NumBuckets, offset_type NumEntries,
                                 const unsigned char *Buckets,
                                 const unsigned char *Payload,
                                 const unsigned char *Base,
                                 const Info &InfoObj = Info())
      : base_type(NumBuckets, NumEntries, Buckets, Base, InfoObj),
        Payload(Payload) {}

  /// Iterates over all of the keys in the table.
  class key_iterator : public iterator_base {
    Info *InfoObj;

  public:
    typedef external_key_type value_type;

    key_iterator(const unsigned char *const Ptr, offset_type NumEntries,
                 Info *InfoObj)
        : iterator_base(Ptr, NumEntries), InfoObj(InfoObj) {}
    key_iterator() : iterator_base(), InfoObj() {}

    key_iterator &operator++() {
      this->advance();
      return *this;
    }
    key_iterator operator++(int) { // Postincrement
      key_iterator tmp = *this;
      ++*this;
      return tmp;
    }

    internal_key_type getInternalKey() const {
      auto *LocalPtr = this->getItem();

      // Determine the length of the key and the data.
      auto L = Info::ReadKeyDataLength(LocalPtr);

      // Read the key.
      return InfoObj->ReadKey(LocalPtr, L.first);
    }

    value_type operator*() const {
      return InfoObj->GetExternalKey(getInternalKey());
    }
  };

  key_iterator key_begin() {
    return key_iterator(Payload, this->getNumEntries(), &this->getInfoObj());
  }
  key_iterator key_end() { return key_iterator(); }

  iterator_range<key_iterator> keys() {
    return make_range(key_begin(), key_end());
  }

  /// Iterates over all the entries in the table, returning the data.
  class data_iterator : public iterator_base {
    Info *InfoObj;

  public:
    typedef data_type value_type;

    data_iterator(const unsigned char *const Ptr, offset_type NumEntries,
                  Info *InfoObj)
        : iterator_base(Ptr, NumEntries), InfoObj(InfoObj) {}
    data_iterator() : iterator_base(), InfoObj() {}

    data_iterator &operator++() { // Preincrement
      this->advance();
      return *this;
    }
    data_iterator operator++(int) { // Postincrement
      data_iterator tmp = *this;
      ++*this;
      return tmp;
    }

    value_type operator*() const {
      auto *LocalPtr = this->getItem();

      // Determine the length of the key and the data.
      auto L = Info::ReadKeyDataLength(LocalPtr);

      // Read the key.
      const internal_key_type &Key = InfoObj->ReadKey(LocalPtr, L.first);
      return InfoObj->ReadData(Key, LocalPtr + L.first, L.second);
    }
  };

  data_iterator data_begin() {
    return data_iterator(Payload, this->getNumEntries(), &this->getInfoObj());
  }
  data_iterator data_end() { return data_iterator(); }

  iterator_range<data_iterator> data() {
    return make_range(data_begin(), data_end());
  }

  /// Create the hash table.
  ///
  /// \param Buckets is the beginning of the hash table itself, which follows
  /// the payload of entire structure. This is the value returned by
  /// OnDiskHashTableGenerator::Emit.
  ///
  /// \param Payload is the beginning of the data contained in the table.  This
  /// is Base plus any padding or header data that was stored, ie, the offset
  /// that the stream was at when calling Emit.
  ///
  /// \param Base is the point from which all offsets into the structure are
  /// based. This is offset 0 in the stream that was used when Emitting the
  /// table.
  static OnDiskIterableChainedHashTable *
  Create(const unsigned char *Buckets, const unsigned char *const Payload,
         const unsigned char *const Base, const Info &InfoObj = Info()) {
    assert(Buckets > Base);
    auto NumBucketsAndEntries =
        OnDiskIterableChainedHashTable<Info>::readNumBucketsAndEntries(Buckets);
    return new OnDiskIterableChainedHashTable<Info>(
        NumBucketsAndEntries.first, NumBucketsAndEntries.second,
        Buckets, Payload, Base, InfoObj);
  }
};

} // end namespace llvm

#endif