layers.py
7.94 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# coding: utf-8
#import cupy as cp
import numpy as cp
import numpy as np
from functions import *
from util import im2col, col2im, DW_im2col
class Relu:
def __init__(self):
self.mask = None
def forward(self, x):
self.mask = (x <= 0)
out = x.copy()
out[self.mask] = 0
return out
def backward(self, dout):
dout[self.mask] = 0
dx = dout
return dx
class SoftmaxWithLoss:
def __init__(self):
self.loss = None
self.y = None # softmaxの出力
self.t = None # 教師データ
def forward(self, x, t):
self.t = t
self.y = softmax(x)
self.loss = cross_entropy_error(self.y, self.t)
return self.loss
def backward(self, dout=1):
batch_size = self.t.shape[0]
if self.t.size == self.y.size: # 教師データがone-hot-vectorの場合
dx = (self.y - self.t) / batch_size
else:
dx = self.y.copy()
dx[np.arange(batch_size), self.t] -= 1
dx = dx / batch_size
return dx
class LightNormalization:
"""
"""
def __init__(self, momentum=0.9, running_mean=None, running_var=None):
self.momentum = momentum
self.input_shape = None # Conv層の場合は4次元、全結合層の場合は2次元
# テスト時に使用する平均と分散
self.running_mean = running_mean
self.running_var = running_var
# backward時に使用する中間データ
self.batch_size = None
self.xc = None
self.std = None
def forward(self, x, train_flg=True):
self.input_shape = x.shape
if x.ndim == 2:
N, D = x.shape
x = x.reshape(N, D, 1, 1)
x = x.transpose(0, 2, 3, 1)
out = self.__forward(x, train_flg)
out = out.transpose(0, 3, 1, 2)
return out.reshape(*self.input_shape)
def __forward(self, x, train_flg):
if self.running_mean is None:
N, H, W, C = x.shape
self.running_mean = cp.zeros(C, dtype=np.float32)
self.running_var = cp.zeros(C, dtype=np.float32)
if train_flg:
mu = x.mean(axis=(0, 1, 2))
xc = x - mu
var = cp.mean(xc**2, axis=(0, 1, 2), dtype=np.float32)
std = cp.sqrt(var + 10e-7, dtype=np.float32)
xn = xc / std
self.batch_size = x.shape[0]
self.xc = xc
self.xn = xn
self.std = std
self.running_mean = self.momentum * self.running_mean + (1-self.momentum) * mu
self.running_var = self.momentum * self.running_var + (1-self.momentum) * var
else:
xc = x - self.running_mean
xn = xc / ((cp.sqrt(self.running_var + 10e-7, dtype=np.float32)))
out = xn
return out
def backward(self, dout):
if dout.ndim == 2:
N, D = dout.shape
dout = dout.reshape(N, D, 1, 1)
dout = dout.transpose(0, 2, 3, 1)
dx = self.__backward(dout)
dx = dx.transpose(0, 3, 1, 2)
dx = dx.reshape(*self.input_shape)
return dx
def __backward(self, dout):
dxn = dout
dxc = dxn / self.std
dstd = -cp.sum((dxn * self.xc) / (self.std * self.std), axis=0)
dvar = 0.5 * dstd / self.std
dxc += (2.0 / self.batch_size) * self.xc * dvar
dmu = cp.sum(dxc, axis=0)
dx = dxc - dmu / self.batch_size
return dx
class Convolution:
def __init__(self, W, stride=1, pad=0):
self.W = W
self.stride = stride
self.pad = pad
self.x = None
self.col = None
self.col_W = None
self.dW = None
def forward(self, x):
FN, C, FH, FW = self.W.shape
N, C, H, W = x.shape
out_h = 1 + int((H + 2*self.pad - FH) / self.stride)
out_w = 1 + int((W + 2*self.pad - FW) / self.stride)
col = im2col(x, FH, FW, self.stride, self.pad)
col_W = self.W.reshape(FN, -1).T
out = cp.dot(col, col_W)
out = out.reshape(N, out_h, out_w, -1).transpose(0, 3, 1, 2)
