evp_enc.c
18.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
/*
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <assert.h>
#include "internal/cryptlib.h"
#include <openssl/evp.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include <openssl/rand_drbg.h>
#include <openssl/engine.h>
#include "internal/evp_int.h"
#include "evp_locl.h"
int EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *c)
{
if (c == NULL)
return 1;
if (c->cipher != NULL) {
if (c->cipher->cleanup && !c->cipher->cleanup(c))
return 0;
/* Cleanse cipher context data */
if (c->cipher_data && c->cipher->ctx_size)
OPENSSL_cleanse(c->cipher_data, c->cipher->ctx_size);
}
OPENSSL_free(c->cipher_data);
#ifndef OPENSSL_NO_ENGINE
ENGINE_finish(c->engine);
#endif
memset(c, 0, sizeof(*c));
return 1;
}
EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void)
{
return OPENSSL_zalloc(sizeof(EVP_CIPHER_CTX));
}
void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx)
{
EVP_CIPHER_CTX_reset(ctx);
OPENSSL_free(ctx);
}
int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
const unsigned char *key, const unsigned char *iv, int enc)
{
if (cipher != NULL)
EVP_CIPHER_CTX_reset(ctx);
return EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, enc);
}
int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
ENGINE *impl, const unsigned char *key,
const unsigned char *iv, int enc)
{
if (enc == -1)
enc = ctx->encrypt;
else {
if (enc)
enc = 1;
ctx->encrypt = enc;
}
#ifndef OPENSSL_NO_ENGINE
/*
* Whether it's nice or not, "Inits" can be used on "Final"'d contexts so
* this context may already have an ENGINE! Try to avoid releasing the
* previous handle, re-querying for an ENGINE, and having a
* reinitialisation, when it may all be unnecessary.
*/
if (ctx->engine && ctx->cipher
&& (cipher == NULL || cipher->nid == ctx->cipher->nid))
goto skip_to_init;
#endif
if (cipher) {
/*
* Ensure a context left lying around from last time is cleared (the
* previous check attempted to avoid this if the same ENGINE and
* EVP_CIPHER could be used).
*/
if (ctx->cipher) {
unsigned long flags = ctx->flags;
EVP_CIPHER_CTX_reset(ctx);
/* Restore encrypt and flags */
ctx->encrypt = enc;
ctx->flags = flags;
}
#ifndef OPENSSL_NO_ENGINE
if (impl) {
if (!ENGINE_init(impl)) {
EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_INITIALIZATION_ERROR);
return 0;
}
} else
/* Ask if an ENGINE is reserved for this job */
impl = ENGINE_get_cipher_engine(cipher->nid);
if (impl) {
/* There's an ENGINE for this job ... (apparently) */
const EVP_CIPHER *c = ENGINE_get_cipher(impl, cipher->nid);
if (!c) {
/*
* One positive side-effect of US's export control history,
* is that we should at least be able to avoid using US
* misspellings of "initialisation"?
*/
EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_INITIALIZATION_ERROR);
return 0;
}
/* We'll use the ENGINE's private cipher definition */
cipher = c;
/*
* Store the ENGINE functional reference so we know 'cipher' came
* from an ENGINE and we need to release it when done.
*/
ctx->engine = impl;
} else
ctx->engine = NULL;
#endif
ctx->cipher = cipher;
if (ctx->cipher->ctx_size) {
ctx->cipher_data = OPENSSL_zalloc(ctx->cipher->ctx_size);
if (ctx->cipher_data == NULL) {
ctx->cipher = NULL;
EVPerr(EVP_F_EVP_CIPHERINIT_EX, ERR_R_MALLOC_FAILURE);
return 0;
}
} else {
ctx->cipher_data = NULL;
}
ctx->key_len = cipher->key_len;
/* Preserve wrap enable flag, zero everything else */
ctx->flags &= EVP_CIPHER_CTX_FLAG_WRAP_ALLOW;
if (ctx->cipher->flags & EVP_CIPH_CTRL_INIT) {
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_INIT, 0, NULL)) {
ctx->cipher = NULL;
EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_INITIALIZATION_ERROR);
return 0;
}
}
} else if (!ctx->cipher) {
EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_NO_CIPHER_SET);
return 0;
}
#ifndef OPENSSL_NO_ENGINE
skip_to_init:
#endif
/* we assume block size is a power of 2 in *cryptUpdate */
OPENSSL_assert(ctx->cipher->block_size == 1
|| ctx->cipher->block_size == 8
|| ctx->cipher->block_size == 16);
if (!(ctx->flags & EVP_CIPHER_CTX_FLAG_WRAP_ALLOW)
&& EVP_CIPHER_CTX_mode(ctx) == EVP_CIPH_WRAP_MODE) {
EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_WRAP_MODE_NOT_ALLOWED);
return 0;
}
if (!(EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ctx)) & EVP_CIPH_CUSTOM_IV)) {
switch (EVP_CIPHER_CTX_mode(ctx)) {
case EVP_CIPH_STREAM_CIPHER:
case EVP_CIPH_ECB_MODE:
break;
case EVP_CIPH_CFB_MODE:
case EVP_CIPH_OFB_MODE:
ctx->num = 0;
/* fall-through */
case EVP_CIPH_CBC_MODE:
OPENSSL_assert(EVP_CIPHER_CTX_iv_length(ctx) <=
(int)sizeof(ctx->iv));
if (iv)
memcpy(ctx->oiv, iv, EVP_CIPHER_CTX_iv_length(ctx));
memcpy(ctx->iv, ctx->oiv, EVP_CIPHER_CTX_iv_length(ctx));
break;
case EVP_CIPH_CTR_MODE:
ctx->num = 0;
/* Don't reuse IV for CTR mode */
if (iv)
memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx));
break;
default:
return 0;
}
}
if (key || (ctx->cipher->flags & EVP_CIPH_ALWAYS_CALL_INIT)) {
if (!ctx->cipher->init(ctx, key, iv, enc))
return 0;
}
ctx->buf_len = 0;
ctx->final_used = 0;
ctx->block_mask = ctx->cipher->block_size - 1;
return 1;
}
int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl,
const unsigned char *in, int inl)
{
if (ctx->encrypt)
return EVP_EncryptUpdate(ctx, out, outl, in, inl);
else
return EVP_DecryptUpdate(ctx, out, outl, in, inl);
}
int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl)
{
if (ctx->encrypt)
return EVP_EncryptFinal_ex(ctx, out, outl);
else
return EVP_DecryptFinal_ex(ctx, out, outl);
}
int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl)
{
if (ctx->encrypt)
return EVP_EncryptFinal(ctx, out, outl);
else
return EVP_DecryptFinal(ctx, out, outl);
}
int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
const unsigned char *key, const unsigned char *iv)
{
return EVP_CipherInit(ctx, cipher, key, iv, 1);
}
int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
ENGINE *impl, const unsigned char *key,
const unsigned char *iv)
{
return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 1);
}
int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
const unsigned char *key, const unsigned char *iv)
{
return EVP_CipherInit(ctx, cipher, key, iv, 0);
}
int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
ENGINE *impl, const unsigned char *key,
const unsigned char *iv)
{
return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 0);
}
/*
* According to the letter of standard difference between pointers
* is specified to be valid only within same object. This makes
* it formally challenging to determine if input and output buffers
* are not partially overlapping with standard pointer arithmetic.
*/
#ifdef PTRDIFF_T
# undef PTRDIFF_T
#endif
#if defined(OPENSSL_SYS_VMS) && __INITIAL_POINTER_SIZE==64
/*
* Then we have VMS that distinguishes itself by adhering to
* sizeof(size_t)==4 even in 64-bit builds, which means that
* difference between two pointers might be truncated to 32 bits.
* In the context one can even wonder how comparison for
* equality is implemented. To be on the safe side we adhere to
* PTRDIFF_T even for comparison for equality.
*/
# define PTRDIFF_T uint64_t
#else
# define PTRDIFF_T size_t
#endif
int is_partially_overlapping(const void *ptr1, const void *ptr2, int len)
{
PTRDIFF_T diff = (PTRDIFF_T)ptr1-(PTRDIFF_T)ptr2;
/*
* Check for partially overlapping buffers. [Binary logical
* operations are used instead of boolean to minimize number
* of conditional branches.]
