GenericTaintChecker.cpp 34.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
//== GenericTaintChecker.cpp ----------------------------------- -*- C++ -*--=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This checker defines the attack surface for generic taint propagation.
//
// The taint information produced by it might be useful to other checkers. For
// example, checkers should report errors which involve tainted data more
// aggressively, even if the involved symbols are under constrained.
//
//===----------------------------------------------------------------------===//

#include "Taint.h"
#include "Yaml.h"
#include "clang/AST/Attr.h"
#include "clang/Basic/Builtins.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "llvm/Support/YAMLTraits.h"
#include <algorithm>
#include <limits>
#include <unordered_map>
#include <utility>

using namespace clang;
using namespace ento;
using namespace taint;

namespace {
class GenericTaintChecker
    : public Checker<check::PostStmt<CallExpr>, check::PreStmt<CallExpr>> {
public:
  static void *getTag() {
    static int Tag;
    return &Tag;
  }

  void checkPostStmt(const CallExpr *CE, CheckerContext &C) const;

  void checkPreStmt(const CallExpr *CE, CheckerContext &C) const;

  void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
                  const char *Sep) const override;

  using ArgVector = SmallVector<unsigned, 2>;
  using SignedArgVector = SmallVector<int, 2>;

  enum class VariadicType { None, Src, Dst };

  /// Used to parse the configuration file.
  struct TaintConfiguration {
    using NameScopeArgs = std::tuple<std::string, std::string, ArgVector>;

    struct Propagation {
      std::string Name;
      std::string Scope;
      ArgVector SrcArgs;
      SignedArgVector DstArgs;
      VariadicType VarType;
      unsigned VarIndex;
    };

    std::vector<Propagation> Propagations;
    std::vector<NameScopeArgs> Filters;
    std::vector<NameScopeArgs> Sinks;

    TaintConfiguration() = default;
    TaintConfiguration(const TaintConfiguration &) = default;
    TaintConfiguration(TaintConfiguration &&) = default;
    TaintConfiguration &operator=(const TaintConfiguration &) = default;
    TaintConfiguration &operator=(TaintConfiguration &&) = default;
  };

  /// Convert SignedArgVector to ArgVector.
  ArgVector convertToArgVector(CheckerManager &Mgr, const std::string &Option,
                               SignedArgVector Args);

  /// Parse the config.
  void parseConfiguration(CheckerManager &Mgr, const std::string &Option,
                          TaintConfiguration &&Config);

  static const unsigned InvalidArgIndex{std::numeric_limits<unsigned>::max()};
  /// Denotes the return vale.
  static const unsigned ReturnValueIndex{std::numeric_limits<unsigned>::max() -
                                         1};

private:
  mutable std::unique_ptr<BugType> BT;
  void initBugType() const {
    if (!BT)
      BT.reset(new BugType(this, "Use of Untrusted Data", "Untrusted Data"));
  }

  struct FunctionData {
    FunctionData() = delete;
    FunctionData(const FunctionData &) = default;
    FunctionData(FunctionData &&) = default;
    FunctionData &operator=(const FunctionData &) = delete;
    FunctionData &operator=(FunctionData &&) = delete;

    static Optional<FunctionData> create(const CallExpr *CE,
                                         const CheckerContext &C) {
      const FunctionDecl *FDecl = C.getCalleeDecl(CE);
      if (!FDecl || (FDecl->getKind() != Decl::Function &&
                     FDecl->getKind() != Decl::CXXMethod))
        return None;

      StringRef Name = C.getCalleeName(FDecl);
      std::string FullName = FDecl->getQualifiedNameAsString();
      if (Name.empty() || FullName.empty())
        return None;

      return FunctionData{FDecl, Name, FullName};
    }

    bool isInScope(StringRef Scope) const {
      return StringRef(FullName).startswith(Scope);
    }

    const FunctionDecl *const FDecl;
    const StringRef Name;
    const std::string FullName;
  };

  /// Catch taint related bugs. Check if tainted data is passed to a
  /// system call etc. Returns true on matching.
  bool checkPre(const CallExpr *CE, const FunctionData &FData,
                CheckerContext &C) const;

  /// Add taint sources on a pre-visit. Returns true on matching.
  bool addSourcesPre(const CallExpr *CE, const FunctionData &FData,
                     CheckerContext &C) const;

  /// Mark filter's arguments not tainted on a pre-visit. Returns true on
  /// matching.
  bool addFiltersPre(const CallExpr *CE, const FunctionData &FData,
                     CheckerContext &C) const;

  /// Propagate taint generated at pre-visit. Returns true on matching.
  bool propagateFromPre(const CallExpr *CE, CheckerContext &C) const;

