isl_sample.c
36.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
/*
* Copyright 2008-2009 Katholieke Universiteit Leuven
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, K.U.Leuven, Departement
* Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
*/
#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include "isl_sample.h"
#include <isl/vec.h>
#include <isl/mat.h>
#include <isl_seq.h>
#include "isl_equalities.h"
#include "isl_tab.h"
#include "isl_basis_reduction.h"
#include <isl_factorization.h>
#include <isl_point_private.h>
#include <isl_options_private.h>
#include <isl_vec_private.h>
#include <bset_from_bmap.c>
#include <set_to_map.c>
static __isl_give isl_vec *empty_sample(__isl_take isl_basic_set *bset)
{
struct isl_vec *vec;
vec = isl_vec_alloc(bset->ctx, 0);
isl_basic_set_free(bset);
return vec;
}
/* Construct a zero sample of the same dimension as bset.
* As a special case, if bset is zero-dimensional, this
* function creates a zero-dimensional sample point.
*/
static __isl_give isl_vec *zero_sample(__isl_take isl_basic_set *bset)
{
unsigned dim;
struct isl_vec *sample;
dim = isl_basic_set_total_dim(bset);
sample = isl_vec_alloc(bset->ctx, 1 + dim);
if (sample) {
isl_int_set_si(sample->el[0], 1);
isl_seq_clr(sample->el + 1, dim);
}
isl_basic_set_free(bset);
return sample;
}
static __isl_give isl_vec *interval_sample(__isl_take isl_basic_set *bset)
{
int i;
isl_int t;
struct isl_vec *sample;
bset = isl_basic_set_simplify(bset);
if (!bset)
return NULL;
if (isl_basic_set_plain_is_empty(bset))
return empty_sample(bset);
if (bset->n_eq == 0 && bset->n_ineq == 0)
return zero_sample(bset);
sample = isl_vec_alloc(bset->ctx, 2);
if (!sample)
goto error;
if (!bset)
return NULL;
isl_int_set_si(sample->block.data[0], 1);
if (bset->n_eq > 0) {
isl_assert(bset->ctx, bset->n_eq == 1, goto error);
isl_assert(bset->ctx, bset->n_ineq == 0, goto error);
if (isl_int_is_one(bset->eq[0][1]))
isl_int_neg(sample->el[1], bset->eq[0][0]);
else {
isl_assert(bset->ctx, isl_int_is_negone(bset->eq[0][1]),
goto error);
isl_int_set(sample->el[1], bset->eq[0][0]);
}
isl_basic_set_free(bset);
return sample;
}
isl_int_init(t);
if (isl_int_is_one(bset->ineq[0][1]))
isl_int_neg(sample->block.data[1], bset->ineq[0][0]);
else
isl_int_set(sample->block.data[1], bset->ineq[0][0]);
for (i = 1; i < bset->n_ineq; ++i) {
isl_seq_inner_product(sample->block.data,
bset->ineq[i], 2, &t);
if (isl_int_is_neg(t))
break;
}
isl_int_clear(t);
if (i < bset->n_ineq) {
isl_vec_free(sample);
return empty_sample(bset);
}
isl_basic_set_free(bset);
return sample;
error:
isl_basic_set_free(bset);
isl_vec_free(sample);
return NULL;
}
/* Find a sample integer point, if any, in bset, which is known
* to have equalities. If bset contains no integer points, then
* return a zero-length vector.
* We simply remove the known equalities, compute a sample
* in the resulting bset, using the specified recurse function,
* and then transform the sample back to the original space.
*/
static __isl_give isl_vec *sample_eq(__isl_take isl_basic_set *bset,
__isl_give isl_vec *(*recurse)(__isl_take isl_basic_set *))
{
struct isl_mat *T;
struct isl_vec *sample;
if (!bset)
return NULL;
bset = isl_basic_set_remove_equalities(bset, &T, NULL);
sample = recurse(bset);
if (!sample || sample->size == 0)
isl_mat_free(T);
else
sample = isl_mat_vec_product(T, sample);
return sample;
}
/* Return a matrix containing the equalities of the tableau
* in constraint form. The tableau is assumed to have
* an associated bset that has been kept up-to-date.
*/
static struct isl_mat *tab_equalities(struct isl_tab *tab)
{
int i, j;
int n_eq;
struct isl_mat *eq;
struct isl_basic_set *bset;
if (!tab)
return NULL;
bset = isl_tab_peek_bset(tab);
isl_assert(tab->mat->ctx, bset, return NULL);
n_eq = tab->n_var - tab->n_col + tab->n_dead;
if (tab->empty || n_eq == 0)
return isl_mat_alloc(tab->mat->ctx, 0, tab->n_var);
if (n_eq == tab->n_var)
return isl_mat_identity(tab->mat->ctx, tab->n_var);
eq = isl_mat_alloc(tab->mat->ctx, n_eq, tab->n_var);
if (!eq)
return NULL;
for (i = 0, j = 0; i < tab->n_con; ++i) {
if (tab->con[i].is_row)
continue;
if (tab->con[i].index >= 0 && tab->con[i].index >= tab->n_dead)
continue;
if (i < bset->n_eq)
isl_seq_cpy(eq->row[j], bset->eq[i] + 1, tab->n_var);
else
isl_seq_cpy(eq->row[j],
bset->ineq[i - bset->n_eq] + 1, tab->n_var);
++j;
}
isl_assert(bset->ctx, j == n_eq, goto error);
return eq;
error:
isl_mat_free(eq);
return NULL;
}
/* Compute and return an initial basis for the bounded tableau "tab".
