wrapping-pointer-versioning.ll 17.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
; RUN: opt -basicaa -loop-accesses -analyze < %s | FileCheck %s -check-prefix=LAA
; RUN: opt -passes='require<aa>,require<scalar-evolution>,require<aa>,loop(print-access-info)' -aa-pipeline='basic-aa' -disable-output < %s  2>&1 | FileCheck %s --check-prefix=LAA
; RUN: opt -loop-versioning -S < %s | FileCheck %s -check-prefix=LV

target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"

; For this loop:
;   unsigned index = 0;
;   for (int i = 0; i < n; i++) {
;    A[2 * index] = A[2 * index] + B[i];
;    index++;
;   }
;
; SCEV is unable to prove that A[2 * i] does not overflow.
;
; Analyzing the IR does not help us because the GEPs are not
; affine AddRecExprs. However, we can turn them into AddRecExprs
; using SCEV Predicates.
;
; Once we have an affine expression we need to add an additional NUSW
; to check that the pointers don't wrap since the GEPs are not
; inbound.

; LAA-LABEL: f1
; LAA: Memory dependences are safe{{$}}
; LAA: SCEV assumptions:
; LAA-NEXT: {0,+,2}<%for.body> Added Flags: <nusw>
; LAA-NEXT: {%a,+,4}<%for.body> Added Flags: <nusw>

; The expression for %mul_ext as analyzed by SCEV is
;    (zext i32 {0,+,2}<%for.body> to i64)
; We have added the nusw flag to turn this expression into the SCEV expression:
;    i64 {0,+,2}<%for.body>

; LAA: [PSE]  %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext:
; LAA-NEXT: ((2 * (zext i32 {0,+,2}<%for.body> to i64))<nuw><nsw> + %a)
; LAA-NEXT: --> {%a,+,4}<%for.body>


; LV-LABEL: f1
; LV-LABEL: for.body.lver.check

; LV:      [[BETrunc:%[^ ]*]] = trunc i64 [[BE:%[^ ]*]] to i32
; LV-NEXT: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc]])
; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0
; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1
; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 0, [[OFMulResult]]
; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 0, [[OFMulResult]]
; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp ugt i32 [[SubEnd]], 0
; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp ult i32 [[AddEnd]], 0
; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg]], i1 [[CmpPos]]
; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295
; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]]
; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]]

; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]]

; LV-NEXT: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE]])
; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0
; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1
; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[A0:%[^ ]*]], [[OFMulResult1]]
; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[A0]], [[OFMulResult1]]
; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[A0]]
; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[A0]]
; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg1]], i1 [[CmpPos1]]
; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]]

; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]]
; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph
define void @f1(i16* noalias %a,
                i16* noalias %b, i64 %N) {
entry:
  br label %for.body

for.body:                                         ; preds = %for.body, %entry
  %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
  %ind1 = phi i32 [ 0, %entry ], [ %inc1, %for.body ]

  %mul = mul i32 %ind1, 2
  %mul_ext = zext i32 %mul to i64

  %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext
  %loadA = load i16, i16* %arrayidxA, align 2

  %arrayidxB = getelementptr i16, i16* %b, i64 %ind
  %loadB = load i16, i16* %arrayidxB, align 2

  %add = mul i16 %loadA, %loadB

  store i16 %add, i16* %arrayidxA, align 2

  %inc = add nuw nsw i64 %ind, 1
  %inc1 = add i32 %ind1, 1

  %exitcond = icmp eq i64 %inc, %N
  br i1 %exitcond, label %for.end, label %for.body

for.end:                                          ; preds = %for.body
  ret void
}

; For this loop:
;   unsigned index = n;
;   for (int i = 0; i < n; i++) {
;    A[2 * index] = A[2 * index] + B[i];
;    index--;
;   }
;
; the SCEV expression for 2 * index is not an AddRecExpr
; (and implictly not affine). However, we are able to make assumptions
; that will turn the expression into an affine one and continue the
; analysis.
;
; Once we have an affine expression we need to add an additional NUSW
; to check that the pointers don't wrap since the GEPs are not
; inbounds.
;
; This loop has a negative stride for A, and the nusw flag is required in
; order to properly extend the increment from i32 -4 to i64 -4.