  /// Check if the region the expression evaluates to is the standard input,
  /// and thus, is tainted.
  static bool isStdin(const Expr *E, CheckerContext &C);

  /// Given a pointer argument, return the value it points to.
  static Optional<SVal> getPointedToSVal(CheckerContext &C, const Expr *Arg);

  /// Check for CWE-134: Uncontrolled Format String.
  static constexpr llvm::StringLiteral MsgUncontrolledFormatString =
      "Untrusted data is used as a format string "
      "(CWE-134: Uncontrolled Format String)";
  bool checkUncontrolledFormatString(const CallExpr *CE,
                                     CheckerContext &C) const;

  /// Check for:
  /// CERT/STR02-C. "Sanitize data passed to complex subsystems"
  /// CWE-78, "Failure to Sanitize Data into an OS Command"
  static constexpr llvm::StringLiteral MsgSanitizeSystemArgs =
      "Untrusted data is passed to a system call "
      "(CERT/STR02-C. Sanitize data passed to complex subsystems)";
  bool checkSystemCall(const CallExpr *CE, StringRef Name,
                       CheckerContext &C) const;

  /// Check if tainted data is used as a buffer size ins strn.. functions,
  /// and allocators.
  static constexpr llvm::StringLiteral MsgTaintedBufferSize =
      "Untrusted data is used to specify the buffer size "
      "(CERT/STR31-C. Guarantee that storage for strings has sufficient space "
      "for character data and the null terminator)";
  bool checkTaintedBufferSize(const CallExpr *CE, const FunctionDecl *FDecl,
                              CheckerContext &C) const;

  /// Check if tainted data is used as a custom sink's parameter.
  static constexpr llvm::StringLiteral MsgCustomSink =
      "Untrusted data is passed to a user-defined sink";
  bool checkCustomSinks(const CallExpr *CE, const FunctionData &FData,
                        CheckerContext &C) const;

  /// Generate a report if the expression is tainted or points to tainted data.
  bool generateReportIfTainted(const Expr *E, StringRef Msg,
                               CheckerContext &C) const;

  struct TaintPropagationRule;
  template <typename T>
  using ConfigDataMap =
      std::unordered_multimap<std::string, std::pair<std::string, T>>;
  using NameRuleMap = ConfigDataMap<TaintPropagationRule>;
  using NameArgMap = ConfigDataMap<ArgVector>;

  /// Find a function with the given name and scope. Returns the first match
  /// or the end of the map.
  template <typename T>
  static auto findFunctionInConfig(const ConfigDataMap<T> &Map,
                                   const FunctionData &FData);

  /// A struct used to specify taint propagation rules for a function.
  ///
  /// If any of the possible taint source arguments is tainted, all of the
  /// destination arguments should also be tainted. Use InvalidArgIndex in the
  /// src list to specify that all of the arguments can introduce taint. Use
  /// InvalidArgIndex in the dst arguments to signify that all the non-const
  /// pointer and reference arguments might be tainted on return. If
  /// ReturnValueIndex is added to the dst list, the return value will be
  /// tainted.
  struct TaintPropagationRule {
    using PropagationFuncType = bool (*)(bool IsTainted, const CallExpr *,
                                         CheckerContext &C);

    /// List of arguments which can be taint sources and should be checked.
    ArgVector SrcArgs;
    /// List of arguments which should be tainted on function return.
    ArgVector DstArgs;
    /// Index for the first variadic parameter if exist.
    unsigned VariadicIndex;
    /// Show when a function has variadic parameters. If it has, it marks all
    /// of them as source or destination.
    VariadicType VarType;
    /// Special function for tainted source determination. If defined, it can
    /// override the default behavior.
    PropagationFuncType PropagationFunc;

    TaintPropagationRule()
        : VariadicIndex(InvalidArgIndex), VarType(VariadicType::None),
          PropagationFunc(nullptr) {}

    TaintPropagationRule(ArgVector &&Src, ArgVector &&Dst,
                         VariadicType Var = VariadicType::None,
                         unsigned VarIndex = InvalidArgIndex,
                         PropagationFuncType Func = nullptr)
        : SrcArgs(std::move(Src)), DstArgs(std::move(Dst)),
          VariadicIndex(VarIndex), VarType(Var), PropagationFunc(Func) {}

