srp_vfy.c 19.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
/*
 * Copyright 2004-2018 The OpenSSL Project Authors. All Rights Reserved.
 * Copyright (c) 2004, EdelKey Project. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 *
 * Originally written by Christophe Renou and Peter Sylvester,
 * for the EdelKey project.
 */

#ifndef OPENSSL_NO_SRP
# include "internal/cryptlib.h"
# include "internal/evp_int.h"
# include <openssl/sha.h>
# include <openssl/srp.h>
# include <openssl/evp.h>
# include <openssl/buffer.h>
# include <openssl/rand.h>
# include <openssl/txt_db.h>
# include <openssl/err.h>

# define SRP_RANDOM_SALT_LEN 20
# define MAX_LEN 2500

/*
 * Note that SRP uses its own variant of base 64 encoding. A different base64
 * alphabet is used and no padding '=' characters are added. Instead we pad to
 * the front with 0 bytes and subsequently strip off leading encoded padding.
 * This variant is used for compatibility with other SRP implementations -
 * notably libsrp, but also others. It is also required for backwards
 * compatibility in order to load verifier files from other OpenSSL versions.
 */

/*
 * Convert a base64 string into raw byte array representation.
 * Returns the length of the decoded data, or -1 on error.
 */
static int t_fromb64(unsigned char *a, size_t alen, const char *src)
{
    EVP_ENCODE_CTX *ctx;
    int outl = 0, outl2 = 0;
    size_t size, padsize;
    const unsigned char *pad = (const unsigned char *)"00";

    while (*src == ' ' || *src == '\t' || *src == '\n')
        ++src;
    size = strlen(src);
    padsize = 4 - (size & 3);
    padsize &= 3;

    /* Four bytes in src become three bytes output. */
    if (size > INT_MAX || ((size + padsize) / 4) * 3 > alen)
        return -1;

    ctx = EVP_ENCODE_CTX_new();
    if (ctx == NULL)
        return -1;

    /*
     * This should never occur because 1 byte of data always requires 2 bytes of
     * encoding, i.e.
     *  0 bytes unencoded = 0 bytes encoded
     *  1 byte unencoded  = 2 bytes encoded
     *  2 bytes unencoded = 3 bytes encoded
     *  3 bytes unencoded = 4 bytes encoded
     *  4 bytes unencoded = 6 bytes encoded
     *  etc
     */
    if (padsize == 3) {
        outl = -1;
        goto err;
    }

    /* Valid padsize values are now 0, 1 or 2 */

    EVP_DecodeInit(ctx);
    evp_encode_ctx_set_flags(ctx, EVP_ENCODE_CTX_USE_SRP_ALPHABET);

    /* Add any encoded padding that is required */
    if (padsize != 0
            && EVP_DecodeUpdate(ctx, a, &outl, pad, padsize) < 0) {
        outl = -1;
        goto err;
    }
    if (EVP_DecodeUpdate(ctx, a, &outl2, (const unsigned char *)src, size) < 0) {
        outl = -1;
        goto err;
    }
    outl += outl2;
    EVP_DecodeFinal(ctx, a + outl, &outl2);
    outl += outl2;

    /* Strip off the leading padding */
    if (padsize != 0) {
        if ((int)padsize >= outl) {
            outl = -1;
            goto err;
        }

        /*
         * If we added 1 byte of padding prior to encoding then we have 2 bytes
         * of "real" data which gets spread across 4 encoded bytes like this:
         *   (6 bits pad)(2 bits pad | 4 bits data)(6 bits data)(6 bits data)
         * So 1 byte of pre-encoding padding results in 1 full byte of encoded
         * padding.
         * If we added 2 bytes of padding prior to encoding this gets encoded
         * as:
         *   (6 bits pad)(6 bits pad)(4 bits pad | 2 bits data)(6 bits data)
         * So 2 bytes of pre-encoding padding results in 2 full bytes of encoded
         * padding, i.e. we have to strip the same number of bytes of padding
         * from the encoded data as we added to the pre-encoded data.
         */
        memmove(a, a + padsize, outl - padsize);
        outl -= padsize;
    }

 err:
    EVP_ENCODE_CTX_free(ctx);

    return outl;
}

/*
 * Convert a raw byte string into a null-terminated base64 ASCII string.
 * Returns 1 on success or 0 on error.
 */
static int t_tob64(char *dst, const unsigned char *src, int size)
{
    EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new();
    int outl = 0, outl2 = 0;
    unsigned char pad[2] = {0, 0};
    size_t leadz = 0;

    if (ctx == NULL)
        return 0;

