AArch64AddressingModes.h 26.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
//===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the AArch64 addressing mode implementation stuff.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
#define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H

#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/bit.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>

namespace llvm {

/// AArch64_AM - AArch64 Addressing Mode Stuff
namespace AArch64_AM {

//===----------------------------------------------------------------------===//
// Shifts
//

enum ShiftExtendType {
  InvalidShiftExtend = -1,
  LSL = 0,
  LSR,
  ASR,
  ROR,
  MSL,

  UXTB,
  UXTH,
  UXTW,
  UXTX,

  SXTB,
  SXTH,
  SXTW,
  SXTX,
};

/// getShiftName - Get the string encoding for the shift type.
static inline const char *getShiftExtendName(AArch64_AM::ShiftExtendType ST) {
  switch (ST) {
  default: llvm_unreachable("unhandled shift type!");
  case AArch64_AM::LSL: return "lsl";
  case AArch64_AM::LSR: return "lsr";
  case AArch64_AM::ASR: return "asr";
  case AArch64_AM::ROR: return "ror";
  case AArch64_AM::MSL: return "msl";
  case AArch64_AM::UXTB: return "uxtb";
  case AArch64_AM::UXTH: return "uxth";
  case AArch64_AM::UXTW: return "uxtw";
  case AArch64_AM::UXTX: return "uxtx";
  case AArch64_AM::SXTB: return "sxtb";
  case AArch64_AM::SXTH: return "sxth";
  case AArch64_AM::SXTW: return "sxtw";
  case AArch64_AM::SXTX: return "sxtx";
  }
  return nullptr;
}

/// getShiftType - Extract the shift type.
static inline AArch64_AM::ShiftExtendType getShiftType(unsigned Imm) {
  switch ((Imm >> 6) & 0x7) {
  default: return AArch64_AM::InvalidShiftExtend;
  case 0: return AArch64_AM::LSL;
  case 1: return AArch64_AM::LSR;
  case 2: return AArch64_AM::ASR;
  case 3: return AArch64_AM::ROR;
  case 4: return AArch64_AM::MSL;
  }
}

/// getShiftValue - Extract the shift value.
static inline unsigned getShiftValue(unsigned Imm) {
  return Imm & 0x3f;
}

/// getShifterImm - Encode the shift type and amount:
///   imm:     6-bit shift amount
///   shifter: 000 ==> lsl
///            001 ==> lsr
///            010 ==> asr
///            011 ==> ror
///            100 ==> msl
///   {8-6}  = shifter
///   {5-0}  = imm
static inline unsigned getShifterImm(AArch64_AM::ShiftExtendType ST,
                                     unsigned Imm) {
  assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!");
  unsigned STEnc = 0;
  switch (ST) {
  default:  llvm_unreachable("Invalid shift requested");
  case AArch64_AM::LSL: STEnc = 0; break;
  case AArch64_AM::LSR: STEnc = 1; break;
  case AArch64_AM::ASR: STEnc = 2; break;
  case AArch64_AM::ROR: STEnc = 3; break;
  case AArch64_AM::MSL: STEnc = 4; break;
  }
  return (STEnc << 6) | (Imm & 0x3f);
}

//===----------------------------------------------------------------------===//
// Extends
//

/// getArithShiftValue - get the arithmetic shift value.
static inline unsigned getArithShiftValue(unsigned Imm) {
  return Imm & 0x7;
}

/// getExtendType - Extract the extend type for operands of arithmetic ops.
static inline AArch64_AM::ShiftExtendType getExtendType(unsigned Imm) {
  assert((Imm & 0x7) == Imm && "invalid immediate!");
  switch (Imm) {
  default: llvm_unreachable("Compiler bug!");
  case 0: return AArch64_AM::UXTB;
  case 1: return AArch64_AM::UXTH;
  case 2: return AArch64_AM::UXTW;
  case 3: return AArch64_AM::UXTX;
  case 4: return AArch64_AM::SXTB;
  case 5: return AArch64_AM::SXTH;
  case 6: return AArch64_AM::SXTW;
  case 7: return AArch64_AM::SXTX;
  }
}

static inline AArch64_AM::ShiftExtendType getArithExtendType(unsigned Imm) {
  return getExtendType((Imm >> 3) & 0x7);
}