*
* If the tableau is either full-dimensional or zero-dimensional,
* the we simply return an identity matrix.
* Otherwise, we construct a basis whose first directions correspond
* to equalities.
*/
static struct isl_mat *initial_basis(struct isl_tab *tab)
{
int n_eq;
struct isl_mat *eq;
struct isl_mat *Q;
tab->n_unbounded = 0;
tab->n_zero = n_eq = tab->n_var - tab->n_col + tab->n_dead;
if (tab->empty || n_eq == 0 || n_eq == tab->n_var)
return isl_mat_identity(tab->mat->ctx, 1 + tab->n_var);
eq = tab_equalities(tab);
eq = isl_mat_left_hermite(eq, 0, NULL, &Q);
if (!eq)
return NULL;
isl_mat_free(eq);
Q = isl_mat_lin_to_aff(Q);
return Q;
}
/* Compute the minimum of the current ("level") basis row over "tab"
* and store the result in position "level" of "min".
*
* This function assumes that at least one more row and at least
* one more element in the constraint array are available in the tableau.
*/
static enum isl_lp_result compute_min(isl_ctx *ctx, struct isl_tab *tab,
__isl_keep isl_vec *min, int level)
{
return isl_tab_min(tab, tab->basis->row[1 + level],
ctx->one, &min->el[level], NULL, 0);
}
/* Compute the maximum of the current ("level") basis row over "tab"
* and store the result in position "level" of "max".
*
* This function assumes that at least one more row and at least
* one more element in the constraint array are available in the tableau.
*/
static enum isl_lp_result compute_max(isl_ctx *ctx, struct isl_tab *tab,
__isl_keep isl_vec *max, int level)
{
enum isl_lp_result res;
unsigned dim = tab->n_var;
isl_seq_neg(tab->basis->row[1 + level] + 1,
tab->basis->row[1 + level] + 1, dim);
res = isl_tab_min(tab, tab->basis->row[1 + level],
ctx->one, &max->el[level], NULL, 0);
isl_seq_neg(tab->basis->row[1 + level] + 1,
tab->basis->row[1 + level] + 1, dim);
isl_int_neg(max->el[level], max->el[level]);
return res;
}
/* Perform a greedy search for an integer point in the set represented
* by "tab", given that the minimal rational value (rounded up to the
* nearest integer) at "level" is smaller than the maximal rational
* value (rounded down to the nearest integer).
*
* Return 1 if we have found an integer point (if tab->n_unbounded > 0
* then we may have only found integer values for the bounded dimensions
* and it is the responsibility of the caller to extend this solution
* to the unbounded dimensions).
* Return 0 if greedy search did not result in a solution.
* Return -1 if some error occurred.
*
* We assign a value half-way between the minimum and the maximum
* to the current dimension and check if the minimal value of the
* next dimension is still smaller than (or equal) to the maximal value.
* We continue this process until either
* - the minimal value (rounded up) is greater than the maximal value
* (rounded down). In this case, greedy search has failed.
* - we have exhausted all bounded dimensions, meaning that we have
* found a solution.
* - the sample value of the tableau is integral.
* - some error has occurred.
*/
static int greedy_search(isl_ctx *ctx, struct isl_tab *tab,
__isl_keep isl_vec *min, __isl_keep isl_vec *max, int level)
{
struct isl_tab_undo *snap;
enum isl_lp_result res;
snap = isl_tab_snap(tab);
do {
isl_int_add(tab->basis->row[1 + level][0],
min->el[level], max->el[level]);
isl_int_fdiv_q_ui(tab->basis->row[1 + level][0],
tab->basis->row[1 + level][0], 2);
isl_int_neg(tab->basis->row[1 + level][0],
tab->basis->row[1 + level][0]);
if (isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]) < 0)
return -1;
isl_int_set_si(tab->basis->row[1 + level][0], 0);
if (++level >= tab->n_var - tab->n_unbounded)
return 1;
if (isl_tab_sample_is_integer(tab))
return 1;
res = compute_min(ctx, tab, min, level);
if (res == isl_lp_error)
return -1;
if (res != isl_lp_ok)
isl_die(ctx, isl_error_internal,
"expecting bounded rational solution",
return -1);
res = compute_max(ctx, tab, max, level);
if (res == isl_lp_error)
return -1;
if (res != isl_lp_ok)
isl_die(ctx, isl_error_internal,
"expecting bounded rational solution",
return -1);
} while (isl_int_le(min->el[level], max->el[level]));
if (isl_tab_rollback(tab, snap) < 0)
return -1;
return 0;
}
/* Given a tableau representing a set, find and return
* an integer point in the set, if there is any.
*
* We perform a depth first search
* for an integer point, by scanning all possible values in the range
* attained by a basis vector, where an initial basis may have been set
* by the calling function. Otherwise an initial basis that exploits
* the equalities in the tableau is created.
* tab->n_zero is currently ignored and is clobbered by this function.
