ghash-armv4.pl 13.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
#! /usr/bin/env perl
# Copyright 2010-2018 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License").  You may not use
# this file except in compliance with the License.  You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html

#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# April 2010
#
# The module implements "4-bit" GCM GHASH function and underlying
# single multiplication operation in GF(2^128). "4-bit" means that it
# uses 256 bytes per-key table [+32 bytes shared table]. There is no
# experimental performance data available yet. The only approximation
# that can be made at this point is based on code size. Inner loop is
# 32 instructions long and on single-issue core should execute in <40
# cycles. Having verified that gcc 3.4 didn't unroll corresponding
# loop, this assembler loop body was found to be ~3x smaller than
# compiler-generated one...
#
# July 2010
#
# Rescheduling for dual-issue pipeline resulted in 8.5% improvement on
# Cortex A8 core and ~25 cycles per processed byte (which was observed
# to be ~3 times faster than gcc-generated code:-)
#
# February 2011
#
# Profiler-assisted and platform-specific optimization resulted in 7%
# improvement on Cortex A8 core and ~23.5 cycles per byte.
#
# March 2011
#
# Add NEON implementation featuring polynomial multiplication, i.e. no
# lookup tables involved. On Cortex A8 it was measured to process one
# byte in 15 cycles or 55% faster than integer-only code.
#
# April 2014
#
# Switch to multiplication algorithm suggested in paper referred
# below and combine it with reduction algorithm from x86 module.
# Performance improvement over previous version varies from 65% on
# Snapdragon S4 to 110% on Cortex A9. In absolute terms Cortex A8
# processes one byte in 8.45 cycles, A9 - in 10.2, A15 - in 7.63,
# Snapdragon S4 - in 9.33.
#
# Câmara, D.; Gouvêa, C. P. L.; López, J. & Dahab, R.: Fast Software
# Polynomial Multiplication on ARM Processors using the NEON Engine.
#
# http://conradoplg.cryptoland.net/files/2010/12/mocrysen13.pdf

# ====================================================================
# Note about "528B" variant. In ARM case it makes lesser sense to
# implement it for following reasons:
#
# - performance improvement won't be anywhere near 50%, because 128-
#   bit shift operation is neatly fused with 128-bit xor here, and
#   "538B" variant would eliminate only 4-5 instructions out of 32
#   in the inner loop (meaning that estimated improvement is ~15%);
# - ARM-based systems are often embedded ones and extra memory
#   consumption might be unappreciated (for so little improvement);
#
# Byte order [in]dependence. =========================================
#
# Caller is expected to maintain specific *dword* order in Htable,
# namely with *least* significant dword of 128-bit value at *lower*
# address. This differs completely from C code and has everything to
# do with ldm instruction and order in which dwords are "consumed" by
# algorithm. *Byte* order within these dwords in turn is whatever
# *native* byte order on current platform. See gcm128.c for working
# example...

$flavour = shift;
if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; }
else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} }

if ($flavour && $flavour ne "void") {
    $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
    ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
    ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
    die "can't locate arm-xlate.pl";

    open STDOUT,"| \"$^X\" $xlate $flavour $output";
} else {
    open STDOUT,">$output";
}

$Xi="r0";	# argument block
$Htbl="r1";
$inp="r2";
$len="r3";

$Zll="r4";	# variables
$Zlh="r5";
$Zhl="r6";
$Zhh="r7";
$Tll="r8";
$Tlh="r9";
$Thl="r10";
$Thh="r11";
$nlo="r12";
################# r13 is stack pointer
$nhi="r14";
################# r15 is program counter

