s3_cbc.c 17.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
/*
 * Copyright 2012-2016 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include "internal/constant_time_locl.h"
#include "ssl_locl.h"
#include "internal/cryptlib.h"

#include <openssl/md5.h>
#include <openssl/sha.h>

/*
 * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
 * length field. (SHA-384/512 have 128-bit length.)
 */
#define MAX_HASH_BIT_COUNT_BYTES 16

/*
 * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
 * Currently SHA-384/512 has a 128-byte block size and that's the largest
 * supported by TLS.)
 */
#define MAX_HASH_BLOCK_SIZE 128

/*
 * u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
 * little-endian order. The value of p is advanced by four.
 */
#define u32toLE(n, p) \
        (*((p)++)=(unsigned char)(n), \
         *((p)++)=(unsigned char)(n>>8), \
         *((p)++)=(unsigned char)(n>>16), \
         *((p)++)=(unsigned char)(n>>24))

/*
 * These functions serialize the state of a hash and thus perform the
 * standard "final" operation without adding the padding and length that such
 * a function typically does.
 */
static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
{
    MD5_CTX *md5 = ctx;
    u32toLE(md5->A, md_out);
    u32toLE(md5->B, md_out);
    u32toLE(md5->C, md_out);
    u32toLE(md5->D, md_out);
}

static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
{
    SHA_CTX *sha1 = ctx;
    l2n(sha1->h0, md_out);
    l2n(sha1->h1, md_out);
    l2n(sha1->h2, md_out);
    l2n(sha1->h3, md_out);
    l2n(sha1->h4, md_out);
}

static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
{
    SHA256_CTX *sha256 = ctx;
    unsigned i;

    for (i = 0; i < 8; i++) {
        l2n(sha256->h[i], md_out);
    }
}

static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
{
    SHA512_CTX *sha512 = ctx;
    unsigned i;

    for (i = 0; i < 8; i++) {
        l2n8(sha512->h[i], md_out);
    }
}

#undef  LARGEST_DIGEST_CTX
#define LARGEST_DIGEST_CTX SHA512_CTX

/*
 * ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
 * which ssl3_cbc_digest_record supports.
 */
char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
{
    switch (EVP_MD_CTX_type(ctx)) {
    case NID_md5:
    case NID_sha1:
    case NID_sha224:
    case NID_sha256:
    case NID_sha384:
    case NID_sha512:
        return 1;
    default:
        return 0;
    }
}

/*-
 * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
 * record.
 *
 *   ctx: the EVP_MD_CTX from which we take the hash function.
 *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
 *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
 *   md_out_size: if non-NULL, the number of output bytes is written here.
 *   header: the 13-byte, TLS record header.
 *   data: the record data itself, less any preceding explicit IV.
 *   data_plus_mac_size: the secret, reported length of the data and MAC
 *     once the padding has been removed.
 *   data_plus_mac_plus_padding_size: the public length of the whole
 *     record, including padding.
 *   is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
 *
 * On entry: by virtue of having been through one of the remove_padding
 * functions, above, we know that data_plus_mac_size is large enough to contain
 * a padding byte and MAC. (If the padding was invalid, it might contain the
 * padding too. )
 * Returns 1 on success or 0 on error
 */
int ssl3_cbc_digest_record(const EVP_MD_CTX *ctx,
                           unsigned char *md_out,
                           size_t *md_out_size,
                           const unsigned char header[13],
                           const unsigned char *data,
                           size_t data_plus_mac_size,
                           size_t data_plus_mac_plus_padding_size,
                           const unsigned char *mac_secret,
                           size_t mac_secret_length, char is_sslv3)
{
    union {
        double align;
        unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
    } md_state;
    void (*md_final_raw) (void *ctx, unsigned char *md_out);
    void (*md_transform) (void *ctx, const unsigned char *block);
    size_t md_size, md_block_size = 64;
    size_t sslv3_pad_length = 40, header_length, variance_blocks,
        len, max_mac_bytes, num_blocks,
        num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
    size_t bits;          /* at most 18 bits */
    unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
    /* hmac_pad is the masked HMAC key. */
    unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
    unsigned char first_block[MAX_HASH_BLOCK_SIZE];
    unsigned char mac_out[EVP_MAX_MD_SIZE];
    size_t i, j;
    unsigned md_out_size_u;
    EVP_MD_CTX *md_ctx = NULL;
    /*
     * mdLengthSize is the number of bytes in the length field that
     * terminates * the hash.
     */
    size_t md_length_size = 8;
    char length_is_big_endian = 1;
    int ret;