    /// Get the propagation rule for a given function.
    static TaintPropagationRule
    getTaintPropagationRule(const NameRuleMap &CustomPropagations,
                            const FunctionData &FData, CheckerContext &C);

    void addSrcArg(unsigned A) { SrcArgs.push_back(A); }
    void addDstArg(unsigned A) { DstArgs.push_back(A); }

    bool isNull() const {
      return SrcArgs.empty() && DstArgs.empty() &&
             VariadicType::None == VarType;
    }

    bool isDestinationArgument(unsigned ArgNum) const {
      return (llvm::find(DstArgs, ArgNum) != DstArgs.end());
    }

    static bool isTaintedOrPointsToTainted(const Expr *E, ProgramStateRef State,
                                           CheckerContext &C) {
      if (isTainted(State, E, C.getLocationContext()) || isStdin(E, C))
        return true;

      if (!E->getType().getTypePtr()->isPointerType())
        return false;

      Optional<SVal> V = getPointedToSVal(C, E);
      return (V && isTainted(State, *V));
    }

    /// Pre-process a function which propagates taint according to the
    /// taint rule.
    ProgramStateRef process(const CallExpr *CE, CheckerContext &C) const;

    // Functions for custom taintedness propagation.
    static bool postSocket(bool IsTainted, const CallExpr *CE,
                           CheckerContext &C);
  };

  /// Defines a map between the propagation function's name, scope
  /// and TaintPropagationRule.
  NameRuleMap CustomPropagations;

  /// Defines a map between the filter function's name, scope and filtering
  /// args.
  NameArgMap CustomFilters;

  /// Defines a map between the sink function's name, scope and sinking args.
  NameArgMap CustomSinks;
};

const unsigned GenericTaintChecker::ReturnValueIndex;
const unsigned GenericTaintChecker::InvalidArgIndex;

// FIXME: these lines can be removed in C++17
constexpr llvm::StringLiteral GenericTaintChecker::MsgUncontrolledFormatString;
constexpr llvm::StringLiteral GenericTaintChecker::MsgSanitizeSystemArgs;
constexpr llvm::StringLiteral GenericTaintChecker::MsgTaintedBufferSize;
constexpr llvm::StringLiteral GenericTaintChecker::MsgCustomSink;
} // end of anonymous namespace

using TaintConfig = GenericTaintChecker::TaintConfiguration;

LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfig::Propagation)
LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfig::NameScopeArgs)

namespace llvm {
namespace yaml {
template <> struct MappingTraits<TaintConfig> {
  static void mapping(IO &IO, TaintConfig &Config) {
    IO.mapOptional("Propagations", Config.Propagations);
    IO.mapOptional("Filters", Config.Filters);
    IO.mapOptional("Sinks", Config.Sinks);
  }
};

template <> struct MappingTraits<TaintConfig::Propagation> {
  static void mapping(IO &IO, TaintConfig::Propagation &Propagation) {
    IO.mapRequired("Name", Propagation.Name);
    IO.mapOptional("Scope", Propagation.Scope);
    IO.mapOptional("SrcArgs", Propagation.SrcArgs);
    IO.mapOptional("DstArgs", Propagation.DstArgs);
    IO.mapOptional("VariadicType", Propagation.VarType,
                   GenericTaintChecker::VariadicType::None);
    IO.mapOptional("VariadicIndex", Propagation.VarIndex,
                   GenericTaintChecker::InvalidArgIndex);
  }
};

template <> struct ScalarEnumerationTraits<GenericTaintChecker::VariadicType> {
  static void enumeration(IO &IO, GenericTaintChecker::VariadicType &Value) {
    IO.enumCase(Value, "None", GenericTaintChecker::VariadicType::None);
    IO.enumCase(Value, "Src", GenericTaintChecker::VariadicType::Src);
    IO.enumCase(Value, "Dst", GenericTaintChecker::VariadicType::Dst);
  }
};

template <> struct MappingTraits<TaintConfig::NameScopeArgs> {
  static void mapping(IO &IO, TaintConfig::NameScopeArgs &NSA) {
    IO.mapRequired("Name", std::get<0>(NSA));
    IO.mapOptional("Scope", std::get<1>(NSA));
    IO.mapRequired("Args", std::get<2>(NSA));
  }
};
} // namespace yaml
} // namespace llvm

/// A set which is used to pass information from call pre-visit instruction
/// to the call post-visit. The values are unsigned integers, which are either
/// ReturnValueIndex, or indexes of the pointer/reference argument, which
/// points to data, which should be tainted on return.
REGISTER_SET_WITH_PROGRAMSTATE(TaintArgsOnPostVisit, unsigned)