*/
int overlapped = (len > 0) & (diff != 0) & ((diff < (PTRDIFF_T)len) |
(diff > (0 - (PTRDIFF_T)len)));
return overlapped;
}
int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl,
const unsigned char *in, int inl)
{
int i, j, bl, cmpl = inl;
if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS))
cmpl = (cmpl + 7) / 8;
bl = ctx->cipher->block_size;
if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
/* If block size > 1 then the cipher will have to do this check */
if (bl == 1 && is_partially_overlapping(out, in, cmpl)) {
EVPerr(EVP_F_EVP_ENCRYPTUPDATE, EVP_R_PARTIALLY_OVERLAPPING);
return 0;
}
i = ctx->cipher->do_cipher(ctx, out, in, inl);
if (i < 0)
return 0;
else
*outl = i;
return 1;
}
if (inl <= 0) {
*outl = 0;
return inl == 0;
}
if (is_partially_overlapping(out + ctx->buf_len, in, cmpl)) {
EVPerr(EVP_F_EVP_ENCRYPTUPDATE, EVP_R_PARTIALLY_OVERLAPPING);
return 0;
}
if (ctx->buf_len == 0 && (inl & (ctx->block_mask)) == 0) {
if (ctx->cipher->do_cipher(ctx, out, in, inl)) {
*outl = inl;
return 1;
} else {
*outl = 0;
return 0;
}
}
i = ctx->buf_len;
OPENSSL_assert(bl <= (int)sizeof(ctx->buf));
if (i != 0) {
if (bl - i > inl) {
memcpy(&(ctx->buf[i]), in, inl);
ctx->buf_len += inl;
*outl = 0;
return 1;
} else {
j = bl - i;
memcpy(&(ctx->buf[i]), in, j);
inl -= j;
in += j;
if (!ctx->cipher->do_cipher(ctx, out, ctx->buf, bl))
return 0;
out += bl;
*outl = bl;
}
} else
*outl = 0;
i = inl & (bl - 1);
inl -= i;
if (inl > 0) {
if (!ctx->cipher->do_cipher(ctx, out, in, inl))
return 0;
*outl += inl;
}
if (i != 0)
memcpy(ctx->buf, &(in[inl]), i);
ctx->buf_len = i;
return 1;
}
int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl)
{
int ret;
ret = EVP_EncryptFinal_ex(ctx, out, outl);
return ret;
}
int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl)
{
int n, ret;
unsigned int i, b, bl;
if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
ret = ctx->cipher->do_cipher(ctx, out, NULL, 0);
if (ret < 0)
return 0;
else
*outl = ret;
return 1;
}
b = ctx->cipher->block_size;
OPENSSL_assert(b <= sizeof(ctx->buf));
if (b == 1) {
*outl = 0;
return 1;
}
bl = ctx->buf_len;
if (ctx->flags & EVP_CIPH_NO_PADDING) {
if (bl) {
EVPerr(EVP_F_EVP_ENCRYPTFINAL_EX,
EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH);
return 0;
}
*outl = 0;
return 1;
}
n = b - bl;
for (i = bl; i < b; i++)
ctx->buf[i] = n;
ret = ctx->cipher->do_cipher(ctx, out, ctx->buf, b);
if (ret)
*outl = b;
return ret;
}
int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl,
const unsigned char *in, int inl)
{
int fix_len, cmpl = inl;
unsigned int b;
b = ctx->cipher->block_size;
if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS))
cmpl = (cmpl + 7) / 8;
if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
if (b == 1 && is_partially_overlapping(out, in, cmpl)) {
EVPerr(EVP_F_EVP_DECRYPTUPDATE, EVP_R_PARTIALLY_OVERLAPPING);
return 0;
}
fix_len = ctx->cipher->do_cipher(ctx, out, in, inl);
if (fix_len < 0) {
*outl = 0;
return 0;
} else
*outl = fix_len;
return 1;
}
if (inl <= 0) {
*outl = 0;
return inl == 0;
}
if (ctx->flags & EVP_CIPH_NO_PADDING)
return EVP_EncryptUpdate(ctx, out, outl, in, inl);
OPENSSL_assert(b <= sizeof(ctx->final));
if (ctx->final_used) {
/* see comment about PTRDIFF_T comparison above */
if (((PTRDIFF_T)out == (PTRDIFF_T)in)
|| is_partially_overlapping(out, in, b)) {
EVPerr(EVP_F_EVP_DECRYPTUPDATE, EVP_R_PARTIALLY_OVERLAPPING);
return 0;
}
memcpy(out, ctx->final, b);
out += b;
fix_len = 1;
} else
fix_len = 0;
if (!EVP_EncryptUpdate(ctx, out, outl, in, inl))
return 0;
/*
* if we have 'decrypted' a multiple of block size, make sure we have a
* copy of this last block
*/
if (b > 1 && !ctx->buf_len) {
*outl -= b;
ctx->final_used = 1;
memcpy(ctx->final, &out[*outl], b);
} else
ctx->final_used = 0;
if (fix_len)
*outl += b;
return 1;
}
int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl)
{
int ret;
ret = EVP_DecryptFinal_ex(ctx, out, outl);
return ret;
}
int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl)
{
int i, n;
unsigned int b;
*outl = 0;
if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
i = ctx->cipher->do_cipher(ctx, out, NULL, 0);
if (i < 0)
return 0;
else
*outl = i;
return 1;
}
b = ctx->cipher->block_size;
if (ctx->flags & EVP_CIPH_NO_PADDING) {
if (ctx->buf_len) {
EVPerr(EVP_F_EVP_DECRYPTFINAL_EX,
EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH);
return 0;
}
*outl = 0;
return 1;
}
if (b > 1) {
if (ctx->buf_len || !ctx->final_used) {
EVPerr(EVP_F_EVP_DECRYPTFINAL_EX, EVP_R_WRONG_FINAL_BLOCK_LENGTH);
return 0;
}
OPENSSL_assert(b <= sizeof(ctx->final));
/*
* The following assumes that the ciphertext has been authenticated.
