isl_lp.c
9.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
/*
* Copyright 2008-2009 Katholieke Universiteit Leuven
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, K.U.Leuven, Departement
* Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
*/
#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include <isl/lp.h>
#include <isl_seq.h>
#include "isl_tab.h"
#include <isl_options_private.h>
#include <isl_local_space_private.h>
#include <isl_aff_private.h>
#include <isl_mat_private.h>
#include <isl_val_private.h>
#include <isl_vec_private.h>
#include <bset_to_bmap.c>
#include <set_to_map.c>
enum isl_lp_result isl_tab_solve_lp(__isl_keep isl_basic_map *bmap,
int maximize, isl_int *f, isl_int denom, isl_int *opt,
isl_int *opt_denom, __isl_give isl_vec **sol)
{
struct isl_tab *tab;
enum isl_lp_result res;
unsigned dim = isl_basic_map_total_dim(bmap);
if (maximize)
isl_seq_neg(f, f, 1 + dim);
bmap = isl_basic_map_gauss(bmap, NULL);
tab = isl_tab_from_basic_map(bmap, 0);
res = isl_tab_min(tab, f, denom, opt, opt_denom, 0);
if (res == isl_lp_ok && sol) {
*sol = isl_tab_get_sample_value(tab);
if (!*sol)
res = isl_lp_error;
}
isl_tab_free(tab);
if (maximize)
isl_seq_neg(f, f, 1 + dim);
if (maximize && opt)
isl_int_neg(*opt, *opt);
return res;
}
/* Given a basic map "bmap" and an affine combination of the variables "f"
* with denominator "denom", set *opt / *opt_denom to the minimal
* (or maximal if "maximize" is true) value attained by f/d over "bmap",
* assuming the basic map is not empty and the expression cannot attain
* arbitrarily small (or large) values.
* If opt_denom is NULL, then *opt is rounded up (or down)
* to the nearest integer.
* The return value reflects the nature of the result (empty, unbounded,
* minimal or maximal value returned in *opt).
*/
enum isl_lp_result isl_basic_map_solve_lp(__isl_keep isl_basic_map *bmap,
int max, isl_int *f, isl_int d, isl_int *opt, isl_int *opt_denom,
__isl_give isl_vec **sol)
{
if (sol)
*sol = NULL;
if (!bmap)
return isl_lp_error;
return isl_tab_solve_lp(bmap, max, f, d, opt, opt_denom, sol);
}
enum isl_lp_result isl_basic_set_solve_lp(struct isl_basic_set *bset, int max,
isl_int *f, isl_int d, isl_int *opt,
isl_int *opt_denom,
struct isl_vec **sol)
{
return isl_basic_map_solve_lp(bset_to_bmap(bset), max,
f, d, opt, opt_denom, sol);
}
enum isl_lp_result isl_map_solve_lp(__isl_keep isl_map *map, int max,
isl_int *f, isl_int d, isl_int *opt,
isl_int *opt_denom,
struct isl_vec **sol)
{
int i;
isl_int o;
isl_int t;
isl_int opt_i;
isl_int opt_denom_i;
enum isl_lp_result res;
int max_div;
isl_vec *v = NULL;
if (!map)
return isl_lp_error;
if (map->n == 0)
return isl_lp_empty;
max_div = 0;
for (i = 0; i < map->n; ++i)
if (map->p[i]->n_div > max_div)
max_div = map->p[i]->n_div;
if (max_div > 0) {
unsigned total = isl_space_dim(map->dim, isl_dim_all);
v = isl_vec_alloc(map->ctx, 1 + total + max_div);
if (!v)
return isl_lp_error;
isl_seq_cpy(v->el, f, 1 + total);
isl_seq_clr(v->el + 1 + total, max_div);