; LAA-LABEL: f2
; LAA: Memory dependences are safe{{$}}
; LAA: SCEV assumptions:
; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nusw>
; LAA-NEXT: {((4 * (zext i31 (trunc i64 %N to i31) to i64)) + %a),+,-4}<%for.body> Added Flags: <nusw>

; The expression for %mul_ext as analyzed by SCEV is
;     (zext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64)
; We have added the nusw flag to turn this expression into the following SCEV:
;     i64 {zext i32 (2 * (trunc i64 %N to i32)) to i64,+,-2}<%for.body>

; LAA: [PSE]  %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext:
; LAA-NEXT: ((2 * (zext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64))<nuw><nsw> + %a)
; LAA-NEXT: --> {((4 * (zext i31 (trunc i64 %N to i31) to i64)) + %a),+,-4}<%for.body>

; LV-LABEL: f2
; LV-LABEL: for.body.lver.check

; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]])
; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0
; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1
; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 [[Start:%[^ ]*]], [[OFMulResult]]
; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 [[Start]], [[OFMulResult]]
; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp ugt i32 [[SubEnd]], [[Start]]
; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp ult i32 [[AddEnd]], [[Start]]
; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg]], i1 [[CmpPos]]
; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295
; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]]
; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]]

; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]]

; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE]])
; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0
; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1
; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[Start:%[^ ]*]], [[OFMulResult1]]
; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[Start]], [[OFMulResult1]]
; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[Start]]
; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[Start]]
; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg1]], i1 [[CmpPos1]]
; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]]

; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]]
; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph
define void @f2(i16* noalias %a,
                i16* noalias %b, i64 %N) {
entry:
  %TruncN = trunc i64 %N to i32
  br label %for.body

for.body:                                         ; preds = %for.body, %entry
  %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
  %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ]

  %mul = mul i32 %ind1, 2
  %mul_ext = zext i32 %mul to i64

  %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext
  %loadA = load i16, i16* %arrayidxA, align 2

  %arrayidxB = getelementptr i16, i16* %b, i64 %ind
  %loadB = load i16, i16* %arrayidxB, align 2

  %add = mul i16 %loadA, %loadB

  store i16 %add, i16* %arrayidxA, align 2

  %inc = add nuw nsw i64 %ind, 1
  %dec = sub i32 %ind1, 1

  %exitcond = icmp eq i64 %inc, %N
  br i1 %exitcond, label %for.end, label %for.body

for.end:                                          ; preds = %for.body
  ret void
}

; We replicate the tests above, but this time sign extend 2 * index instead
; of zero extending it.

; LAA-LABEL: f3
; LAA: Memory dependences are safe{{$}}
; LAA: SCEV assumptions:
; LAA-NEXT: {0,+,2}<%for.body> Added Flags: <nssw>
; LAA-NEXT: {%a,+,4}<%for.body> Added Flags: <nusw>

; The expression for %mul_ext as analyzed by SCEV is
;     i64 (sext i32 {0,+,2}<%for.body> to i64)
; We have added the nssw flag to turn this expression into the following SCEV:
;     i64 {0,+,2}<%for.body>

; LAA: [PSE]  %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext:
; LAA-NEXT: ((2 * (sext i32 {0,+,2}<%for.body> to i64))<nsw> + %a)
; LAA-NEXT: --> {%a,+,4}<%for.body>

; LV-LABEL: f3
; LV-LABEL: for.body.lver.check

; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]])
; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0
; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1
; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 0, [[OFMulResult]]
; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 0, [[OFMulResult]]
; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp sgt i32 [[SubEnd]], 0
; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp slt i32 [[AddEnd]], 0
; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg]], i1 [[CmpPos]]
; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295
; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]]
; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]]

; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]]

; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE:%[^ ]*]])
; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0
; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1
; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[A0:%[^ ]*]], [[OFMulResult1]]
; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[A0]], [[OFMulResult1]]
; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[A0]]
; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[A0]]
; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg1]], i1 [[CmpPos1]]
; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]]

; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]]
; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph
define void @f3(i16* noalias %a,
                i16* noalias %b, i64 %N) {
entry:
  br label %for.body

for.body:                                         ; preds = %for.body, %entry
  %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
  %ind1 = phi i32 [ 0, %entry ], [ %inc1, %for.body ]

  %mul = mul i32 %ind1, 2
  %mul_ext = sext i32 %mul to i64

  %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext
  %loadA = load i16, i16* %arrayidxA, align 2

  %arrayidxB = getelementptr i16, i16* %b, i64 %ind
  %loadB = load i16, i16* %arrayidxB, align 2

  %add = mul i16 %loadA, %loadB

  store i16 %add, i16* %arrayidxA, align 2

  %inc = add nuw nsw i64 %ind, 1
  %inc1 = add i32 %ind1, 1

  %exitcond = icmp eq i64 %inc, %N
  br i1 %exitcond, label %for.end, label %for.body

for.end:                                          ; preds = %for.body
  ret void
}

