CGDecl.cpp 97.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Decl nodes as LLVM code.
//
//===----------------------------------------------------------------------===//

#include "CGBlocks.h"
#include "CGCXXABI.h"
#include "CGCleanup.h"
#include "CGDebugInfo.h"
#include "CGOpenCLRuntime.h"
#include "CGOpenMPRuntime.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "ConstantEmitter.h"
#include "PatternInit.h"
#include "TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclOpenMP.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/CodeGen/CGFunctionInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Type.h"

using namespace clang;
using namespace CodeGen;

void CodeGenFunction::EmitDecl(const Decl &D) {
  switch (D.getKind()) {
  case Decl::BuiltinTemplate:
  case Decl::TranslationUnit:
  case Decl::ExternCContext:
  case Decl::Namespace:
  case Decl::UnresolvedUsingTypename:
  case Decl::ClassTemplateSpecialization:
  case Decl::ClassTemplatePartialSpecialization:
  case Decl::VarTemplateSpecialization:
  case Decl::VarTemplatePartialSpecialization:
  case Decl::TemplateTypeParm:
  case Decl::UnresolvedUsingValue:
  case Decl::NonTypeTemplateParm:
  case Decl::CXXDeductionGuide:
  case Decl::CXXMethod:
  case Decl::CXXConstructor:
  case Decl::CXXDestructor:
  case Decl::CXXConversion:
  case Decl::Field:
  case Decl::MSProperty:
  case Decl::IndirectField:
  case Decl::ObjCIvar:
  case Decl::ObjCAtDefsField:
  case Decl::ParmVar:
  case Decl::ImplicitParam:
  case Decl::ClassTemplate:
  case Decl::VarTemplate:
  case Decl::FunctionTemplate:
  case Decl::TypeAliasTemplate:
  case Decl::TemplateTemplateParm:
  case Decl::ObjCMethod:
  case Decl::ObjCCategory:
  case Decl::ObjCProtocol:
  case Decl::ObjCInterface:
  case Decl::ObjCCategoryImpl:
  case Decl::ObjCImplementation:
  case Decl::ObjCProperty:
  case Decl::ObjCCompatibleAlias:
  case Decl::PragmaComment:
  case Decl::PragmaDetectMismatch:
  case Decl::AccessSpec:
  case Decl::LinkageSpec:
  case Decl::Export:
  case Decl::ObjCPropertyImpl:
  case Decl::FileScopeAsm:
  case Decl::Friend:
  case Decl::FriendTemplate:
  case Decl::Block:
  case Decl::Captured:
  case Decl::ClassScopeFunctionSpecialization:
  case Decl::UsingShadow:
  case Decl::ConstructorUsingShadow:
  case Decl::ObjCTypeParam:
  case Decl::Binding:
    llvm_unreachable("Declaration should not be in declstmts!");
  case Decl::Function:  // void X();
  case Decl::Record:    // struct/union/class X;
  case Decl::Enum:      // enum X;
  case Decl::EnumConstant: // enum ? { X = ? }
  case Decl::CXXRecord: // struct/union/class X; [C++]
  case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
  case Decl::Label:        // __label__ x;
  case Decl::Import:
  case Decl::OMPThreadPrivate:
  case Decl::OMPAllocate:
  case Decl::OMPCapturedExpr:
  case Decl::OMPRequires:
  case Decl::Empty:
  case Decl::Concept:
  case Decl::LifetimeExtendedTemporary:
  case Decl::RequiresExprBody:
    // None of these decls require codegen support.
    return;

  case Decl::NamespaceAlias:
    if (CGDebugInfo *DI = getDebugInfo())
        DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
    return;
  case Decl::Using:          // using X; [C++]
    if (CGDebugInfo *DI = getDebugInfo())
        DI->EmitUsingDecl(cast<UsingDecl>(D));
    return;
  case Decl::UsingPack:
    for (auto *Using : cast<UsingPackDecl>(D).expansions())
      EmitDecl(*Using);
    return;
  case Decl::UsingDirective: // using namespace X; [C++]
    if (CGDebugInfo *DI = getDebugInfo())
      DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
    return;
  case Decl::Var:
  case Decl::Decomposition: {
    const VarDecl &VD = cast<VarDecl>(D);
    assert(VD.isLocalVarDecl() &&
           "Should not see file-scope variables inside a function!");
    EmitVarDecl(VD);
    if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
      for (auto *B : DD->bindings())
        if (auto *HD = B->getHoldingVar())
          EmitVarDecl(*HD);
    return;
  }

  case Decl::OMPDeclareReduction:
    return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);

  case Decl::OMPDeclareMapper:
    return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);

  case Decl::Typedef:      // typedef int X;
  case Decl::TypeAlias: {  // using X = int; [C++0x]
    const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
    QualType Ty = TD.getUnderlyingType();

    if (Ty->isVariablyModifiedType())
      EmitVariablyModifiedType(Ty);

    return;
  }
  }
}

/// EmitVarDecl - This method handles emission of any variable declaration
/// inside a function, including static vars etc.
void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
  if (D.hasExternalStorage())
    // Don't emit it now, allow it to be emitted lazily on its first use.
    return;

  // Some function-scope variable does not have static storage but still
  // needs to be emitted like a static variable, e.g. a function-scope
  // variable in constant address space in OpenCL.
  if (D.getStorageDuration() != SD_Automatic) {
    // Static sampler variables translated to function calls.
    if (D.getType()->isSamplerT())
      return;

    llvm::GlobalValue::LinkageTypes Linkage =
        CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false);

    // FIXME: We need to force the emission/use of a guard variable for
    // some variables even if we can constant-evaluate them because
    // we can't guarantee every translation unit will constant-evaluate them.

    return EmitStaticVarDecl(D, Linkage);
  }

  if (D.getType().getAddressSpace() == LangAS::opencl_local)
    return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);

  assert(D.hasLocalStorage());
  return EmitAutoVarDecl(D);
}

static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
  if (CGM.getLangOpts().CPlusPlus)
    return CGM.getMangledName(&D).str();

  // If this isn't C++, we don't need a mangled name, just a pretty one.
  assert(!D.isExternallyVisible() && "name shouldn't matter");
  std::string ContextName;
  const DeclContext *DC = D.getDeclContext();
  if (auto *CD = dyn_cast<CapturedDecl>(DC))
    DC = cast<DeclContext>(CD->getNonClosureContext());
  if (const auto *FD = dyn_cast<FunctionDecl>(DC))
    ContextName = CGM.getMangledName(FD);
  else if (const auto *BD = dyn_cast<BlockDecl>(DC))
    ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
  else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
    ContextName = OMD->getSelector().getAsString();
  else
    llvm_unreachable("Unknown context for static var decl");

  ContextName += "." + D.getNameAsString();
  return ContextName;
}

llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
    const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
  // In general, we don't always emit static var decls once before we reference
  // them. It is possible to reference them before emitting the function that
  // contains them, and it is possible to emit the containing function multiple
  // times.
  if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
    return ExistingGV;

  QualType Ty = D.getType();
  assert(Ty->isConstantSizeType() && "VLAs can't be static");

  // Use the label if the variable is renamed with the asm-label extension.
  std::string Name;
  if (D.hasAttr<AsmLabelAttr>())
    Name = getMangledName(&D);
  else
    Name = getStaticDeclName(*this, D);

  llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
  LangAS AS = GetGlobalVarAddressSpace(&D);
  unsigned TargetAS = getContext().getTargetAddressSpace(AS);

  // OpenCL variables in local address space and CUDA shared
  // variables cannot have an initializer.
  llvm::Constant *Init = nullptr;
  if (Ty.getAddressSpace() == LangAS::opencl_local ||
      D.hasAttr<CUDASharedAttr>())
    Init = llvm::UndefValue::get(LTy);
  else
    Init = EmitNullConstant(Ty);

  llvm::GlobalVariable *GV = new llvm::GlobalVariable(
      getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
      nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
  GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign());

  if (supportsCOMDAT() && GV->isWeakForLinker())
    GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));

  if (D.getTLSKind())
    setTLSMode(GV, D);

  setGVProperties(GV, &D);

  // Make sure the result is of the correct type.
  LangAS ExpectedAS = Ty.getAddressSpace();
  llvm::Constant *Addr = GV;
  if (AS != ExpectedAS) {
    Addr = getTargetCodeGenInfo().performAddrSpaceCast(
        *this, GV, AS, ExpectedAS,
        LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
  }

  setStaticLocalDeclAddress(&D, Addr);

  // Ensure that the static local gets initialized by making sure the parent
  // function gets emitted eventually.
  const Decl *DC = cast<Decl>(D.getDeclContext());

  // We can't name blocks or captured statements directly, so try to emit their
  // parents.
  if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
    DC = DC->getNonClosureContext();
    // FIXME: Ensure that global blocks get emitted.
    if (!DC)
      return Addr;
  }

  GlobalDecl GD;
  if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
    GD = GlobalDecl(CD, Ctor_Base);
  else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
    GD = GlobalDecl(DD, Dtor_Base);
  else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
    GD = GlobalDecl(FD);
  else {
    // Don't do anything for Obj-C method decls or global closures. We should
    // never defer them.
    assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
  }
  if (GD.getDecl()) {
    // Disable emission of the parent function for the OpenMP device codegen.
    CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
    (void)GetAddrOfGlobal(GD);
  }

  return Addr;
}

/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
/// global variable that has already been created for it.  If the initializer
/// has a different type than GV does, this may free GV and return a different
/// one.  Otherwise it just returns GV.
llvm::GlobalVariable *
CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
                                               llvm::GlobalVariable *GV) {
  ConstantEmitter emitter(*this);
  llvm::Constant *Init = emitter.tryEmitForInitializer(D);