f = v->el;
}
if (!opt && map->n > 1 && sol) {
isl_int_init(o);
opt = &o;
}
if (map->n > 0)
isl_int_init(opt_i);
if (map->n > 0 && opt_denom) {
isl_int_init(opt_denom_i);
isl_int_init(t);
}
res = isl_basic_map_solve_lp(map->p[0], max, f, d,
opt, opt_denom, sol);
if (res == isl_lp_error || res == isl_lp_unbounded)
goto done;
if (sol)
*sol = NULL;
for (i = 1; i < map->n; ++i) {
isl_vec *sol_i = NULL;
enum isl_lp_result res_i;
int better;
res_i = isl_basic_map_solve_lp(map->p[i], max, f, d,
&opt_i,
opt_denom ? &opt_denom_i : NULL,
sol ? &sol_i : NULL);
if (res_i == isl_lp_error || res_i == isl_lp_unbounded) {
res = res_i;
goto done;
}
if (res_i == isl_lp_empty)
continue;
if (res == isl_lp_empty) {
better = 1;
} else if (!opt_denom) {
if (max)
better = isl_int_gt(opt_i, *opt);
else
better = isl_int_lt(opt_i, *opt);
} else {
isl_int_mul(t, opt_i, *opt_denom);
isl_int_submul(t, *opt, opt_denom_i);
if (max)
better = isl_int_is_pos(t);
else
better = isl_int_is_neg(t);
}
if (better) {
res = res_i;
if (opt)
isl_int_set(*opt, opt_i);
if (opt_denom)
isl_int_set(*opt_denom, opt_denom_i);
if (sol) {
isl_vec_free(*sol);
*sol = sol_i;
}
} else
isl_vec_free(sol_i);
}
done:
isl_vec_free(v);
if (map->n > 0 && opt_denom) {
isl_int_clear(opt_denom_i);
isl_int_clear(t);
}
if (map->n > 0)
isl_int_clear(opt_i);
if (opt == &o)
isl_int_clear(o);
return res;
}
enum isl_lp_result isl_set_solve_lp(__isl_keep isl_set *set, int max,
isl_int *f, isl_int d, isl_int *opt,
isl_int *opt_denom,
struct isl_vec **sol)
{
return isl_map_solve_lp(set_to_map(set), max,
f, d, opt, opt_denom, sol);
}
/* Return the optimal (rational) value of "obj" over "bset", assuming
* that "obj" and "bset" have aligned parameters and divs.
* If "max" is set, then the maximal value is computed.
* Otherwise, the minimal value is computed.
*
* Return infinity or negative infinity if the optimal value is unbounded and
* NaN if "bset" is empty.
*
* Call isl_basic_set_solve_lp and translate the results.
*/
static __isl_give isl_val *basic_set_opt_lp(
__isl_keep isl_basic_set *bset, int max, __isl_keep isl_aff *obj)
{
isl_ctx *ctx;
isl_val *res;
enum isl_lp_result lp_res;
if (!bset || !obj)
return NULL;
ctx = isl_aff_get_ctx(obj);
res = isl_val_alloc(ctx);
if (!res)
return NULL;
lp_res = isl_basic_set_solve_lp(bset, max, obj->v->el + 1,
obj->v->el[0], &res->n, &res->d, NULL);
if (lp_res == isl_lp_ok)
return isl_val_normalize(res);
isl_val_free(res);
if (lp_res == isl_lp_error)
return NULL;
if (lp_res == isl_lp_empty)
return isl_val_nan(ctx);
if (max)
return isl_val_infty(ctx);
else
return isl_val_neginfty(ctx);
}
/* Return the optimal (rational) value of "obj" over "bset", assuming
* that "obj" and "bset" have aligned parameters.
* If "max" is set, then the maximal value is computed.
* Otherwise, the minimal value is computed.
*
* Return infinity or negative infinity if the optimal value is unbounded and
* NaN if "bset" is empty.
*
* Align the divs of "bset" and "obj" and call basic_set_opt_lp.