; LAA-LABEL: f4
; LAA: Memory dependences are safe{{$}}
; LAA: SCEV assumptions:
; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nssw>
; LAA-NEXT: {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body> Added Flags: <nusw>

; The expression for %mul_ext as analyzed by SCEV is
;     i64  (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64)
; We have added the nssw flag to turn this expression into the following SCEV:
;     i64 {sext i32 (2 * (trunc i64 %N to i32)) to i64,+,-2}<%for.body>

; LAA: [PSE]  %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext:
; LAA-NEXT: ((2 * (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64))<nsw> + %a)
; LAA-NEXT: --> {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body>

; LV-LABEL: f4
; LV-LABEL: for.body.lver.check

; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]])
; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0
; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1
; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 [[Start:%[^ ]*]], [[OFMulResult]]
; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 [[Start]], [[OFMulResult]]
; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp sgt i32 [[SubEnd]], [[Start]]
; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp slt i32 [[AddEnd]], [[Start]]
; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg]], i1 [[CmpPos]]
; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295
; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]]
; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]]

; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]]

; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE:%[^ ]*]])
; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0
; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1
; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[Start:%[^ ]*]], [[OFMulResult1]]
; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[Start]], [[OFMulResult1]]
; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[Start]]
; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[Start]]
; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg1]], i1 [[CmpPos1]]
; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]]

; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]]
; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph
define void @f4(i16* noalias %a,
                i16* noalias %b, i64 %N) {
entry:
  %TruncN = trunc i64 %N to i32
  br label %for.body

for.body:                                         ; preds = %for.body, %entry
  %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
  %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ]

  %mul = mul i32 %ind1, 2
  %mul_ext = sext i32 %mul to i64

  %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext
  %loadA = load i16, i16* %arrayidxA, align 2

  %arrayidxB = getelementptr i16, i16* %b, i64 %ind
  %loadB = load i16, i16* %arrayidxB, align 2

  %add = mul i16 %loadA, %loadB

  store i16 %add, i16* %arrayidxA, align 2

  %inc = add nuw nsw i64 %ind, 1
  %dec = sub i32 %ind1, 1

  %exitcond = icmp eq i64 %inc, %N
  br i1 %exitcond, label %for.end, label %for.body

for.end:                                          ; preds = %for.body
  ret void
}

; The following function is similar to the one above, but has the GEP
; to pointer %A inbounds. The index %mul doesn't have the nsw flag.
; This means that the SCEV expression for %mul can wrap and we need
; a SCEV predicate to continue analysis.
;
; We can still analyze this by adding the required no wrap SCEV predicates.

; LAA-LABEL: f5
; LAA: Memory dependences are safe{{$}}
; LAA: SCEV assumptions:
; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nssw>
; LAA-NEXT: {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body> Added Flags: <nusw>

; LAA: [PSE]  %arrayidxA = getelementptr inbounds i16, i16* %a, i32 %mul:
; LAA-NEXT: ((2 * (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64))<nsw> + %a)<nsw>
; LAA-NEXT: --> {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body>

; LV-LABEL: f5
; LV-LABEL: for.body.lver.check
; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]])
; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0
; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1
; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 [[Start:%[^ ]*]], [[OFMulResult]]
; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 [[Start]], [[OFMulResult]]
; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp sgt i32 [[SubEnd]], [[Start]]
; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp slt i32 [[AddEnd]], [[Start]]
; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg]], i1 [[CmpPos]]
; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295
; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]]
; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]]

; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]]

; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE:%[^ ]*]])
; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0
; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1
; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[Start:%[^ ]*]], [[OFMulResult1]]
; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[Start]], [[OFMulResult1]]
; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[Start]]
; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[Start]]
; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg1]], i1 [[CmpPos1]]
; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]]

; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]]
; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph
define void @f5(i16* noalias %a,
                i16* noalias %b, i64 %N) {
entry:
  %TruncN = trunc i64 %N to i32
  br label %for.body

for.body:                                         ; preds = %for.body, %entry
  %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
  %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ]

  %mul = mul i32 %ind1, 2

  %arrayidxA = getelementptr inbounds i16, i16* %a, i32 %mul
  %loadA = load i16, i16* %arrayidxA, align 2

  %arrayidxB = getelementptr inbounds i16, i16* %b, i64 %ind
  %loadB = load i16, i16* %arrayidxB, align 2

  %add = mul i16 %loadA, %loadB

  store i16 %add, i16* %arrayidxA, align 2

  %inc = add nuw nsw i64 %ind, 1
  %dec = sub i32 %ind1, 1

  %exitcond = icmp eq i64 %inc, %N
  br i1 %exitcond, label %for.end, label %for.body

for.end:                                          ; preds = %for.body
  ret void
}