    /*
     * This is a, hopefully redundant, check that allows us to forget about
     * many possible overflows later in this function.
     */
    if (!ossl_assert(data_plus_mac_plus_padding_size < 1024 * 1024))
        return 0;

    switch (EVP_MD_CTX_type(ctx)) {
    case NID_md5:
        if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
            return 0;
        md_final_raw = tls1_md5_final_raw;
        md_transform =
            (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
        md_size = 16;
        sslv3_pad_length = 48;
        length_is_big_endian = 0;
        break;
    case NID_sha1:
        if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
            return 0;
        md_final_raw = tls1_sha1_final_raw;
        md_transform =
            (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
        md_size = 20;
        break;
    case NID_sha224:
        if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
            return 0;
        md_final_raw = tls1_sha256_final_raw;
        md_transform =
            (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
        md_size = 224 / 8;
        break;
    case NID_sha256:
        if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
            return 0;
        md_final_raw = tls1_sha256_final_raw;
        md_transform =
            (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
        md_size = 32;
        break;
    case NID_sha384:
        if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
            return 0;
        md_final_raw = tls1_sha512_final_raw;
        md_transform =
            (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
        md_size = 384 / 8;
        md_block_size = 128;
        md_length_size = 16;
        break;
    case NID_sha512:
        if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
            return 0;
        md_final_raw = tls1_sha512_final_raw;
        md_transform =
            (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
        md_size = 64;
        md_block_size = 128;
        md_length_size = 16;
        break;
    default:
        /*
         * ssl3_cbc_record_digest_supported should have been called first to
         * check that the hash function is supported.
         */
        if (md_out_size != NULL)
            *md_out_size = 0;
        return ossl_assert(0);
    }

    if (!ossl_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES)
            || !ossl_assert(md_block_size <= MAX_HASH_BLOCK_SIZE)
            || !ossl_assert(md_size <= EVP_MAX_MD_SIZE))
        return 0;

    header_length = 13;
    if (is_sslv3) {
        header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence
                                                                  * number */  +
            1 /* record type */  +
            2 /* record length */ ;
    }

    /*
     * variance_blocks is the number of blocks of the hash that we have to
     * calculate in constant time because they could be altered by the
     * padding value. In SSLv3, the padding must be minimal so the end of
     * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
     * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
     * of hash termination (0x80 + 64-bit length) don't fit in the final
     * block, we say that the final two blocks can vary based on the padding.
     * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
     * required to be minimal. Therefore we say that the final six blocks can
     * vary based on the padding. Later in the function, if the message is
     * short and there obviously cannot be this many blocks then
     * variance_blocks can be reduced.
     */
    variance_blocks = is_sslv3 ? 2 : 6;
    /*
     * From now on we're dealing with the MAC, which conceptually has 13
     * bytes of `header' before the start of the data (TLS) or 71/75 bytes
     * (SSLv3)
     */
    len = data_plus_mac_plus_padding_size + header_length;
    /*
     * max_mac_bytes contains the maximum bytes of bytes in the MAC,
     * including * |header|, assuming that there's no padding.
     */
    max_mac_bytes = len - md_size - 1;
    /* num_blocks is the maximum number of hash blocks. */
    num_blocks =
        (max_mac_bytes + 1 + md_length_size + md_block_size -
         1) / md_block_size;
    /*
     * In order to calculate the MAC in constant time we have to handle the
     * final blocks specially because the padding value could cause the end
     * to appear somewhere in the final |variance_blocks| blocks and we can't
     * leak where. However, |num_starting_blocks| worth of data can be hashed
     * right away because no padding value can affect whether they are
     * plaintext.
     */
    num_starting_blocks = 0;
    /*
     * k is the starting byte offset into the conceptual header||data where
     * we start processing.
     */
    k = 0;
    /*
     * mac_end_offset is the index just past the end of the data to be MACed.
     */
    mac_end_offset = data_plus_mac_size + header_length - md_size;
    /*
     * c is the index of the 0x80 byte in the final hash block that contains
     * application data.
     */
    c = mac_end_offset % md_block_size;
    /*
     * index_a is the hash block number that contains the 0x80 terminating
     * value.
     */
    index_a = mac_end_offset / md_block_size;
    /*
     * index_b is the hash block number that contains the 64-bit hash length,
     * in bits.
     */
    index_b = (mac_end_offset + md_length_size) / md_block_size;
    /*
     * bits is the hash-length in bits. It includes the additional hash block
     * for the masked HMAC key, or whole of |header| in the case of SSLv3.
     */

