TargetInfo.cpp 26.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
//===--- TargetInfo.cpp - Information about Target machine ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file implements the TargetInfo and TargetInfoImpl interfaces.
//
//===----------------------------------------------------------------------===//

#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/AddressSpaces.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/LangOptions.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetParser.h"
#include <cstdlib>
using namespace clang;

static const LangASMap DefaultAddrSpaceMap = {0};

// TargetInfo Constructor.
TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) {
  // Set defaults.  Defaults are set for a 32-bit RISC platform, like PPC or
  // SPARC.  These should be overridden by concrete targets as needed.
  BigEndian = !T.isLittleEndian();
  TLSSupported = true;
  VLASupported = true;
  NoAsmVariants = false;
  HasLegalHalfType = false;
  HasFloat128 = false;
  HasFloat16 = false;
  PointerWidth = PointerAlign = 32;
  BoolWidth = BoolAlign = 8;
  IntWidth = IntAlign = 32;
  LongWidth = LongAlign = 32;
  LongLongWidth = LongLongAlign = 64;

  // Fixed point default bit widths
  ShortAccumWidth = ShortAccumAlign = 16;
  AccumWidth = AccumAlign = 32;
  LongAccumWidth = LongAccumAlign = 64;
  ShortFractWidth = ShortFractAlign = 8;
  FractWidth = FractAlign = 16;
  LongFractWidth = LongFractAlign = 32;

  // Fixed point default integral and fractional bit sizes
  // We give the _Accum 1 fewer fractional bits than their corresponding _Fract
  // types by default to have the same number of fractional bits between _Accum
  // and _Fract types.
  PaddingOnUnsignedFixedPoint = false;
  ShortAccumScale = 7;
  AccumScale = 15;
  LongAccumScale = 31;

  SuitableAlign = 64;
  DefaultAlignForAttributeAligned = 128;
  MinGlobalAlign = 0;
  // From the glibc documentation, on GNU systems, malloc guarantees 16-byte
  // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See
  // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html.
  // This alignment guarantee also applies to Windows and Android.
  if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid())
    NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0;
  else
    NewAlign = 0; // Infer from basic type alignment.
  HalfWidth = 16;
  HalfAlign = 16;
  FloatWidth = 32;
  FloatAlign = 32;
  DoubleWidth = 64;
  DoubleAlign = 64;
  LongDoubleWidth = 64;
  LongDoubleAlign = 64;
  Float128Align = 128;
  LargeArrayMinWidth = 0;
  LargeArrayAlign = 0;
  MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0;
  MaxVectorAlign = 0;
  MaxTLSAlign = 0;
  SimdDefaultAlign = 0;
  SizeType = UnsignedLong;
  PtrDiffType = SignedLong;
  IntMaxType = SignedLongLong;
  IntPtrType = SignedLong;
  WCharType = SignedInt;
  WIntType = SignedInt;
  Char16Type = UnsignedShort;
  Char32Type = UnsignedInt;
  Int64Type = SignedLongLong;
  SigAtomicType = SignedInt;
  ProcessIDType = SignedInt;
  UseSignedCharForObjCBool = true;
  UseBitFieldTypeAlignment = true;
  UseZeroLengthBitfieldAlignment = false;
  UseExplicitBitFieldAlignment = true;
  ZeroLengthBitfieldBoundary = 0;
  HalfFormat = &llvm::APFloat::IEEEhalf();
  FloatFormat = &llvm::APFloat::IEEEsingle();
  DoubleFormat = &llvm::APFloat::IEEEdouble();
  LongDoubleFormat = &llvm::APFloat::IEEEdouble();
  Float128Format = &llvm::APFloat::IEEEquad();
  MCountName = "mcount";
  RegParmMax = 0;
  SSERegParmMax = 0;
  HasAlignMac68kSupport = false;
  HasBuiltinMSVaList = false;
  IsRenderScriptTarget = false;
  HasAArch64SVETypes = false;

  // Default to no types using fpret.
  RealTypeUsesObjCFPRet = 0;

  // Default to not using fp2ret for __Complex long double
  ComplexLongDoubleUsesFP2Ret = false;

  // Set the C++ ABI based on the triple.
  TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment()
                    ? TargetCXXABI::Microsoft
                    : TargetCXXABI::GenericItanium);

  // Default to an empty address space map.
  AddrSpaceMap = &DefaultAddrSpaceMap;
  UseAddrSpaceMapMangling = false;