*
* The tableau is allowed to have unbounded direction, but then
* the calling function needs to set an initial basis, with the
* unbounded directions last and with tab->n_unbounded set
* to the number of unbounded directions.
* Furthermore, the calling functions needs to add shifted copies
* of all constraints involving unbounded directions to ensure
* that any feasible rational value in these directions can be rounded
* up to yield a feasible integer value.
* In particular, let B define the given basis x' = B x
* and let T be the inverse of B, i.e., X = T x'.
* Let a x + c >= 0 be a constraint of the set represented by the tableau,
* or a T x' + c >= 0 in terms of the given basis. Assume that
* the bounded directions have an integer value, then we can safely
* round up the values for the unbounded directions if we make sure
* that x' not only satisfies the original constraint, but also
* the constraint "a T x' + c + s >= 0" with s the sum of all
* negative values in the last n_unbounded entries of "a T".
* The calling function therefore needs to add the constraint
* a x + c + s >= 0. The current function then scans the first
* directions for an integer value and once those have been found,
* it can compute "T ceil(B x)" to yield an integer point in the set.
* Note that during the search, the first rows of B may be changed
* by a basis reduction, but the last n_unbounded rows of B remain
* unaltered and are also not mixed into the first rows.
*
* The search is implemented iteratively. "level" identifies the current
* basis vector. "init" is true if we want the first value at the current
* level and false if we want the next value.
*
* At the start of each level, we first check if we can find a solution
* using greedy search. If not, we continue with the exhaustive search.
*
* The initial basis is the identity matrix. If the range in some direction
* contains more than one integer value, we perform basis reduction based
* on the value of ctx->opt->gbr
* - ISL_GBR_NEVER: never perform basis reduction
* - ISL_GBR_ONCE: only perform basis reduction the first
* time such a range is encountered
* - ISL_GBR_ALWAYS: always perform basis reduction when
* such a range is encountered
*
* When ctx->opt->gbr is set to ISL_GBR_ALWAYS, then we allow the basis
* reduction computation to return early. That is, as soon as it
* finds a reasonable first direction.
*/
struct isl_vec *isl_tab_sample(struct isl_tab *tab)
{
unsigned dim;
unsigned gbr;
struct isl_ctx *ctx;
struct isl_vec *sample;
struct isl_vec *min;
struct isl_vec *max;
enum isl_lp_result res;
int level;
int init;
int reduced;
struct isl_tab_undo **snap;
if (!tab)
return NULL;
if (tab->empty)
return isl_vec_alloc(tab->mat->ctx, 0);
if (!tab->basis)
tab->basis = initial_basis(tab);
if (!tab->basis)
return NULL;
isl_assert(tab->mat->ctx, tab->basis->n_row == tab->n_var + 1,
return NULL);
isl_assert(tab->mat->ctx, tab->basis->n_col == tab->n_var + 1,
return NULL);
ctx = tab->mat->ctx;
dim = tab->n_var;
gbr = ctx->opt->gbr;
if (tab->n_unbounded == tab->n_var) {
sample = isl_tab_get_sample_value(tab);
sample = isl_mat_vec_product(isl_mat_copy(tab->basis), sample);
sample = isl_vec_ceil(sample);
sample = isl_mat_vec_inverse_product(isl_mat_copy(tab->basis),
sample);
return sample;
}
if (isl_tab_extend_cons(tab, dim + 1) < 0)
return NULL;
min = isl_vec_alloc(ctx, dim);
max = isl_vec_alloc(ctx, dim);
snap = isl_alloc_array(ctx, struct isl_tab_undo *, dim);
if (!min || !max || !snap)
goto error;
level = 0;
init = 1;
reduced = 0;
while (level >= 0) {
if (init) {
int choice;
res = compute_min(ctx, tab, min, level);
if (res == isl_lp_error)
goto error;
if (res != isl_lp_ok)
isl_die(ctx, isl_error_internal,
"expecting bounded rational solution",
goto error);
if (isl_tab_sample_is_integer(tab))
break;
res = compute_max(ctx, tab, max, level);
if (res == isl_lp_error)
goto error;
if (res != isl_lp_ok)
isl_die(ctx, isl_error_internal,
"expecting bounded rational solution",
goto error);
if (isl_tab_sample_is_integer(tab))
break;
choice = isl_int_lt(min->el[level], max->el[level]);
if (choice) {
int g;
g = greedy_search(ctx, tab, min, max, level);
if (g < 0)
goto error;
if (g)
break;
}
if (!reduced && choice &&
ctx->opt->gbr != ISL_GBR_NEVER) {
unsigned gbr_only_first;
if (ctx->opt->gbr == ISL_GBR_ONCE)
ctx->opt->gbr = ISL_GBR_NEVER;
tab->n_zero = level;
gbr_only_first = ctx->opt->gbr_only_first;
ctx->opt->gbr_only_first =
ctx->opt->gbr == ISL_GBR_ALWAYS;
tab = isl_tab_compute_reduced_basis(tab);
ctx->opt->gbr_only_first = gbr_only_first;
if (!tab || !tab->basis)
goto error;
reduced = 1;
continue;
}
reduced = 0;
snap[level] = isl_tab_snap(tab);
} else
isl_int_add_ui(min->el[level], min->el[level], 1);
if (isl_int_gt(min->el[level], max->el[level])) {
level--;
init = 0;
if (level >= 0)
if (isl_tab_rollback(tab, snap[level]) < 0)
goto error;
continue;
}
isl_int_neg(tab->basis->row[1 + level][0], min->el[level]);
if (isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]) < 0)
goto error;
isl_int_set_si(tab->basis->row[1 + level][0], 0);
if (level + tab->n_unbounded < dim - 1) {
++level;
init = 1;
continue;
}
break;
}
if (level >= 0) {
sample = isl_tab_get_sample_value(tab);
if (!sample)
goto error;
if (tab->n_unbounded && !isl_int_is_one(sample->el[0])) {
sample = isl_mat_vec_product(isl_mat_copy(tab->basis),
sample);
sample = isl_vec_ceil(sample);
sample = isl_mat_vec_inverse_product(
isl_mat_copy(tab->basis), sample);
}
} else
sample = isl_vec_alloc(ctx, 0);
ctx->opt->gbr = gbr;
isl_vec_free(min);
isl_vec_free(max);
free(snap);
return sample;
error:
ctx->opt->gbr = gbr;
isl_vec_free(min);
isl_vec_free(max);
free(snap);
return NULL;
}
static __isl_give isl_vec *sample_bounded(__isl_take isl_basic_set *bset);
/* Compute a sample point of the given basic set, based on the given,
* non-trivial factorization.