    EVP_EncodeInit(ctx);
    evp_encode_ctx_set_flags(ctx, EVP_ENCODE_CTX_NO_NEWLINES
                                  | EVP_ENCODE_CTX_USE_SRP_ALPHABET);

    /*
     * We pad at the front with zero bytes until the length is a multiple of 3
     * so that EVP_EncodeUpdate/EVP_EncodeFinal does not add any of its own "="
     * padding
     */
    leadz = 3 - (size % 3);
    if (leadz != 3
            && !EVP_EncodeUpdate(ctx, (unsigned char *)dst, &outl, pad,
                                 leadz)) {
        EVP_ENCODE_CTX_free(ctx);
        return 0;
    }

    if (!EVP_EncodeUpdate(ctx, (unsigned char *)dst + outl, &outl2, src,
                          size)) {
        EVP_ENCODE_CTX_free(ctx);
        return 0;
    }
    outl += outl2;
    EVP_EncodeFinal(ctx, (unsigned char *)dst + outl, &outl2);
    outl += outl2;

    /* Strip the encoded padding at the front */
    if (leadz != 3) {
        memmove(dst, dst + leadz, outl - leadz);
        dst[outl - leadz] = '\0';
    }

    EVP_ENCODE_CTX_free(ctx);
    return 1;
}

void SRP_user_pwd_free(SRP_user_pwd *user_pwd)
{
    if (user_pwd == NULL)
        return;
    BN_free(user_pwd->s);
    BN_clear_free(user_pwd->v);
    OPENSSL_free(user_pwd->id);
    OPENSSL_free(user_pwd->info);
    OPENSSL_free(user_pwd);
}

static SRP_user_pwd *SRP_user_pwd_new(void)
{
    SRP_user_pwd *ret;
    
    if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
        /* SRPerr(SRP_F_SRP_USER_PWD_NEW, ERR_R_MALLOC_FAILURE); */ /*ckerr_ignore*/
        return NULL;
    }
    ret->N = NULL;
    ret->g = NULL;
    ret->s = NULL;
    ret->v = NULL;
    ret->id = NULL;
    ret->info = NULL;
    return ret;
}

static void SRP_user_pwd_set_gN(SRP_user_pwd *vinfo, const BIGNUM *g,
                                const BIGNUM *N)
{
    vinfo->N = N;
    vinfo->g = g;
}

static int SRP_user_pwd_set_ids(SRP_user_pwd *vinfo, const char *id,
                                const char *info)
{
    if (id != NULL && NULL == (vinfo->id = OPENSSL_strdup(id)))
        return 0;
    return (info == NULL || NULL != (vinfo->info = OPENSSL_strdup(info)));
}

static int SRP_user_pwd_set_sv(SRP_user_pwd *vinfo, const char *s,
                               const char *v)
{
    unsigned char tmp[MAX_LEN];
    int len;

    vinfo->v = NULL;
    vinfo->s = NULL;

    len = t_fromb64(tmp, sizeof(tmp), v);
    if (len < 0)
        return 0;
    if (NULL == (vinfo->v = BN_bin2bn(tmp, len, NULL)))
        return 0;
    len = t_fromb64(tmp, sizeof(tmp), s);
    if (len < 0)
        goto err;
    vinfo->s = BN_bin2bn(tmp, len, NULL);
    if (vinfo->s == NULL)
        goto err;
    return 1;
 err:
    BN_free(vinfo->v);
    vinfo->v = NULL;
    return 0;
}

static int SRP_user_pwd_set_sv_BN(SRP_user_pwd *vinfo, BIGNUM *s, BIGNUM *v)
{
    vinfo->v = v;
    vinfo->s = s;
    return (vinfo->s != NULL && vinfo->v != NULL);
}

static SRP_user_pwd *srp_user_pwd_dup(SRP_user_pwd *src)
{
    SRP_user_pwd *ret;

    if (src == NULL)
        return NULL;
    if ((ret = SRP_user_pwd_new()) == NULL)
        return NULL;