self.x = x
self.col = col
self.col_W = col_W
return out
def backward(self, dout):
FN, C, FH, FW = self.W.shape
dout = dout.transpose(0,2,3,1).reshape(-1, FN)
self.dW = cp.dot(self.col.T, dout)
self.dW = self.dW.transpose(1, 0).reshape(FN, C, FH, FW)
dcol = cp.dot(dout, self.col_W.T)
dx = col2im(dcol, self.x.shape, FH, FW, self.stride, self.pad)
return dx
class Pooling:
def __init__(self, pool_h, pool_w, stride=1, pad=0):
self.pool_h = pool_h
self.pool_w = pool_w
self.stride = stride
self.pad = pad
self.x = None
self.arg_max = None
def forward(self, x):
N, C, H, W = x.shape
out_h = int(1 + (H - self.pool_h) / self.stride)
out_w = int(1 + (W - self.pool_w) / self.stride)
col = im2col(x, self.pool_h, self.pool_w, self.stride, self.pad)
col = col.reshape(-1, self.pool_h*self.pool_w)
arg_max = cp.argmax(col, axis=1)
out = cp.array(cp.max(col, axis=1), dtype=np.float32)
out = out.reshape(N, out_h, out_w, C).transpose(0, 3, 1, 2)
self.x = x
self.arg_max = arg_max
return out
def backward(self, dout):
dout = dout.transpose(0, 2, 3, 1)
pool_size = self.pool_h * self.pool_w
dmax = cp.zeros((dout.size, pool_size), dtype=np.float32)
dmax[cp.arange(self.arg_max.size), self.arg_max.flatten()] = dout.flatten()
dmax = dmax.reshape(dout.shape + (pool_size,))
dcol = dmax.reshape(dmax.shape[0] * dmax.shape[1] * dmax.shape[2], -1)
dx = col2im(dcol, self.x.shape, self.pool_h, self.pool_w, self.stride, self.pad)
return dx
class DW_Convolution:
def __init__(self, W, stride=1, pad=0):
self.W = W
self.stride = stride
self.pad = pad
self.x = None
self.col = None
self.col_W = None
self.dW = None
self.db = None
def forward(self, x):
FN, C, FH, FW = self.W.shape
N, C, H, W = x.shape
out_h = 1 + int((H + 2*self.pad - FH) / self.stride)
out_w = 1 + int((W + 2*self.pad - FW) / self.stride)
col = DW_im2col(x, FH, FW, self.stride, self.pad)
col_W = self.W.reshape(FN, -1).T
outlist = []
outlist = np.zeros((FN, N*H*W, 1))
for count in range(FN):
outlist[count] = np.dot(col[count, :, :], col_W[:, count]).reshape(-1,1)
out = outlist.transpose(1,0,2)
out = out.reshape(N, out_h, out_w, -1).transpose(0, 3, 1, 2)
self.x = x
self.col = col
self.col_W = col_W
return out
def backward(self, dout):
FN, C, FH, FW = self.W.shape
N, XC, H, W = dout.shape
dout = dout.transpose(0,2,3,1).reshape(-1, FN)
dW_list = np.zeros((FN, FH*FW))
dcol_list = np.zeros((N * H * W, FN, FH * FW))
for count in range(FN):
dW_list[count] = np.dot(self.col[count].transpose(1,0), dout[:, count])
dcol_list[:,count,:] = np.dot(dout[:,count].reshape(-1,1), self.col_W.T[count,:].reshape(1,-1))
self.dW = dW_list
self.dW = self.dW.reshape(FN, C, FH, FW)
dcol = dcol_list
dx = col2im(dcol, self.x.shape, FH, FW, self.stride, self.pad)
return dx
class Affine:
def __init__(self, W):
self.W =W
# self.b = b
self.x = None
self.original_x_shape = None
#self.dW = None
# self.db = None
def forward(self, x):
self.original_x_shape = x.shape
x = x.reshape(x.shape[0], -1)
self.x = x
out = cp.dot(self.x, self.W) #+ self.b
return out
def backward(self, dout):
dx = cp.dot(dout, self.W.T)
self.dW = cp.dot(self.x.T, dout)
# self.db = cp.sum(dout, axis=0)
dx = dx.reshape(*self.original_x_shape) # return dx