*/
static __isl_give isl_vec *factored_sample(__isl_take isl_basic_set *bset,
__isl_take isl_factorizer *f)
{
int i, n;
isl_vec *sample = NULL;
isl_ctx *ctx;
unsigned nparam;
unsigned nvar;
ctx = isl_basic_set_get_ctx(bset);
if (!ctx)
goto error;
nparam = isl_basic_set_dim(bset, isl_dim_param);
nvar = isl_basic_set_dim(bset, isl_dim_set);
sample = isl_vec_alloc(ctx, 1 + isl_basic_set_total_dim(bset));
if (!sample)
goto error;
isl_int_set_si(sample->el[0], 1);
bset = isl_morph_basic_set(isl_morph_copy(f->morph), bset);
for (i = 0, n = 0; i < f->n_group; ++i) {
isl_basic_set *bset_i;
isl_vec *sample_i;
bset_i = isl_basic_set_copy(bset);
bset_i = isl_basic_set_drop_constraints_involving(bset_i,
nparam + n + f->len[i], nvar - n - f->len[i]);
bset_i = isl_basic_set_drop_constraints_involving(bset_i,
nparam, n);
bset_i = isl_basic_set_drop(bset_i, isl_dim_set,
n + f->len[i], nvar - n - f->len[i]);
bset_i = isl_basic_set_drop(bset_i, isl_dim_set, 0, n);
sample_i = sample_bounded(bset_i);
if (!sample_i)
goto error;
if (sample_i->size == 0) {
isl_basic_set_free(bset);
isl_factorizer_free(f);
isl_vec_free(sample);
return sample_i;
}
isl_seq_cpy(sample->el + 1 + nparam + n,
sample_i->el + 1, f->len[i]);
isl_vec_free(sample_i);
n += f->len[i];
}
f->morph = isl_morph_inverse(f->morph);
sample = isl_morph_vec(isl_morph_copy(f->morph), sample);
isl_basic_set_free(bset);
isl_factorizer_free(f);
return sample;
error:
isl_basic_set_free(bset);
isl_factorizer_free(f);
isl_vec_free(sample);
return NULL;
}
/* Given a basic set that is known to be bounded, find and return
* an integer point in the basic set, if there is any.
*
* After handling some trivial cases, we construct a tableau
* and then use isl_tab_sample to find a sample, passing it
* the identity matrix as initial basis.
*/
static __isl_give isl_vec *sample_bounded(__isl_take isl_basic_set *bset)
{
unsigned dim;
struct isl_vec *sample;
struct isl_tab *tab = NULL;
isl_factorizer *f;
if (!bset)
return NULL;
if (isl_basic_set_plain_is_empty(bset))
return empty_sample(bset);
dim = isl_basic_set_total_dim(bset);
if (dim == 0)
return zero_sample(bset);
if (dim == 1)
return interval_sample(bset);
if (bset->n_eq > 0)
return sample_eq(bset, sample_bounded);
f = isl_basic_set_factorizer(bset);
if (!f)
goto error;
if (f->n_group != 0)
return factored_sample(bset, f);
isl_factorizer_free(f);
tab = isl_tab_from_basic_set(bset, 1);
if (tab && tab->empty) {
isl_tab_free(tab);
ISL_F_SET(bset, ISL_BASIC_SET_EMPTY);
sample = isl_vec_alloc(isl_basic_set_get_ctx(bset), 0);
isl_basic_set_free(bset);
return sample;
}
if (!ISL_F_ISSET(bset, ISL_BASIC_SET_NO_IMPLICIT))
if (isl_tab_detect_implicit_equalities(tab) < 0)
goto error;
sample = isl_tab_sample(tab);
if (!sample)
goto error;
if (sample->size > 0) {
isl_vec_free(bset->sample);
bset->sample = isl_vec_copy(sample);
}
isl_basic_set_free(bset);
isl_tab_free(tab);
return sample;
error:
isl_basic_set_free(bset);
isl_tab_free(tab);
return NULL;
}
/* Given a basic set "bset" and a value "sample" for the first coordinates
* of bset, plug in these values and drop the corresponding coordinates.