    SRP_user_pwd_set_gN(ret, src->g, src->N);
    if (!SRP_user_pwd_set_ids(ret, src->id, src->info)
        || !SRP_user_pwd_set_sv_BN(ret, BN_dup(src->s), BN_dup(src->v))) {
            SRP_user_pwd_free(ret);
            return NULL;
    }
    return ret;
}

SRP_VBASE *SRP_VBASE_new(char *seed_key)
{
    SRP_VBASE *vb = OPENSSL_malloc(sizeof(*vb));

    if (vb == NULL)
        return NULL;
    if ((vb->users_pwd = sk_SRP_user_pwd_new_null()) == NULL
        || (vb->gN_cache = sk_SRP_gN_cache_new_null()) == NULL) {
        OPENSSL_free(vb);
        return NULL;
    }
    vb->default_g = NULL;
    vb->default_N = NULL;
    vb->seed_key = NULL;
    if ((seed_key != NULL) && (vb->seed_key = OPENSSL_strdup(seed_key)) == NULL) {
        sk_SRP_user_pwd_free(vb->users_pwd);
        sk_SRP_gN_cache_free(vb->gN_cache);
        OPENSSL_free(vb);
        return NULL;
    }
    return vb;
}

void SRP_VBASE_free(SRP_VBASE *vb)
{
    if (!vb)
        return;
    sk_SRP_user_pwd_pop_free(vb->users_pwd, SRP_user_pwd_free);
    sk_SRP_gN_cache_free(vb->gN_cache);
    OPENSSL_free(vb->seed_key);
    OPENSSL_free(vb);
}

static SRP_gN_cache *SRP_gN_new_init(const char *ch)
{
    unsigned char tmp[MAX_LEN];
    int len;
    SRP_gN_cache *newgN = OPENSSL_malloc(sizeof(*newgN));

    if (newgN == NULL)
        return NULL;

    len = t_fromb64(tmp, sizeof(tmp), ch);
    if (len < 0)
        goto err;

    if ((newgN->b64_bn = OPENSSL_strdup(ch)) == NULL)
        goto err;

    if ((newgN->bn = BN_bin2bn(tmp, len, NULL)))
        return newgN;

    OPENSSL_free(newgN->b64_bn);
 err:
    OPENSSL_free(newgN);
    return NULL;
}

static void SRP_gN_free(SRP_gN_cache *gN_cache)
{
    if (gN_cache == NULL)
        return;
    OPENSSL_free(gN_cache->b64_bn);
    BN_free(gN_cache->bn);
    OPENSSL_free(gN_cache);
}

static SRP_gN *SRP_get_gN_by_id(const char *id, STACK_OF(SRP_gN) *gN_tab)
{
    int i;

    SRP_gN *gN;
    if (gN_tab != NULL)
        for (i = 0; i < sk_SRP_gN_num(gN_tab); i++) {
            gN = sk_SRP_gN_value(gN_tab, i);
            if (gN && (id == NULL || strcmp(gN->id, id) == 0))
                return gN;
        }

    return SRP_get_default_gN(id);
}

static BIGNUM *SRP_gN_place_bn(STACK_OF(SRP_gN_cache) *gN_cache, char *ch)
{
    int i;
    if (gN_cache == NULL)
        return NULL;