$rem_4bit=$inp;	# used in gcm_gmult_4bit
$cnt=$len;

sub Zsmash() {
  my $i=12;
  my @args=@_;
  for ($Zll,$Zlh,$Zhl,$Zhh) {
    $code.=<<___;
#if __ARM_ARCH__>=7 && defined(__ARMEL__)
	rev	$_,$_
	str	$_,[$Xi,#$i]
#elif defined(__ARMEB__)
	str	$_,[$Xi,#$i]
#else
	mov	$Tlh,$_,lsr#8
	strb	$_,[$Xi,#$i+3]
	mov	$Thl,$_,lsr#16
	strb	$Tlh,[$Xi,#$i+2]
	mov	$Thh,$_,lsr#24
	strb	$Thl,[$Xi,#$i+1]
	strb	$Thh,[$Xi,#$i]
#endif
___
    $code.="\t".shift(@args)."\n";
    $i-=4;
  }
}

$code=<<___;
#include "arm_arch.h"

.text
#if defined(__thumb2__) || defined(__clang__)
.syntax	unified
#define ldrplb  ldrbpl
#define ldrneb  ldrbne
#endif
#if defined(__thumb2__)
.thumb
#else
.code	32
#endif

.type	rem_4bit,%object
.align	5
rem_4bit:
.short	0x0000,0x1C20,0x3840,0x2460
.short	0x7080,0x6CA0,0x48C0,0x54E0
.short	0xE100,0xFD20,0xD940,0xC560
.short	0x9180,0x8DA0,0xA9C0,0xB5E0
.size	rem_4bit,.-rem_4bit

.type	rem_4bit_get,%function
rem_4bit_get:
#if defined(__thumb2__)
	adr	$rem_4bit,rem_4bit
#else
	sub	$rem_4bit,pc,#8+32	@ &rem_4bit
#endif
	b	.Lrem_4bit_got
	nop
	nop
.size	rem_4bit_get,.-rem_4bit_get

.global	gcm_ghash_4bit
.type	gcm_ghash_4bit,%function
.align	4
gcm_ghash_4bit:
#if defined(__thumb2__)
	adr	r12,rem_4bit
#else
	sub	r12,pc,#8+48		@ &rem_4bit
#endif
	add	$len,$inp,$len		@ $len to point at the end
	stmdb	sp!,{r3-r11,lr}		@ save $len/end too

	ldmia	r12,{r4-r11}		@ copy rem_4bit ...
	stmdb	sp!,{r4-r11}		@ ... to stack

	ldrb	$nlo,[$inp,#15]
	ldrb	$nhi,[$Xi,#15]
.Louter:
	eor	$nlo,$nlo,$nhi
	and	$nhi,$nlo,#0xf0
	and	$nlo,$nlo,#0x0f
	mov	$cnt,#14

	add	$Zhh,$Htbl,$nlo,lsl#4
	ldmia	$Zhh,{$Zll-$Zhh}	@ load Htbl[nlo]
	add	$Thh,$Htbl,$nhi
	ldrb	$nlo,[$inp,#14]

	and	$nhi,$Zll,#0xf		@ rem
	ldmia	$Thh,{$Tll-$Thh}	@ load Htbl[nhi]
	add	$nhi,$nhi,$nhi
	eor	$Zll,$Tll,$Zll,lsr#4
	ldrh	$Tll,[sp,$nhi]		@ rem_4bit[rem]
	eor	$Zll,$Zll,$Zlh,lsl#28
	ldrb	$nhi,[$Xi,#14]
	eor	$Zlh,$Tlh,$Zlh,lsr#4
	eor	$Zlh,$Zlh,$Zhl,lsl#28
	eor	$Zhl,$Thl,$Zhl,lsr#4
	eor	$Zhl,$Zhl,$Zhh,lsl#28
	eor	$Zhh,$Thh,$Zhh,lsr#4
	eor	$nlo,$nlo,$nhi
	and	$nhi,$nlo,#0xf0
	and	$nlo,$nlo,#0x0f
	eor	$Zhh,$Zhh,$Tll,lsl#16