* Otherwise it provides a padding oracle.
*/
n = ctx->final[b - 1];
if (n == 0 || n > (int)b) {
EVPerr(EVP_F_EVP_DECRYPTFINAL_EX, EVP_R_BAD_DECRYPT);
return 0;
}
for (i = 0; i < n; i++) {
if (ctx->final[--b] != n) {
EVPerr(EVP_F_EVP_DECRYPTFINAL_EX, EVP_R_BAD_DECRYPT);
return 0;
}
}
n = ctx->cipher->block_size - n;
for (i = 0; i < n; i++)
out[i] = ctx->final[i];
*outl = n;
} else
*outl = 0;
return 1;
}
int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *c, int keylen)
{
if (c->cipher->flags & EVP_CIPH_CUSTOM_KEY_LENGTH)
return EVP_CIPHER_CTX_ctrl(c, EVP_CTRL_SET_KEY_LENGTH, keylen, NULL);
if (c->key_len == keylen)
return 1;
if ((keylen > 0) && (c->cipher->flags & EVP_CIPH_VARIABLE_LENGTH)) {
c->key_len = keylen;
return 1;
}
EVPerr(EVP_F_EVP_CIPHER_CTX_SET_KEY_LENGTH, EVP_R_INVALID_KEY_LENGTH);
return 0;
}
int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad)
{
if (pad)
ctx->flags &= ~EVP_CIPH_NO_PADDING;
else
ctx->flags |= EVP_CIPH_NO_PADDING;
return 1;
}
int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr)
{
int ret;
if (!ctx->cipher) {
EVPerr(EVP_F_EVP_CIPHER_CTX_CTRL, EVP_R_NO_CIPHER_SET);
return 0;
}
if (!ctx->cipher->ctrl) {
EVPerr(EVP_F_EVP_CIPHER_CTX_CTRL, EVP_R_CTRL_NOT_IMPLEMENTED);
return 0;
}
ret = ctx->cipher->ctrl(ctx, type, arg, ptr);
if (ret == -1) {
EVPerr(EVP_F_EVP_CIPHER_CTX_CTRL,
EVP_R_CTRL_OPERATION_NOT_IMPLEMENTED);
return 0;
}
return ret;
}
int EVP_CIPHER_CTX_rand_key(EVP_CIPHER_CTX *ctx, unsigned char *key)
{
if (ctx->cipher->flags & EVP_CIPH_RAND_KEY)
return EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_RAND_KEY, 0, key);
if (RAND_priv_bytes(key, ctx->key_len) <= 0)
return 0;
return 1;
}
int EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out, const EVP_CIPHER_CTX *in)
{
if ((in == NULL) || (in->cipher == NULL)) {
EVPerr(EVP_F_EVP_CIPHER_CTX_COPY, EVP_R_INPUT_NOT_INITIALIZED);
return 0;
}
#ifndef OPENSSL_NO_ENGINE
/* Make sure it's safe to copy a cipher context using an ENGINE */
if (in->engine && !ENGINE_init(in->engine)) {
EVPerr(EVP_F_EVP_CIPHER_CTX_COPY, ERR_R_ENGINE_LIB);
return 0;
}
#endif
EVP_CIPHER_CTX_reset(out);
memcpy(out, in, sizeof(*out));
if (in->cipher_data && in->cipher->ctx_size) {
out->cipher_data = OPENSSL_malloc(in->cipher->ctx_size);
if (out->cipher_data == NULL) {
out->cipher = NULL;
EVPerr(EVP_F_EVP_CIPHER_CTX_COPY, ERR_R_MALLOC_FAILURE);
return 0;
}
memcpy(out->cipher_data, in->cipher_data, in->cipher->ctx_size);
}
if (in->cipher->flags & EVP_CIPH_CUSTOM_COPY)
if (!in->cipher->ctrl((EVP_CIPHER_CTX *)in, EVP_CTRL_COPY, 0, out)) {
out->cipher = NULL;
EVPerr(EVP_F_EVP_CIPHER_CTX_COPY, EVP_R_INITIALIZATION_ERROR);
return 0;
}
return 1;
}