    /* search if we have already one... */
    for (i = 0; i < sk_SRP_gN_cache_num(gN_cache); i++) {
        SRP_gN_cache *cache = sk_SRP_gN_cache_value(gN_cache, i);
        if (strcmp(cache->b64_bn, ch) == 0)
            return cache->bn;
    }
    {                           /* it is the first time that we find it */
        SRP_gN_cache *newgN = SRP_gN_new_init(ch);
        if (newgN) {
            if (sk_SRP_gN_cache_insert(gN_cache, newgN, 0) > 0)
                return newgN->bn;
            SRP_gN_free(newgN);
        }
    }
    return NULL;
}

/*
 * this function parses verifier file. Format is:
 * string(index):base64(N):base64(g):0
 * string(username):base64(v):base64(salt):int(index)
 */

int SRP_VBASE_init(SRP_VBASE *vb, char *verifier_file)
{
    int error_code;
    STACK_OF(SRP_gN) *SRP_gN_tab = sk_SRP_gN_new_null();
    char *last_index = NULL;
    int i;
    char **pp;

    SRP_gN *gN = NULL;
    SRP_user_pwd *user_pwd = NULL;

    TXT_DB *tmpdb = NULL;
    BIO *in = BIO_new(BIO_s_file());

    error_code = SRP_ERR_OPEN_FILE;

    if (in == NULL || BIO_read_filename(in, verifier_file) <= 0)
        goto err;

    error_code = SRP_ERR_VBASE_INCOMPLETE_FILE;

    if ((tmpdb = TXT_DB_read(in, DB_NUMBER)) == NULL)
        goto err;

    error_code = SRP_ERR_MEMORY;

    if (vb->seed_key) {
        last_index = SRP_get_default_gN(NULL)->id;
    }
    for (i = 0; i < sk_OPENSSL_PSTRING_num(tmpdb->data); i++) {
        pp = sk_OPENSSL_PSTRING_value(tmpdb->data, i);
        if (pp[DB_srptype][0] == DB_SRP_INDEX) {
            /*
             * we add this couple in the internal Stack
             */

            if ((gN = OPENSSL_malloc(sizeof(*gN))) == NULL)
                goto err;

            if ((gN->id = OPENSSL_strdup(pp[DB_srpid])) == NULL
                || (gN->N = SRP_gN_place_bn(vb->gN_cache, pp[DB_srpverifier]))
                        == NULL
                || (gN->g = SRP_gN_place_bn(vb->gN_cache, pp[DB_srpsalt]))
                        == NULL
                || sk_SRP_gN_insert(SRP_gN_tab, gN, 0) == 0)
                goto err;

            gN = NULL;

            if (vb->seed_key != NULL) {
                last_index = pp[DB_srpid];
            }
        } else if (pp[DB_srptype][0] == DB_SRP_VALID) {
            /* it is a user .... */
            const SRP_gN *lgN;

            if ((lgN = SRP_get_gN_by_id(pp[DB_srpgN], SRP_gN_tab)) != NULL) {
                error_code = SRP_ERR_MEMORY;
                if ((user_pwd = SRP_user_pwd_new()) == NULL)
                    goto err;

                SRP_user_pwd_set_gN(user_pwd, lgN->g, lgN->N);
                if (!SRP_user_pwd_set_ids
                    (user_pwd, pp[DB_srpid], pp[DB_srpinfo]))
                    goto err;

                error_code = SRP_ERR_VBASE_BN_LIB;
                if (!SRP_user_pwd_set_sv
                    (user_pwd, pp[DB_srpsalt], pp[DB_srpverifier]))
                    goto err;

                if (sk_SRP_user_pwd_insert(vb->users_pwd, user_pwd, 0) == 0)
                    goto err;
                user_pwd = NULL; /* abandon responsibility */
            }
        }
    }

    if (last_index != NULL) {
        /* this means that we want to simulate a default user */

        if (((gN = SRP_get_gN_by_id(last_index, SRP_gN_tab)) == NULL)) {
            error_code = SRP_ERR_VBASE_BN_LIB;
            goto err;
        }
        vb->default_g = gN->g;
        vb->default_N = gN->N;
        gN = NULL;
    }
    error_code = SRP_NO_ERROR;

 err:
    /*
     * there may be still some leaks to fix, if this fails, the application
     * terminates most likely
     */

    if (gN != NULL) {
        OPENSSL_free(gN->id);
        OPENSSL_free(gN);
    }

    SRP_user_pwd_free(user_pwd);