  // If constant emission failed, then this should be a C++ static
  // initializer.
  if (!Init) {
    if (!getLangOpts().CPlusPlus)
      CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
    else if (HaveInsertPoint()) {
      // Since we have a static initializer, this global variable can't
      // be constant.
      GV->setConstant(false);

      EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
    }
    return GV;
  }

  // The initializer may differ in type from the global. Rewrite
  // the global to match the initializer.  (We have to do this
  // because some types, like unions, can't be completely represented
  // in the LLVM type system.)
  if (GV->getType()->getElementType() != Init->getType()) {
    llvm::GlobalVariable *OldGV = GV;

    GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
                                  OldGV->isConstant(),
                                  OldGV->getLinkage(), Init, "",
                                  /*InsertBefore*/ OldGV,
                                  OldGV->getThreadLocalMode(),
                           CGM.getContext().getTargetAddressSpace(D.getType()));
    GV->setVisibility(OldGV->getVisibility());
    GV->setDSOLocal(OldGV->isDSOLocal());
    GV->setComdat(OldGV->getComdat());

    // Steal the name of the old global
    GV->takeName(OldGV);

    // Replace all uses of the old global with the new global
    llvm::Constant *NewPtrForOldDecl =
    llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
    OldGV->replaceAllUsesWith(NewPtrForOldDecl);

    // Erase the old global, since it is no longer used.
    OldGV->eraseFromParent();
  }

  GV->setConstant(CGM.isTypeConstant(D.getType(), true));
  GV->setInitializer(Init);

  emitter.finalize(GV);

  if (D.needsDestruction(getContext()) == QualType::DK_cxx_destructor &&
      HaveInsertPoint()) {
    // We have a constant initializer, but a nontrivial destructor. We still
    // need to perform a guarded "initialization" in order to register the
    // destructor.
    EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
  }

  return GV;
}

void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
                                      llvm::GlobalValue::LinkageTypes Linkage) {
  // Check to see if we already have a global variable for this
  // declaration.  This can happen when double-emitting function
  // bodies, e.g. with complete and base constructors.
  llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
  CharUnits alignment = getContext().getDeclAlign(&D);

  // Store into LocalDeclMap before generating initializer to handle
  // circular references.
  setAddrOfLocalVar(&D, Address(addr, alignment));

  // We can't have a VLA here, but we can have a pointer to a VLA,
  // even though that doesn't really make any sense.
  // Make sure to evaluate VLA bounds now so that we have them for later.
  if (D.getType()->isVariablyModifiedType())
    EmitVariablyModifiedType(D.getType());

  // Save the type in case adding the initializer forces a type change.
  llvm::Type *expectedType = addr->getType();

  llvm::GlobalVariable *var =
    cast<llvm::GlobalVariable>(addr->stripPointerCasts());

  // CUDA's local and local static __shared__ variables should not
  // have any non-empty initializers. This is ensured by Sema.
  // Whatever initializer such variable may have when it gets here is
  // a no-op and should not be emitted.
  bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
                         D.hasAttr<CUDASharedAttr>();
  // If this value has an initializer, emit it.
  if (D.getInit() && !isCudaSharedVar)
    var = AddInitializerToStaticVarDecl(D, var);

  var->setAlignment(alignment.getAsAlign());

  if (D.hasAttr<AnnotateAttr>())
    CGM.AddGlobalAnnotations(&D, var);

  if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
    var->addAttribute("bss-section", SA->getName());
  if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
    var->addAttribute("data-section", SA->getName());
  if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
    var->addAttribute("rodata-section", SA->getName());
  if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>())
    var->addAttribute("relro-section", SA->getName());

  if (const SectionAttr *SA = D.getAttr<SectionAttr>())
    var->setSection(SA->getName());

  if (D.hasAttr<UsedAttr>())
    CGM.addUsedGlobal(var);

  // We may have to cast the constant because of the initializer
  // mismatch above.
  //
  // FIXME: It is really dangerous to store this in the map; if anyone
  // RAUW's the GV uses of this constant will be invalid.
  llvm::Constant *castedAddr =
    llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
  if (var != castedAddr)
    LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
  CGM.setStaticLocalDeclAddress(&D, castedAddr);

  CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);

  // Emit global variable debug descriptor for static vars.
  CGDebugInfo *DI = getDebugInfo();
  if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) {
    DI->setLocation(D.getLocation());
    DI->EmitGlobalVariable(var, &D);
  }
}

namespace {
  struct DestroyObject final : EHScopeStack::Cleanup {
    DestroyObject(Address addr, QualType type,
                  CodeGenFunction::Destroyer *destroyer,
                  bool useEHCleanupForArray)
      : addr(addr), type(type), destroyer(destroyer),
        useEHCleanupForArray(useEHCleanupForArray) {}

    Address addr;
    QualType type;
    CodeGenFunction::Destroyer *destroyer;
    bool useEHCleanupForArray;

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      // Don't use an EH cleanup recursively from an EH cleanup.
      bool useEHCleanupForArray =
        flags.isForNormalCleanup() && this->useEHCleanupForArray;

      CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
    }
  };

  template <class Derived>
  struct DestroyNRVOVariable : EHScopeStack::Cleanup {
    DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag)
        : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {}

    llvm::Value *NRVOFlag;
    Address Loc;
    QualType Ty;

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      // Along the exceptions path we always execute the dtor.
      bool NRVO = flags.isForNormalCleanup() && NRVOFlag;

      llvm::BasicBlock *SkipDtorBB = nullptr;
      if (NRVO) {
        // If we exited via NRVO, we skip the destructor call.
        llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
        SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
        llvm::Value *DidNRVO =
          CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
        CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
        CGF.EmitBlock(RunDtorBB);
      }

      static_cast<Derived *>(this)->emitDestructorCall(CGF);

      if (NRVO) CGF.EmitBlock(SkipDtorBB);
    }

    virtual ~DestroyNRVOVariable() = default;
  };

  struct DestroyNRVOVariableCXX final
      : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
    DestroyNRVOVariableCXX(Address addr, QualType type,
                           const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag)
        : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag),
          Dtor(Dtor) {}

    const CXXDestructorDecl *Dtor;

    void emitDestructorCall(CodeGenFunction &CGF) {
      CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
                                /*ForVirtualBase=*/false,
                                /*Delegating=*/false, Loc, Ty);
    }
  };

  struct DestroyNRVOVariableC final
      : DestroyNRVOVariable<DestroyNRVOVariableC> {
    DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
        : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {}

    void emitDestructorCall(CodeGenFunction &CGF) {
      CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
    }
  };

  struct CallStackRestore final : EHScopeStack::Cleanup {
    Address Stack;
    CallStackRestore(Address Stack) : Stack(Stack) {}
    void Emit(CodeGenFunction &CGF, Flags flags) override {
      llvm::Value *V = CGF.Builder.CreateLoad(Stack);
      llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
      CGF.Builder.CreateCall(F, V);
    }
  };

  struct ExtendGCLifetime final : EHScopeStack::Cleanup {
    const VarDecl &Var;
    ExtendGCLifetime(const VarDecl *var) : Var(*var) {}

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      // Compute the address of the local variable, in case it's a
      // byref or something.
      DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
                      Var.getType(), VK_LValue, SourceLocation());
      llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
                                                SourceLocation());
      CGF.EmitExtendGCLifetime(value);
    }
  };

  struct CallCleanupFunction final : EHScopeStack::Cleanup {
    llvm::Constant *CleanupFn;
    const CGFunctionInfo &FnInfo;
    const VarDecl &Var;

    CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
                        const VarDecl *Var)
      : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
                      Var.getType(), VK_LValue, SourceLocation());
      // Compute the address of the local variable, in case it's a byref
      // or something.
      llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF);

      // In some cases, the type of the function argument will be different from
      // the type of the pointer. An example of this is
      // void f(void* arg);
      // __attribute__((cleanup(f))) void *g;
      //
      // To fix this we insert a bitcast here.
      QualType ArgTy = FnInfo.arg_begin()->type;
      llvm::Value *Arg =
        CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));

      CallArgList Args;
      Args.add(RValue::get(Arg),
               CGF.getContext().getPointerType(Var.getType()));
      auto Callee = CGCallee::forDirect(CleanupFn);
      CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
    }
  };
} // end anonymous namespace

/// EmitAutoVarWithLifetime - Does the setup required for an automatic
/// variable with lifetime.
static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
                                    Address addr,
                                    Qualifiers::ObjCLifetime lifetime) {
  switch (lifetime) {
  case Qualifiers::OCL_None:
    llvm_unreachable("present but none");

  case Qualifiers::OCL_ExplicitNone:
    // nothing to do
    break;

  case Qualifiers::OCL_Strong: {
    CodeGenFunction::Destroyer *destroyer =
      (var.hasAttr<ObjCPreciseLifetimeAttr>()
       ? CodeGenFunction::destroyARCStrongPrecise
       : CodeGenFunction::destroyARCStrongImprecise);