*
* We do this by computing the preimage of the transformation
*
* [ 1 0 ]
* x = [ s 0 ] x'
* [ 0 I ]
*
* where [1 s] is the sample value and I is the identity matrix of the
* appropriate dimension.
*/
static __isl_give isl_basic_set *plug_in(__isl_take isl_basic_set *bset,
__isl_take isl_vec *sample)
{
int i;
unsigned total;
struct isl_mat *T;
if (!bset || !sample)
goto error;
total = isl_basic_set_total_dim(bset);
T = isl_mat_alloc(bset->ctx, 1 + total, 1 + total - (sample->size - 1));
if (!T)
goto error;
for (i = 0; i < sample->size; ++i) {
isl_int_set(T->row[i][0], sample->el[i]);
isl_seq_clr(T->row[i] + 1, T->n_col - 1);
}
for (i = 0; i < T->n_col - 1; ++i) {
isl_seq_clr(T->row[sample->size + i], T->n_col);
isl_int_set_si(T->row[sample->size + i][1 + i], 1);
}
isl_vec_free(sample);
bset = isl_basic_set_preimage(bset, T);
return bset;
error:
isl_basic_set_free(bset);
isl_vec_free(sample);
return NULL;
}
/* Given a basic set "bset", return any (possibly non-integer) point
* in the basic set.
*/
static __isl_give isl_vec *rational_sample(__isl_take isl_basic_set *bset)
{
struct isl_tab *tab;
struct isl_vec *sample;
if (!bset)
return NULL;
tab = isl_tab_from_basic_set(bset, 0);
sample = isl_tab_get_sample_value(tab);
isl_tab_free(tab);
isl_basic_set_free(bset);
return sample;
}
/* Given a linear cone "cone" and a rational point "vec",
* construct a polyhedron with shifted copies of the constraints in "cone",
* i.e., a polyhedron with "cone" as its recession cone, such that each
* point x in this polyhedron is such that the unit box positioned at x
* lies entirely inside the affine cone 'vec + cone'.
* Any rational point in this polyhedron may therefore be rounded up
* to yield an integer point that lies inside said affine cone.
*
* Denote the constraints of cone by "<a_i, x> >= 0" and the rational
* point "vec" by v/d.
* Let b_i = <a_i, v>. Then the affine cone 'vec + cone' is given
* by <a_i, x> - b/d >= 0.
* The polyhedron <a_i, x> - ceil{b/d} >= 0 is a subset of this affine cone.
* We prefer this polyhedron over the actual affine cone because it doesn't
* require a scaling of the constraints.
* If each of the vertices of the unit cube positioned at x lies inside
* this polyhedron, then the whole unit cube at x lies inside the affine cone.
* We therefore impose that x' = x + \sum e_i, for any selection of unit
* vectors lies inside the polyhedron, i.e.,
*
* <a_i, x'> - ceil{b/d} = <a_i, x> + sum a_i - ceil{b/d} >= 0
*
* The most stringent of these constraints is the one that selects
* all negative a_i, so the polyhedron we are looking for has constraints
*
* <a_i, x> + sum_{a_i < 0} a_i - ceil{b/d} >= 0
*
* Note that if cone were known to have only non-negative rays
* (which can be accomplished by a unimodular transformation),
* then we would only have to check the points x' = x + e_i
* and we only have to add the smallest negative a_i (if any)
* instead of the sum of all negative a_i.
*/
static __isl_give isl_basic_set *shift_cone(__isl_take isl_basic_set *cone,
__isl_take isl_vec *vec)
{
int i, j, k;
unsigned total;
struct isl_basic_set *shift = NULL;
if (!cone || !vec)
goto error;
isl_assert(cone->ctx, cone->n_eq == 0, goto error);
total = isl_basic_set_total_dim(cone);
shift = isl_basic_set_alloc_space(isl_basic_set_get_space(cone),
0, 0, cone->n_ineq);
for (i = 0; i < cone->n_ineq; ++i) {
k = isl_basic_set_alloc_inequality(shift);
if (k < 0)
goto error;
isl_seq_cpy(shift->ineq[k] + 1, cone->ineq[i] + 1, total);
isl_seq_inner_product(shift->ineq[k] + 1, vec->el + 1, total,
&shift->ineq[k][0]);
isl_int_cdiv_q(shift->ineq[k][0],
shift->ineq[k][0], vec->el[0]);
isl_int_neg(shift->ineq[k][0], shift->ineq[k][0]);
for (j = 0; j < total; ++j) {
if (isl_int_is_nonneg(shift->ineq[k][1 + j]))
continue;
isl_int_add(shift->ineq[k][0],
shift->ineq[k][0], shift->ineq[k][1 + j]);
}
}
isl_basic_set_free(cone);
isl_vec_free(vec);
return isl_basic_set_finalize(shift);
error:
isl_basic_set_free(shift);
isl_basic_set_free(cone);
isl_vec_free(vec);
return NULL;
}
/* Given a rational point vec in a (transformed) basic set,
* such that cone is the recession cone of the original basic set,
* "round up" the rational point to an integer point.