  // Default to an unknown platform name.
  PlatformName = "unknown";
  PlatformMinVersion = VersionTuple();
}

// Out of line virtual dtor for TargetInfo.
TargetInfo::~TargetInfo() {}

void TargetInfo::resetDataLayout(StringRef DL) {
  DataLayout.reset(new llvm::DataLayout(DL));
}

bool
TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const {
  Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch";
  return false;
}

bool
TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const {
  Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return";
  return false;
}

/// getTypeName - Return the user string for the specified integer type enum.
/// For example, SignedShort -> "short".
const char *TargetInfo::getTypeName(IntType T) {
  switch (T) {
  default: llvm_unreachable("not an integer!");
  case SignedChar:       return "signed char";
  case UnsignedChar:     return "unsigned char";
  case SignedShort:      return "short";
  case UnsignedShort:    return "unsigned short";
  case SignedInt:        return "int";
  case UnsignedInt:      return "unsigned int";
  case SignedLong:       return "long int";
  case UnsignedLong:     return "long unsigned int";
  case SignedLongLong:   return "long long int";
  case UnsignedLongLong: return "long long unsigned int";
  }
}

/// getTypeConstantSuffix - Return the constant suffix for the specified
/// integer type enum. For example, SignedLong -> "L".
const char *TargetInfo::getTypeConstantSuffix(IntType T) const {
  switch (T) {
  default: llvm_unreachable("not an integer!");
  case SignedChar:
  case SignedShort:
  case SignedInt:        return "";
  case SignedLong:       return "L";
  case SignedLongLong:   return "LL";
  case UnsignedChar:
    if (getCharWidth() < getIntWidth())
      return "";
    LLVM_FALLTHROUGH;
  case UnsignedShort:
    if (getShortWidth() < getIntWidth())
      return "";
    LLVM_FALLTHROUGH;
  case UnsignedInt:      return "U";
  case UnsignedLong:     return "UL";
  case UnsignedLongLong: return "ULL";
  }
}

/// getTypeFormatModifier - Return the printf format modifier for the
/// specified integer type enum. For example, SignedLong -> "l".

const char *TargetInfo::getTypeFormatModifier(IntType T) {
  switch (T) {
  default: llvm_unreachable("not an integer!");
  case SignedChar:
  case UnsignedChar:     return "hh";
  case SignedShort:
  case UnsignedShort:    return "h";
  case SignedInt:
  case UnsignedInt:      return "";
  case SignedLong:
  case UnsignedLong:     return "l";
  case SignedLongLong:
  case UnsignedLongLong: return "ll";
  }
}

/// getTypeWidth - Return the width (in bits) of the specified integer type
/// enum. For example, SignedInt -> getIntWidth().
unsigned TargetInfo::getTypeWidth(IntType T) const {
  switch (T) {
  default: llvm_unreachable("not an integer!");
  case SignedChar:
  case UnsignedChar:     return getCharWidth();
  case SignedShort:
  case UnsignedShort:    return getShortWidth();
  case SignedInt:
  case UnsignedInt:      return getIntWidth();
  case SignedLong:
  case UnsignedLong:     return getLongWidth();
  case SignedLongLong:
  case UnsignedLongLong: return getLongLongWidth();
  };
}

TargetInfo::IntType TargetInfo::getIntTypeByWidth(
    unsigned BitWidth, bool IsSigned) const {
  if (getCharWidth() == BitWidth)
    return IsSigned ? SignedChar : UnsignedChar;
  if (getShortWidth() == BitWidth)
    return IsSigned ? SignedShort : UnsignedShort;
  if (getIntWidth() == BitWidth)
    return IsSigned ? SignedInt : UnsignedInt;
  if (getLongWidth() == BitWidth)
    return IsSigned ? SignedLong : UnsignedLong;
  if (getLongLongWidth() == BitWidth)
    return IsSigned ? SignedLongLong : UnsignedLongLong;
  return NoInt;
}

TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth,
                                                       bool IsSigned) const {
  if (getCharWidth() >= BitWidth)
    return IsSigned ? SignedChar : UnsignedChar;
  if (getShortWidth() >= BitWidth)
    return IsSigned ? SignedShort : UnsignedShort;
  if (getIntWidth() >= BitWidth)
    return IsSigned ? SignedInt : UnsignedInt;
  if (getLongWidth() >= BitWidth)
    return IsSigned ? SignedLong : UnsignedLong;
  if (getLongLongWidth() >= BitWidth)
    return IsSigned ? SignedLongLong : UnsignedLongLong;
  return NoInt;
}

TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth) const {
  if (getFloatWidth() == BitWidth)
    return Float;
  if (getDoubleWidth() == BitWidth)
    return Double;

  switch (BitWidth) {
  case 96:
    if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended())
      return LongDouble;
    break;
  case 128:
    if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() ||
        &getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
      return LongDouble;
    if (hasFloat128Type())
      return Float128;
    break;
  }

  return NoFloat;
}

/// getTypeAlign - Return the alignment (in bits) of the specified integer type
/// enum. For example, SignedInt -> getIntAlign().
unsigned TargetInfo::getTypeAlign(IntType T) const {
  switch (T) {
  default: llvm_unreachable("not an integer!");
  case SignedChar:
  case UnsignedChar:     return getCharAlign();
  case SignedShort:
  case UnsignedShort:    return getShortAlign();
  case SignedInt:
  case UnsignedInt:      return getIntAlign();
  case SignedLong:
  case UnsignedLong:     return getLongAlign();
  case SignedLongLong:
  case UnsignedLongLong: return getLongLongAlign();
  };
}

/// isTypeSigned - Return whether an integer types is signed. Returns true if
/// the type is signed; false otherwise.
bool TargetInfo::isTypeSigned(IntType T) {
  switch (T) {
  default: llvm_unreachable("not an integer!");
  case SignedChar:
  case SignedShort:
  case SignedInt:
  case SignedLong:
  case SignedLongLong:
    return true;
  case UnsignedChar:
  case UnsignedShort:
  case UnsignedInt:
  case UnsignedLong:
  case UnsignedLongLong:
    return false;
  };
}

/// adjust - Set forced language options.
/// Apply changes to the target information with respect to certain
/// language options which change the target configuration and adjust
/// the language based on the target options where applicable.
void TargetInfo::adjust(LangOptions &Opts) {
  if (Opts.NoBitFieldTypeAlign)
    UseBitFieldTypeAlignment = false;

  switch (Opts.WCharSize) {
  default: llvm_unreachable("invalid wchar_t width");
  case 0: break;
  case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break;
  case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break;
  case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break;
  }

  if (Opts.AlignDouble) {
    DoubleAlign = LongLongAlign = 64;
    LongDoubleAlign = 64;
  }

  if (Opts.OpenCL) {
    // OpenCL C requires specific widths for types, irrespective of
    // what these normally are for the target.
    // We also define long long and long double here, although the
    // OpenCL standard only mentions these as "reserved".
    IntWidth = IntAlign = 32;
    LongWidth = LongAlign = 64;
    LongLongWidth = LongLongAlign = 128;
    HalfWidth = HalfAlign = 16;
    FloatWidth = FloatAlign = 32;

    // Embedded 32-bit targets (OpenCL EP) might have double C type
    // defined as float. Let's not override this as it might lead
    // to generating illegal code that uses 64bit doubles.
    if (DoubleWidth != FloatWidth) {
      DoubleWidth = DoubleAlign = 64;
      DoubleFormat = &llvm::APFloat::IEEEdouble();
    }
    LongDoubleWidth = LongDoubleAlign = 128;

    unsigned MaxPointerWidth = getMaxPointerWidth();
    assert(MaxPointerWidth == 32 || MaxPointerWidth == 64);
    bool Is32BitArch = MaxPointerWidth == 32;
    SizeType = Is32BitArch ? UnsignedInt : UnsignedLong;
    PtrDiffType = Is32BitArch ? SignedInt : SignedLong;
    IntPtrType = Is32BitArch ? SignedInt : SignedLong;

    IntMaxType = SignedLongLong;
    Int64Type = SignedLong;

    HalfFormat = &llvm::APFloat::IEEEhalf();
    FloatFormat = &llvm::APFloat::IEEEsingle();
    LongDoubleFormat = &llvm::APFloat::IEEEquad();
  }

  if (Opts.LongDoubleSize) {
    if (Opts.LongDoubleSize == DoubleWidth) {
      LongDoubleWidth = DoubleWidth;
      LongDoubleAlign = DoubleAlign;
      LongDoubleFormat = DoubleFormat;
    } else if (Opts.LongDoubleSize == 128) {
      LongDoubleWidth = LongDoubleAlign = 128;
      LongDoubleFormat = &llvm::APFloat::IEEEquad();
    }
  }

  if (Opts.NewAlignOverride)
    NewAlign = Opts.NewAlignOverride * getCharWidth();