    TXT_DB_free(tmpdb);
    BIO_free_all(in);

    sk_SRP_gN_free(SRP_gN_tab);

    return error_code;

}

static SRP_user_pwd *find_user(SRP_VBASE *vb, char *username)
{
    int i;
    SRP_user_pwd *user;

    if (vb == NULL)
        return NULL;

    for (i = 0; i < sk_SRP_user_pwd_num(vb->users_pwd); i++) {
        user = sk_SRP_user_pwd_value(vb->users_pwd, i);
        if (strcmp(user->id, username) == 0)
            return user;
    }

    return NULL;
}

# if OPENSSL_API_COMPAT < 0x10100000L
/*
 * DEPRECATED: use SRP_VBASE_get1_by_user instead.
 * This method ignores the configured seed and fails for an unknown user.
 * Ownership of the returned pointer is not released to the caller.
 * In other words, caller must not free the result.
 */
SRP_user_pwd *SRP_VBASE_get_by_user(SRP_VBASE *vb, char *username)
{
    return find_user(vb, username);
}
# endif

/*
 * Ownership of the returned pointer is released to the caller.
 * In other words, caller must free the result once done.
 */
SRP_user_pwd *SRP_VBASE_get1_by_user(SRP_VBASE *vb, char *username)
{
    SRP_user_pwd *user;
    unsigned char digv[SHA_DIGEST_LENGTH];
    unsigned char digs[SHA_DIGEST_LENGTH];
    EVP_MD_CTX *ctxt = NULL;

    if (vb == NULL)
        return NULL;

    if ((user = find_user(vb, username)) != NULL)
        return srp_user_pwd_dup(user);

    if ((vb->seed_key == NULL) ||
        (vb->default_g == NULL) || (vb->default_N == NULL))
        return NULL;

/* if the user is unknown we set parameters as well if we have a seed_key */

    if ((user = SRP_user_pwd_new()) == NULL)
        return NULL;

    SRP_user_pwd_set_gN(user, vb->default_g, vb->default_N);

    if (!SRP_user_pwd_set_ids(user, username, NULL))
        goto err;

    if (RAND_priv_bytes(digv, SHA_DIGEST_LENGTH) <= 0)
        goto err;
    ctxt = EVP_MD_CTX_new();
    if (ctxt == NULL
        || !EVP_DigestInit_ex(ctxt, EVP_sha1(), NULL)
        || !EVP_DigestUpdate(ctxt, vb->seed_key, strlen(vb->seed_key))
        || !EVP_DigestUpdate(ctxt, username, strlen(username))
        || !EVP_DigestFinal_ex(ctxt, digs, NULL))
        goto err;
    EVP_MD_CTX_free(ctxt);
    ctxt = NULL;
    if (SRP_user_pwd_set_sv_BN(user,
                               BN_bin2bn(digs, SHA_DIGEST_LENGTH, NULL),
                               BN_bin2bn(digv, SHA_DIGEST_LENGTH, NULL)))
        return user;

 err:
    EVP_MD_CTX_free(ctxt);
    SRP_user_pwd_free(user);
    return NULL;
}

/*
 * create a verifier (*salt,*verifier,g and N are in base64)
 */
char *SRP_create_verifier(const char *user, const char *pass, char **salt,
                          char **verifier, const char *N, const char *g)
{
    int len;
    char *result = NULL, *vf = NULL;
    const BIGNUM *N_bn = NULL, *g_bn = NULL;
    BIGNUM *N_bn_alloc = NULL, *g_bn_alloc = NULL, *s = NULL, *v = NULL;
    unsigned char tmp[MAX_LEN];
    unsigned char tmp2[MAX_LEN];
    char *defgNid = NULL;
    int vfsize = 0;

    if ((user == NULL) ||
        (pass == NULL) || (salt == NULL) || (verifier == NULL))
        goto err;