/// Mapping from extend bits to required operation:
///   shifter: 000 ==> uxtb
///            001 ==> uxth
///            010 ==> uxtw
///            011 ==> uxtx
///            100 ==> sxtb
///            101 ==> sxth
///            110 ==> sxtw
///            111 ==> sxtx
inline unsigned getExtendEncoding(AArch64_AM::ShiftExtendType ET) {
  switch (ET) {
  default: llvm_unreachable("Invalid extend type requested");
  case AArch64_AM::UXTB: return 0; break;
  case AArch64_AM::UXTH: return 1; break;
  case AArch64_AM::UXTW: return 2; break;
  case AArch64_AM::UXTX: return 3; break;
  case AArch64_AM::SXTB: return 4; break;
  case AArch64_AM::SXTH: return 5; break;
  case AArch64_AM::SXTW: return 6; break;
  case AArch64_AM::SXTX: return 7; break;
  }
}

/// getArithExtendImm - Encode the extend type and shift amount for an
///                     arithmetic instruction:
///   imm:     3-bit extend amount
///   {5-3}  = shifter
///   {2-0}  = imm3
static inline unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET,
                                         unsigned Imm) {
  assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!");
  return (getExtendEncoding(ET) << 3) | (Imm & 0x7);
}

/// getMemDoShift - Extract the "do shift" flag value for load/store
/// instructions.
static inline bool getMemDoShift(unsigned Imm) {
  return (Imm & 0x1) != 0;
}

/// getExtendType - Extract the extend type for the offset operand of
/// loads/stores.
static inline AArch64_AM::ShiftExtendType getMemExtendType(unsigned Imm) {
  return getExtendType((Imm >> 1) & 0x7);
}

/// getExtendImm - Encode the extend type and amount for a load/store inst:
///   doshift:     should the offset be scaled by the access size
///   shifter: 000 ==> uxtb
///            001 ==> uxth
///            010 ==> uxtw
///            011 ==> uxtx
///            100 ==> sxtb
///            101 ==> sxth
///            110 ==> sxtw
///            111 ==> sxtx
///   {3-1}  = shifter
///   {0}  = doshift
static inline unsigned getMemExtendImm(AArch64_AM::ShiftExtendType ET,
                                       bool DoShift) {
  return (getExtendEncoding(ET) << 1) | unsigned(DoShift);
}

static inline uint64_t ror(uint64_t elt, unsigned size) {
  return ((elt & 1) << (size-1)) | (elt >> 1);
}

/// processLogicalImmediate - Determine if an immediate value can be encoded
/// as the immediate operand of a logical instruction for the given register
/// size.  If so, return true with "encoding" set to the encoded value in
/// the form N:immr:imms.
static inline bool processLogicalImmediate(uint64_t Imm, unsigned RegSize,
                                           uint64_t &Encoding) {
  if (Imm == 0ULL || Imm == ~0ULL ||
      (RegSize != 64 &&
        (Imm >> RegSize != 0 || Imm == (~0ULL >> (64 - RegSize)))))
    return false;

  // First, determine the element size.
  unsigned Size = RegSize;

  do {
    Size /= 2;
    uint64_t Mask = (1ULL << Size) - 1;

    if ((Imm & Mask) != ((Imm >> Size) & Mask)) {
      Size *= 2;
      break;
    }
  } while (Size > 2);