  // Each unsigned fixed point type has the same number of fractional bits as
  // its corresponding signed type.
  PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint;
  CheckFixedPointBits();
}

bool TargetInfo::initFeatureMap(
    llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU,
    const std::vector<std::string> &FeatureVec) const {
  for (const auto &F : FeatureVec) {
    StringRef Name = F;
    // Apply the feature via the target.
    bool Enabled = Name[0] == '+';
    setFeatureEnabled(Features, Name.substr(1), Enabled);
  }
  return true;
}

TargetInfo::CallingConvKind
TargetInfo::getCallingConvKind(bool ClangABICompat4) const {
  if (getCXXABI() != TargetCXXABI::Microsoft &&
      (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4))
    return CCK_ClangABI4OrPS4;
  return CCK_Default;
}

LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const {
  switch (TK) {
  case OCLTK_Image:
  case OCLTK_Pipe:
    return LangAS::opencl_global;

  case OCLTK_Sampler:
    return LangAS::opencl_constant;

  default:
    return LangAS::Default;
  }
}

//===----------------------------------------------------------------------===//


static StringRef removeGCCRegisterPrefix(StringRef Name) {
  if (Name[0] == '%' || Name[0] == '#')
    Name = Name.substr(1);

  return Name;
}

/// isValidClobber - Returns whether the passed in string is
/// a valid clobber in an inline asm statement. This is used by
/// Sema.
bool TargetInfo::isValidClobber(StringRef Name) const {
  return (isValidGCCRegisterName(Name) ||
          Name == "memory" || Name == "cc");
}

/// isValidGCCRegisterName - Returns whether the passed in string
/// is a valid register name according to GCC. This is used by Sema for
/// inline asm statements.
bool TargetInfo::isValidGCCRegisterName(StringRef Name) const {
  if (Name.empty())
    return false;

  // Get rid of any register prefix.
  Name = removeGCCRegisterPrefix(Name);
  if (Name.empty())
    return false;

  ArrayRef<const char *> Names = getGCCRegNames();

  // If we have a number it maps to an entry in the register name array.
  if (isDigit(Name[0])) {
    unsigned n;
    if (!Name.getAsInteger(0, n))
      return n < Names.size();
  }

  // Check register names.
  if (llvm::is_contained(Names, Name))
    return true;

  // Check any additional names that we have.
  for (const AddlRegName &ARN : getGCCAddlRegNames())
    for (const char *AN : ARN.Names) {
      if (!AN)
        break;
      // Make sure the register that the additional name is for is within
      // the bounds of the register names from above.
      if (AN == Name && ARN.RegNum < Names.size())
        return true;
    }

  // Now check aliases.
  for (const GCCRegAlias &GRA : getGCCRegAliases())
    for (const char *A : GRA.Aliases) {
      if (!A)
        break;
      if (A == Name)
        return true;
    }

  return false;
}

StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name,
                                                   bool ReturnCanonical) const {
  assert(isValidGCCRegisterName(Name) && "Invalid register passed in");

  // Get rid of any register prefix.
  Name = removeGCCRegisterPrefix(Name);

  ArrayRef<const char *> Names = getGCCRegNames();

  // First, check if we have a number.
  if (isDigit(Name[0])) {
    unsigned n;
    if (!Name.getAsInteger(0, n)) {
      assert(n < Names.size() && "Out of bounds register number!");
      return Names[n];
    }
  }

  // Check any additional names that we have.
  for (const AddlRegName &ARN : getGCCAddlRegNames())
    for (const char *AN : ARN.Names) {
      if (!AN)
        break;
      // Make sure the register that the additional name is for is within
      // the bounds of the register names from above.
      if (AN == Name && ARN.RegNum < Names.size())
        return ReturnCanonical ? Names[ARN.RegNum] : Name;
    }

  // Now check aliases.
  for (const GCCRegAlias &RA : getGCCRegAliases())
    for (const char *A : RA.Aliases) {
      if (!A)
        break;
      if (A == Name)
        return RA.Register;
    }

  return Name;
}

bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const {
  const char *Name = Info.getConstraintStr().c_str();
  // An output constraint must start with '=' or '+'
  if (*Name != '=' && *Name != '+')
    return false;

  if (*Name == '+')
    Info.setIsReadWrite();

