ecp_nistz256.c 57.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
/*
 * Copyright 2014-2018 The OpenSSL Project Authors. All Rights Reserved.
 * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
 * Copyright (c) 2015, CloudFlare, Inc.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 *
 * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3)
 * (1) Intel Corporation, Israel Development Center, Haifa, Israel
 * (2) University of Haifa, Israel
 * (3) CloudFlare, Inc.
 *
 * Reference:
 * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
 *                          256 Bit Primes"
 */

#include <string.h>

#include "internal/cryptlib.h"
#include "internal/bn_int.h"
#include "ec_lcl.h"
#include "internal/refcount.h"

#if BN_BITS2 != 64
# define TOBN(hi,lo)    lo,hi
#else
# define TOBN(hi,lo)    ((BN_ULONG)hi<<32|lo)
#endif

#if defined(__GNUC__)
# define ALIGN32        __attribute((aligned(32)))
#elif defined(_MSC_VER)
# define ALIGN32        __declspec(align(32))
#else
# define ALIGN32
#endif

#define ALIGNPTR(p,N)   ((unsigned char *)p+N-(size_t)p%N)
#define P256_LIMBS      (256/BN_BITS2)

typedef unsigned short u16;

typedef struct {
    BN_ULONG X[P256_LIMBS];
    BN_ULONG Y[P256_LIMBS];
    BN_ULONG Z[P256_LIMBS];
} P256_POINT;

typedef struct {
    BN_ULONG X[P256_LIMBS];
    BN_ULONG Y[P256_LIMBS];
} P256_POINT_AFFINE;

typedef P256_POINT_AFFINE PRECOMP256_ROW[64];

/* structure for precomputed multiples of the generator */
struct nistz256_pre_comp_st {
    const EC_GROUP *group;      /* Parent EC_GROUP object */
    size_t w;                   /* Window size */
    /*
     * Constant time access to the X and Y coordinates of the pre-computed,
     * generator multiplies, in the Montgomery domain. Pre-calculated
     * multiplies are stored in affine form.
     */
    PRECOMP256_ROW *precomp;
    void *precomp_storage;
    CRYPTO_REF_COUNT references;
    CRYPTO_RWLOCK *lock;
};

/* Functions implemented in assembly */
/*
 * Most of below mentioned functions *preserve* the property of inputs
 * being fully reduced, i.e. being in [0, modulus) range. Simply put if
 * inputs are fully reduced, then output is too. Note that reverse is
 * not true, in sense that given partially reduced inputs output can be
 * either, not unlikely reduced. And "most" in first sentence refers to
 * the fact that given the calculations flow one can tolerate that
 * addition, 1st function below, produces partially reduced result *if*
 * multiplications by 2 and 3, which customarily use addition, fully
 * reduce it. This effectively gives two options: a) addition produces
 * fully reduced result [as long as inputs are, just like remaining
 * functions]; b) addition is allowed to produce partially reduced
 * result, but multiplications by 2 and 3 perform additional reduction
 * step. Choice between the two can be platform-specific, but it was a)
 * in all cases so far...
 */
/* Modular add: res = a+b mod P   */
void ecp_nistz256_add(BN_ULONG res[P256_LIMBS],
                      const BN_ULONG a[P256_LIMBS],
                      const BN_ULONG b[P256_LIMBS]);
/* Modular mul by 2: res = 2*a mod P */
void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS],
                           const BN_ULONG a[P256_LIMBS]);
/* Modular mul by 3: res = 3*a mod P */
void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS],
                           const BN_ULONG a[P256_LIMBS]);

/* Modular div by 2: res = a/2 mod P */
void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS],
                           const BN_ULONG a[P256_LIMBS]);
/* Modular sub: res = a-b mod P   */
void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS],
                      const BN_ULONG a[P256_LIMBS],
                      const BN_ULONG b[P256_LIMBS]);
/* Modular neg: res = -a mod P    */
void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
/* Montgomery mul: res = a*b*2^-256 mod P */
void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
                           const BN_ULONG a[P256_LIMBS],
                           const BN_ULONG b[P256_LIMBS]);
/* Montgomery sqr: res = a*a*2^-256 mod P */
void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
                           const BN_ULONG a[P256_LIMBS]);
/* Convert a number from Montgomery domain, by multiplying with 1 */
void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
                            const BN_ULONG in[P256_LIMBS]);
/* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/
void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS],
                          const BN_ULONG in[P256_LIMBS]);
/* Functions that perform constant time access to the precomputed tables */
void ecp_nistz256_scatter_w5(P256_POINT *val,
                             const P256_POINT *in_t, int idx);
void ecp_nistz256_gather_w5(P256_POINT *val,
                            const P256_POINT *in_t, int idx);
void ecp_nistz256_scatter_w7(P256_POINT_AFFINE *val,
                             const P256_POINT_AFFINE *in_t, int idx);
void ecp_nistz256_gather_w7(P256_POINT_AFFINE *val,
                            const P256_POINT_AFFINE *in_t, int idx);

/* One converted into the Montgomery domain */
static const BN_ULONG ONE[P256_LIMBS] = {
    TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
    TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe)
};

static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group);

/* Precomputed tables for the default generator */
extern const PRECOMP256_ROW ecp_nistz256_precomputed[37];

/* Recode window to a signed digit, see ecp_nistputil.c for details */
static unsigned int _booth_recode_w5(unsigned int in)
{
    unsigned int s, d;

    s = ~((in >> 5) - 1);
    d = (1 << 6) - in - 1;
    d = (d & s) | (in & ~s);
    d = (d >> 1) + (d & 1);

    return (d << 1) + (s & 1);
}

static unsigned int _booth_recode_w7(unsigned int in)
{
    unsigned int s, d;

    s = ~((in >> 7) - 1);
    d = (1 << 8) - in - 1;
    d = (d & s) | (in & ~s);
    d = (d >> 1) + (d & 1);

    return (d << 1) + (s & 1);
}

static void copy_conditional(BN_ULONG dst[P256_LIMBS],
                             const BN_ULONG src[P256_LIMBS], BN_ULONG move)
{
    BN_ULONG mask1 = 0-move;
    BN_ULONG mask2 = ~mask1;

    dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
    dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
    dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
    dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
    if (P256_LIMBS == 8) {
        dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
        dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
        dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
        dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
    }
}

static BN_ULONG is_zero(BN_ULONG in)
{
    in |= (0 - in);
    in = ~in;
    in >>= BN_BITS2 - 1;
    return in;
}

static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS],
                         const BN_ULONG b[P256_LIMBS])
{
    BN_ULONG res;

    res = a[0] ^ b[0];
    res |= a[1] ^ b[1];
    res |= a[2] ^ b[2];
    res |= a[3] ^ b[3];
    if (P256_LIMBS == 8) {
        res |= a[4] ^ b[4];
        res |= a[5] ^ b[5];
        res |= a[6] ^ b[6];
        res |= a[7] ^ b[7];
    }

    return is_zero(res);
}

static BN_ULONG is_one(const BIGNUM *z)
{
    BN_ULONG res = 0;
    BN_ULONG *a = bn_get_words(z);