  // Second, determine the rotation to make the element be: 0^m 1^n.
  uint32_t CTO, I;
  uint64_t Mask = ((uint64_t)-1LL) >> (64 - Size);
  Imm &= Mask;

  if (isShiftedMask_64(Imm)) {
    I = countTrailingZeros(Imm);
    assert(I < 64 && "undefined behavior");
    CTO = countTrailingOnes(Imm >> I);
  } else {
    Imm |= ~Mask;
    if (!isShiftedMask_64(~Imm))
      return false;

    unsigned CLO = countLeadingOnes(Imm);
    I = 64 - CLO;
    CTO = CLO + countTrailingOnes(Imm) - (64 - Size);
  }

  // Encode in Immr the number of RORs it would take to get *from* 0^m 1^n
  // to our target value, where I is the number of RORs to go the opposite
  // direction.
  assert(Size > I && "I should be smaller than element size");
  unsigned Immr = (Size - I) & (Size - 1);

  // If size has a 1 in the n'th bit, create a value that has zeroes in
  // bits [0, n] and ones above that.
  uint64_t NImms = ~(Size-1) << 1;

  // Or the CTO value into the low bits, which must be below the Nth bit
  // bit mentioned above.
  NImms |= (CTO-1);

  // Extract the seventh bit and toggle it to create the N field.
  unsigned N = ((NImms >> 6) & 1) ^ 1;

  Encoding = (N << 12) | (Immr << 6) | (NImms & 0x3f);
  return true;
}

/// isLogicalImmediate - Return true if the immediate is valid for a logical
/// immediate instruction of the given register size. Return false otherwise.
static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) {
  uint64_t encoding;
  return processLogicalImmediate(imm, regSize, encoding);
}

/// encodeLogicalImmediate - Return the encoded immediate value for a logical
/// immediate instruction of the given register size.
static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) {
  uint64_t encoding = 0;
  bool res = processLogicalImmediate(imm, regSize, encoding);
  assert(res && "invalid logical immediate");
  (void)res;
  return encoding;
}

/// decodeLogicalImmediate - Decode a logical immediate value in the form
/// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the
/// integer value it represents with regSize bits.
static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) {
  // Extract the N, imms, and immr fields.
  unsigned N = (val >> 12) & 1;
  unsigned immr = (val >> 6) & 0x3f;
  unsigned imms = val & 0x3f;

  assert((regSize == 64 || N == 0) && "undefined logical immediate encoding");
  int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
  assert(len >= 0 && "undefined logical immediate encoding");
  unsigned size = (1 << len);
  unsigned R = immr & (size - 1);
  unsigned S = imms & (size - 1);
  assert(S != size - 1 && "undefined logical immediate encoding");
  uint64_t pattern = (1ULL << (S + 1)) - 1;
  for (unsigned i = 0; i < R; ++i)
    pattern = ror(pattern, size);

  // Replicate the pattern to fill the regSize.
  while (size != regSize) {
    pattern |= (pattern << size);
    size *= 2;
  }
  return pattern;
}

/// isValidDecodeLogicalImmediate - Check to see if the logical immediate value
/// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits)
/// is a valid encoding for an integer value with regSize bits.
static inline bool isValidDecodeLogicalImmediate(uint64_t val,
                                                 unsigned regSize) {
  // Extract the N and imms fields needed for checking.
  unsigned N = (val >> 12) & 1;
  unsigned imms = val & 0x3f;

  if (regSize == 32 && N != 0) // undefined logical immediate encoding
    return false;
  int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
  if (len < 0) // undefined logical immediate encoding
    return false;
  unsigned size = (1 << len);
  unsigned S = imms & (size - 1);
  if (S == size - 1) // undefined logical immediate encoding
    return false;

  return true;
}

//===----------------------------------------------------------------------===//
// Floating-point Immediates
//
static inline float getFPImmFloat(unsigned Imm) {
  // We expect an 8-bit binary encoding of a floating-point number here.

