poly1305_base2_44.c
4.72 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/*
* Copyright 2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* This module is meant to be used as template for base 2^44 assembly
* implementation[s]. On side note compiler-generated code is not
* slower than compiler-generated base 2^64 code on [high-end] x86_64,
* even though amount of multiplications is 50% higher. Go figure...
*/
#include <stdlib.h>
typedef unsigned char u8;
typedef unsigned int u32;
typedef unsigned long u64;
typedef unsigned __int128 u128;
typedef struct {
u64 h[3];
u64 s[2];
u64 r[3];
} poly1305_internal;
#define POLY1305_BLOCK_SIZE 16
/* pick 64-bit unsigned integer in little endian order */
static u64 U8TOU64(const unsigned char *p)
{
return (((u64)(p[0] & 0xff)) |
((u64)(p[1] & 0xff) << 8) |
((u64)(p[2] & 0xff) << 16) |
((u64)(p[3] & 0xff) << 24) |
((u64)(p[4] & 0xff) << 32) |
((u64)(p[5] & 0xff) << 40) |
((u64)(p[6] & 0xff) << 48) |
((u64)(p[7] & 0xff) << 56));
}
/* store a 64-bit unsigned integer in little endian */
static void U64TO8(unsigned char *p, u64 v)
{
p[0] = (unsigned char)((v) & 0xff);
p[1] = (unsigned char)((v >> 8) & 0xff);
p[2] = (unsigned char)((v >> 16) & 0xff);
p[3] = (unsigned char)((v >> 24) & 0xff);
p[4] = (unsigned char)((v >> 32) & 0xff);
p[5] = (unsigned char)((v >> 40) & 0xff);
p[6] = (unsigned char)((v >> 48) & 0xff);
p[7] = (unsigned char)((v >> 56) & 0xff);
}
int poly1305_init(void *ctx, const unsigned char key[16])
{
poly1305_internal *st = (poly1305_internal *)ctx;
u64 r0, r1;
/* h = 0 */
st->h[0] = 0;
st->h[1] = 0;
st->h[2] = 0;
r0 = U8TOU64(&key[0]) & 0x0ffffffc0fffffff;
r1 = U8TOU64(&key[8]) & 0x0ffffffc0ffffffc;
/* break r1:r0 to three 44-bit digits, masks are 1<<44-1 */
st->r[0] = r0 & 0x0fffffffffff;
st->r[1] = ((r0 >> 44) | (r1 << 20)) & 0x0fffffffffff;
st->r[2] = (r1 >> 24);
st->s[0] = (st->r[1] + (st->r[1] << 2)) << 2;
st->s[1] = (st->r[2] + (st->r[2] << 2)) << 2;
return 0;
}
void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len,
u32 padbit)
{
poly1305_internal *st = (poly1305_internal *)ctx;
u64 r0, r1, r2;
u64 s1, s2;
u64 h0, h1, h2, c;
u128 d0, d1, d2;
u64 pad = (u64)padbit << 40;
r0 = st->r[0];
r1 = st->r[1];
r2 = st->r[2];
s1 = st->s[0];
s2 = st->s[1];
h0 = st->h[0];
h1 = st->h[1];
h2 = st->h[2];
while (len >= POLY1305_BLOCK_SIZE) {
u64 m0, m1;
m0 = U8TOU64(inp + 0);
m1 = U8TOU64(inp + 8);
/* h += m[i], m[i] is broken to 44-bit digits */
h0 += m0 & 0x0fffffffffff;
h1 += ((m0 >> 44) | (m1 << 20)) & 0x0fffffffffff;
h2 += (m1 >> 24) + pad;
/* h *= r "%" p, where "%" stands for "partial remainder" */
d0 = ((u128)h0 * r0) + ((u128)h1 * s2) + ((u128)h2 * s1);
d1 = ((u128)h0 * r1) + ((u128)h1 * r0) + ((u128)h2 * s2);
d2 = ((u128)h0 * r2) + ((u128)h1 * r1) + ((u128)h2 * r0);
/* "lazy" reduction step */
h0 = (u64)d0 & 0x0fffffffffff;
h1 = (u64)(d1 += (u64)(d0 >> 44)) & 0x0fffffffffff;
h2 = (u64)(d2 += (u64)(d1 >> 44)) & 0x03ffffffffff; /* last 42 bits */
c = (d2 >> 42);
h0 += c + (c << 2);
inp += POLY1305_BLOCK_SIZE;
len -= POLY1305_BLOCK_SIZE;
}
st->h[0] = h0;
st->h[1] = h1;
st->h[2] = h2;
}
void poly1305_emit(void *ctx, unsigned char mac[16], const u32 nonce[4])
{
poly1305_internal *st = (poly1305_internal *) ctx;
u64 h0, h1, h2;
u64 g0, g1, g2;
u128 t;
u64 mask;
h0 = st->h[0];
h1 = st->h[1];
h2 = st->h[2];
/* after "lazy" reduction, convert 44+bit digits to 64-bit ones */
h0 = (u64)(t = (u128)h0 + (h1 << 44)); h1 >>= 20;
h1 = (u64)(t = (u128)h1 + (h2 << 24) + (t >> 64)); h2 >>= 40;
h2 += (u64)(t >> 64);
/* compare to modulus by computing h + -p */
g0 = (u64)(t = (u128)h0 + 5);
g1 = (u64)(t = (u128)h1 + (t >> 64));
g2 = h2 + (u64)(t >> 64);
/* if there was carry into 131st bit, h1:h0 = g1:g0 */
mask = 0 - (g2 >> 2);
g0 &= mask;
g1 &= mask;
mask = ~mask;
h0 = (h0 & mask) | g0;
h1 = (h1 & mask) | g1;
/* mac = (h + nonce) % (2^128) */
h0 = (u64)(t = (u128)h0 + nonce[0] + ((u64)nonce[1]<<32));
h1 = (u64)(t = (u128)h1 + nonce[2] + ((u64)nonce[3]<<32) + (t >> 64));
U64TO8(mac + 0, h0);
U64TO8(mac + 8, h1);
}