GenericTaintChecker::ArgVector GenericTaintChecker::convertToArgVector(
    CheckerManager &Mgr, const std::string &Option, SignedArgVector Args) {
  ArgVector Result;
  for (int Arg : Args) {
    if (Arg == -1)
      Result.push_back(ReturnValueIndex);
    else if (Arg < -1) {
      Result.push_back(InvalidArgIndex);
      Mgr.reportInvalidCheckerOptionValue(
          this, Option,
          "an argument number for propagation rules greater or equal to -1");
    } else
      Result.push_back(static_cast<unsigned>(Arg));
  }
  return Result;
}

void GenericTaintChecker::parseConfiguration(CheckerManager &Mgr,
                                             const std::string &Option,
                                             TaintConfiguration &&Config) {
  for (auto &P : Config.Propagations) {
    GenericTaintChecker::CustomPropagations.emplace(
        P.Name,
        std::make_pair(P.Scope, TaintPropagationRule{
                                    std::move(P.SrcArgs),
                                    convertToArgVector(Mgr, Option, P.DstArgs),
                                    P.VarType, P.VarIndex}));
  }

  for (auto &F : Config.Filters) {
    GenericTaintChecker::CustomFilters.emplace(
        std::get<0>(F),
        std::make_pair(std::move(std::get<1>(F)), std::move(std::get<2>(F))));
  }

  for (auto &S : Config.Sinks) {
    GenericTaintChecker::CustomSinks.emplace(
        std::get<0>(S),
        std::make_pair(std::move(std::get<1>(S)), std::move(std::get<2>(S))));
  }
}

template <typename T>
auto GenericTaintChecker::findFunctionInConfig(const ConfigDataMap<T> &Map,
                                               const FunctionData &FData) {
  auto Range = Map.equal_range(FData.Name);
  auto It =
      std::find_if(Range.first, Range.second, [&FData](const auto &Entry) {
        const auto &Value = Entry.second;
        StringRef Scope = Value.first;
        return Scope.empty() || FData.isInScope(Scope);
      });
  return It != Range.second ? It : Map.end();
}

GenericTaintChecker::TaintPropagationRule
GenericTaintChecker::TaintPropagationRule::getTaintPropagationRule(
    const NameRuleMap &CustomPropagations, const FunctionData &FData,
    CheckerContext &C) {
  // TODO: Currently, we might lose precision here: we always mark a return
  // value as tainted even if it's just a pointer, pointing to tainted data.

  // Check for exact name match for functions without builtin substitutes.
  // Use qualified name, because these are C functions without namespace.
  TaintPropagationRule Rule =
      llvm::StringSwitch<TaintPropagationRule>(FData.FullName)
          // Source functions
          // TODO: Add support for vfscanf & family.
          .Case("fdopen", TaintPropagationRule({}, {ReturnValueIndex}))
          .Case("fopen", TaintPropagationRule({}, {ReturnValueIndex}))
          .Case("freopen", TaintPropagationRule({}, {ReturnValueIndex}))
          .Case("getch", TaintPropagationRule({}, {ReturnValueIndex}))
          .Case("getchar", TaintPropagationRule({}, {ReturnValueIndex}))
          .Case("getchar_unlocked",
                TaintPropagationRule({}, {ReturnValueIndex}))
          .Case("getenv", TaintPropagationRule({}, {ReturnValueIndex}))
          .Case("gets", TaintPropagationRule({}, {0, ReturnValueIndex}))
          .Case("scanf", TaintPropagationRule({}, {}, VariadicType::Dst, 1))
          .Case("socket",
                TaintPropagationRule({}, {ReturnValueIndex}, VariadicType::None,
                                     InvalidArgIndex,
                                     &TaintPropagationRule::postSocket))
          .Case("wgetch", TaintPropagationRule({}, {ReturnValueIndex}))
          // Propagating functions
          .Case("atoi", TaintPropagationRule({0}, {ReturnValueIndex}))
          .Case("atol", TaintPropagationRule({0}, {ReturnValueIndex}))
          .Case("atoll", TaintPropagationRule({0}, {ReturnValueIndex}))
          .Case("fgetc", TaintPropagationRule({0}, {ReturnValueIndex}))
          .Case("fgetln", TaintPropagationRule({0}, {ReturnValueIndex}))
          .Case("fgets", TaintPropagationRule({2}, {0, ReturnValueIndex}))
          .Case("fscanf", TaintPropagationRule({0}, {}, VariadicType::Dst, 2))
          .Case("getc", TaintPropagationRule({0}, {ReturnValueIndex}))
          .Case("getc_unlocked", TaintPropagationRule({0}, {ReturnValueIndex}))
          .Case("getdelim", TaintPropagationRule({3}, {0}))
          .Case("getline", TaintPropagationRule({2}, {0}))
          .Case("getw", TaintPropagationRule({0}, {ReturnValueIndex}))
          .Case("pread",
                TaintPropagationRule({0, 1, 2, 3}, {1, ReturnValueIndex}))
          .Case("read", TaintPropagationRule({0, 2}, {1, ReturnValueIndex}))
          .Case("strchr", TaintPropagationRule({0}, {ReturnValueIndex}))
          .Case("strrchr", TaintPropagationRule({0}, {ReturnValueIndex}))
          .Case("tolower", TaintPropagationRule({0}, {ReturnValueIndex}))
          .Case("toupper", TaintPropagationRule({0}, {ReturnValueIndex}))
          .Default(TaintPropagationRule());

  if (!Rule.isNull())
    return Rule;