  Name++;
  while (*Name) {
    switch (*Name) {
    default:
      if (!validateAsmConstraint(Name, Info)) {
        // FIXME: We temporarily return false
        // so we can add more constraints as we hit it.
        // Eventually, an unknown constraint should just be treated as 'g'.
        return false;
      }
      break;
    case '&': // early clobber.
      Info.setEarlyClobber();
      break;
    case '%': // commutative.
      // FIXME: Check that there is a another register after this one.
      break;
    case 'r': // general register.
      Info.setAllowsRegister();
      break;
    case 'm': // memory operand.
    case 'o': // offsetable memory operand.
    case 'V': // non-offsetable memory operand.
    case '<': // autodecrement memory operand.
    case '>': // autoincrement memory operand.
      Info.setAllowsMemory();
      break;
    case 'g': // general register, memory operand or immediate integer.
    case 'X': // any operand.
      Info.setAllowsRegister();
      Info.setAllowsMemory();
      break;
    case ',': // multiple alternative constraint.  Pass it.
      // Handle additional optional '=' or '+' modifiers.
      if (Name[1] == '=' || Name[1] == '+')
        Name++;
      break;
    case '#': // Ignore as constraint.
      while (Name[1] && Name[1] != ',')
        Name++;
      break;
    case '?': // Disparage slightly code.
    case '!': // Disparage severely.
    case '*': // Ignore for choosing register preferences.
    case 'i': // Ignore i,n,E,F as output constraints (match from the other
              // chars)
    case 'n':
    case 'E':
    case 'F':
      break;  // Pass them.
    }

    Name++;
  }

  // Early clobber with a read-write constraint which doesn't permit registers
  // is invalid.
  if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister())
    return false;

  // If a constraint allows neither memory nor register operands it contains
  // only modifiers. Reject it.
  return Info.allowsMemory() || Info.allowsRegister();
}

bool TargetInfo::resolveSymbolicName(const char *&Name,
                                     ArrayRef<ConstraintInfo> OutputConstraints,
                                     unsigned &Index) const {
  assert(*Name == '[' && "Symbolic name did not start with '['");
  Name++;
  const char *Start = Name;
  while (*Name && *Name != ']')
    Name++;

  if (!*Name) {
    // Missing ']'
    return false;
  }

  std::string SymbolicName(Start, Name - Start);

  for (Index = 0; Index != OutputConstraints.size(); ++Index)
    if (SymbolicName == OutputConstraints[Index].getName())
      return true;

  return false;
}

bool TargetInfo::validateInputConstraint(
                              MutableArrayRef<ConstraintInfo> OutputConstraints,
                              ConstraintInfo &Info) const {
  const char *Name = Info.ConstraintStr.c_str();

  if (!*Name)
    return false;

  while (*Name) {
    switch (*Name) {
    default:
      // Check if we have a matching constraint
      if (*Name >= '0' && *Name <= '9') {
        const char *DigitStart = Name;
        while (Name[1] >= '0' && Name[1] <= '9')
          Name++;
        const char *DigitEnd = Name;
        unsigned i;
        if (StringRef(DigitStart, DigitEnd - DigitStart + 1)
                .getAsInteger(10, i))
          return false;

        // Check if matching constraint is out of bounds.
        if (i >= OutputConstraints.size()) return false;

        // A number must refer to an output only operand.
        if (OutputConstraints[i].isReadWrite())
          return false;

        // If the constraint is already tied, it must be tied to the
        // same operand referenced to by the number.
        if (Info.hasTiedOperand() && Info.getTiedOperand() != i)
          return false;

        // The constraint should have the same info as the respective
        // output constraint.
        Info.setTiedOperand(i, OutputConstraints[i]);
      } else if (!validateAsmConstraint(Name, Info)) {
        // FIXME: This error return is in place temporarily so we can
        // add more constraints as we hit it.  Eventually, an unknown
        // constraint should just be treated as 'g'.
        return false;
      }
      break;
    case '[': {
      unsigned Index = 0;
      if (!resolveSymbolicName(Name, OutputConstraints, Index))
        return false;

      // If the constraint is already tied, it must be tied to the
      // same operand referenced to by the number.
      if (Info.hasTiedOperand() && Info.getTiedOperand() != Index)
        return false;

      // A number must refer to an output only operand.
      if (OutputConstraints[Index].isReadWrite())
        return false;