    if (bn_get_top(z) == (P256_LIMBS - P256_LIMBS / 8)) {
        res = a[0] ^ ONE[0];
        res |= a[1] ^ ONE[1];
        res |= a[2] ^ ONE[2];
        res |= a[3] ^ ONE[3];
        if (P256_LIMBS == 8) {
            res |= a[4] ^ ONE[4];
            res |= a[5] ^ ONE[5];
            res |= a[6] ^ ONE[6];
            /*
             * no check for a[7] (being zero) on 32-bit platforms,
             * because value of "one" takes only 7 limbs.
             */
        }
        res = is_zero(res);
    }

    return res;
}

/*
 * For reference, this macro is used only when new ecp_nistz256 assembly
 * module is being developed.  For example, configure with
 * -DECP_NISTZ256_REFERENCE_IMPLEMENTATION and implement only functions
 * performing simplest arithmetic operations on 256-bit vectors. Then
 * work on implementation of higher-level functions performing point
 * operations. Then remove ECP_NISTZ256_REFERENCE_IMPLEMENTATION
 * and never define it again. (The correct macro denoting presence of
 * ecp_nistz256 module is ECP_NISTZ256_ASM.)
 */
#ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION
void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
void ecp_nistz256_point_add(P256_POINT *r,
                            const P256_POINT *a, const P256_POINT *b);
void ecp_nistz256_point_add_affine(P256_POINT *r,
                                   const P256_POINT *a,
                                   const P256_POINT_AFFINE *b);
#else
/* Point double: r = 2*a */
static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a)
{
    BN_ULONG S[P256_LIMBS];
    BN_ULONG M[P256_LIMBS];
    BN_ULONG Zsqr[P256_LIMBS];
    BN_ULONG tmp0[P256_LIMBS];

    const BN_ULONG *in_x = a->X;
    const BN_ULONG *in_y = a->Y;
    const BN_ULONG *in_z = a->Z;

    BN_ULONG *res_x = r->X;
    BN_ULONG *res_y = r->Y;
    BN_ULONG *res_z = r->Z;

    ecp_nistz256_mul_by_2(S, in_y);

    ecp_nistz256_sqr_mont(Zsqr, in_z);

    ecp_nistz256_sqr_mont(S, S);

    ecp_nistz256_mul_mont(res_z, in_z, in_y);
    ecp_nistz256_mul_by_2(res_z, res_z);

    ecp_nistz256_add(M, in_x, Zsqr);
    ecp_nistz256_sub(Zsqr, in_x, Zsqr);

    ecp_nistz256_sqr_mont(res_y, S);
    ecp_nistz256_div_by_2(res_y, res_y);

    ecp_nistz256_mul_mont(M, M, Zsqr);
    ecp_nistz256_mul_by_3(M, M);

    ecp_nistz256_mul_mont(S, S, in_x);
    ecp_nistz256_mul_by_2(tmp0, S);

    ecp_nistz256_sqr_mont(res_x, M);

    ecp_nistz256_sub(res_x, res_x, tmp0);
    ecp_nistz256_sub(S, S, res_x);

    ecp_nistz256_mul_mont(S, S, M);
    ecp_nistz256_sub(res_y, S, res_y);
}

/* Point addition: r = a+b */
static void ecp_nistz256_point_add(P256_POINT *r,
                                   const P256_POINT *a, const P256_POINT *b)
{
    BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
    BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS];
    BN_ULONG Z1sqr[P256_LIMBS];
    BN_ULONG Z2sqr[P256_LIMBS];
    BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
    BN_ULONG Hsqr[P256_LIMBS];
    BN_ULONG Rsqr[P256_LIMBS];
    BN_ULONG Hcub[P256_LIMBS];

    BN_ULONG res_x[P256_LIMBS];
    BN_ULONG res_y[P256_LIMBS];
    BN_ULONG res_z[P256_LIMBS];

    BN_ULONG in1infty, in2infty;

    const BN_ULONG *in1_x = a->X;
    const BN_ULONG *in1_y = a->Y;
    const BN_ULONG *in1_z = a->Z;

    const BN_ULONG *in2_x = b->X;
    const BN_ULONG *in2_y = b->Y;
    const BN_ULONG *in2_z = b->Z;

    /*
     * Infinity in encoded as (,,0)
     */
    in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
    if (P256_LIMBS == 8)
        in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);

    in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]);
    if (P256_LIMBS == 8)
        in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]);

    in1infty = is_zero(in1infty);
    in2infty = is_zero(in2infty);

    ecp_nistz256_sqr_mont(Z2sqr, in2_z);        /* Z2^2 */
    ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */

    ecp_nistz256_mul_mont(S1, Z2sqr, in2_z);    /* S1 = Z2^3 */
    ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */

    ecp_nistz256_mul_mont(S1, S1, in1_y);       /* S1 = Y1*Z2^3 */
    ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */
    ecp_nistz256_sub(R, S2, S1);                /* R = S2 - S1 */

    ecp_nistz256_mul_mont(U1, in1_x, Z2sqr);    /* U1 = X1*Z2^2 */
    ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */
    ecp_nistz256_sub(H, U2, U1);                /* H = U2 - U1 */

    /*
     * This should not happen during sign/ecdh, so no constant time violation
     */
    if (is_equal(U1, U2) && !in1infty && !in2infty) {
        if (is_equal(S1, S2)) {
            ecp_nistz256_point_double(r, a);
            return;
        } else {
            memset(r, 0, sizeof(*r));
            return;
        }
    }

    ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */
    ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */
    ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */
    ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */
    ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */

    ecp_nistz256_mul_mont(U2, U1, Hsqr);        /* U1*H^2 */
    ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */

    ecp_nistz256_sub(res_x, Rsqr, Hsqr);
    ecp_nistz256_sub(res_x, res_x, Hcub);

    ecp_nistz256_sub(res_y, U2, res_x);

    ecp_nistz256_mul_mont(S2, S1, Hcub);
    ecp_nistz256_mul_mont(res_y, R, res_y);
    ecp_nistz256_sub(res_y, res_y, S2);

    copy_conditional(res_x, in2_x, in1infty);
    copy_conditional(res_y, in2_y, in1infty);
    copy_conditional(res_z, in2_z, in1infty);

    copy_conditional(res_x, in1_x, in2infty);
    copy_conditional(res_y, in1_y, in2infty);
    copy_conditional(res_z, in1_z, in2infty);

    memcpy(r->X, res_x, sizeof(res_x));
    memcpy(r->Y, res_y, sizeof(res_y));
    memcpy(r->Z, res_z, sizeof(res_z));
}

/* Point addition when b is known to be affine: r = a+b */
static void ecp_nistz256_point_add_affine(P256_POINT *r,
                                          const P256_POINT *a,
                                          const P256_POINT_AFFINE *b)
{
    BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
    BN_ULONG Z1sqr[P256_LIMBS];
    BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
    BN_ULONG Hsqr[P256_LIMBS];
    BN_ULONG Rsqr[P256_LIMBS];
    BN_ULONG Hcub[P256_LIMBS];