.Linner:
	add	$Thh,$Htbl,$nlo,lsl#4
	and	$nlo,$Zll,#0xf		@ rem
	subs	$cnt,$cnt,#1
	add	$nlo,$nlo,$nlo
	ldmia	$Thh,{$Tll-$Thh}	@ load Htbl[nlo]
	eor	$Zll,$Tll,$Zll,lsr#4
	eor	$Zll,$Zll,$Zlh,lsl#28
	eor	$Zlh,$Tlh,$Zlh,lsr#4
	eor	$Zlh,$Zlh,$Zhl,lsl#28
	ldrh	$Tll,[sp,$nlo]		@ rem_4bit[rem]
	eor	$Zhl,$Thl,$Zhl,lsr#4
#ifdef	__thumb2__
	it	pl
#endif
	ldrplb	$nlo,[$inp,$cnt]
	eor	$Zhl,$Zhl,$Zhh,lsl#28
	eor	$Zhh,$Thh,$Zhh,lsr#4

	add	$Thh,$Htbl,$nhi
	and	$nhi,$Zll,#0xf		@ rem
	eor	$Zhh,$Zhh,$Tll,lsl#16	@ ^= rem_4bit[rem]
	add	$nhi,$nhi,$nhi
	ldmia	$Thh,{$Tll-$Thh}	@ load Htbl[nhi]
	eor	$Zll,$Tll,$Zll,lsr#4
#ifdef	__thumb2__
	it	pl
#endif
	ldrplb	$Tll,[$Xi,$cnt]
	eor	$Zll,$Zll,$Zlh,lsl#28
	eor	$Zlh,$Tlh,$Zlh,lsr#4
	ldrh	$Tlh,[sp,$nhi]
	eor	$Zlh,$Zlh,$Zhl,lsl#28
	eor	$Zhl,$Thl,$Zhl,lsr#4
	eor	$Zhl,$Zhl,$Zhh,lsl#28
#ifdef	__thumb2__
	it	pl
#endif
	eorpl	$nlo,$nlo,$Tll
	eor	$Zhh,$Thh,$Zhh,lsr#4
#ifdef	__thumb2__
	itt	pl
#endif
	andpl	$nhi,$nlo,#0xf0
	andpl	$nlo,$nlo,#0x0f
	eor	$Zhh,$Zhh,$Tlh,lsl#16	@ ^= rem_4bit[rem]
	bpl	.Linner

	ldr	$len,[sp,#32]		@ re-load $len/end
	add	$inp,$inp,#16
	mov	$nhi,$Zll
___
	&Zsmash("cmp\t$inp,$len","\n".
				 "#ifdef __thumb2__\n".
				 "	it	ne\n".
				 "#endif\n".
				 "	ldrneb	$nlo,[$inp,#15]");
$code.=<<___;
	bne	.Louter

	add	sp,sp,#36
#if __ARM_ARCH__>=5
	ldmia	sp!,{r4-r11,pc}
#else
	ldmia	sp!,{r4-r11,lr}
	tst	lr,#1
	moveq	pc,lr			@ be binary compatible with V4, yet
	bx	lr			@ interoperable with Thumb ISA:-)
#endif
.size	gcm_ghash_4bit,.-gcm_ghash_4bit

.global	gcm_gmult_4bit
.type	gcm_gmult_4bit,%function
gcm_gmult_4bit:
	stmdb	sp!,{r4-r11,lr}
	ldrb	$nlo,[$Xi,#15]
	b	rem_4bit_get
.Lrem_4bit_got:
	and	$nhi,$nlo,#0xf0
	and	$nlo,$nlo,#0x0f
	mov	$cnt,#14

	add	$Zhh,$Htbl,$nlo,lsl#4
	ldmia	$Zhh,{$Zll-$Zhh}	@ load Htbl[nlo]
	ldrb	$nlo,[$Xi,#14]