  // Check if it's one of the memory setting/copying functions.
  // This check is specialized but faster then calling isCLibraryFunction.
  const FunctionDecl *FDecl = FData.FDecl;
  unsigned BId = 0;
  if ((BId = FDecl->getMemoryFunctionKind()))
    switch (BId) {
    case Builtin::BImemcpy:
    case Builtin::BImemmove:
    case Builtin::BIstrncpy:
    case Builtin::BIstrncat:
      return TaintPropagationRule({1, 2}, {0, ReturnValueIndex});
    case Builtin::BIstrlcpy:
    case Builtin::BIstrlcat:
      return TaintPropagationRule({1, 2}, {0});
    case Builtin::BIstrndup:
      return TaintPropagationRule({0, 1}, {ReturnValueIndex});

    default:
      break;
    };

  // Process all other functions which could be defined as builtins.
  if (Rule.isNull()) {
    if (C.isCLibraryFunction(FDecl, "snprintf"))
      return TaintPropagationRule({1}, {0, ReturnValueIndex}, VariadicType::Src,
                                  3);
    else if (C.isCLibraryFunction(FDecl, "sprintf"))
      return TaintPropagationRule({}, {0, ReturnValueIndex}, VariadicType::Src,
                                  2);
    else if (C.isCLibraryFunction(FDecl, "strcpy") ||
             C.isCLibraryFunction(FDecl, "stpcpy") ||
             C.isCLibraryFunction(FDecl, "strcat"))
      return TaintPropagationRule({1}, {0, ReturnValueIndex});
    else if (C.isCLibraryFunction(FDecl, "bcopy"))
      return TaintPropagationRule({0, 2}, {1});
    else if (C.isCLibraryFunction(FDecl, "strdup") ||
             C.isCLibraryFunction(FDecl, "strdupa"))
      return TaintPropagationRule({0}, {ReturnValueIndex});
    else if (C.isCLibraryFunction(FDecl, "wcsdup"))
      return TaintPropagationRule({0}, {ReturnValueIndex});
  }

  // Skipping the following functions, since they might be used for cleansing
  // or smart memory copy:
  // - memccpy - copying until hitting a special character.

  auto It = findFunctionInConfig(CustomPropagations, FData);
  if (It != CustomPropagations.end()) {
    const auto &Value = It->second;
    return Value.second;
  }

  return TaintPropagationRule();
}

void GenericTaintChecker::checkPreStmt(const CallExpr *CE,
                                       CheckerContext &C) const {
  Optional<FunctionData> FData = FunctionData::create(CE, C);
  if (!FData)
    return;

  // Check for taintedness related errors first: system call, uncontrolled
  // format string, tainted buffer size.
  if (checkPre(CE, *FData, C))
    return;

  // Marks the function's arguments and/or return value tainted if it present in
  // the list.
  if (addSourcesPre(CE, *FData, C))
    return;

  addFiltersPre(CE, *FData, C);
}

void GenericTaintChecker::checkPostStmt(const CallExpr *CE,
                                        CheckerContext &C) const {
  // Set the marked values as tainted. The return value only accessible from
  // checkPostStmt.
  propagateFromPre(CE, C);
}

void GenericTaintChecker::printState(raw_ostream &Out, ProgramStateRef State,
                                     const char *NL, const char *Sep) const {
  printTaint(State, Out, NL, Sep);
}

bool GenericTaintChecker::addSourcesPre(const CallExpr *CE,
                                        const FunctionData &FData,
                                        CheckerContext &C) const {
  // First, try generating a propagation rule for this function.
  TaintPropagationRule Rule = TaintPropagationRule::getTaintPropagationRule(
      this->CustomPropagations, FData, C);
  if (!Rule.isNull()) {
    ProgramStateRef State = Rule.process(CE, C);
    if (State) {
      C.addTransition(State);
      return true;
    }
  }
  return false;
}

bool GenericTaintChecker::addFiltersPre(const CallExpr *CE,
                                        const FunctionData &FData,
                                        CheckerContext &C) const {
  auto It = findFunctionInConfig(CustomFilters, FData);
  if (It == CustomFilters.end())
    return false;