*
* We first check if the rational point just happens to be integer.
* If not, we transform the cone in the same way as the basic set,
* pick a point x in this cone shifted to the rational point such that
* the whole unit cube at x is also inside this affine cone.
* Then we simply round up the coordinates of x and return the
* resulting integer point.
*/
static __isl_give isl_vec *round_up_in_cone(__isl_take isl_vec *vec,
__isl_take isl_basic_set *cone, __isl_take isl_mat *U)
{
unsigned total;
if (!vec || !cone || !U)
goto error;
isl_assert(vec->ctx, vec->size != 0, goto error);
if (isl_int_is_one(vec->el[0])) {
isl_mat_free(U);
isl_basic_set_free(cone);
return vec;
}
total = isl_basic_set_total_dim(cone);
cone = isl_basic_set_preimage(cone, U);
cone = isl_basic_set_remove_dims(cone, isl_dim_set,
0, total - (vec->size - 1));
cone = shift_cone(cone, vec);
vec = rational_sample(cone);
vec = isl_vec_ceil(vec);
return vec;
error:
isl_mat_free(U);
isl_vec_free(vec);
isl_basic_set_free(cone);
return NULL;
}
/* Concatenate two integer vectors, i.e., two vectors with denominator
* (stored in element 0) equal to 1.
*/
static __isl_give isl_vec *vec_concat(__isl_take isl_vec *vec1,
__isl_take isl_vec *vec2)
{
struct isl_vec *vec;
if (!vec1 || !vec2)
goto error;
isl_assert(vec1->ctx, vec1->size > 0, goto error);
isl_assert(vec2->ctx, vec2->size > 0, goto error);
isl_assert(vec1->ctx, isl_int_is_one(vec1->el[0]), goto error);
isl_assert(vec2->ctx, isl_int_is_one(vec2->el[0]), goto error);
vec = isl_vec_alloc(vec1->ctx, vec1->size + vec2->size - 1);
if (!vec)
goto error;
isl_seq_cpy(vec->el, vec1->el, vec1->size);
isl_seq_cpy(vec->el + vec1->size, vec2->el + 1, vec2->size - 1);
isl_vec_free(vec1);
isl_vec_free(vec2);
return vec;
error:
isl_vec_free(vec1);
isl_vec_free(vec2);
return NULL;
}
/* Give a basic set "bset" with recession cone "cone", compute and
* return an integer point in bset, if any.
*
* If the recession cone is full-dimensional, then we know that
* bset contains an infinite number of integer points and it is
* fairly easy to pick one of them.
* If the recession cone is not full-dimensional, then we first
* transform bset such that the bounded directions appear as
* the first dimensions of the transformed basic set.
* We do this by using a unimodular transformation that transforms
* the equalities in the recession cone to equalities on the first
* dimensions.
*
* The transformed set is then projected onto its bounded dimensions.
* Note that to compute this projection, we can simply drop all constraints
* involving any of the unbounded dimensions since these constraints
* cannot be combined to produce a constraint on the bounded dimensions.
* To see this, assume that there is such a combination of constraints
* that produces a constraint on the bounded dimensions. This means
* that some combination of the unbounded dimensions has both an upper
* bound and a lower bound in terms of the bounded dimensions, but then
* this combination would be a bounded direction too and would have been
* transformed into a bounded dimensions.
*
* We then compute a sample value in the bounded dimensions.
* If no such value can be found, then the original set did not contain
* any integer points and we are done.
* Otherwise, we plug in the value we found in the bounded dimensions,
* project out these bounded dimensions and end up with a set with
* a full-dimensional recession cone.
* A sample point in this set is computed by "rounding up" any
* rational point in the set.
*
* The sample points in the bounded and unbounded dimensions are
* then combined into a single sample point and transformed back
* to the original space.
*/
__isl_give isl_vec *isl_basic_set_sample_with_cone(
__isl_take isl_basic_set *bset, __isl_take isl_basic_set *cone)
{
unsigned total;
unsigned cone_dim;
struct isl_mat *M, *U;
struct isl_vec *sample;
struct isl_vec *cone_sample;
struct isl_ctx *ctx;
struct isl_basic_set *bounded;
if (!bset || !cone)
goto error;
ctx = isl_basic_set_get_ctx(bset);
total = isl_basic_set_total_dim(cone);
cone_dim = total - cone->n_eq;
M = isl_mat_sub_alloc6(ctx, cone->eq, 0, cone->n_eq, 1, total);
M = isl_mat_left_hermite(M, 0, &U, NULL);
if (!M)
goto error;
isl_mat_free(M);
U = isl_mat_lin_to_aff(U);
bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
bounded = isl_basic_set_copy(bset);
bounded = isl_basic_set_drop_constraints_involving(bounded,
total - cone_dim, cone_dim);
bounded = isl_basic_set_drop_dims(bounded, total - cone_dim, cone_dim);
sample = sample_bounded(bounded);
if (!sample || sample->size == 0) {
isl_basic_set_free(bset);
isl_basic_set_free(cone);
isl_mat_free(U);
return sample;
}
bset = plug_in(bset, isl_vec_copy(sample));
cone_sample = rational_sample(bset);
cone_sample = round_up_in_cone(cone_sample, cone, isl_mat_copy(U));
sample = vec_concat(sample, cone_sample);
sample = isl_mat_vec_product(U, sample);
return sample;
error:
isl_basic_set_free(cone);
isl_basic_set_free(bset);
return NULL;
}
static void vec_sum_of_neg(struct isl_vec *v, isl_int *s)
{
int i;
isl_int_set_si(*s, 0);
for (i = 0; i < v->size; ++i)
if (isl_int_is_neg(v->el[i]))
isl_int_add(*s, *s, v->el[i]);
}
/* Given a tableau "tab", a tableau "tab_cone" that corresponds
* to the recession cone and the inverse of a new basis U = inv(B),
* with the unbounded directions in B last,
* add constraints to "tab" that ensure any rational value
* in the unbounded directions can be rounded up to an integer value.