    BN_ULONG res_x[P256_LIMBS];
    BN_ULONG res_y[P256_LIMBS];
    BN_ULONG res_z[P256_LIMBS];

    BN_ULONG in1infty, in2infty;

    const BN_ULONG *in1_x = a->X;
    const BN_ULONG *in1_y = a->Y;
    const BN_ULONG *in1_z = a->Z;

    const BN_ULONG *in2_x = b->X;
    const BN_ULONG *in2_y = b->Y;

    /*
     * Infinity in encoded as (,,0)
     */
    in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
    if (P256_LIMBS == 8)
        in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);

    /*
     * In affine representation we encode infinity as (0,0), which is
     * not on the curve, so it is OK
     */
    in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
                in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]);
    if (P256_LIMBS == 8)
        in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
                     in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]);

    in1infty = is_zero(in1infty);
    in2infty = is_zero(in2infty);

    ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */

    ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */
    ecp_nistz256_sub(H, U2, in1_x);             /* H = U2 - U1 */

    ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */

    ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */

    ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */
    ecp_nistz256_sub(R, S2, in1_y);             /* R = S2 - S1 */

    ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */
    ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */
    ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */

    ecp_nistz256_mul_mont(U2, in1_x, Hsqr);     /* U1*H^2 */
    ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */

    ecp_nistz256_sub(res_x, Rsqr, Hsqr);
    ecp_nistz256_sub(res_x, res_x, Hcub);
    ecp_nistz256_sub(H, U2, res_x);

    ecp_nistz256_mul_mont(S2, in1_y, Hcub);
    ecp_nistz256_mul_mont(H, H, R);
    ecp_nistz256_sub(res_y, H, S2);

    copy_conditional(res_x, in2_x, in1infty);
    copy_conditional(res_x, in1_x, in2infty);

    copy_conditional(res_y, in2_y, in1infty);
    copy_conditional(res_y, in1_y, in2infty);

    copy_conditional(res_z, ONE, in1infty);
    copy_conditional(res_z, in1_z, in2infty);

    memcpy(r->X, res_x, sizeof(res_x));
    memcpy(r->Y, res_y, sizeof(res_y));
    memcpy(r->Z, res_z, sizeof(res_z));
}
#endif

/* r = in^-1 mod p */
static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],
                                     const BN_ULONG in[P256_LIMBS])
{
    /*
     * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff
     * ffffffff ffffffff We use FLT and used poly-2 as exponent
     */
    BN_ULONG p2[P256_LIMBS];
    BN_ULONG p4[P256_LIMBS];
    BN_ULONG p8[P256_LIMBS];
    BN_ULONG p16[P256_LIMBS];
    BN_ULONG p32[P256_LIMBS];
    BN_ULONG res[P256_LIMBS];
    int i;

    ecp_nistz256_sqr_mont(res, in);
    ecp_nistz256_mul_mont(p2, res, in);         /* 3*p */

    ecp_nistz256_sqr_mont(res, p2);
    ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_mul_mont(p4, res, p2);         /* f*p */

    ecp_nistz256_sqr_mont(res, p4);
    ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_mul_mont(p8, res, p4);         /* ff*p */

    ecp_nistz256_sqr_mont(res, p8);
    for (i = 0; i < 7; i++)
        ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_mul_mont(p16, res, p8);        /* ffff*p */

    ecp_nistz256_sqr_mont(res, p16);
    for (i = 0; i < 15; i++)
        ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_mul_mont(p32, res, p16);       /* ffffffff*p */

    ecp_nistz256_sqr_mont(res, p32);
    for (i = 0; i < 31; i++)
        ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_mul_mont(res, res, in);

    for (i = 0; i < 32 * 4; i++)
        ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_mul_mont(res, res, p32);

    for (i = 0; i < 32; i++)
        ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_mul_mont(res, res, p32);

    for (i = 0; i < 16; i++)
        ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_mul_mont(res, res, p16);

    for (i = 0; i < 8; i++)
        ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_mul_mont(res, res, p8);

    ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_mul_mont(res, res, p4);

    ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_mul_mont(res, res, p2);

    ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_sqr_mont(res, res);
    ecp_nistz256_mul_mont(res, res, in);

    memcpy(r, res, sizeof(res));
}

/*
 * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
 * returns one if it fits. Otherwise it returns zero.
 */
__owur static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
                                                    const BIGNUM *in)
{
    return bn_copy_words(out, in, P256_LIMBS);
}

/* r = sum(scalar[i]*point[i]) */
__owur static int ecp_nistz256_windowed_mul(const EC_GROUP *group,
                                            P256_POINT *r,
                                            const BIGNUM **scalar,
                                            const EC_POINT **point,
                                            size_t num, BN_CTX *ctx)
{
    size_t i;
    int j, ret = 0;
    unsigned int idx;
    unsigned char (*p_str)[33] = NULL;
    const unsigned int window_size = 5;
    const unsigned int mask = (1 << (window_size + 1)) - 1;
    unsigned int wvalue;
    P256_POINT *temp;           /* place for 5 temporary points */
    const BIGNUM **scalars = NULL;
    P256_POINT (*table)[16] = NULL;
    void *table_storage = NULL;

    if ((num * 16 + 6) > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT)
        || (table_storage =
            OPENSSL_malloc((num * 16 + 5) * sizeof(P256_POINT) + 64)) == NULL
        || (p_str =
            OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL
        || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) {
        ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    table = (void *)ALIGNPTR(table_storage, 64);
    temp = (P256_POINT *)(table + num);

    for (i = 0; i < num; i++) {
        P256_POINT *row = table[i];

        /* This is an unusual input, we don't guarantee constant-timeness. */
        if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) {
            BIGNUM *mod;

            if ((mod = BN_CTX_get(ctx)) == NULL)
                goto err;
            if (!BN_nnmod(mod, scalar[i], group->order, ctx)) {
                ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_BN_LIB);
                goto err;
            }
            scalars[i] = mod;
        } else
            scalars[i] = scalar[i];

        for (j = 0; j < bn_get_top(scalars[i]) * BN_BYTES; j += BN_BYTES) {
            BN_ULONG d = bn_get_words(scalars[i])[j / BN_BYTES];

            p_str[i][j + 0] = (unsigned char)d;
            p_str[i][j + 1] = (unsigned char)(d >> 8);
            p_str[i][j + 2] = (unsigned char)(d >> 16);
            p_str[i][j + 3] = (unsigned char)(d >>= 24);
            if (BN_BYTES == 8) {
                d >>= 8;
                p_str[i][j + 4] = (unsigned char)d;
                p_str[i][j + 5] = (unsigned char)(d >> 8);
                p_str[i][j + 6] = (unsigned char)(d >> 16);
                p_str[i][j + 7] = (unsigned char)(d >> 24);
            }
        }
        for (; j < 33; j++)
            p_str[i][j] = 0;

        if (!ecp_nistz256_bignum_to_field_elem(temp[0].X, point[i]->X)
            || !ecp_nistz256_bignum_to_field_elem(temp[0].Y, point[i]->Y)
            || !ecp_nistz256_bignum_to_field_elem(temp[0].Z, point[i]->Z)) {
            ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL,
                  EC_R_COORDINATES_OUT_OF_RANGE);
            goto err;
        }