	add	$Thh,$Htbl,$nhi
	and	$nhi,$Zll,#0xf		@ rem
	ldmia	$Thh,{$Tll-$Thh}	@ load Htbl[nhi]
	add	$nhi,$nhi,$nhi
	eor	$Zll,$Tll,$Zll,lsr#4
	ldrh	$Tll,[$rem_4bit,$nhi]	@ rem_4bit[rem]
	eor	$Zll,$Zll,$Zlh,lsl#28
	eor	$Zlh,$Tlh,$Zlh,lsr#4
	eor	$Zlh,$Zlh,$Zhl,lsl#28
	eor	$Zhl,$Thl,$Zhl,lsr#4
	eor	$Zhl,$Zhl,$Zhh,lsl#28
	eor	$Zhh,$Thh,$Zhh,lsr#4
	and	$nhi,$nlo,#0xf0
	eor	$Zhh,$Zhh,$Tll,lsl#16
	and	$nlo,$nlo,#0x0f

.Loop:
	add	$Thh,$Htbl,$nlo,lsl#4
	and	$nlo,$Zll,#0xf		@ rem
	subs	$cnt,$cnt,#1
	add	$nlo,$nlo,$nlo
	ldmia	$Thh,{$Tll-$Thh}	@ load Htbl[nlo]
	eor	$Zll,$Tll,$Zll,lsr#4
	eor	$Zll,$Zll,$Zlh,lsl#28
	eor	$Zlh,$Tlh,$Zlh,lsr#4
	eor	$Zlh,$Zlh,$Zhl,lsl#28
	ldrh	$Tll,[$rem_4bit,$nlo]	@ rem_4bit[rem]
	eor	$Zhl,$Thl,$Zhl,lsr#4
#ifdef	__thumb2__
	it	pl
#endif
	ldrplb	$nlo,[$Xi,$cnt]
	eor	$Zhl,$Zhl,$Zhh,lsl#28
	eor	$Zhh,$Thh,$Zhh,lsr#4

	add	$Thh,$Htbl,$nhi
	and	$nhi,$Zll,#0xf		@ rem
	eor	$Zhh,$Zhh,$Tll,lsl#16	@ ^= rem_4bit[rem]
	add	$nhi,$nhi,$nhi
	ldmia	$Thh,{$Tll-$Thh}	@ load Htbl[nhi]
	eor	$Zll,$Tll,$Zll,lsr#4
	eor	$Zll,$Zll,$Zlh,lsl#28
	eor	$Zlh,$Tlh,$Zlh,lsr#4
	ldrh	$Tll,[$rem_4bit,$nhi]	@ rem_4bit[rem]
	eor	$Zlh,$Zlh,$Zhl,lsl#28
	eor	$Zhl,$Thl,$Zhl,lsr#4
	eor	$Zhl,$Zhl,$Zhh,lsl#28
	eor	$Zhh,$Thh,$Zhh,lsr#4
#ifdef	__thumb2__
	itt	pl
#endif
	andpl	$nhi,$nlo,#0xf0
	andpl	$nlo,$nlo,#0x0f
	eor	$Zhh,$Zhh,$Tll,lsl#16	@ ^= rem_4bit[rem]
	bpl	.Loop
___
	&Zsmash();
$code.=<<___;
#if __ARM_ARCH__>=5
	ldmia	sp!,{r4-r11,pc}
#else
	ldmia	sp!,{r4-r11,lr}
	tst	lr,#1
	moveq	pc,lr			@ be binary compatible with V4, yet
	bx	lr			@ interoperable with Thumb ISA:-)
#endif
.size	gcm_gmult_4bit,.-gcm_gmult_4bit
___
{
my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3));
my ($t0,$t1,$t2,$t3)=map("q$_",(8..12));
my ($Hlo,$Hhi,$Hhl,$k48,$k32,$k16)=map("d$_",(26..31));