    CleanupKind cleanupKind = CGF.getARCCleanupKind();
    CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
                    cleanupKind & EHCleanup);
    break;
  }
  case Qualifiers::OCL_Autoreleasing:
    // nothing to do
    break;

  case Qualifiers::OCL_Weak:
    // __weak objects always get EH cleanups; otherwise, exceptions
    // could cause really nasty crashes instead of mere leaks.
    CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
                    CodeGenFunction::destroyARCWeak,
                    /*useEHCleanup*/ true);
    break;
  }
}

static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
  if (const Expr *e = dyn_cast<Expr>(s)) {
    // Skip the most common kinds of expressions that make
    // hierarchy-walking expensive.
    s = e = e->IgnoreParenCasts();

    if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
      return (ref->getDecl() == &var);
    if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
      const BlockDecl *block = be->getBlockDecl();
      for (const auto &I : block->captures()) {
        if (I.getVariable() == &var)
          return true;
      }
    }
  }

  for (const Stmt *SubStmt : s->children())
    // SubStmt might be null; as in missing decl or conditional of an if-stmt.
    if (SubStmt && isAccessedBy(var, SubStmt))
      return true;

  return false;
}

static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
  if (!decl) return false;
  if (!isa<VarDecl>(decl)) return false;
  const VarDecl *var = cast<VarDecl>(decl);
  return isAccessedBy(*var, e);
}

static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
                                   const LValue &destLV, const Expr *init) {
  bool needsCast = false;

  while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
    switch (castExpr->getCastKind()) {
    // Look through casts that don't require representation changes.
    case CK_NoOp:
    case CK_BitCast:
    case CK_BlockPointerToObjCPointerCast:
      needsCast = true;
      break;

    // If we find an l-value to r-value cast from a __weak variable,
    // emit this operation as a copy or move.
    case CK_LValueToRValue: {
      const Expr *srcExpr = castExpr->getSubExpr();
      if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
        return false;

      // Emit the source l-value.
      LValue srcLV = CGF.EmitLValue(srcExpr);

      // Handle a formal type change to avoid asserting.
      auto srcAddr = srcLV.getAddress(CGF);
      if (needsCast) {
        srcAddr = CGF.Builder.CreateElementBitCast(
            srcAddr, destLV.getAddress(CGF).getElementType());
      }

      // If it was an l-value, use objc_copyWeak.
      if (srcExpr->getValueKind() == VK_LValue) {
        CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr);
      } else {
        assert(srcExpr->getValueKind() == VK_XValue);
        CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr);
      }
      return true;
    }

    // Stop at anything else.
    default:
      return false;
    }

    init = castExpr->getSubExpr();
  }
  return false;
}

static void drillIntoBlockVariable(CodeGenFunction &CGF,
                                   LValue &lvalue,
                                   const VarDecl *var) {
  lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var));
}

void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
                                           SourceLocation Loc) {
  if (!SanOpts.has(SanitizerKind::NullabilityAssign))
    return;

  auto Nullability = LHS.getType()->getNullability(getContext());
  if (!Nullability || *Nullability != NullabilityKind::NonNull)
    return;

  // Check if the right hand side of the assignment is nonnull, if the left
  // hand side must be nonnull.
  SanitizerScope SanScope(this);
  llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
  llvm::Constant *StaticData[] = {
      EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
      llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
      llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
  EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
            SanitizerHandler::TypeMismatch, StaticData, RHS);
}

void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
                                     LValue lvalue, bool capturedByInit) {
  Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
  if (!lifetime) {
    llvm::Value *value = EmitScalarExpr(init);
    if (capturedByInit)
      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
    EmitNullabilityCheck(lvalue, value, init->getExprLoc());
    EmitStoreThroughLValue(RValue::get(value), lvalue, true);
    return;
  }

  if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
    init = DIE->getExpr();

  // If we're emitting a value with lifetime, we have to do the
  // initialization *before* we leave the cleanup scopes.
  if (const FullExpr *fe = dyn_cast<FullExpr>(init)) {
    enterFullExpression(fe);
    init = fe->getSubExpr();
  }
  CodeGenFunction::RunCleanupsScope Scope(*this);

  // We have to maintain the illusion that the variable is
  // zero-initialized.  If the variable might be accessed in its
  // initializer, zero-initialize before running the initializer, then
  // actually perform the initialization with an assign.
  bool accessedByInit = false;
  if (lifetime != Qualifiers::OCL_ExplicitNone)
    accessedByInit = (capturedByInit || isAccessedBy(D, init));
  if (accessedByInit) {
    LValue tempLV = lvalue;
    // Drill down to the __block object if necessary.
    if (capturedByInit) {
      // We can use a simple GEP for this because it can't have been
      // moved yet.
      tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this),
                                              cast<VarDecl>(D),
                                              /*follow*/ false));
    }

    auto ty =
        cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType());
    llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());

    // If __weak, we want to use a barrier under certain conditions.
    if (lifetime == Qualifiers::OCL_Weak)
      EmitARCInitWeak(tempLV.getAddress(*this), zero);

    // Otherwise just do a simple store.
    else
      EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
  }

  // Emit the initializer.
  llvm::Value *value = nullptr;

  switch (lifetime) {
  case Qualifiers::OCL_None:
    llvm_unreachable("present but none");

  case Qualifiers::OCL_Strong: {
    if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
      value = EmitARCRetainScalarExpr(init);
      break;
    }
    // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
    // that we omit the retain, and causes non-autoreleased return values to be
    // immediately released.
    LLVM_FALLTHROUGH;
  }

  case Qualifiers::OCL_ExplicitNone:
    value = EmitARCUnsafeUnretainedScalarExpr(init);
    break;

  case Qualifiers::OCL_Weak: {
    // If it's not accessed by the initializer, try to emit the
    // initialization with a copy or move.
    if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
      return;
    }

    // No way to optimize a producing initializer into this.  It's not
    // worth optimizing for, because the value will immediately
    // disappear in the common case.
    value = EmitScalarExpr(init);

    if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
    if (accessedByInit)
      EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true);
    else
      EmitARCInitWeak(lvalue.getAddress(*this), value);
    return;
  }

  case Qualifiers::OCL_Autoreleasing:
    value = EmitARCRetainAutoreleaseScalarExpr(init);
    break;
  }

  if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));

  EmitNullabilityCheck(lvalue, value, init->getExprLoc());

  // If the variable might have been accessed by its initializer, we
  // might have to initialize with a barrier.  We have to do this for
  // both __weak and __strong, but __weak got filtered out above.
  if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
    llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
    EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
    EmitARCRelease(oldValue, ARCImpreciseLifetime);
    return;
  }

  EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
}

/// Decide whether we can emit the non-zero parts of the specified initializer
/// with equal or fewer than NumStores scalar stores.
static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
                                               unsigned &NumStores) {
  // Zero and Undef never requires any extra stores.
  if (isa<llvm::ConstantAggregateZero>(Init) ||
      isa<llvm::ConstantPointerNull>(Init) ||
      isa<llvm::UndefValue>(Init))
    return true;
  if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
      isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
      isa<llvm::ConstantExpr>(Init))
    return Init->isNullValue() || NumStores--;

  // See if we can emit each element.
  if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
    for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
      llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
      if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
        return false;
    }
    return true;
  }

  if (llvm::ConstantDataSequential *CDS =
        dyn_cast<llvm::ConstantDataSequential>(Init)) {
    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
      llvm::Constant *Elt = CDS->getElementAsConstant(i);
      if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
        return false;
    }
    return true;
  }

  // Anything else is hard and scary.
  return false;
}

/// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
/// the scalar stores that would be required.
static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
                                        llvm::Constant *Init, Address Loc,
                                        bool isVolatile, CGBuilderTy &Builder) {
  assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
         "called emitStoresForInitAfterBZero for zero or undef value.");

  if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
      isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
      isa<llvm::ConstantExpr>(Init)) {
    Builder.CreateStore(Init, Loc, isVolatile);
    return;
  }

  if (llvm::ConstantDataSequential *CDS =
          dyn_cast<llvm::ConstantDataSequential>(Init)) {
    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
      llvm::Constant *Elt = CDS->getElementAsConstant(i);

      // If necessary, get a pointer to the element and emit it.
      if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
        emitStoresForInitAfterBZero(
            CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
            Builder);
    }
    return;
  }

  assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
         "Unknown value type!");

  for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
    llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));

    // If necessary, get a pointer to the element and emit it.
    if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
      emitStoresForInitAfterBZero(CGM, Elt,
                                  Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
                                  isVolatile, Builder);
  }
}

/// Decide whether we should use bzero plus some stores to initialize a local
/// variable instead of using a memcpy from a constant global.  It is beneficial
/// to use bzero if the global is all zeros, or mostly zeros and large.
static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
                                                 uint64_t GlobalSize) {
  // If a global is all zeros, always use a bzero.
  if (isa<llvm::ConstantAggregateZero>(Init)) return true;

  // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
  // do it if it will require 6 or fewer scalar stores.
  // TODO: Should budget depends on the size?  Avoiding a large global warrants
  // plopping in more stores.
  unsigned StoreBudget = 6;
  uint64_t SizeLimit = 32;

  return GlobalSize > SizeLimit &&
         canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
}

/// Decide whether we should use memset to initialize a local variable instead
/// of using a memcpy from a constant global. Assumes we've already decided to
/// not user bzero.
/// FIXME We could be more clever, as we are for bzero above, and generate
///       memset followed by stores. It's unclear that's worth the effort.
static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
                                                uint64_t GlobalSize,
                                                const llvm::DataLayout &DL) {
  uint64_t SizeLimit = 32;
  if (GlobalSize <= SizeLimit)
    return nullptr;
  return llvm::isBytewiseValue(Init, DL);
}

/// Decide whether we want to split a constant structure or array store into a
/// sequence of its fields' stores. This may cost us code size and compilation
/// speed, but plays better with store optimizations.
static bool shouldSplitConstantStore(CodeGenModule &CGM,
                                     uint64_t GlobalByteSize) {
  // Don't break things that occupy more than one cacheline.
  uint64_t ByteSizeLimit = 64;
  if (CGM.getCodeGenOpts().OptimizationLevel == 0)
    return false;
  if (GlobalByteSize <= ByteSizeLimit)
    return true;
  return false;
}

enum class IsPattern { No, Yes };