  uint8_t Sign = (Imm >> 7) & 0x1;
  uint8_t Exp = (Imm >> 4) & 0x7;
  uint8_t Mantissa = Imm & 0xf;

  //   8-bit FP    IEEE Float Encoding
  //   abcd efgh   aBbbbbbc defgh000 00000000 00000000
  //
  // where B = NOT(b);

  uint32_t I = 0;
  I |= Sign << 31;
  I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
  I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
  I |= (Exp & 0x3) << 23;
  I |= Mantissa << 19;
  return bit_cast<float>(I);
}

/// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
/// floating-point value. If the value cannot be represented as an 8-bit
/// floating-point value, then return -1.
static inline int getFP16Imm(const APInt &Imm) {
  uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
  int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15;  // -14 to 15
  int32_t Mantissa = Imm.getZExtValue() & 0x3ff;  // 10 bits

  // We can handle 4 bits of mantissa.
  // mantissa = (16+UInt(e:f:g:h))/16.
  if (Mantissa & 0x3f)
    return -1;
  Mantissa >>= 6;

  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
  if (Exp < -3 || Exp > 4)
    return -1;
  Exp = ((Exp+3) & 0x7) ^ 4;

  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
}

static inline int getFP16Imm(const APFloat &FPImm) {
  return getFP16Imm(FPImm.bitcastToAPInt());
}

/// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
/// floating-point value. If the value cannot be represented as an 8-bit
/// floating-point value, then return -1.
static inline int getFP32Imm(const APInt &Imm) {
  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits

  // We can handle 4 bits of mantissa.
  // mantissa = (16+UInt(e:f:g:h))/16.
  if (Mantissa & 0x7ffff)
    return -1;
  Mantissa >>= 19;
  if ((Mantissa & 0xf) != Mantissa)
    return -1;

  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
  if (Exp < -3 || Exp > 4)
    return -1;
  Exp = ((Exp+3) & 0x7) ^ 4;

  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
}

static inline int getFP32Imm(const APFloat &FPImm) {
  return getFP32Imm(FPImm.bitcastToAPInt());
}

/// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
/// floating-point value. If the value cannot be represented as an 8-bit
/// floating-point value, then return -1.
static inline int getFP64Imm(const APInt &Imm) {
  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;

  // We can handle 4 bits of mantissa.
  // mantissa = (16+UInt(e:f:g:h))/16.
  if (Mantissa & 0xffffffffffffULL)
    return -1;
  Mantissa >>= 48;
  if ((Mantissa & 0xf) != Mantissa)
    return -1;

  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
  if (Exp < -3 || Exp > 4)
    return -1;
  Exp = ((Exp+3) & 0x7) ^ 4;

  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
}

static inline int getFP64Imm(const APFloat &FPImm) {
  return getFP64Imm(FPImm.bitcastToAPInt());
}

//===--------------------------------------------------------------------===//
// AdvSIMD Modified Immediates
//===--------------------------------------------------------------------===//

// 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh
static inline bool isAdvSIMDModImmType1(uint64_t Imm) {
  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
         ((Imm & 0xffffff00ffffff00ULL) == 0);
}

static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) {
  return (Imm & 0xffULL);
}

static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) {
  uint64_t EncVal = Imm;
  return (EncVal << 32) | EncVal;
}

// 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00
static inline bool isAdvSIMDModImmType2(uint64_t Imm) {
  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
         ((Imm & 0xffff00ffffff00ffULL) == 0);
}

static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) {
  return (Imm & 0xff00ULL) >> 8;
}

static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) {
  uint64_t EncVal = Imm;
  return (EncVal << 40) | (EncVal << 8);
}

// 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00
static inline bool isAdvSIMDModImmType3(uint64_t Imm) {
  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
         ((Imm & 0xff00ffffff00ffffULL) == 0);
}

static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) {
  return (Imm & 0xff0000ULL) >> 16;
}

static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) {
  uint64_t EncVal = Imm;
  return (EncVal << 48) | (EncVal << 16);
}

// abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00
static inline bool isAdvSIMDModImmType4(uint64_t Imm) {
  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
         ((Imm & 0x00ffffff00ffffffULL) == 0);
}

static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) {
  return (Imm & 0xff000000ULL) >> 24;
}

static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) {
  uint64_t EncVal = Imm;
  return (EncVal << 56) | (EncVal << 24);
}

// 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh
static inline bool isAdvSIMDModImmType5(uint64_t Imm) {
  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
         (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) &&
         ((Imm & 0xff00ff00ff00ff00ULL) == 0);
}

static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) {
  return (Imm & 0xffULL);
}

static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) {
  uint64_t EncVal = Imm;
  return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal;
}

// abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00
static inline bool isAdvSIMDModImmType6(uint64_t Imm) {
  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
         (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) &&
         ((Imm & 0x00ff00ff00ff00ffULL) == 0);
}

static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) {
  return (Imm & 0xff00ULL) >> 8;
}

static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) {
  uint64_t EncVal = Imm;
  return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8);
}

// 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF
static inline bool isAdvSIMDModImmType7(uint64_t Imm) {
  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
         ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL);
}

static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) {
  return (Imm & 0xff00ULL) >> 8;
}

static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) {
  uint64_t EncVal = Imm;
  return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL;
}

// 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF
static inline bool isAdvSIMDModImmType8(uint64_t Imm) {
  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
         ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL);
}

static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) {
  uint64_t EncVal = Imm;
  return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL;
}

static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) {
  return (Imm & 0x00ff0000ULL) >> 16;
}

// abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh
static inline bool isAdvSIMDModImmType9(uint64_t Imm) {
  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
         ((Imm >> 48) == (Imm & 0x0000ffffULL)) &&
         ((Imm >> 56) == (Imm & 0x000000ffULL));
}

static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) {
  return (Imm & 0xffULL);
}

static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) {
  uint64_t EncVal = Imm;
  EncVal |= (EncVal << 8);
  EncVal |= (EncVal << 16);
  EncVal |= (EncVal << 32);
  return EncVal;
}

// aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
// cmode: 1110, op: 1
static inline bool isAdvSIMDModImmType10(uint64_t Imm) {
  uint64_t ByteA = Imm & 0xff00000000000000ULL;
  uint64_t ByteB = Imm & 0x00ff000000000000ULL;
  uint64_t ByteC = Imm & 0x0000ff0000000000ULL;
  uint64_t ByteD = Imm & 0x000000ff00000000ULL;
  uint64_t ByteE = Imm & 0x00000000ff000000ULL;
  uint64_t ByteF = Imm & 0x0000000000ff0000ULL;
  uint64_t ByteG = Imm & 0x000000000000ff00ULL;
  uint64_t ByteH = Imm & 0x00000000000000ffULL;

  return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) &&
         (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) &&
         (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) &&
         (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) &&
         (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) &&
         (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) &&
         (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) &&
         (ByteH == 0ULL || ByteH == 0x00000000000000ffULL);
}

static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) {
  uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0;
  uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0;
  uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0;
  uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0;
  uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0;
  uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0;
  uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0;
  uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0;

  uint8_t EncVal = BitA;
  EncVal <<= 1;
  EncVal |= BitB;
  EncVal <<= 1;
  EncVal |= BitC;
  EncVal <<= 1;
  EncVal |= BitD;
  EncVal <<= 1;
  EncVal |= BitE;
  EncVal <<= 1;
  EncVal |= BitF;
  EncVal <<= 1;
  EncVal |= BitG;
  EncVal <<= 1;
  EncVal |= BitH;
  return EncVal;
}

static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) {
  uint64_t EncVal = 0;
  if (Imm & 0x80) EncVal |= 0xff00000000000000ULL;
  if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL;
  if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL;
  if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL;
  if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL;
  if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL;
  if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL;
  if (Imm & 0x01) EncVal |= 0x00000000000000ffULL;
  return EncVal;
}

// aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00
static inline bool isAdvSIMDModImmType11(uint64_t Imm) {
  uint64_t BString = (Imm & 0x7E000000ULL) >> 25;
  return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
         (BString == 0x1f || BString == 0x20) &&
         ((Imm & 0x0007ffff0007ffffULL) == 0);
}

static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) {
  uint8_t BitA = (Imm & 0x80000000ULL) != 0;
  uint8_t BitB = (Imm & 0x20000000ULL) != 0;
  uint8_t BitC = (Imm & 0x01000000ULL) != 0;
  uint8_t BitD = (Imm & 0x00800000ULL) != 0;
  uint8_t BitE = (Imm & 0x00400000ULL) != 0;
  uint8_t BitF = (Imm & 0x00200000ULL) != 0;
  uint8_t BitG = (Imm & 0x00100000ULL) != 0;
  uint8_t BitH = (Imm & 0x00080000ULL) != 0;

  uint8_t EncVal = BitA;
  EncVal <<= 1;
  EncVal |= BitB;
  EncVal <<= 1;
  EncVal |= BitC;
  EncVal <<= 1;
  EncVal |= BitD;
  EncVal <<= 1;
  EncVal |= BitE;
  EncVal <<= 1;
  EncVal |= BitF;
  EncVal <<= 1;
  EncVal |= BitG;
  EncVal <<= 1;
  EncVal |= BitH;
  return EncVal;
}

static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) {
  uint64_t EncVal = 0;
  if (Imm & 0x80) EncVal |= 0x80000000ULL;
  if (Imm & 0x40) EncVal |= 0x3e000000ULL;
  else            EncVal |= 0x40000000ULL;
  if (Imm & 0x20) EncVal |= 0x01000000ULL;
  if (Imm & 0x10) EncVal |= 0x00800000ULL;
  if (Imm & 0x08) EncVal |= 0x00400000ULL;
  if (Imm & 0x04) EncVal |= 0x00200000ULL;
  if (Imm & 0x02) EncVal |= 0x00100000ULL;
  if (Imm & 0x01) EncVal |= 0x00080000ULL;
  return (EncVal << 32) | EncVal;
}

// aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00
static inline bool isAdvSIMDModImmType12(uint64_t Imm) {
  uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54;
  return ((BString == 0xff || BString == 0x100) &&
         ((Imm & 0x0000ffffffffffffULL) == 0));
}

static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) {
  uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0;
  uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0;
  uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0;
  uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0;
  uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0;
  uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0;
  uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0;
  uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0;

  uint8_t EncVal = BitA;
  EncVal <<= 1;
  EncVal |= BitB;
  EncVal <<= 1;
  EncVal |= BitC;
  EncVal <<= 1;
  EncVal |= BitD;
  EncVal <<= 1;
  EncVal |= BitE;
  EncVal <<= 1;
  EncVal |= BitF;
  EncVal <<= 1;
  EncVal |= BitG;
  EncVal <<= 1;
  EncVal |= BitH;
  return EncVal;
}

static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) {
  uint64_t EncVal = 0;
  if (Imm & 0x80) EncVal |= 0x8000000000000000ULL;
  if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL;
  else            EncVal |= 0x4000000000000000ULL;
  if (Imm & 0x20) EncVal |= 0x0020000000000000ULL;
  if (Imm & 0x10) EncVal |= 0x0010000000000000ULL;
  if (Imm & 0x08) EncVal |= 0x0008000000000000ULL;
  if (Imm & 0x04) EncVal |= 0x0004000000000000ULL;
  if (Imm & 0x02) EncVal |= 0x0002000000000000ULL;
  if (Imm & 0x01) EncVal |= 0x0001000000000000ULL;
  return (EncVal << 32) | EncVal;
}