  ProgramStateRef State = C.getState();
  const auto &Value = It->second;
  const ArgVector &Args = Value.second;
  for (unsigned ArgNum : Args) {
    if (ArgNum >= CE->getNumArgs())
      continue;

    const Expr *Arg = CE->getArg(ArgNum);
    Optional<SVal> V = getPointedToSVal(C, Arg);
    if (V)
      State = removeTaint(State, *V);
  }

  if (State != C.getState()) {
    C.addTransition(State);
    return true;
  }
  return false;
}

bool GenericTaintChecker::propagateFromPre(const CallExpr *CE,
                                           CheckerContext &C) const {
  ProgramStateRef State = C.getState();

  // Depending on what was tainted at pre-visit, we determined a set of
  // arguments which should be tainted after the function returns. These are
  // stored in the state as TaintArgsOnPostVisit set.
  TaintArgsOnPostVisitTy TaintArgs = State->get<TaintArgsOnPostVisit>();
  if (TaintArgs.isEmpty())
    return false;

  for (unsigned ArgNum : TaintArgs) {
    // Special handling for the tainted return value.
    if (ArgNum == ReturnValueIndex) {
      State = addTaint(State, CE, C.getLocationContext());
      continue;
    }

    // The arguments are pointer arguments. The data they are pointing at is
    // tainted after the call.
    if (CE->getNumArgs() < (ArgNum + 1))
      return false;
    const Expr *Arg = CE->getArg(ArgNum);
    Optional<SVal> V = getPointedToSVal(C, Arg);
    if (V)
      State = addTaint(State, *V);
  }

  // Clear up the taint info from the state.
  State = State->remove<TaintArgsOnPostVisit>();

  if (State != C.getState()) {
    C.addTransition(State);
    return true;
  }
  return false;
}

bool GenericTaintChecker::checkPre(const CallExpr *CE,
                                   const FunctionData &FData,
                                   CheckerContext &C) const {

  if (checkUncontrolledFormatString(CE, C))
    return true;

  if (checkSystemCall(CE, FData.Name, C))
    return true;

  if (checkTaintedBufferSize(CE, FData.FDecl, C))
    return true;

  if (checkCustomSinks(CE, FData, C))
    return true;

  return false;
}

Optional<SVal> GenericTaintChecker::getPointedToSVal(CheckerContext &C,
                                                     const Expr *Arg) {
  ProgramStateRef State = C.getState();
  SVal AddrVal = C.getSVal(Arg->IgnoreParens());
  if (AddrVal.isUnknownOrUndef())
    return None;

  Optional<Loc> AddrLoc = AddrVal.getAs<Loc>();
  if (!AddrLoc)
    return None;

  QualType ArgTy = Arg->getType().getCanonicalType();
  if (!ArgTy->isPointerType())
    return State->getSVal(*AddrLoc);

  QualType ValTy = ArgTy->getPointeeType();

  // Do not dereference void pointers. Treat them as byte pointers instead.
  // FIXME: we might want to consider more than just the first byte.
  if (ValTy->isVoidType())
    ValTy = C.getASTContext().CharTy;

  return State->getSVal(*AddrLoc, ValTy);
}

ProgramStateRef
GenericTaintChecker::TaintPropagationRule::process(const CallExpr *CE,
                                                   CheckerContext &C) const {
  ProgramStateRef State = C.getState();

  // Check for taint in arguments.
  bool IsTainted = true;
  for (unsigned ArgNum : SrcArgs) {
    if (ArgNum >= CE->getNumArgs())
      continue;

    if ((IsTainted = isTaintedOrPointsToTainted(CE->getArg(ArgNum), State, C)))
      break;
  }

  // Check for taint in variadic arguments.
  if (!IsTainted && VariadicType::Src == VarType) {
    // Check if any of the arguments is tainted
    for (unsigned i = VariadicIndex; i < CE->getNumArgs(); ++i) {
      if ((IsTainted = isTaintedOrPointsToTainted(CE->getArg(i), State, C)))
        break;
    }
  }

  if (PropagationFunc)
    IsTainted = PropagationFunc(IsTainted, CE, C);

  if (!IsTainted)
    return State;

  // Mark the arguments which should be tainted after the function returns.
  for (unsigned ArgNum : DstArgs) {
    // Should mark the return value?
    if (ArgNum == ReturnValueIndex) {
      State = State->add<TaintArgsOnPostVisit>(ReturnValueIndex);
      continue;
    }

    if (ArgNum >= CE->getNumArgs())
      continue;