/// Generate a constant filled with either a pattern or zeroes.
static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
                                        llvm::Type *Ty) {
  if (isPattern == IsPattern::Yes)
    return initializationPatternFor(CGM, Ty);
  else
    return llvm::Constant::getNullValue(Ty);
}

static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
                                        llvm::Constant *constant);

/// Helper function for constWithPadding() to deal with padding in structures.
static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
                                              IsPattern isPattern,
                                              llvm::StructType *STy,
                                              llvm::Constant *constant) {
  const llvm::DataLayout &DL = CGM.getDataLayout();
  const llvm::StructLayout *Layout = DL.getStructLayout(STy);
  llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
  unsigned SizeSoFar = 0;
  SmallVector<llvm::Constant *, 8> Values;
  bool NestedIntact = true;
  for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
    unsigned CurOff = Layout->getElementOffset(i);
    if (SizeSoFar < CurOff) {
      assert(!STy->isPacked());
      auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
      Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
    }
    llvm::Constant *CurOp;
    if (constant->isZeroValue())
      CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
    else
      CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
    auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
    if (CurOp != NewOp)
      NestedIntact = false;
    Values.push_back(NewOp);
    SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
  }
  unsigned TotalSize = Layout->getSizeInBytes();
  if (SizeSoFar < TotalSize) {
    auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
    Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
  }
  if (NestedIntact && Values.size() == STy->getNumElements())
    return constant;
  return llvm::ConstantStruct::getAnon(Values, STy->isPacked());
}

/// Replace all padding bytes in a given constant with either a pattern byte or
/// 0x00.
static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
                                        llvm::Constant *constant) {
  llvm::Type *OrigTy = constant->getType();
  if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
    return constStructWithPadding(CGM, isPattern, STy, constant);
  if (auto *STy = dyn_cast<llvm::SequentialType>(OrigTy)) {
    llvm::SmallVector<llvm::Constant *, 8> Values;
    unsigned Size = STy->getNumElements();
    if (!Size)
      return constant;
    llvm::Type *ElemTy = STy->getElementType();
    bool ZeroInitializer = constant->isZeroValue();
    llvm::Constant *OpValue, *PaddedOp;
    if (ZeroInitializer) {
      OpValue = llvm::Constant::getNullValue(ElemTy);
      PaddedOp = constWithPadding(CGM, isPattern, OpValue);
    }
    for (unsigned Op = 0; Op != Size; ++Op) {
      if (!ZeroInitializer) {
        OpValue = constant->getAggregateElement(Op);
        PaddedOp = constWithPadding(CGM, isPattern, OpValue);
      }
      Values.push_back(PaddedOp);
    }
    auto *NewElemTy = Values[0]->getType();
    if (NewElemTy == ElemTy)
      return constant;
    if (OrigTy->isArrayTy()) {
      auto *ArrayTy = llvm::ArrayType::get(NewElemTy, Size);
      return llvm::ConstantArray::get(ArrayTy, Values);
    } else {
      return llvm::ConstantVector::get(Values);
    }
  }
  return constant;
}

Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D,
                                               llvm::Constant *Constant,
                                               CharUnits Align) {
  auto FunctionName = [&](const DeclContext *DC) -> std::string {
    if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
      if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
        return CC->getNameAsString();
      if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
        return CD->getNameAsString();
      return getMangledName(FD);
    } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
      return OM->getNameAsString();
    } else if (isa<BlockDecl>(DC)) {
      return "<block>";
    } else if (isa<CapturedDecl>(DC)) {
      return "<captured>";
    } else {
      llvm_unreachable("expected a function or method");
    }
  };

  // Form a simple per-variable cache of these values in case we find we
  // want to reuse them.
  llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D];
  if (!CacheEntry || CacheEntry->getInitializer() != Constant) {
    auto *Ty = Constant->getType();
    bool isConstant = true;
    llvm::GlobalVariable *InsertBefore = nullptr;
    unsigned AS =
        getContext().getTargetAddressSpace(getStringLiteralAddressSpace());
    std::string Name;
    if (D.hasGlobalStorage())
      Name = getMangledName(&D).str() + ".const";
    else if (const DeclContext *DC = D.getParentFunctionOrMethod())
      Name = ("__const." + FunctionName(DC) + "." + D.getName()).str();
    else
      llvm_unreachable("local variable has no parent function or method");
    llvm::GlobalVariable *GV = new llvm::GlobalVariable(
        getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
        Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
    GV->setAlignment(Align.getAsAlign());
    GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
    CacheEntry = GV;
  } else if (CacheEntry->getAlignment() < Align.getQuantity()) {
    CacheEntry->setAlignment(Align.getAsAlign());
  }

  return Address(CacheEntry, Align);
}

static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM,
                                                const VarDecl &D,
                                                CGBuilderTy &Builder,
                                                llvm::Constant *Constant,
                                                CharUnits Align) {
  Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align);
  llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(),
                                                   SrcPtr.getAddressSpace());
  if (SrcPtr.getType() != BP)
    SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
  return SrcPtr;
}

static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
                                  Address Loc, bool isVolatile,
                                  CGBuilderTy &Builder,
                                  llvm::Constant *constant) {
  auto *Ty = constant->getType();
  uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
  if (!ConstantSize)
    return;

  bool canDoSingleStore = Ty->isIntOrIntVectorTy() ||
                          Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy();
  if (canDoSingleStore) {
    Builder.CreateStore(constant, Loc, isVolatile);
    return;
  }

  auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize);

  // If the initializer is all or mostly the same, codegen with bzero / memset
  // then do a few stores afterward.
  if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
    Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), SizeVal,
                         isVolatile);

    bool valueAlreadyCorrect =
        constant->isNullValue() || isa<llvm::UndefValue>(constant);
    if (!valueAlreadyCorrect) {
      Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace()));
      emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder);
    }
    return;
  }

  // If the initializer is a repeated byte pattern, use memset.
  llvm::Value *Pattern =
      shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout());
  if (Pattern) {
    uint64_t Value = 0x00;
    if (!isa<llvm::UndefValue>(Pattern)) {
      const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
      assert(AP.getBitWidth() <= 8);
      Value = AP.getLimitedValue();
    }
    Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal,
                         isVolatile);
    return;
  }

  // If the initializer is small, use a handful of stores.
  if (shouldSplitConstantStore(CGM, ConstantSize)) {
    if (auto *STy = dyn_cast<llvm::StructType>(Ty)) {
      // FIXME: handle the case when STy != Loc.getElementType().
      if (STy == Loc.getElementType()) {
        for (unsigned i = 0; i != constant->getNumOperands(); i++) {
          Address EltPtr = Builder.CreateStructGEP(Loc, i);
          emitStoresForConstant(
              CGM, D, EltPtr, isVolatile, Builder,
              cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
        }
        return;
      }
    } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) {
      // FIXME: handle the case when ATy != Loc.getElementType().
      if (ATy == Loc.getElementType()) {
        for (unsigned i = 0; i != ATy->getNumElements(); i++) {
          Address EltPtr = Builder.CreateConstArrayGEP(Loc, i);
          emitStoresForConstant(
              CGM, D, EltPtr, isVolatile, Builder,
              cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
        }
        return;
      }
    }
  }

  // Copy from a global.
  Builder.CreateMemCpy(Loc,
                       createUnnamedGlobalForMemcpyFrom(
                           CGM, D, Builder, constant, Loc.getAlignment()),
                       SizeVal, isVolatile);
}

static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
                                  Address Loc, bool isVolatile,
                                  CGBuilderTy &Builder) {
  llvm::Type *ElTy = Loc.getElementType();
  llvm::Constant *constant =
      constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
  emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
}

static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
                                     Address Loc, bool isVolatile,
                                     CGBuilderTy &Builder) {
  llvm::Type *ElTy = Loc.getElementType();
  llvm::Constant *constant = constWithPadding(
      CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
  assert(!isa<llvm::UndefValue>(constant));
  emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
}

static bool containsUndef(llvm::Constant *constant) {
  auto *Ty = constant->getType();
  if (isa<llvm::UndefValue>(constant))
    return true;
  if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
    for (llvm::Use &Op : constant->operands())
      if (containsUndef(cast<llvm::Constant>(Op)))
        return true;
  return false;
}

static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
                                    llvm::Constant *constant) {
  auto *Ty = constant->getType();
  if (isa<llvm::UndefValue>(constant))
    return patternOrZeroFor(CGM, isPattern, Ty);
  if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
    return constant;
  if (!containsUndef(constant))
    return constant;
  llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
  for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
    auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
    Values[Op] = replaceUndef(CGM, isPattern, OpValue);
  }
  if (Ty->isStructTy())
    return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
  if (Ty->isArrayTy())
    return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
  assert(Ty->isVectorTy());
  return llvm::ConstantVector::get(Values);
}

/// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
/// variable declaration with auto, register, or no storage class specifier.
/// These turn into simple stack objects, or GlobalValues depending on target.
void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
  AutoVarEmission emission = EmitAutoVarAlloca(D);
  EmitAutoVarInit(emission);
  EmitAutoVarCleanups(emission);
}