sub clmul64x64 {
my ($r,$a,$b)=@_;
$code.=<<___;
	vext.8		$t0#lo, $a, $a, #1	@ A1
	vmull.p8	$t0, $t0#lo, $b		@ F = A1*B
	vext.8		$r#lo, $b, $b, #1	@ B1
	vmull.p8	$r, $a, $r#lo		@ E = A*B1
	vext.8		$t1#lo, $a, $a, #2	@ A2
	vmull.p8	$t1, $t1#lo, $b		@ H = A2*B
	vext.8		$t3#lo, $b, $b, #2	@ B2
	vmull.p8	$t3, $a, $t3#lo		@ G = A*B2
	vext.8		$t2#lo, $a, $a, #3	@ A3
	veor		$t0, $t0, $r		@ L = E + F
	vmull.p8	$t2, $t2#lo, $b		@ J = A3*B
	vext.8		$r#lo, $b, $b, #3	@ B3
	veor		$t1, $t1, $t3		@ M = G + H
	vmull.p8	$r, $a, $r#lo		@ I = A*B3
	veor		$t0#lo, $t0#lo, $t0#hi	@ t0 = (L) (P0 + P1) << 8
	vand		$t0#hi, $t0#hi, $k48
	vext.8		$t3#lo, $b, $b, #4	@ B4
	veor		$t1#lo, $t1#lo, $t1#hi	@ t1 = (M) (P2 + P3) << 16
	vand		$t1#hi, $t1#hi, $k32
	vmull.p8	$t3, $a, $t3#lo		@ K = A*B4
	veor		$t2, $t2, $r		@ N = I + J
	veor		$t0#lo, $t0#lo, $t0#hi
	veor		$t1#lo, $t1#lo, $t1#hi
	veor		$t2#lo, $t2#lo, $t2#hi	@ t2 = (N) (P4 + P5) << 24
	vand		$t2#hi, $t2#hi, $k16
	vext.8		$t0, $t0, $t0, #15
	veor		$t3#lo, $t3#lo, $t3#hi	@ t3 = (K) (P6 + P7) << 32
	vmov.i64	$t3#hi, #0
	vext.8		$t1, $t1, $t1, #14
	veor		$t2#lo, $t2#lo, $t2#hi
	vmull.p8	$r, $a, $b		@ D = A*B
	vext.8		$t3, $t3, $t3, #12
	vext.8		$t2, $t2, $t2, #13
	veor		$t0, $t0, $t1
	veor		$t2, $t2, $t3
	veor		$r, $r, $t0
	veor		$r, $r, $t2
___
}

$code.=<<___;
#if __ARM_MAX_ARCH__>=7
.arch	armv7-a
.fpu	neon

.global	gcm_init_neon
.type	gcm_init_neon,%function
.align	4
gcm_init_neon:
	vld1.64		$IN#hi,[r1]!		@ load H
	vmov.i8		$t0,#0xe1
	vld1.64		$IN#lo,[r1]
	vshl.i64	$t0#hi,#57
	vshr.u64	$t0#lo,#63		@ t0=0xc2....01
	vdup.8		$t1,$IN#hi[7]
	vshr.u64	$Hlo,$IN#lo,#63
	vshr.s8		$t1,#7			@ broadcast carry bit
	vshl.i64	$IN,$IN,#1
	vand		$t0,$t0,$t1
	vorr		$IN#hi,$Hlo		@ H<<<=1
	veor		$IN,$IN,$t0		@ twisted H
	vstmia		r0,{$IN}

	ret					@ bx lr
.size	gcm_init_neon,.-gcm_init_neon

.global	gcm_gmult_neon
.type	gcm_gmult_neon,%function
.align	4
gcm_gmult_neon:
	vld1.64		$IN#hi,[$Xi]!		@ load Xi
	vld1.64		$IN#lo,[$Xi]!
	vmov.i64	$k48,#0x0000ffffffffffff
	vldmia		$Htbl,{$Hlo-$Hhi}	@ load twisted H
	vmov.i64	$k32,#0x00000000ffffffff
#ifdef __ARMEL__
	vrev64.8	$IN,$IN
#endif
	vmov.i64	$k16,#0x000000000000ffff
	veor		$Hhl,$Hlo,$Hhi		@ Karatsuba pre-processing
	mov		$len,#16
	b		.Lgmult_neon
.size	gcm_gmult_neon,.-gcm_gmult_neon