    // Mark the given argument.
    State = State->add<TaintArgsOnPostVisit>(ArgNum);
  }

  // Mark all variadic arguments tainted if present.
  if (VariadicType::Dst == VarType) {
    // For all pointer and references that were passed in:
    //   If they are not pointing to const data, mark data as tainted.
    //   TODO: So far we are just going one level down; ideally we'd need to
    //         recurse here.
    for (unsigned i = VariadicIndex; i < CE->getNumArgs(); ++i) {
      const Expr *Arg = CE->getArg(i);
      // Process pointer argument.
      const Type *ArgTy = Arg->getType().getTypePtr();
      QualType PType = ArgTy->getPointeeType();
      if ((!PType.isNull() && !PType.isConstQualified()) ||
          (ArgTy->isReferenceType() && !Arg->getType().isConstQualified()))
        State = State->add<TaintArgsOnPostVisit>(i);
    }
  }

  return State;
}

// If argument 0(protocol domain) is network, the return value should get taint.
bool GenericTaintChecker::TaintPropagationRule::postSocket(bool /*IsTainted*/,
                                                           const CallExpr *CE,
                                                           CheckerContext &C) {
  SourceLocation DomLoc = CE->getArg(0)->getExprLoc();
  StringRef DomName = C.getMacroNameOrSpelling(DomLoc);
  // White list the internal communication protocols.
  if (DomName.equals("AF_SYSTEM") || DomName.equals("AF_LOCAL") ||
      DomName.equals("AF_UNIX") || DomName.equals("AF_RESERVED_36"))
    return false;

  return true;
}

bool GenericTaintChecker::isStdin(const Expr *E, CheckerContext &C) {
  ProgramStateRef State = C.getState();
  SVal Val = C.getSVal(E);

  // stdin is a pointer, so it would be a region.
  const MemRegion *MemReg = Val.getAsRegion();

  // The region should be symbolic, we do not know it's value.
  const SymbolicRegion *SymReg = dyn_cast_or_null<SymbolicRegion>(MemReg);
  if (!SymReg)
    return false;

  // Get it's symbol and find the declaration region it's pointing to.
  const SymbolRegionValue *Sm =
      dyn_cast<SymbolRegionValue>(SymReg->getSymbol());
  if (!Sm)
    return false;
  const DeclRegion *DeclReg = dyn_cast_or_null<DeclRegion>(Sm->getRegion());
  if (!DeclReg)
    return false;

  // This region corresponds to a declaration, find out if it's a global/extern
  // variable named stdin with the proper type.
  if (const auto *D = dyn_cast_or_null<VarDecl>(DeclReg->getDecl())) {
    D = D->getCanonicalDecl();
    if ((D->getName().find("stdin") != StringRef::npos) && D->isExternC()) {
      const auto *PtrTy = dyn_cast<PointerType>(D->getType().getTypePtr());
      if (PtrTy && PtrTy->getPointeeType().getCanonicalType() ==
                       C.getASTContext().getFILEType().getCanonicalType())
        return true;
    }
  }
  return false;
}

static bool getPrintfFormatArgumentNum(const CallExpr *CE,
                                       const CheckerContext &C,
                                       unsigned &ArgNum) {
  // Find if the function contains a format string argument.
  // Handles: fprintf, printf, sprintf, snprintf, vfprintf, vprintf, vsprintf,
  // vsnprintf, syslog, custom annotated functions.
  const FunctionDecl *FDecl = C.getCalleeDecl(CE);
  if (!FDecl)
    return false;
  for (const auto *Format : FDecl->specific_attrs<FormatAttr>()) {
    ArgNum = Format->getFormatIdx() - 1;
    if ((Format->getType()->getName() == "printf") && CE->getNumArgs() > ArgNum)
      return true;
  }

  // Or if a function is named setproctitle (this is a heuristic).
  if (C.getCalleeName(CE).find("setproctitle") != StringRef::npos) {
    ArgNum = 0;
    return true;
  }

  return false;
}

bool GenericTaintChecker::generateReportIfTainted(const Expr *E, StringRef Msg,
                                                  CheckerContext &C) const {
  assert(E);

  // Check for taint.
  ProgramStateRef State = C.getState();
  Optional<SVal> PointedToSVal = getPointedToSVal(C, E);
  SVal TaintedSVal;
  if (PointedToSVal && isTainted(State, *PointedToSVal))
    TaintedSVal = *PointedToSVal;
  else if (isTainted(State, E, C.getLocationContext()))
    TaintedSVal = C.getSVal(E);
  else
    return false;