/// Emit a lifetime.begin marker if some criteria are satisfied.
/// \return a pointer to the temporary size Value if a marker was emitted, null
/// otherwise
llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
                                                llvm::Value *Addr) {
  if (!ShouldEmitLifetimeMarkers)
    return nullptr;

  assert(Addr->getType()->getPointerAddressSpace() ==
             CGM.getDataLayout().getAllocaAddrSpace() &&
         "Pointer should be in alloca address space");
  llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
  Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
  llvm::CallInst *C =
      Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
  C->setDoesNotThrow();
  return SizeV;
}

void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
  assert(Addr->getType()->getPointerAddressSpace() ==
             CGM.getDataLayout().getAllocaAddrSpace() &&
         "Pointer should be in alloca address space");
  Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
  llvm::CallInst *C =
      Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
  C->setDoesNotThrow();
}

void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
    CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
  // For each dimension stores its QualType and corresponding
  // size-expression Value.
  SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
  SmallVector<IdentifierInfo *, 4> VLAExprNames;

  // Break down the array into individual dimensions.
  QualType Type1D = D.getType();
  while (getContext().getAsVariableArrayType(Type1D)) {
    auto VlaSize = getVLAElements1D(Type1D);
    if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
      Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
    else {
      // Generate a locally unique name for the size expression.
      Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
      SmallString<12> Buffer;
      StringRef NameRef = Name.toStringRef(Buffer);
      auto &Ident = getContext().Idents.getOwn(NameRef);
      VLAExprNames.push_back(&Ident);
      auto SizeExprAddr =
          CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
      Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
      Dimensions.emplace_back(SizeExprAddr.getPointer(),
                              Type1D.getUnqualifiedType());
    }
    Type1D = VlaSize.Type;
  }

  if (!EmitDebugInfo)
    return;

  // Register each dimension's size-expression with a DILocalVariable,
  // so that it can be used by CGDebugInfo when instantiating a DISubrange
  // to describe this array.
  unsigned NameIdx = 0;
  for (auto &VlaSize : Dimensions) {
    llvm::Metadata *MD;
    if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
      MD = llvm::ConstantAsMetadata::get(C);
    else {
      // Create an artificial VarDecl to generate debug info for.
      IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
      auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
      auto QT = getContext().getIntTypeForBitwidth(
          VlaExprTy->getScalarSizeInBits(), false);
      auto *ArtificialDecl = VarDecl::Create(
          getContext(), const_cast<DeclContext *>(D.getDeclContext()),
          D.getLocation(), D.getLocation(), NameIdent, QT,
          getContext().CreateTypeSourceInfo(QT), SC_Auto);
      ArtificialDecl->setImplicit();

      MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
                                         Builder);
    }
    assert(MD && "No Size expression debug node created");
    DI->registerVLASizeExpression(VlaSize.Type, MD);
  }
}

/// EmitAutoVarAlloca - Emit the alloca and debug information for a
/// local variable.  Does not emit initialization or destruction.
CodeGenFunction::AutoVarEmission
CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
  QualType Ty = D.getType();
  assert(
      Ty.getAddressSpace() == LangAS::Default ||
      (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));

  AutoVarEmission emission(D);

  bool isEscapingByRef = D.isEscapingByref();
  emission.IsEscapingByRef = isEscapingByRef;

  CharUnits alignment = getContext().getDeclAlign(&D);

  // If the type is variably-modified, emit all the VLA sizes for it.
  if (Ty->isVariablyModifiedType())
    EmitVariablyModifiedType(Ty);

  auto *DI = getDebugInfo();
  bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo();

  Address address = Address::invalid();
  Address AllocaAddr = Address::invalid();
  Address OpenMPLocalAddr =
      getLangOpts().OpenMP
          ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
          : Address::invalid();
  bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable();

  if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
    address = OpenMPLocalAddr;
  } else if (Ty->isConstantSizeType()) {
    // If this value is an array or struct with a statically determinable
    // constant initializer, there are optimizations we can do.
    //
    // TODO: We should constant-evaluate the initializer of any variable,
    // as long as it is initialized by a constant expression. Currently,
    // isConstantInitializer produces wrong answers for structs with
    // reference or bitfield members, and a few other cases, and checking
    // for POD-ness protects us from some of these.
    if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
        (D.isConstexpr() ||
         ((Ty.isPODType(getContext()) ||
           getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
          D.getInit()->isConstantInitializer(getContext(), false)))) {

      // If the variable's a const type, and it's neither an NRVO
      // candidate nor a __block variable and has no mutable members,
      // emit it as a global instead.
      // Exception is if a variable is located in non-constant address space
      // in OpenCL.
      if ((!getLangOpts().OpenCL ||
           Ty.getAddressSpace() == LangAS::opencl_constant) &&
          (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
           !isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
        EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);

        // Signal this condition to later callbacks.
        emission.Addr = Address::invalid();
        assert(emission.wasEmittedAsGlobal());
        return emission;
      }

      // Otherwise, tell the initialization code that we're in this case.
      emission.IsConstantAggregate = true;
    }

    // A normal fixed sized variable becomes an alloca in the entry block,
    // unless:
    // - it's an NRVO variable.
    // - we are compiling OpenMP and it's an OpenMP local variable.
    if (NRVO) {
      // The named return value optimization: allocate this variable in the
      // return slot, so that we can elide the copy when returning this
      // variable (C++0x [class.copy]p34).
      address = ReturnValue;

      if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
        const auto *RD = RecordTy->getDecl();
        const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
        if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
            RD->isNonTrivialToPrimitiveDestroy()) {
          // Create a flag that is used to indicate when the NRVO was applied
          // to this variable. Set it to zero to indicate that NRVO was not
          // applied.
          llvm::Value *Zero = Builder.getFalse();
          Address NRVOFlag =
            CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
          EnsureInsertPoint();
          Builder.CreateStore(Zero, NRVOFlag);

          // Record the NRVO flag for this variable.
          NRVOFlags[&D] = NRVOFlag.getPointer();
          emission.NRVOFlag = NRVOFlag.getPointer();
        }
      }
    } else {
      CharUnits allocaAlignment;
      llvm::Type *allocaTy;
      if (isEscapingByRef) {
        auto &byrefInfo = getBlockByrefInfo(&D);
        allocaTy = byrefInfo.Type;
        allocaAlignment = byrefInfo.ByrefAlignment;
      } else {
        allocaTy = ConvertTypeForMem(Ty);
        allocaAlignment = alignment;
      }

      // Create the alloca.  Note that we set the name separately from
      // building the instruction so that it's there even in no-asserts
      // builds.
      address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
                                 /*ArraySize=*/nullptr, &AllocaAddr);

      // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
      // the catch parameter starts in the catchpad instruction, and we can't
      // insert code in those basic blocks.
      bool IsMSCatchParam =
          D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();

      // Emit a lifetime intrinsic if meaningful. There's no point in doing this
      // if we don't have a valid insertion point (?).
      if (HaveInsertPoint() && !IsMSCatchParam) {
        // If there's a jump into the lifetime of this variable, its lifetime
        // gets broken up into several regions in IR, which requires more work
        // to handle correctly. For now, just omit the intrinsics; this is a
        // rare case, and it's better to just be conservatively correct.
        // PR28267.
        //
        // We have to do this in all language modes if there's a jump past the
        // declaration. We also have to do it in C if there's a jump to an
        // earlier point in the current block because non-VLA lifetimes begin as
        // soon as the containing block is entered, not when its variables
        // actually come into scope; suppressing the lifetime annotations
        // completely in this case is unnecessarily pessimistic, but again, this
        // is rare.
        if (!Bypasses.IsBypassed(&D) &&
            !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
          uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
          emission.SizeForLifetimeMarkers =
              EmitLifetimeStart(size, AllocaAddr.getPointer());
        }
      } else {
        assert(!emission.useLifetimeMarkers());
      }
    }
  } else {
    EnsureInsertPoint();

    if (!DidCallStackSave) {
      // Save the stack.
      Address Stack =
        CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");

      llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
      llvm::Value *V = Builder.CreateCall(F);
      Builder.CreateStore(V, Stack);

      DidCallStackSave = true;

      // Push a cleanup block and restore the stack there.
      // FIXME: in general circumstances, this should be an EH cleanup.
      pushStackRestore(NormalCleanup, Stack);
    }

    auto VlaSize = getVLASize(Ty);
    llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);

    // Allocate memory for the array.
    address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
                               &AllocaAddr);

    // If we have debug info enabled, properly describe the VLA dimensions for
    // this type by registering the vla size expression for each of the
    // dimensions.
    EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
  }

  setAddrOfLocalVar(&D, address);
  emission.Addr = address;
  emission.AllocaAddr = AllocaAddr;

  // Emit debug info for local var declaration.
  if (EmitDebugInfo && HaveInsertPoint()) {
    Address DebugAddr = address;
    bool UsePointerValue = NRVO && ReturnValuePointer.isValid();
    DI->setLocation(D.getLocation());

    // If NRVO, use a pointer to the return address.
    if (UsePointerValue)
      DebugAddr = ReturnValuePointer;

    (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder,
                                        UsePointerValue);
  }

  if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
    EmitVarAnnotations(&D, address.getPointer());

  // Make sure we call @llvm.lifetime.end.
  if (emission.useLifetimeMarkers())
    EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
                                         emission.getOriginalAllocatedAddress(),
                                         emission.getSizeForLifetimeMarkers());

  return emission;
}

static bool isCapturedBy(const VarDecl &, const Expr *);

/// Determines whether the given __block variable is potentially
/// captured by the given statement.
static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
  if (const Expr *E = dyn_cast<Expr>(S))
    return isCapturedBy(Var, E);
  for (const Stmt *SubStmt : S->children())
    if (isCapturedBy(Var, SubStmt))
      return true;
  return false;
}