/// Returns true if Imm is the concatenation of a repeating pattern of type T.
template <typename T>
static inline bool isSVEMaskOfIdenticalElements(int64_t Imm) {
  auto Parts = bit_cast<std::array<T, sizeof(int64_t) / sizeof(T)>>(Imm);
  return all_of(Parts, [&](T Elem) { return Elem == Parts[0]; });
}

/// Returns true if Imm is valid for CPY/DUP.
template <typename T>
static inline bool isSVECpyImm(int64_t Imm) {
  bool IsImm8 = int8_t(Imm) == Imm;
  bool IsImm16 = int16_t(Imm & ~0xff) == Imm;

  if (std::is_same<int8_t, typename std::make_signed<T>::type>::value)
    return IsImm8 || uint8_t(Imm) == Imm;

  if (std::is_same<int16_t, typename std::make_signed<T>::type>::value)
    return IsImm8 || IsImm16 || uint16_t(Imm & ~0xff) == Imm;

  return IsImm8 || IsImm16;
}

/// Returns true if Imm is valid for ADD/SUB.
template <typename T>
static inline bool isSVEAddSubImm(int64_t Imm) {
  bool IsInt8t =
      std::is_same<int8_t, typename std::make_signed<T>::type>::value;
  return uint8_t(Imm) == Imm || (!IsInt8t && uint16_t(Imm & ~0xff) == Imm);
}

/// Return true if Imm is valid for DUPM and has no single CPY/DUP equivalent.
static inline bool isSVEMoveMaskPreferredLogicalImmediate(int64_t Imm) {
  if (isSVECpyImm<int64_t>(Imm))
    return false;

  auto S = bit_cast<std::array<int32_t, 2>>(Imm);
  auto H = bit_cast<std::array<int16_t, 4>>(Imm);
  auto B = bit_cast<std::array<int8_t, 8>>(Imm);

  if (isSVEMaskOfIdenticalElements<int32_t>(Imm) && isSVECpyImm<int32_t>(S[0]))
    return false;
  if (isSVEMaskOfIdenticalElements<int16_t>(Imm) && isSVECpyImm<int16_t>(H[0]))
    return false;
  if (isSVEMaskOfIdenticalElements<int8_t>(Imm) && isSVECpyImm<int8_t>(B[0]))
    return false;
  return isLogicalImmediate(Imm, 64);
}

inline static bool isAnyMOVZMovAlias(uint64_t Value, int RegWidth) {
  for (int Shift = 0; Shift <= RegWidth - 16; Shift += 16)
    if ((Value & ~(0xffffULL << Shift)) == 0)
      return true;

  return false;
}

inline static bool isMOVZMovAlias(uint64_t Value, int Shift, int RegWidth) {
  if (RegWidth == 32)
    Value &= 0xffffffffULL;

  // "lsl #0" takes precedence: in practice this only affects "#0, lsl #0".
  if (Value == 0 && Shift != 0)
    return false;

  return (Value & ~(0xffffULL << Shift)) == 0;
}

inline static bool isMOVNMovAlias(uint64_t Value, int Shift, int RegWidth) {
  // MOVZ takes precedence over MOVN.
  if (isAnyMOVZMovAlias(Value, RegWidth))
    return false;

  Value = ~Value;
  if (RegWidth == 32)
    Value &= 0xffffffffULL;

  return isMOVZMovAlias(Value, Shift, RegWidth);
}

inline static bool isAnyMOVWMovAlias(uint64_t Value, int RegWidth) {
  if (isAnyMOVZMovAlias(Value, RegWidth))
    return true;

  // It's not a MOVZ, but it might be a MOVN.
  Value = ~Value;
  if (RegWidth == 32)
    Value &= 0xffffffffULL;

  return isAnyMOVZMovAlias(Value, RegWidth);
}

} // end namespace AArch64_AM

} // end namespace llvm

#endif