*
* The new basis is given by x' = B x, i.e., x = U x'.
* For any rational value of the last tab->n_unbounded coordinates
* in the update tableau, the value that is obtained by rounding
* up this value should be contained in the original tableau.
* For any constraint "a x + c >= 0", we therefore need to add
* a constraint "a x + c + s >= 0", with s the sum of all negative
* entries in the last elements of "a U".
*
* Since we are not interested in the first entries of any of the "a U",
* we first drop the columns of U that correpond to bounded directions.
*/
static int tab_shift_cone(struct isl_tab *tab,
struct isl_tab *tab_cone, struct isl_mat *U)
{
int i;
isl_int v;
struct isl_basic_set *bset = NULL;
if (tab && tab->n_unbounded == 0) {
isl_mat_free(U);
return 0;
}
isl_int_init(v);
if (!tab || !tab_cone || !U)
goto error;
bset = isl_tab_peek_bset(tab_cone);
U = isl_mat_drop_cols(U, 0, tab->n_var - tab->n_unbounded);
for (i = 0; i < bset->n_ineq; ++i) {
int ok;
struct isl_vec *row = NULL;
if (isl_tab_is_equality(tab_cone, tab_cone->n_eq + i))
continue;
row = isl_vec_alloc(bset->ctx, tab_cone->n_var);
if (!row)
goto error;
isl_seq_cpy(row->el, bset->ineq[i] + 1, tab_cone->n_var);
row = isl_vec_mat_product(row, isl_mat_copy(U));
if (!row)
goto error;
vec_sum_of_neg(row, &v);
isl_vec_free(row);
if (isl_int_is_zero(v))
continue;
if (isl_tab_extend_cons(tab, 1) < 0)
goto error;
isl_int_add(bset->ineq[i][0], bset->ineq[i][0], v);
ok = isl_tab_add_ineq(tab, bset->ineq[i]) >= 0;
isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], v);
if (!ok)
goto error;
}
isl_mat_free(U);
isl_int_clear(v);
return 0;
error:
isl_mat_free(U);
isl_int_clear(v);
return -1;
}
/* Compute and return an initial basis for the possibly
* unbounded tableau "tab". "tab_cone" is a tableau
* for the corresponding recession cone.
* Additionally, add constraints to "tab" that ensure
* that any rational value for the unbounded directions
* can be rounded up to an integer value.
*
* If the tableau is bounded, i.e., if the recession cone
* is zero-dimensional, then we just use inital_basis.
* Otherwise, we construct a basis whose first directions
* correspond to equalities, followed by bounded directions,
* i.e., equalities in the recession cone.
* The remaining directions are then unbounded.
*/
int isl_tab_set_initial_basis_with_cone(struct isl_tab *tab,
struct isl_tab *tab_cone)
{
struct isl_mat *eq;
struct isl_mat *cone_eq;
struct isl_mat *U, *Q;
if (!tab || !tab_cone)
return -1;
if (tab_cone->n_col == tab_cone->n_dead) {
tab->basis = initial_basis(tab);
return tab->basis ? 0 : -1;
}
eq = tab_equalities(tab);
if (!eq)
return -1;
tab->n_zero = eq->n_row;
cone_eq = tab_equalities(tab_cone);
eq = isl_mat_concat(eq, cone_eq);
if (!eq)
return -1;
tab->n_unbounded = tab->n_var - (eq->n_row - tab->n_zero);
eq = isl_mat_left_hermite(eq, 0, &U, &Q);
if (!eq)
return -1;
isl_mat_free(eq);
tab->basis = isl_mat_lin_to_aff(Q);
if (tab_shift_cone(tab, tab_cone, U) < 0)
return -1;
if (!tab->basis)
return -1;
return 0;
}
/* Compute and return a sample point in bset using generalized basis
* reduction. We first check if the input set has a non-trivial
* recession cone. If so, we perform some extra preprocessing in
* sample_with_cone. Otherwise, we directly perform generalized basis
* reduction.