  // Generate diagnostic.
  if (ExplodedNode *N = C.generateNonFatalErrorNode()) {
    initBugType();
    auto report = std::make_unique<PathSensitiveBugReport>(*BT, Msg, N);
    report->addRange(E->getSourceRange());
    report->addVisitor(std::make_unique<TaintBugVisitor>(TaintedSVal));
    C.emitReport(std::move(report));
    return true;
  }
  return false;
}

bool GenericTaintChecker::checkUncontrolledFormatString(
    const CallExpr *CE, CheckerContext &C) const {
  // Check if the function contains a format string argument.
  unsigned ArgNum = 0;
  if (!getPrintfFormatArgumentNum(CE, C, ArgNum))
    return false;

  // If either the format string content or the pointer itself are tainted,
  // warn.
  return generateReportIfTainted(CE->getArg(ArgNum),
                                 MsgUncontrolledFormatString, C);
}

bool GenericTaintChecker::checkSystemCall(const CallExpr *CE, StringRef Name,
                                          CheckerContext &C) const {
  // TODO: It might make sense to run this check on demand. In some cases,
  // we should check if the environment has been cleansed here. We also might
  // need to know if the user was reset before these calls(seteuid).
  unsigned ArgNum = llvm::StringSwitch<unsigned>(Name)
                        .Case("system", 0)
                        .Case("popen", 0)
                        .Case("execl", 0)
                        .Case("execle", 0)
                        .Case("execlp", 0)
                        .Case("execv", 0)
                        .Case("execvp", 0)
                        .Case("execvP", 0)
                        .Case("execve", 0)
                        .Case("dlopen", 0)
                        .Default(InvalidArgIndex);

  if (ArgNum == InvalidArgIndex || CE->getNumArgs() < (ArgNum + 1))
    return false;

  return generateReportIfTainted(CE->getArg(ArgNum), MsgSanitizeSystemArgs, C);
}

// TODO: Should this check be a part of the CString checker?
// If yes, should taint be a global setting?
bool GenericTaintChecker::checkTaintedBufferSize(const CallExpr *CE,
                                                 const FunctionDecl *FDecl,
                                                 CheckerContext &C) const {
  // If the function has a buffer size argument, set ArgNum.
  unsigned ArgNum = InvalidArgIndex;
  unsigned BId = 0;
  if ((BId = FDecl->getMemoryFunctionKind()))
    switch (BId) {
    case Builtin::BImemcpy:
    case Builtin::BImemmove:
    case Builtin::BIstrncpy:
      ArgNum = 2;
      break;
    case Builtin::BIstrndup:
      ArgNum = 1;
      break;
    default:
      break;
    };

  if (ArgNum == InvalidArgIndex) {
    if (C.isCLibraryFunction(FDecl, "malloc") ||
        C.isCLibraryFunction(FDecl, "calloc") ||
        C.isCLibraryFunction(FDecl, "alloca"))
      ArgNum = 0;
    else if (C.isCLibraryFunction(FDecl, "memccpy"))
      ArgNum = 3;
    else if (C.isCLibraryFunction(FDecl, "realloc"))
      ArgNum = 1;
    else if (C.isCLibraryFunction(FDecl, "bcopy"))
      ArgNum = 2;
  }

  return ArgNum != InvalidArgIndex && CE->getNumArgs() > ArgNum &&
         generateReportIfTainted(CE->getArg(ArgNum), MsgTaintedBufferSize, C);
}

bool GenericTaintChecker::checkCustomSinks(const CallExpr *CE,
                                           const FunctionData &FData,
                                           CheckerContext &C) const {
  auto It = findFunctionInConfig(CustomSinks, FData);
  if (It == CustomSinks.end())
    return false;

  const auto &Value = It->second;
  const GenericTaintChecker::ArgVector &Args = Value.second;
  for (unsigned ArgNum : Args) {
    if (ArgNum >= CE->getNumArgs())
      continue;

    if (generateReportIfTainted(CE->getArg(ArgNum), MsgCustomSink, C))
      return true;
  }

  return false;
}

void ento::registerGenericTaintChecker(CheckerManager &Mgr) {
  auto *Checker = Mgr.registerChecker<GenericTaintChecker>();
  std::string Option{"Config"};
  StringRef ConfigFile =
      Mgr.getAnalyzerOptions().getCheckerStringOption(Checker, Option);
  llvm::Optional<TaintConfig> Config =
      getConfiguration<TaintConfig>(Mgr, Checker, Option, ConfigFile);
  if (Config)
    Checker->parseConfiguration(Mgr, Option, std::move(Config.getValue()));
}

bool ento::shouldRegisterGenericTaintChecker(const LangOptions &LO) {
  return true;
}