    if (N) {
        if ((len = t_fromb64(tmp, sizeof(tmp), N)) <= 0)
            goto err;
        N_bn_alloc = BN_bin2bn(tmp, len, NULL);
        N_bn = N_bn_alloc;
        if ((len = t_fromb64(tmp, sizeof(tmp) ,g)) <= 0)
            goto err;
        g_bn_alloc = BN_bin2bn(tmp, len, NULL);
        g_bn = g_bn_alloc;
        defgNid = "*";
    } else {
        SRP_gN *gN = SRP_get_gN_by_id(g, NULL);
        if (gN == NULL)
            goto err;
        N_bn = gN->N;
        g_bn = gN->g;
        defgNid = gN->id;
    }

    if (*salt == NULL) {
        if (RAND_bytes(tmp2, SRP_RANDOM_SALT_LEN) <= 0)
            goto err;

        s = BN_bin2bn(tmp2, SRP_RANDOM_SALT_LEN, NULL);
    } else {
        if ((len = t_fromb64(tmp2, sizeof(tmp2), *salt)) <= 0)
            goto err;
        s = BN_bin2bn(tmp2, len, NULL);
    }

    if (!SRP_create_verifier_BN(user, pass, &s, &v, N_bn, g_bn))
        goto err;

    BN_bn2bin(v, tmp);
    vfsize = BN_num_bytes(v) * 2;
    if (((vf = OPENSSL_malloc(vfsize)) == NULL))
        goto err;
    t_tob64(vf, tmp, BN_num_bytes(v));

    if (*salt == NULL) {
        char *tmp_salt;

        if ((tmp_salt = OPENSSL_malloc(SRP_RANDOM_SALT_LEN * 2)) == NULL) {
            goto err;
        }
        t_tob64(tmp_salt, tmp2, SRP_RANDOM_SALT_LEN);
        *salt = tmp_salt;
    }

    *verifier = vf;
    vf = NULL;
    result = defgNid;

 err:
    BN_free(N_bn_alloc);
    BN_free(g_bn_alloc);
    OPENSSL_clear_free(vf, vfsize);
    BN_clear_free(s);
    BN_clear_free(v);
    return result;
}

/*
 * create a verifier (*salt,*verifier,g and N are BIGNUMs). If *salt != NULL
 * then the provided salt will be used. On successful exit *verifier will point
 * to a newly allocated BIGNUM containing the verifier and (if a salt was not
 * provided) *salt will be populated with a newly allocated BIGNUM containing a
 * random salt.
 * The caller is responsible for freeing the allocated *salt and *verifier
 * BIGNUMS.
 */
int SRP_create_verifier_BN(const char *user, const char *pass, BIGNUM **salt,
                           BIGNUM **verifier, const BIGNUM *N,
                           const BIGNUM *g)
{
    int result = 0;
    BIGNUM *x = NULL;
    BN_CTX *bn_ctx = BN_CTX_new();
    unsigned char tmp2[MAX_LEN];
    BIGNUM *salttmp = NULL;

    if ((user == NULL) ||
        (pass == NULL) ||
        (salt == NULL) ||
        (verifier == NULL) || (N == NULL) || (g == NULL) || (bn_ctx == NULL))
        goto err;

    if (*salt == NULL) {
        if (RAND_bytes(tmp2, SRP_RANDOM_SALT_LEN) <= 0)
            goto err;

        salttmp = BN_bin2bn(tmp2, SRP_RANDOM_SALT_LEN, NULL);
    } else {
        salttmp = *salt;
    }

    x = SRP_Calc_x(salttmp, user, pass);

    *verifier = BN_new();
    if (*verifier == NULL)
        goto err;

    if (!BN_mod_exp(*verifier, g, x, N, bn_ctx)) {
        BN_clear_free(*verifier);
        goto err;
    }

    result = 1;
    *salt = salttmp;

 err:
    if (salt != NULL && *salt != salttmp)
        BN_clear_free(salttmp);
    BN_clear_free(x);
    BN_CTX_free(bn_ctx);
    return result;
}

#endif