stack.c 10.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
/*
 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <stdio.h>
#include "internal/cryptlib.h"
#include "internal/numbers.h"
#include <openssl/stack.h>
#include <openssl/objects.h>
#include <errno.h>
#include <openssl/e_os2.h>      /* For ossl_inline */

/*
 * The initial number of nodes in the array.
 */
static const int min_nodes = 4;
static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX
                             ? (int)(SIZE_MAX / sizeof(void *))
                             : INT_MAX;

struct stack_st {
    int num;
    const void **data;
    int sorted;
    int num_alloc;
    OPENSSL_sk_compfunc comp;
};

OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk, OPENSSL_sk_compfunc c)
{
    OPENSSL_sk_compfunc old = sk->comp;

    if (sk->comp != c)
        sk->sorted = 0;
    sk->comp = c;

    return old;
}

OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk)
{
    OPENSSL_STACK *ret;

    if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
        CRYPTOerr(CRYPTO_F_OPENSSL_SK_DUP, ERR_R_MALLOC_FAILURE);
        return NULL;
    }

    /* direct structure assignment */
    *ret = *sk;

    if (sk->num == 0) {
        /* postpone |ret->data| allocation */
        ret->data = NULL;
        ret->num_alloc = 0;
        return ret;
    }
    /* duplicate |sk->data| content */
    if ((ret->data = OPENSSL_malloc(sizeof(*ret->data) * sk->num_alloc)) == NULL)
        goto err;
    memcpy(ret->data, sk->data, sizeof(void *) * sk->num);
    return ret;
 err:
    OPENSSL_sk_free(ret);
    return NULL;
}

OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,
                             OPENSSL_sk_copyfunc copy_func,
                             OPENSSL_sk_freefunc free_func)
{
    OPENSSL_STACK *ret;
    int i;

    if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
        CRYPTOerr(CRYPTO_F_OPENSSL_SK_DEEP_COPY, ERR_R_MALLOC_FAILURE);
        return NULL;
    }

    /* direct structure assignment */
    *ret = *sk;

    if (sk->num == 0) {
        /* postpone |ret| data allocation */
        ret->data = NULL;
        ret->num_alloc = 0;
        return ret;
    }

    ret->num_alloc = sk->num > min_nodes ? sk->num : min_nodes;
    ret->data = OPENSSL_zalloc(sizeof(*ret->data) * ret->num_alloc);
    if (ret->data == NULL) {
        OPENSSL_free(ret);
        return NULL;
    }

    for (i = 0; i < ret->num; ++i) {
        if (sk->data[i] == NULL)
            continue;
        if ((ret->data[i] = copy_func(sk->data[i])) == NULL) {
            while (--i >= 0)
                if (ret->data[i] != NULL)
                    free_func((void *)ret->data[i]);
            OPENSSL_sk_free(ret);
            return NULL;
        }
    }
    return ret;
}

OPENSSL_STACK *OPENSSL_sk_new_null(void)
{
    return OPENSSL_sk_new_reserve(NULL, 0);
}

OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c)
{
    return OPENSSL_sk_new_reserve(c, 0);
}

/*
 * Calculate the array growth based on the target size.
 *
 * The growth fraction is a rational number and is defined by a numerator
 * and a denominator.  According to Andrew Koenig in his paper "Why Are
 * Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less
 * than the golden ratio (1.618...).
 *
 * We use 3/2 = 1.5 for simplicity of calculation and overflow checking.
 * Another option 8/5 = 1.6 allows for slightly faster growth, although safe
 * computation is more difficult.
 *
 * The limit to avoid overflow is spot on.  The modulo three correction term
 * ensures that the limit is the largest number than can be expanded by the
 * growth factor without exceeding the hard limit.
 *
 * Do not call it with |current| lower than 2, or it will infinitely loop.
 */
static ossl_inline int compute_growth(int target, int current)
{
    const int limit = (max_nodes / 3) * 2 + (max_nodes % 3 ? 1 : 0);

    while (current < target) {
        /* Check to see if we're at the hard limit */
        if (current >= max_nodes)
            return 0;

        /* Expand the size by a factor of 3/2 if it is within range */
        current = current < limit ? current + current / 2 : max_nodes;
    }
    return current;
}

/* internal STACK storage allocation */
static int sk_reserve(OPENSSL_STACK *st, int n, int exact)
{
    const void **tmpdata;
    int num_alloc;

    /* Check to see the reservation isn't exceeding the hard limit */
    if (n > max_nodes - st->num)
        return 0;

    /* Figure out the new size */
    num_alloc = st->num + n;
    if (num_alloc < min_nodes)
        num_alloc = min_nodes;