*/
static __isl_give isl_vec *gbr_sample(__isl_take isl_basic_set *bset)
{
unsigned dim;
struct isl_basic_set *cone;
dim = isl_basic_set_total_dim(bset);
cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
if (!cone)
goto error;
if (cone->n_eq < dim)
return isl_basic_set_sample_with_cone(bset, cone);
isl_basic_set_free(cone);
return sample_bounded(bset);
error:
isl_basic_set_free(bset);
return NULL;
}
static __isl_give isl_vec *basic_set_sample(__isl_take isl_basic_set *bset,
int bounded)
{
struct isl_ctx *ctx;
unsigned dim;
if (!bset)
return NULL;
ctx = bset->ctx;
if (isl_basic_set_plain_is_empty(bset))
return empty_sample(bset);
dim = isl_basic_set_n_dim(bset);
isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error);
isl_assert(ctx, bset->n_div == 0, goto error);
if (bset->sample && bset->sample->size == 1 + dim) {
int contains = isl_basic_set_contains(bset, bset->sample);
if (contains < 0)
goto error;
if (contains) {
struct isl_vec *sample = isl_vec_copy(bset->sample);
isl_basic_set_free(bset);
return sample;
}
}
isl_vec_free(bset->sample);
bset->sample = NULL;
if (bset->n_eq > 0)
return sample_eq(bset, bounded ? isl_basic_set_sample_bounded
: isl_basic_set_sample_vec);
if (dim == 0)
return zero_sample(bset);
if (dim == 1)
return interval_sample(bset);
return bounded ? sample_bounded(bset) : gbr_sample(bset);
error:
isl_basic_set_free(bset);
return NULL;
}
__isl_give isl_vec *isl_basic_set_sample_vec(__isl_take isl_basic_set *bset)
{
return basic_set_sample(bset, 0);
}
/* Compute an integer sample in "bset", where the caller guarantees
* that "bset" is bounded.
*/
__isl_give isl_vec *isl_basic_set_sample_bounded(__isl_take isl_basic_set *bset)
{
return basic_set_sample(bset, 1);
}
__isl_give isl_basic_set *isl_basic_set_from_vec(__isl_take isl_vec *vec)
{
int i;
int k;
struct isl_basic_set *bset = NULL;
struct isl_ctx *ctx;
unsigned dim;
if (!vec)
return NULL;
ctx = vec->ctx;
isl_assert(ctx, vec->size != 0, goto error);
bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
if (!bset)
goto error;
dim = isl_basic_set_n_dim(bset);
for (i = dim - 1; i >= 0; --i) {
k = isl_basic_set_alloc_equality(bset);
if (k < 0)
goto error;
isl_seq_clr(bset->eq[k], 1 + dim);
isl_int_neg(bset->eq[k][0], vec->el[1 + i]);
isl_int_set(bset->eq[k][1 + i], vec->el[0]);
}
bset->sample = vec;
return bset;
error:
isl_basic_set_free(bset);
isl_vec_free(vec);
return NULL;
}
__isl_give isl_basic_map *isl_basic_map_sample(__isl_take isl_basic_map *bmap)
{
struct isl_basic_set *bset;
struct isl_vec *sample_vec;
bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
sample_vec = isl_basic_set_sample_vec(bset);
if (!sample_vec)
goto error;
if (sample_vec->size == 0) {
isl_vec_free(sample_vec);
return isl_basic_map_set_to_empty(bmap);
}
isl_vec_free(bmap->sample);
bmap->sample = isl_vec_copy(sample_vec);
bset = isl_basic_set_from_vec(sample_vec);
return isl_basic_map_overlying_set(bset, bmap);
error:
isl_basic_map_free(bmap);
return NULL;
}
__isl_give isl_basic_set *isl_basic_set_sample(__isl_take isl_basic_set *bset)
{
return isl_basic_map_sample(bset);
}
__isl_give isl_basic_map *isl_map_sample(__isl_take isl_map *map)
{
int i;
isl_basic_map *sample = NULL;
if (!map)
goto error;
for (i = 0; i < map->n; ++i) {
sample = isl_basic_map_sample(isl_basic_map_copy(map->p[i]));
if (!sample)
goto error;
if (!ISL_F_ISSET(sample, ISL_BASIC_MAP_EMPTY))
break;
isl_basic_map_free(sample);
}
if (i == map->n)
sample = isl_basic_map_empty(isl_map_get_space(map));
isl_map_free(map);
return sample;
error:
isl_map_free(map);
return NULL;
}
__isl_give isl_basic_set *isl_set_sample(__isl_take isl_set *set)
{
return bset_from_bmap(isl_map_sample(set_to_map(set)));
}
__isl_give isl_point *isl_basic_set_sample_point(__isl_take isl_basic_set *bset)
{
isl_vec *vec;
isl_space *dim;
dim = isl_basic_set_get_space(bset);
bset = isl_basic_set_underlying_set(bset);
vec = isl_basic_set_sample_vec(bset);
return isl_point_alloc(dim, vec);
}
__isl_give isl_point *isl_set_sample_point(__isl_take isl_set *set)
{
int i;
isl_point *pnt;
if (!set)
return NULL;
for (i = 0; i < set->n; ++i) {
pnt = isl_basic_set_sample_point(isl_basic_set_copy(set->p[i]));
if (!pnt)
goto error;
if (!isl_point_is_void(pnt))
break;
isl_point_free(pnt);
}
if (i == set->n)
pnt = isl_point_void(isl_set_get_space(set));
isl_set_free(set);
return pnt;
error:
isl_set_free(set);
return NULL;
}