.global	gcm_ghash_neon
.type	gcm_ghash_neon,%function
.align	4
gcm_ghash_neon:
	vld1.64		$Xl#hi,[$Xi]!		@ load Xi
	vld1.64		$Xl#lo,[$Xi]!
	vmov.i64	$k48,#0x0000ffffffffffff
	vldmia		$Htbl,{$Hlo-$Hhi}	@ load twisted H
	vmov.i64	$k32,#0x00000000ffffffff
#ifdef __ARMEL__
	vrev64.8	$Xl,$Xl
#endif
	vmov.i64	$k16,#0x000000000000ffff
	veor		$Hhl,$Hlo,$Hhi		@ Karatsuba pre-processing

.Loop_neon:
	vld1.64		$IN#hi,[$inp]!		@ load inp
	vld1.64		$IN#lo,[$inp]!
#ifdef __ARMEL__
	vrev64.8	$IN,$IN
#endif
	veor		$IN,$Xl			@ inp^=Xi
.Lgmult_neon:
___
	&clmul64x64	($Xl,$Hlo,"$IN#lo");	# H.lo·Xi.lo
$code.=<<___;
	veor		$IN#lo,$IN#lo,$IN#hi	@ Karatsuba pre-processing
___
	&clmul64x64	($Xm,$Hhl,"$IN#lo");	# (H.lo+H.hi)·(Xi.lo+Xi.hi)
	&clmul64x64	($Xh,$Hhi,"$IN#hi");	# H.hi·Xi.hi
$code.=<<___;
	veor		$Xm,$Xm,$Xl		@ Karatsuba post-processing
	veor		$Xm,$Xm,$Xh
	veor		$Xl#hi,$Xl#hi,$Xm#lo
	veor		$Xh#lo,$Xh#lo,$Xm#hi	@ Xh|Xl - 256-bit result

	@ equivalent of reduction_avx from ghash-x86_64.pl
	vshl.i64	$t1,$Xl,#57		@ 1st phase
	vshl.i64	$t2,$Xl,#62
	veor		$t2,$t2,$t1		@
	vshl.i64	$t1,$Xl,#63
	veor		$t2, $t2, $t1		@
 	veor		$Xl#hi,$Xl#hi,$t2#lo	@
	veor		$Xh#lo,$Xh#lo,$t2#hi

	vshr.u64	$t2,$Xl,#1		@ 2nd phase
	veor		$Xh,$Xh,$Xl
	veor		$Xl,$Xl,$t2		@
	vshr.u64	$t2,$t2,#6
	vshr.u64	$Xl,$Xl,#1		@
	veor		$Xl,$Xl,$Xh		@
	veor		$Xl,$Xl,$t2		@

	subs		$len,#16
	bne		.Loop_neon

#ifdef __ARMEL__
	vrev64.8	$Xl,$Xl
#endif
	sub		$Xi,#16
	vst1.64		$Xl#hi,[$Xi]!		@ write out Xi
	vst1.64		$Xl#lo,[$Xi]

	ret					@ bx lr
.size	gcm_ghash_neon,.-gcm_ghash_neon
#endif
___
}
$code.=<<___;
.asciz  "GHASH for ARMv4/NEON, CRYPTOGAMS by <appro\@openssl.org>"
.align  2
___

foreach (split("\n",$code)) {
	s/\`([^\`]*)\`/eval $1/geo;

	s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo	or
	s/\bret\b/bx	lr/go		or
	s/\bbx\s+lr\b/.word\t0xe12fff1e/go;    # make it possible to compile with -march=armv4

	print $_,"\n";
}
close STDOUT; # enforce flush