        /*
         * row[0] is implicitly (0,0,0) (the point at infinity), therefore it
         * is not stored. All other values are actually stored with an offset
         * of -1 in table.
         */

        ecp_nistz256_scatter_w5  (row, &temp[0], 1);
        ecp_nistz256_point_double(&temp[1], &temp[0]);              /*1+1=2  */
        ecp_nistz256_scatter_w5  (row, &temp[1], 2);
        ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*2+1=3  */
        ecp_nistz256_scatter_w5  (row, &temp[2], 3);
        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*2=4  */
        ecp_nistz256_scatter_w5  (row, &temp[1], 4);
        ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*3=6  */
        ecp_nistz256_scatter_w5  (row, &temp[2], 6);
        ecp_nistz256_point_add   (&temp[3], &temp[1], &temp[0]);    /*4+1=5  */
        ecp_nistz256_scatter_w5  (row, &temp[3], 5);
        ecp_nistz256_point_add   (&temp[4], &temp[2], &temp[0]);    /*6+1=7  */
        ecp_nistz256_scatter_w5  (row, &temp[4], 7);
        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*4=8  */
        ecp_nistz256_scatter_w5  (row, &temp[1], 8);
        ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*6=12 */
        ecp_nistz256_scatter_w5  (row, &temp[2], 12);
        ecp_nistz256_point_double(&temp[3], &temp[3]);              /*2*5=10 */
        ecp_nistz256_scatter_w5  (row, &temp[3], 10);
        ecp_nistz256_point_double(&temp[4], &temp[4]);              /*2*7=14 */
        ecp_nistz256_scatter_w5  (row, &temp[4], 14);
        ecp_nistz256_point_add   (&temp[2], &temp[2], &temp[0]);    /*12+1=13*/
        ecp_nistz256_scatter_w5  (row, &temp[2], 13);
        ecp_nistz256_point_add   (&temp[3], &temp[3], &temp[0]);    /*10+1=11*/
        ecp_nistz256_scatter_w5  (row, &temp[3], 11);
        ecp_nistz256_point_add   (&temp[4], &temp[4], &temp[0]);    /*14+1=15*/
        ecp_nistz256_scatter_w5  (row, &temp[4], 15);
        ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*8+1=9  */
        ecp_nistz256_scatter_w5  (row, &temp[2], 9);
        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*8=16 */
        ecp_nistz256_scatter_w5  (row, &temp[1], 16);
    }

    idx = 255;

    wvalue = p_str[0][(idx - 1) / 8];
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;

    /*
     * We gather to temp[0], because we know it's position relative
     * to table
     */
    ecp_nistz256_gather_w5(&temp[0], table[0], _booth_recode_w5(wvalue) >> 1);
    memcpy(r, &temp[0], sizeof(temp[0]));

    while (idx >= 5) {
        for (i = (idx == 255 ? 1 : 0); i < num; i++) {
            unsigned int off = (idx - 1) / 8;

            wvalue = p_str[i][off] | p_str[i][off + 1] << 8;
            wvalue = (wvalue >> ((idx - 1) % 8)) & mask;

            wvalue = _booth_recode_w5(wvalue);

            ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);

            ecp_nistz256_neg(temp[1].Y, temp[0].Y);
            copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1));

            ecp_nistz256_point_add(r, r, &temp[0]);
        }

        idx -= window_size;

        ecp_nistz256_point_double(r, r);
        ecp_nistz256_point_double(r, r);
        ecp_nistz256_point_double(r, r);
        ecp_nistz256_point_double(r, r);
        ecp_nistz256_point_double(r, r);
    }

    /* Final window */
    for (i = 0; i < num; i++) {
        wvalue = p_str[i][0];
        wvalue = (wvalue << 1) & mask;

        wvalue = _booth_recode_w5(wvalue);

        ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);

        ecp_nistz256_neg(temp[1].Y, temp[0].Y);
        copy_conditional(temp[0].Y, temp[1].Y, wvalue & 1);

        ecp_nistz256_point_add(r, r, &temp[0]);
    }

    ret = 1;
 err:
    OPENSSL_free(table_storage);
    OPENSSL_free(p_str);
    OPENSSL_free(scalars);
    return ret;
}

/* Coordinates of G, for which we have precomputed tables */
static const BN_ULONG def_xG[P256_LIMBS] = {
    TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601),
    TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6)
};

static const BN_ULONG def_yG[P256_LIMBS] = {
    TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c),
    TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85)
};

/*
 * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256
 * generator.
 */
static int ecp_nistz256_is_affine_G(const EC_POINT *generator)
{
    return (bn_get_top(generator->X) == P256_LIMBS) &&
        (bn_get_top(generator->Y) == P256_LIMBS) &&
        is_equal(bn_get_words(generator->X), def_xG) &&
        is_equal(bn_get_words(generator->Y), def_yG) &&
        is_one(generator->Z);
}

__owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
{
    /*
     * We precompute a table for a Booth encoded exponent (wNAF) based
     * computation. Each table holds 64 values for safe access, with an
     * implicit value of infinity at index zero. We use window of size 7, and
     * therefore require ceil(256/7) = 37 tables.
     */
    const BIGNUM *order;
    EC_POINT *P = NULL, *T = NULL;
    const EC_POINT *generator;
    NISTZ256_PRE_COMP *pre_comp;
    BN_CTX *new_ctx = NULL;
    int i, j, k, ret = 0;
    size_t w;

    PRECOMP256_ROW *preComputedTable = NULL;
    unsigned char *precomp_storage = NULL;

    /* if there is an old NISTZ256_PRE_COMP object, throw it away */
    EC_pre_comp_free(group);
    generator = EC_GROUP_get0_generator(group);
    if (generator == NULL) {
        ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNDEFINED_GENERATOR);
        return 0;
    }

    if (ecp_nistz256_is_affine_G(generator)) {
        /*
         * No need to calculate tables for the standard generator because we
         * have them statically.
         */
        return 1;
    }

    if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL)
        return 0;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            goto err;
    }

    BN_CTX_start(ctx);

    order = EC_GROUP_get0_order(group);
    if (order == NULL)
        goto err;

    if (BN_is_zero(order)) {
        ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNKNOWN_ORDER);
        goto err;
    }

    w = 7;

    if ((precomp_storage =
         OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL) {
        ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    preComputedTable = (void *)ALIGNPTR(precomp_storage, 64);

    P = EC_POINT_new(group);
    T = EC_POINT_new(group);
    if (P == NULL || T == NULL)
        goto err;