/// Determines whether the given __block variable is potentially
/// captured by the given expression.
static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
  // Skip the most common kinds of expressions that make
  // hierarchy-walking expensive.
  E = E->IgnoreParenCasts();

  if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
    const BlockDecl *Block = BE->getBlockDecl();
    for (const auto &I : Block->captures()) {
      if (I.getVariable() == &Var)
        return true;
    }

    // No need to walk into the subexpressions.
    return false;
  }

  if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
    const CompoundStmt *CS = SE->getSubStmt();
    for (const auto *BI : CS->body())
      if (const auto *BIE = dyn_cast<Expr>(BI)) {
        if (isCapturedBy(Var, BIE))
          return true;
      }
      else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
          // special case declarations
          for (const auto *I : DS->decls()) {
              if (const auto *VD = dyn_cast<VarDecl>((I))) {
                const Expr *Init = VD->getInit();
                if (Init && isCapturedBy(Var, Init))
                  return true;
              }
          }
      }
      else
        // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
        // Later, provide code to poke into statements for capture analysis.
        return true;
    return false;
  }

  for (const Stmt *SubStmt : E->children())
    if (isCapturedBy(Var, SubStmt))
      return true;

  return false;
}

/// Determine whether the given initializer is trivial in the sense
/// that it requires no code to be generated.
bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
  if (!Init)
    return true;

  if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
    if (CXXConstructorDecl *Constructor = Construct->getConstructor())
      if (Constructor->isTrivial() &&
          Constructor->isDefaultConstructor() &&
          !Construct->requiresZeroInitialization())
        return true;

  return false;
}

void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type,
                                                      const VarDecl &D,
                                                      Address Loc) {
  auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit();
  CharUnits Size = getContext().getTypeSizeInChars(type);
  bool isVolatile = type.isVolatileQualified();
  if (!Size.isZero()) {
    switch (trivialAutoVarInit) {
    case LangOptions::TrivialAutoVarInitKind::Uninitialized:
      llvm_unreachable("Uninitialized handled by caller");
    case LangOptions::TrivialAutoVarInitKind::Zero:
      emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
      break;
    case LangOptions::TrivialAutoVarInitKind::Pattern:
      emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
      break;
    }
    return;
  }

  // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
  // them, so emit a memcpy with the VLA size to initialize each element.
  // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
  // will catch that code, but there exists code which generates zero-sized
  // VLAs. Be nice and initialize whatever they requested.
  const auto *VlaType = getContext().getAsVariableArrayType(type);
  if (!VlaType)
    return;
  auto VlaSize = getVLASize(VlaType);
  auto SizeVal = VlaSize.NumElts;
  CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
  switch (trivialAutoVarInit) {
  case LangOptions::TrivialAutoVarInitKind::Uninitialized:
    llvm_unreachable("Uninitialized handled by caller");

  case LangOptions::TrivialAutoVarInitKind::Zero:
    if (!EltSize.isOne())
      SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
    Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
                         isVolatile);
    break;

  case LangOptions::TrivialAutoVarInitKind::Pattern: {
    llvm::Type *ElTy = Loc.getElementType();
    llvm::Constant *Constant = constWithPadding(
        CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
    CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
    llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
    llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
    llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
    llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
        SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
        "vla.iszerosized");
    Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
    EmitBlock(SetupBB);
    if (!EltSize.isOne())
      SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
    llvm::Value *BaseSizeInChars =
        llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
    Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin");
    llvm::Value *End =
        Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end");
    llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
    EmitBlock(LoopBB);
    llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
    Cur->addIncoming(Begin.getPointer(), OriginBB);
    CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
    Builder.CreateMemCpy(Address(Cur, CurAlign),
                         createUnnamedGlobalForMemcpyFrom(
                             CGM, D, Builder, Constant, ConstantAlign),
                         BaseSizeInChars, isVolatile);
    llvm::Value *Next =
        Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
    llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
    Builder.CreateCondBr(Done, ContBB, LoopBB);
    Cur->addIncoming(Next, LoopBB);
    EmitBlock(ContBB);
  } break;
  }
}

void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
  assert(emission.Variable && "emission was not valid!");

  // If this was emitted as a global constant, we're done.
  if (emission.wasEmittedAsGlobal()) return;

  const VarDecl &D = *emission.Variable;
  auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
  QualType type = D.getType();

  // If this local has an initializer, emit it now.
  const Expr *Init = D.getInit();

  // If we are at an unreachable point, we don't need to emit the initializer
  // unless it contains a label.
  if (!HaveInsertPoint()) {
    if (!Init || !ContainsLabel(Init)) return;
    EnsureInsertPoint();
  }

  // Initialize the structure of a __block variable.
  if (emission.IsEscapingByRef)
    emitByrefStructureInit(emission);

  // Initialize the variable here if it doesn't have a initializer and it is a
  // C struct that is non-trivial to initialize or an array containing such a
  // struct.
  if (!Init &&
      type.isNonTrivialToPrimitiveDefaultInitialize() ==
          QualType::PDIK_Struct) {
    LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
    if (emission.IsEscapingByRef)
      drillIntoBlockVariable(*this, Dst, &D);
    defaultInitNonTrivialCStructVar(Dst);
    return;
  }

  // Check whether this is a byref variable that's potentially
  // captured and moved by its own initializer.  If so, we'll need to
  // emit the initializer first, then copy into the variable.
  bool capturedByInit =
      Init && emission.IsEscapingByRef && isCapturedBy(D, Init);

  bool locIsByrefHeader = !capturedByInit;
  const Address Loc =
      locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;

  // Note: constexpr already initializes everything correctly.
  LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
      (D.isConstexpr()
           ? LangOptions::TrivialAutoVarInitKind::Uninitialized
           : (D.getAttr<UninitializedAttr>()
                  ? LangOptions::TrivialAutoVarInitKind::Uninitialized
                  : getContext().getLangOpts().getTrivialAutoVarInit()));

  auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
    if (trivialAutoVarInit ==
        LangOptions::TrivialAutoVarInitKind::Uninitialized)
      return;

    // Only initialize a __block's storage: we always initialize the header.
    if (emission.IsEscapingByRef && !locIsByrefHeader)
      Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);

    return emitZeroOrPatternForAutoVarInit(type, D, Loc);
  };

  if (isTrivialInitializer(Init))
    return initializeWhatIsTechnicallyUninitialized(Loc);

  llvm::Constant *constant = nullptr;
  if (emission.IsConstantAggregate ||
      D.mightBeUsableInConstantExpressions(getContext())) {
    assert(!capturedByInit && "constant init contains a capturing block?");
    constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
    if (constant && !constant->isZeroValue() &&
        (trivialAutoVarInit !=
         LangOptions::TrivialAutoVarInitKind::Uninitialized)) {
      IsPattern isPattern =
          (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
              ? IsPattern::Yes
              : IsPattern::No;
      // C guarantees that brace-init with fewer initializers than members in
      // the aggregate will initialize the rest of the aggregate as-if it were
      // static initialization. In turn static initialization guarantees that
      // padding is initialized to zero bits. We could instead pattern-init if D
      // has any ImplicitValueInitExpr, but that seems to be unintuitive
      // behavior.
      constant = constWithPadding(CGM, IsPattern::No,
                                  replaceUndef(CGM, isPattern, constant));
    }
  }

  if (!constant) {
    initializeWhatIsTechnicallyUninitialized(Loc);
    LValue lv = MakeAddrLValue(Loc, type);
    lv.setNonGC(true);
    return EmitExprAsInit(Init, &D, lv, capturedByInit);
  }

  if (!emission.IsConstantAggregate) {
    // For simple scalar/complex initialization, store the value directly.
    LValue lv = MakeAddrLValue(Loc, type);
    lv.setNonGC(true);
    return EmitStoreThroughLValue(RValue::get(constant), lv, true);
  }

  llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace());
  emitStoresForConstant(
      CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP),
      type.isVolatileQualified(), Builder, constant);
}

/// Emit an expression as an initializer for an object (variable, field, etc.)
/// at the given location.  The expression is not necessarily the normal
/// initializer for the object, and the address is not necessarily
/// its normal location.
///
/// \param init the initializing expression
/// \param D the object to act as if we're initializing
/// \param loc the address to initialize; its type is a pointer
///   to the LLVM mapping of the object's type
/// \param alignment the alignment of the address
/// \param capturedByInit true if \p D is a __block variable
///   whose address is potentially changed by the initializer
void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
                                     LValue lvalue, bool capturedByInit) {
  QualType type = D->getType();

  if (type->isReferenceType()) {
    RValue rvalue = EmitReferenceBindingToExpr(init);
    if (capturedByInit)
      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
    EmitStoreThroughLValue(rvalue, lvalue, true);
    return;
  }
  switch (getEvaluationKind(type)) {
  case TEK_Scalar:
    EmitScalarInit(init, D, lvalue, capturedByInit);
    return;
  case TEK_Complex: {
    ComplexPairTy complex = EmitComplexExpr(init);
    if (capturedByInit)
      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
    EmitStoreOfComplex(complex, lvalue, /*init*/ true);
    return;
  }
  case TEK_Aggregate:
    if (type->isAtomicType()) {
      EmitAtomicInit(const_cast<Expr*>(init), lvalue);
    } else {
      AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
      if (isa<VarDecl>(D))
        Overlap = AggValueSlot::DoesNotOverlap;
      else if (auto *FD = dyn_cast<FieldDecl>(D))
        Overlap = getOverlapForFieldInit(FD);
      // TODO: how can we delay here if D is captured by its initializer?
      EmitAggExpr(init, AggValueSlot::forLValue(
                            lvalue, *this, AggValueSlot::IsDestructed,
                            AggValueSlot::DoesNotNeedGCBarriers,
                            AggValueSlot::IsNotAliased, Overlap));
    }
    return;
  }
  llvm_unreachable("bad evaluation kind");
}