      Info.setTiedOperand(Index, OutputConstraints[Index]);
      break;
    }
    case '%': // commutative
      // FIXME: Fail if % is used with the last operand.
      break;
    case 'i': // immediate integer.
      break;
    case 'n': // immediate integer with a known value.
      Info.setRequiresImmediate();
      break;
    case 'I':  // Various constant constraints with target-specific meanings.
    case 'J':
    case 'K':
    case 'L':
    case 'M':
    case 'N':
    case 'O':
    case 'P':
      if (!validateAsmConstraint(Name, Info))
        return false;
      break;
    case 'r': // general register.
      Info.setAllowsRegister();
      break;
    case 'm': // memory operand.
    case 'o': // offsettable memory operand.
    case 'V': // non-offsettable memory operand.
    case '<': // autodecrement memory operand.
    case '>': // autoincrement memory operand.
      Info.setAllowsMemory();
      break;
    case 'g': // general register, memory operand or immediate integer.
    case 'X': // any operand.
      Info.setAllowsRegister();
      Info.setAllowsMemory();
      break;
    case 'E': // immediate floating point.
    case 'F': // immediate floating point.
    case 'p': // address operand.
      break;
    case ',': // multiple alternative constraint.  Ignore comma.
      break;
    case '#': // Ignore as constraint.
      while (Name[1] && Name[1] != ',')
        Name++;
      break;
    case '?': // Disparage slightly code.
    case '!': // Disparage severely.
    case '*': // Ignore for choosing register preferences.
      break;  // Pass them.
    }

    Name++;
  }

  return true;
}

void TargetInfo::CheckFixedPointBits() const {
  // Check that the number of fractional and integral bits (and maybe sign) can
  // fit into the bits given for a fixed point type.
  assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth);
  assert(AccumScale + getAccumIBits() + 1 <= AccumWidth);
  assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth);
  assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <=
         ShortAccumWidth);
  assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth);
  assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <=
         LongAccumWidth);

  assert(getShortFractScale() + 1 <= ShortFractWidth);
  assert(getFractScale() + 1 <= FractWidth);
  assert(getLongFractScale() + 1 <= LongFractWidth);
  assert(getUnsignedShortFractScale() <= ShortFractWidth);
  assert(getUnsignedFractScale() <= FractWidth);
  assert(getUnsignedLongFractScale() <= LongFractWidth);

  // Each unsigned fract type has either the same number of fractional bits
  // as, or one more fractional bit than, its corresponding signed fract type.
  assert(getShortFractScale() == getUnsignedShortFractScale() ||
         getShortFractScale() == getUnsignedShortFractScale() - 1);
  assert(getFractScale() == getUnsignedFractScale() ||
         getFractScale() == getUnsignedFractScale() - 1);
  assert(getLongFractScale() == getUnsignedLongFractScale() ||
         getLongFractScale() == getUnsignedLongFractScale() - 1);

  // When arranged in order of increasing rank (see 6.3.1.3a), the number of
  // fractional bits is nondecreasing for each of the following sets of
  // fixed-point types:
  // - signed fract types
  // - unsigned fract types
  // - signed accum types
  // - unsigned accum types.
  assert(getLongFractScale() >= getFractScale() &&
         getFractScale() >= getShortFractScale());
  assert(getUnsignedLongFractScale() >= getUnsignedFractScale() &&
         getUnsignedFractScale() >= getUnsignedShortFractScale());
  assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale);
  assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() &&
         getUnsignedAccumScale() >= getUnsignedShortAccumScale());

  // When arranged in order of increasing rank (see 6.3.1.3a), the number of
  // integral bits is nondecreasing for each of the following sets of
  // fixed-point types:
  // - signed accum types
  // - unsigned accum types
  assert(getLongAccumIBits() >= getAccumIBits() &&
         getAccumIBits() >= getShortAccumIBits());
  assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() &&
         getUnsignedAccumIBits() >= getUnsignedShortAccumIBits());

  // Each signed accum type has at least as many integral bits as its
  // corresponding unsigned accum type.
  assert(getShortAccumIBits() >= getUnsignedShortAccumIBits());
  assert(getAccumIBits() >= getUnsignedAccumIBits());
  assert(getLongAccumIBits() >= getUnsignedLongAccumIBits());
}

void TargetInfo::copyAuxTarget(const TargetInfo *Aux) {
  auto *Target = static_cast<TransferrableTargetInfo*>(this);
  auto *Src = static_cast<const TransferrableTargetInfo*>(Aux);
  *Target = *Src;
}