    /*
     * The zero entry is implicitly infinity, and we skip it, storing other
     * values with -1 offset.
     */
    if (!EC_POINT_copy(T, generator))
        goto err;

    for (k = 0; k < 64; k++) {
        if (!EC_POINT_copy(P, T))
            goto err;
        for (j = 0; j < 37; j++) {
            P256_POINT_AFFINE temp;
            /*
             * It would be faster to use EC_POINTs_make_affine and
             * make multiple points affine at the same time.
             */
            if (!EC_POINT_make_affine(group, P, ctx))
                goto err;
            if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) ||
                !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) {
                ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE,
                      EC_R_COORDINATES_OUT_OF_RANGE);
                goto err;
            }
            ecp_nistz256_scatter_w7(preComputedTable[j], &temp, k);
            for (i = 0; i < 7; i++) {
                if (!EC_POINT_dbl(group, P, P, ctx))
                    goto err;
            }
        }
        if (!EC_POINT_add(group, T, T, generator, ctx))
            goto err;
    }

    pre_comp->group = group;
    pre_comp->w = w;
    pre_comp->precomp = preComputedTable;
    pre_comp->precomp_storage = precomp_storage;
    precomp_storage = NULL;
    SETPRECOMP(group, nistz256, pre_comp);
    pre_comp = NULL;
    ret = 1;

 err:
    if (ctx != NULL)
        BN_CTX_end(ctx);
    BN_CTX_free(new_ctx);

    EC_nistz256_pre_comp_free(pre_comp);
    OPENSSL_free(precomp_storage);
    EC_POINT_free(P);
    EC_POINT_free(T);
    return ret;
}

/*
 * Note that by default ECP_NISTZ256_AVX2 is undefined. While it's great
 * code processing 4 points in parallel, corresponding serial operation
 * is several times slower, because it uses 29x29=58-bit multiplication
 * as opposite to 64x64=128-bit in integer-only scalar case. As result
 * it doesn't provide *significant* performance improvement. Note that
 * just defining ECP_NISTZ256_AVX2 is not sufficient to make it work,
 * you'd need to compile even asm/ecp_nistz256-avx.pl module.
 */
#if defined(ECP_NISTZ256_AVX2)
# if !(defined(__x86_64) || defined(__x86_64__) || \
       defined(_M_AMD64) || defined(_M_X64)) || \
     !(defined(__GNUC__) || defined(_MSC_VER)) /* this is for ALIGN32 */
#  undef ECP_NISTZ256_AVX2
# else
/* Constant time access, loading four values, from four consecutive tables */
void ecp_nistz256_avx2_multi_gather_w7(void *result, const void *in,
                                       int index0, int index1, int index2,
                                       int index3);
void ecp_nistz256_avx2_transpose_convert(void *RESULTx4, const void *in);
void ecp_nistz256_avx2_convert_transpose_back(void *result, const void *Ax4);
void ecp_nistz256_avx2_point_add_affine_x4(void *RESULTx4, const void *Ax4,
                                           const void *Bx4);
void ecp_nistz256_avx2_point_add_affines_x4(void *RESULTx4, const void *Ax4,
                                            const void *Bx4);
void ecp_nistz256_avx2_to_mont(void *RESULTx4, const void *Ax4);
void ecp_nistz256_avx2_from_mont(void *RESULTx4, const void *Ax4);
void ecp_nistz256_avx2_set1(void *RESULTx4);
int ecp_nistz_avx2_eligible(void);

static void booth_recode_w7(unsigned char *sign,
                            unsigned char *digit, unsigned char in)
{
    unsigned char s, d;

    s = ~((in >> 7) - 1);
    d = (1 << 8) - in - 1;
    d = (d & s) | (in & ~s);
    d = (d >> 1) + (d & 1);

    *sign = s & 1;
    *digit = d;
}

/*
 * ecp_nistz256_avx2_mul_g performs multiplication by G, using only the
 * precomputed table. It does 4 affine point additions in parallel,
 * significantly speeding up point multiplication for a fixed value.
 */
static void ecp_nistz256_avx2_mul_g(P256_POINT *r,
                                    unsigned char p_str[33],
                                    const P256_POINT_AFFINE(*preComputedTable)[64])
{
    const unsigned int window_size = 7;
    const unsigned int mask = (1 << (window_size + 1)) - 1;
    unsigned int wvalue;
    /* Using 4 windows at a time */
    unsigned char sign0, digit0;
    unsigned char sign1, digit1;
    unsigned char sign2, digit2;
    unsigned char sign3, digit3;
    unsigned int idx = 0;
    BN_ULONG tmp[P256_LIMBS];
    int i;

    ALIGN32 BN_ULONG aX4[4 * 9 * 3] = { 0 };
    ALIGN32 BN_ULONG bX4[4 * 9 * 2] = { 0 };
    ALIGN32 P256_POINT_AFFINE point_arr[4];
    ALIGN32 P256_POINT res_point_arr[4];

    /* Initial four windows */
    wvalue = *((u16 *) & p_str[0]);
    wvalue = (wvalue << 1) & mask;
    idx += window_size;
    booth_recode_w7(&sign0, &digit0, wvalue);
    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
    idx += window_size;
    booth_recode_w7(&sign1, &digit1, wvalue);
    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
    idx += window_size;
    booth_recode_w7(&sign2, &digit2, wvalue);
    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
    idx += window_size;
    booth_recode_w7(&sign3, &digit3, wvalue);

    ecp_nistz256_avx2_multi_gather_w7(point_arr, preComputedTable[0],
                                      digit0, digit1, digit2, digit3);

    ecp_nistz256_neg(tmp, point_arr[0].Y);
    copy_conditional(point_arr[0].Y, tmp, sign0);
    ecp_nistz256_neg(tmp, point_arr[1].Y);
    copy_conditional(point_arr[1].Y, tmp, sign1);
    ecp_nistz256_neg(tmp, point_arr[2].Y);
    copy_conditional(point_arr[2].Y, tmp, sign2);
    ecp_nistz256_neg(tmp, point_arr[3].Y);
    copy_conditional(point_arr[3].Y, tmp, sign3);

    ecp_nistz256_avx2_transpose_convert(aX4, point_arr);
    ecp_nistz256_avx2_to_mont(aX4, aX4);
    ecp_nistz256_avx2_to_mont(&aX4[4 * 9], &aX4[4 * 9]);
    ecp_nistz256_avx2_set1(&aX4[4 * 9 * 2]);

    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
    idx += window_size;
    booth_recode_w7(&sign0, &digit0, wvalue);
    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
    idx += window_size;
    booth_recode_w7(&sign1, &digit1, wvalue);
    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
    idx += window_size;
    booth_recode_w7(&sign2, &digit2, wvalue);
    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
    idx += window_size;
    booth_recode_w7(&sign3, &digit3, wvalue);

    ecp_nistz256_avx2_multi_gather_w7(point_arr, preComputedTable[4 * 1],
                                      digit0, digit1, digit2, digit3);

    ecp_nistz256_neg(tmp, point_arr[0].Y);
    copy_conditional(point_arr[0].Y, tmp, sign0);
    ecp_nistz256_neg(tmp, point_arr[1].Y);
    copy_conditional(point_arr[1].Y, tmp, sign1);
    ecp_nistz256_neg(tmp, point_arr[2].Y);
    copy_conditional(point_arr[2].Y, tmp, sign2);
    ecp_nistz256_neg(tmp, point_arr[3].Y);
    copy_conditional(point_arr[3].Y, tmp, sign3);