*/
static __isl_give isl_val *isl_basic_set_opt_lp_val_aligned(
__isl_keep isl_basic_set *bset, int max, __isl_keep isl_aff *obj)
{
int *exp1 = NULL;
int *exp2 = NULL;
isl_ctx *ctx;
isl_mat *bset_div = NULL;
isl_mat *div = NULL;
isl_val *res;
int bset_n_div, obj_n_div;
if (!bset || !obj)
return NULL;
ctx = isl_aff_get_ctx(obj);
if (!isl_space_is_equal(bset->dim, obj->ls->dim))
isl_die(ctx, isl_error_invalid,
"spaces don't match", return NULL);
bset_n_div = isl_basic_set_dim(bset, isl_dim_div);
obj_n_div = isl_aff_dim(obj, isl_dim_div);
if (bset_n_div == 0 && obj_n_div == 0)
return basic_set_opt_lp(bset, max, obj);
bset = isl_basic_set_copy(bset);
obj = isl_aff_copy(obj);
bset_div = isl_basic_set_get_divs(bset);
exp1 = isl_alloc_array(ctx, int, bset_n_div);
exp2 = isl_alloc_array(ctx, int, obj_n_div);
if (!bset_div || (bset_n_div && !exp1) || (obj_n_div && !exp2))
goto error;
div = isl_merge_divs(bset_div, obj->ls->div, exp1, exp2);
bset = isl_basic_set_expand_divs(bset, isl_mat_copy(div), exp1);
obj = isl_aff_expand_divs(obj, isl_mat_copy(div), exp2);
res = basic_set_opt_lp(bset, max, obj);
isl_mat_free(bset_div);
isl_mat_free(div);
free(exp1);
free(exp2);
isl_basic_set_free(bset);
isl_aff_free(obj);
return res;
error:
isl_mat_free(div);
isl_mat_free(bset_div);
free(exp1);
free(exp2);
isl_basic_set_free(bset);
isl_aff_free(obj);
return NULL;
}
/* Return the optimal (rational) value of "obj" over "bset".
* If "max" is set, then the maximal value is computed.
* Otherwise, the minimal value is computed.
*
* Return infinity or negative infinity if the optimal value is unbounded and
* NaN if "bset" is empty.
*/
static __isl_give isl_val *isl_basic_set_opt_lp_val(
__isl_keep isl_basic_set *bset, int max, __isl_keep isl_aff *obj)
{
isl_bool equal;
isl_val *res;
if (!bset || !obj)
return NULL;
equal = isl_basic_set_space_has_equal_params(bset, obj->ls->dim);
if (equal < 0)
return NULL;
if (equal)
return isl_basic_set_opt_lp_val_aligned(bset, max, obj);
bset = isl_basic_set_copy(bset);
obj = isl_aff_copy(obj);
bset = isl_basic_set_align_params(bset, isl_aff_get_domain_space(obj));
obj = isl_aff_align_params(obj, isl_basic_set_get_space(bset));
res = isl_basic_set_opt_lp_val_aligned(bset, max, obj);
isl_basic_set_free(bset);
isl_aff_free(obj);
return res;
}
/* Return the minimal (rational) value of "obj" over "bset".
*
* Return negative infinity if the minimal value is unbounded and
* NaN if "bset" is empty.
*/
__isl_give isl_val *isl_basic_set_min_lp_val(__isl_keep isl_basic_set *bset,
__isl_keep isl_aff *obj)
{
return isl_basic_set_opt_lp_val(bset, 0, obj);
}
/* Return the maximal (rational) value of "obj" over "bset".
*
* Return infinity if the maximal value is unbounded and
* NaN if "bset" is empty.
*/
__isl_give isl_val *isl_basic_set_max_lp_val(__isl_keep isl_basic_set *bset,
__isl_keep isl_aff *obj)
{
return isl_basic_set_opt_lp_val(bset, 1, obj);
}