/// Enter a destroy cleanup for the given local variable.
void CodeGenFunction::emitAutoVarTypeCleanup(
                            const CodeGenFunction::AutoVarEmission &emission,
                            QualType::DestructionKind dtorKind) {
  assert(dtorKind != QualType::DK_none);

  // Note that for __block variables, we want to destroy the
  // original stack object, not the possibly forwarded object.
  Address addr = emission.getObjectAddress(*this);

  const VarDecl *var = emission.Variable;
  QualType type = var->getType();

  CleanupKind cleanupKind = NormalAndEHCleanup;
  CodeGenFunction::Destroyer *destroyer = nullptr;

  switch (dtorKind) {
  case QualType::DK_none:
    llvm_unreachable("no cleanup for trivially-destructible variable");

  case QualType::DK_cxx_destructor:
    // If there's an NRVO flag on the emission, we need a different
    // cleanup.
    if (emission.NRVOFlag) {
      assert(!type->isArrayType());
      CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
      EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor,
                                                  emission.NRVOFlag);
      return;
    }
    break;

  case QualType::DK_objc_strong_lifetime:
    // Suppress cleanups for pseudo-strong variables.
    if (var->isARCPseudoStrong()) return;

    // Otherwise, consider whether to use an EH cleanup or not.
    cleanupKind = getARCCleanupKind();

    // Use the imprecise destroyer by default.
    if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
      destroyer = CodeGenFunction::destroyARCStrongImprecise;
    break;

  case QualType::DK_objc_weak_lifetime:
    break;

  case QualType::DK_nontrivial_c_struct:
    destroyer = CodeGenFunction::destroyNonTrivialCStruct;
    if (emission.NRVOFlag) {
      assert(!type->isArrayType());
      EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
                                                emission.NRVOFlag, type);
      return;
    }
    break;
  }

  // If we haven't chosen a more specific destroyer, use the default.
  if (!destroyer) destroyer = getDestroyer(dtorKind);

  // Use an EH cleanup in array destructors iff the destructor itself
  // is being pushed as an EH cleanup.
  bool useEHCleanup = (cleanupKind & EHCleanup);
  EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
                                     useEHCleanup);
}

void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
  assert(emission.Variable && "emission was not valid!");

  // If this was emitted as a global constant, we're done.
  if (emission.wasEmittedAsGlobal()) return;

  // If we don't have an insertion point, we're done.  Sema prevents
  // us from jumping into any of these scopes anyway.
  if (!HaveInsertPoint()) return;

  const VarDecl &D = *emission.Variable;

  // Check the type for a cleanup.
  if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext()))
    emitAutoVarTypeCleanup(emission, dtorKind);

  // In GC mode, honor objc_precise_lifetime.
  if (getLangOpts().getGC() != LangOptions::NonGC &&
      D.hasAttr<ObjCPreciseLifetimeAttr>()) {
    EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
  }

  // Handle the cleanup attribute.
  if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
    const FunctionDecl *FD = CA->getFunctionDecl();

    llvm::Constant *F = CGM.GetAddrOfFunction(FD);
    assert(F && "Could not find function!");

    const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
    EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
  }

  // If this is a block variable, call _Block_object_destroy
  // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
  // mode.
  if (emission.IsEscapingByRef &&
      CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
    BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
    if (emission.Variable->getType().isObjCGCWeak())
      Flags |= BLOCK_FIELD_IS_WEAK;
    enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
                      /*LoadBlockVarAddr*/ false,
                      cxxDestructorCanThrow(emission.Variable->getType()));
  }
}

CodeGenFunction::Destroyer *
CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
  switch (kind) {
  case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
  case QualType::DK_cxx_destructor:
    return destroyCXXObject;
  case QualType::DK_objc_strong_lifetime:
    return destroyARCStrongPrecise;
  case QualType::DK_objc_weak_lifetime:
    return destroyARCWeak;
  case QualType::DK_nontrivial_c_struct:
    return destroyNonTrivialCStruct;
  }
  llvm_unreachable("Unknown DestructionKind");
}

/// pushEHDestroy - Push the standard destructor for the given type as
/// an EH-only cleanup.
void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
                                    Address addr, QualType type) {
  assert(dtorKind && "cannot push destructor for trivial type");
  assert(needsEHCleanup(dtorKind));

  pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
}

/// pushDestroy - Push the standard destructor for the given type as
/// at least a normal cleanup.
void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
                                  Address addr, QualType type) {
  assert(dtorKind && "cannot push destructor for trivial type");

  CleanupKind cleanupKind = getCleanupKind(dtorKind);
  pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
              cleanupKind & EHCleanup);
}

void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
                                  QualType type, Destroyer *destroyer,
                                  bool useEHCleanupForArray) {
  pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
                                     destroyer, useEHCleanupForArray);
}

void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
  EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
}

void CodeGenFunction::pushLifetimeExtendedDestroy(
    CleanupKind cleanupKind, Address addr, QualType type,
    Destroyer *destroyer, bool useEHCleanupForArray) {
  // Push an EH-only cleanup for the object now.
  // FIXME: When popping normal cleanups, we need to keep this EH cleanup
  // around in case a temporary's destructor throws an exception.
  if (cleanupKind & EHCleanup)
    EHStack.pushCleanup<DestroyObject>(
        static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
        destroyer, useEHCleanupForArray);

  // Remember that we need to push a full cleanup for the object at the
  // end of the full-expression.
  pushCleanupAfterFullExpr<DestroyObject>(
      cleanupKind, addr, type, destroyer, useEHCleanupForArray);
}

/// emitDestroy - Immediately perform the destruction of the given
/// object.
///
/// \param addr - the address of the object; a type*
/// \param type - the type of the object; if an array type, all
///   objects are destroyed in reverse order
/// \param destroyer - the function to call to destroy individual
///   elements
/// \param useEHCleanupForArray - whether an EH cleanup should be
///   used when destroying array elements, in case one of the
///   destructions throws an exception
void CodeGenFunction::emitDestroy(Address addr, QualType type,
                                  Destroyer *destroyer,
                                  bool useEHCleanupForArray) {
  const ArrayType *arrayType = getContext().getAsArrayType(type);
  if (!arrayType)
    return destroyer(*this, addr, type);

  llvm::Value *length = emitArrayLength(arrayType, type, addr);

  CharUnits elementAlign =
    addr.getAlignment()
        .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));

  // Normally we have to check whether the array is zero-length.
  bool checkZeroLength = true;

  // But if the array length is constant, we can suppress that.
  if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
    // ...and if it's constant zero, we can just skip the entire thing.
    if (constLength->isZero()) return;
    checkZeroLength = false;
  }

  llvm::Value *begin = addr.getPointer();
  llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
  emitArrayDestroy(begin, end, type, elementAlign, destroyer,
                   checkZeroLength, useEHCleanupForArray);
}

/// emitArrayDestroy - Destroys all the elements of the given array,
/// beginning from last to first.  The array cannot be zero-length.
///
/// \param begin - a type* denoting the first element of the array
/// \param end - a type* denoting one past the end of the array
/// \param elementType - the element type of the array
/// \param destroyer - the function to call to destroy elements
/// \param useEHCleanup - whether to push an EH cleanup to destroy
///   the remaining elements in case the destruction of a single
///   element throws
void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
                                       llvm::Value *end,
                                       QualType elementType,
                                       CharUnits elementAlign,
                                       Destroyer *destroyer,
                                       bool checkZeroLength,
                                       bool useEHCleanup) {
  assert(!elementType->isArrayType());

  // The basic structure here is a do-while loop, because we don't
  // need to check for the zero-element case.
  llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
  llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");

  if (checkZeroLength) {
    llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
                                                "arraydestroy.isempty");
    Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
  }

  // Enter the loop body, making that address the current address.
  llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
  EmitBlock(bodyBB);
  llvm::PHINode *elementPast =
    Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
  elementPast->addIncoming(end, entryBB);

  // Shift the address back by one element.
  llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
  llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
                                                   "arraydestroy.element");

  if (useEHCleanup)
    pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
                                   destroyer);

  // Perform the actual destruction there.
  destroyer(*this, Address(element, elementAlign), elementType);

  if (useEHCleanup)
    PopCleanupBlock();

  // Check whether we've reached the end.
  llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
  Builder.CreateCondBr(done, doneBB, bodyBB);
  elementPast->addIncoming(element, Builder.GetInsertBlock());

  // Done.
  EmitBlock(doneBB);
}

/// Perform partial array destruction as if in an EH cleanup.  Unlike
/// emitArrayDestroy, the element type here may still be an array type.
static void emitPartialArrayDestroy(CodeGenFunction &CGF,
                                    llvm::Value *begin, llvm::Value *end,
                                    QualType type, CharUnits elementAlign,
                                    CodeGenFunction::Destroyer *destroyer) {
  // If the element type is itself an array, drill down.
  unsigned arrayDepth = 0;
  while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
    // VLAs don't require a GEP index to walk into.
    if (!isa<VariableArrayType>(arrayType))
      arrayDepth++;
    type = arrayType->getElementType();
  }

  if (arrayDepth) {
    llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);

    SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
    begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
    end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
  }