    ecp_nistz256_avx2_transpose_convert(bX4, point_arr);
    ecp_nistz256_avx2_to_mont(bX4, bX4);
    ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]);
    /* Optimized when both inputs are affine */
    ecp_nistz256_avx2_point_add_affines_x4(aX4, aX4, bX4);

    for (i = 2; i < 9; i++) {
        wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
        wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
        idx += window_size;
        booth_recode_w7(&sign0, &digit0, wvalue);
        wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
        wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
        idx += window_size;
        booth_recode_w7(&sign1, &digit1, wvalue);
        wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
        wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
        idx += window_size;
        booth_recode_w7(&sign2, &digit2, wvalue);
        wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
        wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
        idx += window_size;
        booth_recode_w7(&sign3, &digit3, wvalue);

        ecp_nistz256_avx2_multi_gather_w7(point_arr,
                                          preComputedTable[4 * i],
                                          digit0, digit1, digit2, digit3);

        ecp_nistz256_neg(tmp, point_arr[0].Y);
        copy_conditional(point_arr[0].Y, tmp, sign0);
        ecp_nistz256_neg(tmp, point_arr[1].Y);
        copy_conditional(point_arr[1].Y, tmp, sign1);
        ecp_nistz256_neg(tmp, point_arr[2].Y);
        copy_conditional(point_arr[2].Y, tmp, sign2);
        ecp_nistz256_neg(tmp, point_arr[3].Y);
        copy_conditional(point_arr[3].Y, tmp, sign3);

        ecp_nistz256_avx2_transpose_convert(bX4, point_arr);
        ecp_nistz256_avx2_to_mont(bX4, bX4);
        ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]);

        ecp_nistz256_avx2_point_add_affine_x4(aX4, aX4, bX4);
    }

    ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 0], &aX4[4 * 9 * 0]);
    ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 1], &aX4[4 * 9 * 1]);
    ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 2], &aX4[4 * 9 * 2]);

    ecp_nistz256_avx2_convert_transpose_back(res_point_arr, aX4);
    /* Last window is performed serially */
    wvalue = *((u16 *) & p_str[(idx - 1) / 8]);
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
    booth_recode_w7(&sign0, &digit0, wvalue);
    ecp_nistz256_gather_w7((P256_POINT_AFFINE *)r,
                           preComputedTable[36], digit0);
    ecp_nistz256_neg(tmp, r->Y);
    copy_conditional(r->Y, tmp, sign0);
    memcpy(r->Z, ONE, sizeof(ONE));
    /* Sum the four windows */
    ecp_nistz256_point_add(r, r, &res_point_arr[0]);
    ecp_nistz256_point_add(r, r, &res_point_arr[1]);
    ecp_nistz256_point_add(r, r, &res_point_arr[2]);
    ecp_nistz256_point_add(r, r, &res_point_arr[3]);
}
# endif
#endif

__owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group,
                                               const P256_POINT_AFFINE *in,
                                               BN_CTX *ctx)
{
    int ret = 0;

    if ((ret = bn_set_words(out->X, in->X, P256_LIMBS))
        && (ret = bn_set_words(out->Y, in->Y, P256_LIMBS))
        && (ret = bn_set_words(out->Z, ONE, P256_LIMBS)))
        out->Z_is_one = 1;

    return ret;
}

/* r = scalar*G + sum(scalars[i]*points[i]) */
__owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
                                          EC_POINT *r,
                                          const BIGNUM *scalar,
                                          size_t num,
                                          const EC_POINT *points[],
                                          const BIGNUM *scalars[], BN_CTX *ctx)
{
    int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
    unsigned char p_str[33] = { 0 };
    const PRECOMP256_ROW *preComputedTable = NULL;
    const NISTZ256_PRE_COMP *pre_comp = NULL;
    const EC_POINT *generator = NULL;
    const BIGNUM **new_scalars = NULL;
    const EC_POINT **new_points = NULL;
    unsigned int idx = 0;
    const unsigned int window_size = 7;
    const unsigned int mask = (1 << (window_size + 1)) - 1;
    unsigned int wvalue;
    ALIGN32 union {
        P256_POINT p;
        P256_POINT_AFFINE a;
    } t, p;
    BIGNUM *tmp_scalar;

    if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) {
        ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
        return 0;
    }

    BN_CTX_start(ctx);

    if (scalar) {
        generator = EC_GROUP_get0_generator(group);
        if (generator == NULL) {
            ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_UNDEFINED_GENERATOR);
            goto err;
        }

        /* look if we can use precomputed multiples of generator */
        pre_comp = group->pre_comp.nistz256;

        if (pre_comp) {
            /*
             * If there is a precomputed table for the generator, check that
             * it was generated with the same generator.
             */
            EC_POINT *pre_comp_generator = EC_POINT_new(group);
            if (pre_comp_generator == NULL)
                goto err;

            ecp_nistz256_gather_w7(&p.a, pre_comp->precomp[0], 1);
            if (!ecp_nistz256_set_from_affine(pre_comp_generator,
                                              group, &p.a, ctx)) {
                EC_POINT_free(pre_comp_generator);
                goto err;
            }

            if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx))
                preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp;

            EC_POINT_free(pre_comp_generator);
        }

        if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) {
            /*
             * If there is no precomputed data, but the generator is the
             * default, a hardcoded table of precomputed data is used. This
             * is because applications, such as Apache, do not use
             * EC_KEY_precompute_mult.
             */
            preComputedTable = ecp_nistz256_precomputed;
        }

        if (preComputedTable) {
            if ((BN_num_bits(scalar) > 256)
                || BN_is_negative(scalar)) {
                if ((tmp_scalar = BN_CTX_get(ctx)) == NULL)
                    goto err;

                if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
                    ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_BN_LIB);
                    goto err;
                }
                scalar = tmp_scalar;
            }

            for (i = 0; i < bn_get_top(scalar) * BN_BYTES; i += BN_BYTES) {
                BN_ULONG d = bn_get_words(scalar)[i / BN_BYTES];

                p_str[i + 0] = (unsigned char)d;
                p_str[i + 1] = (unsigned char)(d >> 8);
                p_str[i + 2] = (unsigned char)(d >> 16);
                p_str[i + 3] = (unsigned char)(d >>= 24);
                if (BN_BYTES == 8) {
                    d >>= 8;
                    p_str[i + 4] = (unsigned char)d;
                    p_str[i + 5] = (unsigned char)(d >> 8);
                    p_str[i + 6] = (unsigned char)(d >> 16);
                    p_str[i + 7] = (unsigned char)(d >> 24);
                }
            }

            for (; i < 33; i++)
                p_str[i] = 0;

#if defined(ECP_NISTZ256_AVX2)
            if (ecp_nistz_avx2_eligible()) {
                ecp_nistz256_avx2_mul_g(&p.p, p_str, preComputedTable);
            } else
#endif
            {
                BN_ULONG infty;