    /* If |st->data| allocation was postponed */
    if (st->data == NULL) {
        /*
         * At this point, |st->num_alloc| and |st->num| are 0;
         * so |num_alloc| value is |n| or |min_nodes| if greater than |n|.
         */
        if ((st->data = OPENSSL_zalloc(sizeof(void *) * num_alloc)) == NULL) {
            CRYPTOerr(CRYPTO_F_SK_RESERVE, ERR_R_MALLOC_FAILURE);
            return 0;
        }
        st->num_alloc = num_alloc;
        return 1;
    }

    if (!exact) {
        if (num_alloc <= st->num_alloc)
            return 1;
        num_alloc = compute_growth(num_alloc, st->num_alloc);
        if (num_alloc == 0)
            return 0;
    } else if (num_alloc == st->num_alloc) {
        return 1;
    }

    tmpdata = OPENSSL_realloc((void *)st->data, sizeof(void *) * num_alloc);
    if (tmpdata == NULL)
        return 0;

    st->data = tmpdata;
    st->num_alloc = num_alloc;
    return 1;
}

OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n)
{
    OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK));

    if (st == NULL)
        return NULL;

    st->comp = c;

    if (n <= 0)
        return st;

    if (!sk_reserve(st, n, 1)) {
        OPENSSL_sk_free(st);
        return NULL;
    }

    return st;
}

int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n)
{
    if (st == NULL)
        return 0;

    if (n < 0)
        return 1;
    return sk_reserve(st, n, 1);
}

int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc)
{
    if (st == NULL || st->num == max_nodes)
        return 0;

    if (!sk_reserve(st, 1, 0))
        return 0;

    if ((loc >= st->num) || (loc < 0)) {
        st->data[st->num] = data;
    } else {
        memmove(&st->data[loc + 1], &st->data[loc],
                sizeof(st->data[0]) * (st->num - loc));
        st->data[loc] = data;
    }
    st->num++;
    st->sorted = 0;
    return st->num;
}

static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc)
{
    const void *ret = st->data[loc];

    if (loc != st->num - 1)
         memmove(&st->data[loc], &st->data[loc + 1],
                 sizeof(st->data[0]) * (st->num - loc - 1));
    st->num--;

    return (void *)ret;
}

void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p)
{
    int i;

    for (i = 0; i < st->num; i++)
        if (st->data[i] == p)
            return internal_delete(st, i);
    return NULL;
}

void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc)
{
    if (st == NULL || loc < 0 || loc >= st->num)
        return NULL;

    return internal_delete(st, loc);
}

static int internal_find(OPENSSL_STACK *st, const void *data,
                         int ret_val_options)
{
    const void *r;
    int i;

    if (st == NULL || st->num == 0)
        return -1;

    if (st->comp == NULL) {
        for (i = 0; i < st->num; i++)
            if (st->data[i] == data)
                return i;
        return -1;
    }

    if (!st->sorted) {
        if (st->num > 1)
            qsort(st->data, st->num, sizeof(void *), st->comp);
        st->sorted = 1; /* empty or single-element stack is considered sorted */
    }
    if (data == NULL)
        return -1;
    r = OBJ_bsearch_ex_(&data, st->data, st->num, sizeof(void *), st->comp,
                        ret_val_options);

    return r == NULL ? -1 : (int)((const void **)r - st->data);
}

int OPENSSL_sk_find(OPENSSL_STACK *st, const void *data)
{
    return internal_find(st, data, OBJ_BSEARCH_FIRST_VALUE_ON_MATCH);
}

int OPENSSL_sk_find_ex(OPENSSL_STACK *st, const void *data)
{
    return internal_find(st, data, OBJ_BSEARCH_VALUE_ON_NOMATCH);
}

int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data)
{
    if (st == NULL)
        return -1;
    return OPENSSL_sk_insert(st, data, st->num);
}

int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data)
{
    return OPENSSL_sk_insert(st, data, 0);
}

void *OPENSSL_sk_shift(OPENSSL_STACK *st)
{
    if (st == NULL || st->num == 0)
        return NULL;
    return internal_delete(st, 0);
}

void *OPENSSL_sk_pop(OPENSSL_STACK *st)
{
    if (st == NULL || st->num == 0)
        return NULL;
    return internal_delete(st, st->num - 1);
}

void OPENSSL_sk_zero(OPENSSL_STACK *st)
{
    if (st == NULL || st->num == 0)
        return;
    memset(st->data, 0, sizeof(*st->data) * st->num);
    st->num = 0;
}

void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func)
{
    int i;

    if (st == NULL)
        return;
    for (i = 0; i < st->num; i++)
        if (st->data[i] != NULL)
            func((char *)st->data[i]);
    OPENSSL_sk_free(st);
}

void OPENSSL_sk_free(OPENSSL_STACK *st)
{
    if (st == NULL)
        return;
    OPENSSL_free(st->data);
    OPENSSL_free(st);
}

int OPENSSL_sk_num(const OPENSSL_STACK *st)
{
    return st == NULL ? -1 : st->num;
}

void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i)
{
    if (st == NULL || i < 0 || i >= st->num)
        return NULL;
    return (void *)st->data[i];
}

void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data)
{
    if (st == NULL || i < 0 || i >= st->num)
        return NULL;
    st->data[i] = data;
    st->sorted = 0;
    return (void *)st->data[i];
}

void OPENSSL_sk_sort(OPENSSL_STACK *st)
{
    if (st != NULL && !st->sorted && st->comp != NULL) {
        if (st->num > 1)
            qsort(st->data, st->num, sizeof(void *), st->comp);
        st->sorted = 1; /* empty or single-element stack is considered sorted */
    }
}

int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st)
{
    return st == NULL ? 1 : st->sorted;
}