    /*
     * For SSLv3, if we're going to have any starting blocks then we need at
     * least two because the header is larger than a single block.
     */
    if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
        num_starting_blocks = num_blocks - variance_blocks;
        k = md_block_size * num_starting_blocks;
    }

    bits = 8 * mac_end_offset;
    if (!is_sslv3) {
        /*
         * Compute the initial HMAC block. For SSLv3, the padding and secret
         * bytes are included in |header| because they take more than a
         * single block.
         */
        bits += 8 * md_block_size;
        memset(hmac_pad, 0, md_block_size);
        if (!ossl_assert(mac_secret_length <= sizeof(hmac_pad)))
            return 0;
        memcpy(hmac_pad, mac_secret, mac_secret_length);
        for (i = 0; i < md_block_size; i++)
            hmac_pad[i] ^= 0x36;

        md_transform(md_state.c, hmac_pad);
    }

    if (length_is_big_endian) {
        memset(length_bytes, 0, md_length_size - 4);
        length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
        length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
        length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
        length_bytes[md_length_size - 1] = (unsigned char)bits;
    } else {
        memset(length_bytes, 0, md_length_size);
        length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
        length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
        length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
        length_bytes[md_length_size - 8] = (unsigned char)bits;
    }

    if (k > 0) {
        if (is_sslv3) {
            size_t overhang;

            /*
             * The SSLv3 header is larger than a single block. overhang is
             * the number of bytes beyond a single block that the header
             * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
             * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
             * therefore we can be confident that the header_length will be
             * greater than |md_block_size|. However we add a sanity check just
             * in case
             */
            if (header_length <= md_block_size) {
                /* Should never happen */
                return 0;
            }
            overhang = header_length - md_block_size;
            md_transform(md_state.c, header);
            memcpy(first_block, header + md_block_size, overhang);
            memcpy(first_block + overhang, data, md_block_size - overhang);
            md_transform(md_state.c, first_block);
            for (i = 1; i < k / md_block_size - 1; i++)
                md_transform(md_state.c, data + md_block_size * i - overhang);
        } else {
            /* k is a multiple of md_block_size. */
            memcpy(first_block, header, 13);
            memcpy(first_block + 13, data, md_block_size - 13);
            md_transform(md_state.c, first_block);
            for (i = 1; i < k / md_block_size; i++)
                md_transform(md_state.c, data + md_block_size * i - 13);
        }
    }

    memset(mac_out, 0, sizeof(mac_out));

    /*
     * We now process the final hash blocks. For each block, we construct it
     * in constant time. If the |i==index_a| then we'll include the 0x80
     * bytes and zero pad etc. For each block we selectively copy it, in
     * constant time, to |mac_out|.
     */
    for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
         i++) {
        unsigned char block[MAX_HASH_BLOCK_SIZE];
        unsigned char is_block_a = constant_time_eq_8_s(i, index_a);
        unsigned char is_block_b = constant_time_eq_8_s(i, index_b);
        for (j = 0; j < md_block_size; j++) {
            unsigned char b = 0, is_past_c, is_past_cp1;
            if (k < header_length)
                b = header[k];
            else if (k < data_plus_mac_plus_padding_size + header_length)
                b = data[k - header_length];
            k++;

            is_past_c = is_block_a & constant_time_ge_8_s(j, c);
            is_past_cp1 = is_block_a & constant_time_ge_8_s(j, c + 1);
            /*
             * If this is the block containing the end of the application
             * data, and we are at the offset for the 0x80 value, then
             * overwrite b with 0x80.
             */
            b = constant_time_select_8(is_past_c, 0x80, b);
            /*
             * If this block contains the end of the application data
             * and we're past the 0x80 value then just write zero.
             */
            b = b & ~is_past_cp1;
            /*
             * If this is index_b (the final block), but not index_a (the end
             * of the data), then the 64-bit length didn't fit into index_a
             * and we're having to add an extra block of zeros.
             */
            b &= ~is_block_b | is_block_a;

            /*
             * The final bytes of one of the blocks contains the length.
             */
            if (j >= md_block_size - md_length_size) {
                /* If this is index_b, write a length byte. */
                b = constant_time_select_8(is_block_b,
                                           length_bytes[j -
                                                        (md_block_size -
                                                         md_length_size)], b);
            }
            block[j] = b;
        }

        md_transform(md_state.c, block);
        md_final_raw(md_state.c, block);
        /* If this is index_b, copy the hash value to |mac_out|. */
        for (j = 0; j < md_size; j++)
            mac_out[j] |= block[j] & is_block_b;
    }

    md_ctx = EVP_MD_CTX_new();
    if (md_ctx == NULL)
        goto err;
    if (EVP_DigestInit_ex(md_ctx, EVP_MD_CTX_md(ctx), NULL /* engine */ ) <= 0)
        goto err;
    if (is_sslv3) {
        /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
        memset(hmac_pad, 0x5c, sslv3_pad_length);

        if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0
            || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0
            || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
            goto err;
    } else {
        /* Complete the HMAC in the standard manner. */
        for (i = 0; i < md_block_size; i++)
            hmac_pad[i] ^= 0x6a;

        if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0
            || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
            goto err;
    }
    /* TODO(size_t): Convert me */
    ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u);
    if (ret && md_out_size)
        *md_out_size = md_out_size_u;
    EVP_MD_CTX_free(md_ctx);

    return 1;
 err:
    EVP_MD_CTX_free(md_ctx);
    return 0;
}