                /* First window */
                wvalue = (p_str[0] << 1) & mask;
                idx += window_size;

                wvalue = _booth_recode_w7(wvalue);

                ecp_nistz256_gather_w7(&p.a, preComputedTable[0],
                                       wvalue >> 1);

                ecp_nistz256_neg(p.p.Z, p.p.Y);
                copy_conditional(p.p.Y, p.p.Z, wvalue & 1);

                /*
                 * Since affine infinity is encoded as (0,0) and
                 * Jacobian ias (,,0), we need to harmonize them
                 * by assigning "one" or zero to Z.
                 */
                infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] |
                         p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]);
                if (P256_LIMBS == 8)
                    infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] |
                              p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]);

                infty = 0 - is_zero(infty);
                infty = ~infty;

                p.p.Z[0] = ONE[0] & infty;
                p.p.Z[1] = ONE[1] & infty;
                p.p.Z[2] = ONE[2] & infty;
                p.p.Z[3] = ONE[3] & infty;
                if (P256_LIMBS == 8) {
                    p.p.Z[4] = ONE[4] & infty;
                    p.p.Z[5] = ONE[5] & infty;
                    p.p.Z[6] = ONE[6] & infty;
                    p.p.Z[7] = ONE[7] & infty;
                }

                for (i = 1; i < 37; i++) {
                    unsigned int off = (idx - 1) / 8;
                    wvalue = p_str[off] | p_str[off + 1] << 8;
                    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
                    idx += window_size;

                    wvalue = _booth_recode_w7(wvalue);

                    ecp_nistz256_gather_w7(&t.a,
                                           preComputedTable[i], wvalue >> 1);

                    ecp_nistz256_neg(t.p.Z, t.a.Y);
                    copy_conditional(t.a.Y, t.p.Z, wvalue & 1);

                    ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
                }
            }
        } else {
            p_is_infinity = 1;
            no_precomp_for_generator = 1;
        }
    } else
        p_is_infinity = 1;

    if (no_precomp_for_generator) {
        /*
         * Without a precomputed table for the generator, it has to be
         * handled like a normal point.
         */
        new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *));
        if (new_scalars == NULL) {
            ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
            goto err;
        }

        new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *));
        if (new_points == NULL) {
            ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
            goto err;
        }

        memcpy(new_scalars, scalars, num * sizeof(BIGNUM *));
        new_scalars[num] = scalar;
        memcpy(new_points, points, num * sizeof(EC_POINT *));
        new_points[num] = generator;

        scalars = new_scalars;
        points = new_points;
        num++;
    }

    if (num) {
        P256_POINT *out = &t.p;
        if (p_is_infinity)
            out = &p.p;

        if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx))
            goto err;

        if (!p_is_infinity)
            ecp_nistz256_point_add(&p.p, &p.p, out);
    }

    /* Not constant-time, but we're only operating on the public output. */
    if (!bn_set_words(r->X, p.p.X, P256_LIMBS) ||
        !bn_set_words(r->Y, p.p.Y, P256_LIMBS) ||
        !bn_set_words(r->Z, p.p.Z, P256_LIMBS)) {
        goto err;
    }
    r->Z_is_one = is_one(r->Z) & 1;

    ret = 1;

err:
    BN_CTX_end(ctx);
    OPENSSL_free(new_points);
    OPENSSL_free(new_scalars);
    return ret;
}

__owur static int ecp_nistz256_get_affine(const EC_GROUP *group,
                                          const EC_POINT *point,
                                          BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
{
    BN_ULONG z_inv2[P256_LIMBS];
    BN_ULONG z_inv3[P256_LIMBS];
    BN_ULONG x_aff[P256_LIMBS];
    BN_ULONG y_aff[P256_LIMBS];
    BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
    BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS];

    if (EC_POINT_is_at_infinity(group, point)) {
        ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_POINT_AT_INFINITY);
        return 0;
    }

    if (!ecp_nistz256_bignum_to_field_elem(point_x, point->X) ||
        !ecp_nistz256_bignum_to_field_elem(point_y, point->Y) ||
        !ecp_nistz256_bignum_to_field_elem(point_z, point->Z)) {
        ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_COORDINATES_OUT_OF_RANGE);
        return 0;
    }

    ecp_nistz256_mod_inverse(z_inv3, point_z);
    ecp_nistz256_sqr_mont(z_inv2, z_inv3);
    ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);

    if (x != NULL) {
        ecp_nistz256_from_mont(x_ret, x_aff);
        if (!bn_set_words(x, x_ret, P256_LIMBS))
            return 0;
    }

    if (y != NULL) {
        ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
        ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
        ecp_nistz256_from_mont(y_ret, y_aff);
        if (!bn_set_words(y, y_ret, P256_LIMBS))
            return 0;
    }

    return 1;
}

static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group)
{
    NISTZ256_PRE_COMP *ret = NULL;

    if (!group)
        return NULL;

    ret = OPENSSL_zalloc(sizeof(*ret));

    if (ret == NULL) {
        ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
        return ret;
    }

    ret->group = group;
    ret->w = 6;                 /* default */
    ret->references = 1;

    ret->lock = CRYPTO_THREAD_lock_new();
    if (ret->lock == NULL) {
        ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
        OPENSSL_free(ret);
        return NULL;
    }
    return ret;
}

NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *p)
{
    int i;
    if (p != NULL)
        CRYPTO_UP_REF(&p->references, &i, p->lock);
    return p;
}

void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre)
{
    int i;

    if (pre == NULL)
        return;

    CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
    REF_PRINT_COUNT("EC_nistz256", x);
    if (i > 0)
        return;
    REF_ASSERT_ISNT(i < 0);

    OPENSSL_free(pre->precomp_storage);
    CRYPTO_THREAD_lock_free(pre->lock);
    OPENSSL_free(pre);
}


static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group)
{
    /* There is a hard-coded table for the default generator. */
    const EC_POINT *generator = EC_GROUP_get0_generator(group);

    if (generator != NULL && ecp_nistz256_is_affine_G(generator)) {
        /* There is a hard-coded table for the default generator. */
        return 1;
    }

    return HAVEPRECOMP(group, nistz256);
}

#if defined(__x86_64) || defined(__x86_64__) || \
    defined(_M_AMD64) || defined(_M_X64) || \
    defined(__powerpc64__) || defined(_ARCH_PP64) || \
    defined(__aarch64__)
/*
 * Montgomery mul modulo Order(P): res = a*b*2^-256 mod Order(P)
 */
void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS],
                               const BN_ULONG a[P256_LIMBS],
                               const BN_ULONG b[P256_LIMBS]);
void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS],
                               const BN_ULONG a[P256_LIMBS],
                               int rep);

static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
                                    const BIGNUM *x, BN_CTX *ctx)
{
    /* RR = 2^512 mod ord(p256) */
    static const BN_ULONG RR[P256_LIMBS]  = {
        TOBN(0x83244c95,0xbe79eea2), TOBN(0x4699799c,0x49bd6fa6),
        TOBN(0x2845b239,0x2b6bec59), TOBN(0x66e12d94,0xf3d95620)
    };
    /* The constant 1 (unlike ONE that is one in Montgomery representation) */
    static const BN_ULONG one[P256_LIMBS] = {
        TOBN(0,1), TOBN(0,0), TOBN(0,0), TOBN(0,0)
    };
    /*
     * We don't use entry 0 in the table, so we omit it and address
     * with -1 offset.
     */
    BN_ULONG table[15][P256_LIMBS];
    BN_ULONG out[P256_LIMBS], t[P256_LIMBS];
    int i, ret = 0;
    enum {
        i_1 = 0, i_10,     i_11,     i_101, i_111, i_1010, i_1111,
        i_10101, i_101010, i_101111, i_x6,  i_x8,  i_x16,  i_x32
    };