  // Destroy the array.  We don't ever need an EH cleanup because we
  // assume that we're in an EH cleanup ourselves, so a throwing
  // destructor causes an immediate terminate.
  CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
                       /*checkZeroLength*/ true, /*useEHCleanup*/ false);
}

namespace {
  /// RegularPartialArrayDestroy - a cleanup which performs a partial
  /// array destroy where the end pointer is regularly determined and
  /// does not need to be loaded from a local.
  class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
    llvm::Value *ArrayBegin;
    llvm::Value *ArrayEnd;
    QualType ElementType;
    CodeGenFunction::Destroyer *Destroyer;
    CharUnits ElementAlign;
  public:
    RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
                               QualType elementType, CharUnits elementAlign,
                               CodeGenFunction::Destroyer *destroyer)
      : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
        ElementType(elementType), Destroyer(destroyer),
        ElementAlign(elementAlign) {}

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
                              ElementType, ElementAlign, Destroyer);
    }
  };

  /// IrregularPartialArrayDestroy - a cleanup which performs a
  /// partial array destroy where the end pointer is irregularly
  /// determined and must be loaded from a local.
  class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
    llvm::Value *ArrayBegin;
    Address ArrayEndPointer;
    QualType ElementType;
    CodeGenFunction::Destroyer *Destroyer;
    CharUnits ElementAlign;
  public:
    IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
                                 Address arrayEndPointer,
                                 QualType elementType,
                                 CharUnits elementAlign,
                                 CodeGenFunction::Destroyer *destroyer)
      : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
        ElementType(elementType), Destroyer(destroyer),
        ElementAlign(elementAlign) {}

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
      emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
                              ElementType, ElementAlign, Destroyer);
    }
  };
} // end anonymous namespace

/// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
/// already-constructed elements of the given array.  The cleanup
/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
///
/// \param elementType - the immediate element type of the array;
///   possibly still an array type
void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
                                                       Address arrayEndPointer,
                                                       QualType elementType,
                                                       CharUnits elementAlign,
                                                       Destroyer *destroyer) {
  pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
                                                    arrayBegin, arrayEndPointer,
                                                    elementType, elementAlign,
                                                    destroyer);
}

/// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
/// already-constructed elements of the given array.  The cleanup
/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
///
/// \param elementType - the immediate element type of the array;
///   possibly still an array type
void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
                                                     llvm::Value *arrayEnd,
                                                     QualType elementType,
                                                     CharUnits elementAlign,
                                                     Destroyer *destroyer) {
  pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
                                                  arrayBegin, arrayEnd,
                                                  elementType, elementAlign,
                                                  destroyer);
}

/// Lazily declare the @llvm.lifetime.start intrinsic.
llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() {
  if (LifetimeStartFn)
    return LifetimeStartFn;
  LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
    llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
  return LifetimeStartFn;
}

/// Lazily declare the @llvm.lifetime.end intrinsic.
llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() {
  if (LifetimeEndFn)
    return LifetimeEndFn;
  LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
    llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
  return LifetimeEndFn;
}

namespace {
  /// A cleanup to perform a release of an object at the end of a
  /// function.  This is used to balance out the incoming +1 of a
  /// ns_consumed argument when we can't reasonably do that just by
  /// not doing the initial retain for a __block argument.
  struct ConsumeARCParameter final : EHScopeStack::Cleanup {
    ConsumeARCParameter(llvm::Value *param,
                        ARCPreciseLifetime_t precise)
      : Param(param), Precise(precise) {}

    llvm::Value *Param;
    ARCPreciseLifetime_t Precise;

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      CGF.EmitARCRelease(Param, Precise);
    }
  };
} // end anonymous namespace

/// Emit an alloca (or GlobalValue depending on target)
/// for the specified parameter and set up LocalDeclMap.
void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
                                   unsigned ArgNo) {
  // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
  assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
         "Invalid argument to EmitParmDecl");

  Arg.getAnyValue()->setName(D.getName());

  QualType Ty = D.getType();

  // Use better IR generation for certain implicit parameters.
  if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
    // The only implicit argument a block has is its literal.
    // This may be passed as an inalloca'ed value on Windows x86.
    if (BlockInfo) {
      llvm::Value *V = Arg.isIndirect()
                           ? Builder.CreateLoad(Arg.getIndirectAddress())
                           : Arg.getDirectValue();
      setBlockContextParameter(IPD, ArgNo, V);
      return;
    }
  }

  Address DeclPtr = Address::invalid();
  bool DoStore = false;
  bool IsScalar = hasScalarEvaluationKind(Ty);
  // If we already have a pointer to the argument, reuse the input pointer.
  if (Arg.isIndirect()) {
    DeclPtr = Arg.getIndirectAddress();
    // If we have a prettier pointer type at this point, bitcast to that.
    unsigned AS = DeclPtr.getType()->getAddressSpace();
    llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
    if (DeclPtr.getType() != IRTy)
      DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
    // Indirect argument is in alloca address space, which may be different
    // from the default address space.
    auto AllocaAS = CGM.getASTAllocaAddressSpace();
    auto *V = DeclPtr.getPointer();
    auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
    auto DestLangAS =
        getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
    if (SrcLangAS != DestLangAS) {
      assert(getContext().getTargetAddressSpace(SrcLangAS) ==
             CGM.getDataLayout().getAllocaAddrSpace());
      auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
      auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
      DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
                            *this, V, SrcLangAS, DestLangAS, T, true),
                        DeclPtr.getAlignment());
    }

    // Push a destructor cleanup for this parameter if the ABI requires it.
    // Don't push a cleanup in a thunk for a method that will also emit a
    // cleanup.
    if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk &&
        Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
      if (QualType::DestructionKind DtorKind =
              D.needsDestruction(getContext())) {
        assert((DtorKind == QualType::DK_cxx_destructor ||
                DtorKind == QualType::DK_nontrivial_c_struct) &&
               "unexpected destructor type");
        pushDestroy(DtorKind, DeclPtr, Ty);
        CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
            EHStack.stable_begin();
      }
    }
  } else {
    // Check if the parameter address is controlled by OpenMP runtime.
    Address OpenMPLocalAddr =
        getLangOpts().OpenMP
            ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
            : Address::invalid();
    if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
      DeclPtr = OpenMPLocalAddr;
    } else {
      // Otherwise, create a temporary to hold the value.
      DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
                              D.getName() + ".addr");
    }
    DoStore = true;
  }

  llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);

  LValue lv = MakeAddrLValue(DeclPtr, Ty);
  if (IsScalar) {
    Qualifiers qs = Ty.getQualifiers();
    if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
      // We honor __attribute__((ns_consumed)) for types with lifetime.
      // For __strong, it's handled by just skipping the initial retain;
      // otherwise we have to balance out the initial +1 with an extra
      // cleanup to do the release at the end of the function.
      bool isConsumed = D.hasAttr<NSConsumedAttr>();

      // If a parameter is pseudo-strong then we can omit the implicit retain.
      if (D.isARCPseudoStrong()) {
        assert(lt == Qualifiers::OCL_Strong &&
               "pseudo-strong variable isn't strong?");
        assert(qs.hasConst() && "pseudo-strong variable should be const!");
        lt = Qualifiers::OCL_ExplicitNone;
      }

      // Load objects passed indirectly.
      if (Arg.isIndirect() && !ArgVal)
        ArgVal = Builder.CreateLoad(DeclPtr);

      if (lt == Qualifiers::OCL_Strong) {
        if (!isConsumed) {
          if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
            // use objc_storeStrong(&dest, value) for retaining the
            // object. But first, store a null into 'dest' because
            // objc_storeStrong attempts to release its old value.
            llvm::Value *Null = CGM.EmitNullConstant(D.getType());
            EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
            EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true);
            DoStore = false;
          }
          else
          // Don't use objc_retainBlock for block pointers, because we
          // don't want to Block_copy something just because we got it
          // as a parameter.
            ArgVal = EmitARCRetainNonBlock(ArgVal);
        }
      } else {
        // Push the cleanup for a consumed parameter.
        if (isConsumed) {
          ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
                                ? ARCPreciseLifetime : ARCImpreciseLifetime);
          EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
                                                   precise);
        }

        if (lt == Qualifiers::OCL_Weak) {
          EmitARCInitWeak(DeclPtr, ArgVal);
          DoStore = false; // The weak init is a store, no need to do two.
        }
      }

      // Enter the cleanup scope.
      EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
    }
  }

  // Store the initial value into the alloca.
  if (DoStore)
    EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);

  setAddrOfLocalVar(&D, DeclPtr);

  // Emit debug info for param declarations in non-thunk functions.
  if (CGDebugInfo *DI = getDebugInfo()) {
    if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk) {
      DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
    }
  }

  if (D.hasAttr<AnnotateAttr>())
    EmitVarAnnotations(&D, DeclPtr.getPointer());

  // We can only check return value nullability if all arguments to the
  // function satisfy their nullability preconditions. This makes it necessary
  // to emit null checks for args in the function body itself.
  if (requiresReturnValueNullabilityCheck()) {
    auto Nullability = Ty->getNullability(getContext());
    if (Nullability && *Nullability == NullabilityKind::NonNull) {
      SanitizerScope SanScope(this);
      RetValNullabilityPrecondition =
          Builder.CreateAnd(RetValNullabilityPrecondition,
                            Builder.CreateIsNotNull(Arg.getAnyValue()));
    }
  }
}

void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
                                            CodeGenFunction *CGF) {
  if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
    return;
  getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
}

void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D,
                                         CodeGenFunction *CGF) {
  if (!LangOpts.OpenMP || LangOpts.OpenMPSimd ||
      (!LangOpts.EmitAllDecls && !D->isUsed()))
    return;
  getOpenMPRuntime().emitUserDefinedMapper(D, CGF);
}

void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
  getOpenMPRuntime().checkArchForUnifiedAddressing(D);
}