    /*
     * Catch allocation failure early.
     */
    if (bn_wexpand(r, P256_LIMBS) == NULL) {
        ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB);
        goto err;
    }

    if ((BN_num_bits(x) > 256) || BN_is_negative(x)) {
        BIGNUM *tmp;

        if ((tmp = BN_CTX_get(ctx)) == NULL
            || !BN_nnmod(tmp, x, group->order, ctx)) {
            ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB);
            goto err;
        }
        x = tmp;
    }

    if (!ecp_nistz256_bignum_to_field_elem(t, x)) {
        ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, EC_R_COORDINATES_OUT_OF_RANGE);
        goto err;
    }

    ecp_nistz256_ord_mul_mont(table[0], t, RR);
#if 0
    /*
     * Original sparse-then-fixed-window algorithm, retained for reference.
     */
    for (i = 2; i < 16; i += 2) {
        ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1);
        ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]);
    }

    /*
     * The top 128bit of the exponent are highly redudndant, so we
     * perform an optimized flow
     */
    ecp_nistz256_ord_sqr_mont(t, table[15-1], 4);   /* f0 */
    ecp_nistz256_ord_mul_mont(t, t, table[15-1]);   /* ff */

    ecp_nistz256_ord_sqr_mont(out, t, 8);           /* ff00 */
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffff */

    ecp_nistz256_ord_sqr_mont(t, out, 16);          /* ffff0000 */
    ecp_nistz256_ord_mul_mont(t, t, out);           /* ffffffff */

    ecp_nistz256_ord_sqr_mont(out, t, 64);          /* ffffffff0000000000000000 */
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffff */

    ecp_nistz256_ord_sqr_mont(out, out, 32);        /* ffffffff00000000ffffffff00000000 */
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffffffffffff */

    /*
     * The bottom 128 bit of the exponent are processed with fixed 4-bit window
     */
    for(i = 0; i < 32; i++) {
        /* expLo - the low 128 bits of the exponent we use (ord(p256) - 2),
         * split into nibbles */
        static const unsigned char expLo[32]  = {
            0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4,
            0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf
        };

        ecp_nistz256_ord_sqr_mont(out, out, 4);
        /* The exponent is public, no need in constant-time access */
        ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]);
    }
#else
    /*
     * https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
     *
     * Even though this code path spares 12 squarings, 4.5%, and 13
     * multiplications, 25%, on grand scale sign operation is not that
     * much faster, not more that 2%...
     */

    /* pre-calculate powers */
    ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);

    ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);

    ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);

    ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);

    ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);

    ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);

    ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
    ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);

    ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);

    ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);

    ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);

    ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
    ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);

    ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
    ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);

    ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
    ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);

    /* calculations */
    ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64);
    ecp_nistz256_ord_mul_mont(out, out, table[i_x32]);

    for (i = 0; i < 27; i++) {
        static const struct { unsigned char p, i; } chain[27] = {
            { 32, i_x32 }, { 6,  i_101111 }, { 5,  i_111    },
            { 4,  i_11  }, { 5,  i_1111   }, { 5,  i_10101  },
            { 4,  i_101 }, { 3,  i_101    }, { 3,  i_101    },
            { 5,  i_111 }, { 9,  i_101111 }, { 6,  i_1111   },
            { 2,  i_1   }, { 5,  i_1      }, { 6,  i_1111   },
            { 5,  i_111 }, { 4,  i_111    }, { 5,  i_111    },
            { 5,  i_101 }, { 3,  i_11     }, { 10, i_101111 },
            { 2,  i_11  }, { 5,  i_11     }, { 5,  i_11     },
            { 3,  i_1   }, { 7,  i_10101  }, { 6,  i_1111   }
        };

        ecp_nistz256_ord_sqr_mont(out, out, chain[i].p);
        ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]);
    }
#endif
    ecp_nistz256_ord_mul_mont(out, out, one);

    /*
     * Can't fail, but check return code to be consistent anyway.
     */
    if (!bn_set_words(r, out, P256_LIMBS))
        goto err;

    ret = 1;
err:
    return ret;
}
#else
# define ecp_nistz256_inv_mod_ord NULL
#endif

const EC_METHOD *EC_GFp_nistz256_method(void)
{
    static const EC_METHOD ret = {
        EC_FLAGS_DEFAULT_OCT,
        NID_X9_62_prime_field,
        ec_GFp_mont_group_init,
        ec_GFp_mont_group_finish,
        ec_GFp_mont_group_clear_finish,
        ec_GFp_mont_group_copy,
        ec_GFp_mont_group_set_curve,
        ec_GFp_simple_group_get_curve,
        ec_GFp_simple_group_get_degree,
        ec_group_simple_order_bits,
        ec_GFp_simple_group_check_discriminant,
        ec_GFp_simple_point_init,
        ec_GFp_simple_point_finish,
        ec_GFp_simple_point_clear_finish,
        ec_GFp_simple_point_copy,
        ec_GFp_simple_point_set_to_infinity,
        ec_GFp_simple_set_Jprojective_coordinates_GFp,
        ec_GFp_simple_get_Jprojective_coordinates_GFp,
        ec_GFp_simple_point_set_affine_coordinates,
        ecp_nistz256_get_affine,
        0, 0, 0,
        ec_GFp_simple_add,
        ec_GFp_simple_dbl,
        ec_GFp_simple_invert,
        ec_GFp_simple_is_at_infinity,
        ec_GFp_simple_is_on_curve,
        ec_GFp_simple_cmp,
        ec_GFp_simple_make_affine,
        ec_GFp_simple_points_make_affine,
        ecp_nistz256_points_mul,                    /* mul */
        ecp_nistz256_mult_precompute,               /* precompute_mult */
        ecp_nistz256_window_have_precompute_mult,   /* have_precompute_mult */
        ec_GFp_mont_field_mul,
        ec_GFp_mont_field_sqr,
        0,                                          /* field_div */
        ec_GFp_mont_field_encode,
        ec_GFp_mont_field_decode,
        ec_GFp_mont_field_set_to_one,
        ec_key_simple_priv2oct,
        ec_key_simple_oct2priv,
        0, /* set private */
        ec_key_simple_generate_key,
        ec_key_simple_check_key,
        ec_key_simple_generate_public_key,
        0, /* keycopy */
        0, /* keyfinish */
        ecdh_simple_compute_key,
        ecp_nistz256_inv_mod_ord,                   /* can be #define-d NULL */
        0,                                          /* blind_coordinates */
        0,                                          /* ladder_pre */
        0,                                          /* ladder_step */
        0                                           /* ladder_post */
    };

    return &ret;
}