ghashv8-armx.pl 18.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
#! /usr/bin/env perl
# Copyright 2014-2018 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License").  You may not use
# this file except in compliance with the License.  You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html

#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# GHASH for ARMv8 Crypto Extension, 64-bit polynomial multiplication.
#
# June 2014
#
# Initial version was developed in tight cooperation with Ard
# Biesheuvel of Linaro from bits-n-pieces from other assembly modules.
# Just like aesv8-armx.pl this module supports both AArch32 and
# AArch64 execution modes.
#
# July 2014
#
# Implement 2x aggregated reduction [see ghash-x86.pl for background
# information].
#
# November 2017
#
# AArch64 register bank to "accommodate" 4x aggregated reduction and
# improve performance by 20-70% depending on processor.
#
# Current performance in cycles per processed byte:
#
#		64-bit PMULL	32-bit PMULL	32-bit NEON(*)
# Apple A7	0.58		0.92		5.62
# Cortex-A53	0.85		1.01		8.39
# Cortex-A57	0.73		1.17		7.61
# Denver	0.51		0.65		6.02
# Mongoose	0.65		1.10		8.06
# Kryo		0.76		1.16		8.00
#
# (*)	presented for reference/comparison purposes;

$flavour = shift;
$output  = shift;

$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
die "can't locate arm-xlate.pl";

open OUT,"| \"$^X\" $xlate $flavour $output";
*STDOUT=*OUT;

$Xi="x0";	# argument block
$Htbl="x1";
$inp="x2";
$len="x3";

$inc="x12";

{
my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3));
my ($t0,$t1,$t2,$xC2,$H,$Hhl,$H2)=map("q$_",(8..14));

$code=<<___;
#include "arm_arch.h"

#if __ARM_MAX_ARCH__>=7
.text
___
$code.=".arch	armv8-a+crypto\n"	if ($flavour =~ /64/);
$code.=<<___				if ($flavour !~ /64/);
.fpu	neon
.code	32
#undef	__thumb2__
___

################################################################################
# void gcm_init_v8(u128 Htable[16],const u64 H[2]);
#
# input:	128-bit H - secret parameter E(K,0^128)
# output:	precomputed table filled with degrees of twisted H;
#		H is twisted to handle reverse bitness of GHASH;
#		only few of 16 slots of Htable[16] are used;
#		data is opaque to outside world (which allows to
#		optimize the code independently);
#
$code.=<<___;
.global	gcm_init_v8
.type	gcm_init_v8,%function
.align	4
gcm_init_v8:
	vld1.64		{$t1},[x1]		@ load input H
	vmov.i8		$xC2,#0xe1
	vshl.i64	$xC2,$xC2,#57		@ 0xc2.0
	vext.8		$IN,$t1,$t1,#8
	vshr.u64	$t2,$xC2,#63
	vdup.32		$t1,${t1}[1]
	vext.8		$t0,$t2,$xC2,#8		@ t0=0xc2....01
	vshr.u64	$t2,$IN,#63
	vshr.s32	$t1,$t1,#31		@ broadcast carry bit
	vand		$t2,$t2,$t0
	vshl.i64	$IN,$IN,#1
	vext.8		$t2,$t2,$t2,#8
	vand		$t0,$t0,$t1
	vorr		$IN,$IN,$t2		@ H<<<=1
	veor		$H,$IN,$t0		@ twisted H
	vst1.64		{$H},[x0],#16		@ store Htable[0]

	@ calculate H^2
	vext.8		$t0,$H,$H,#8		@ Karatsuba pre-processing
	vpmull.p64	$Xl,$H,$H
	veor		$t0,$t0,$H
	vpmull2.p64	$Xh,$H,$H
	vpmull.p64	$Xm,$t0,$t0

	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
	veor		$t2,$Xl,$Xh
	veor		$Xm,$Xm,$t1
	veor		$Xm,$Xm,$t2
	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase

	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
	veor		$Xl,$Xm,$t2

	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase
	vpmull.p64	$Xl,$Xl,$xC2
	veor		$t2,$t2,$Xh
	veor		$H2,$Xl,$t2

	vext.8		$t1,$H2,$H2,#8		@ Karatsuba pre-processing
	veor		$t1,$t1,$H2
	vext.8		$Hhl,$t0,$t1,#8		@ pack Karatsuba pre-processed
	vst1.64		{$Hhl-$H2},[x0],#32	@ store Htable[1..2]
___
if ($flavour =~ /64/) {
my ($t3,$Yl,$Ym,$Yh) = map("q$_",(4..7));

$code.=<<___;
	@ calculate H^3 and H^4
	vpmull.p64	$Xl,$H, $H2
	 vpmull.p64	$Yl,$H2,$H2
	vpmull2.p64	$Xh,$H, $H2
	 vpmull2.p64	$Yh,$H2,$H2
	vpmull.p64	$Xm,$t0,$t1
	 vpmull.p64	$Ym,$t1,$t1

	vext.8		$t0,$Xl,$Xh,#8		@ Karatsuba post-processing
	 vext.8		$t1,$Yl,$Yh,#8
	veor		$t2,$Xl,$Xh
	veor		$Xm,$Xm,$t0
	 veor		$t3,$Yl,$Yh
	 veor		$Ym,$Ym,$t1
	veor		$Xm,$Xm,$t2
	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase
	 veor		$Ym,$Ym,$t3
	 vpmull.p64	$t3,$Yl,$xC2

	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
	 vmov		$Yh#lo,$Ym#hi
	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
	 vmov		$Ym#hi,$Yl#lo
	veor		$Xl,$Xm,$t2
	 veor		$Yl,$Ym,$t3

	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase
	 vext.8		$t3,$Yl,$Yl,#8
	vpmull.p64	$Xl,$Xl,$xC2
	 vpmull.p64	$Yl,$Yl,$xC2
	veor		$t2,$t2,$Xh
	 veor		$t3,$t3,$Yh
	veor		$H, $Xl,$t2		@ H^3
	 veor		$H2,$Yl,$t3		@ H^4

	vext.8		$t0,$H, $H,#8		@ Karatsuba pre-processing
	 vext.8		$t1,$H2,$H2,#8
	veor		$t0,$t0,$H
	 veor		$t1,$t1,$H2
	vext.8		$Hhl,$t0,$t1,#8		@ pack Karatsuba pre-processed
	vst1.64		{$H-$H2},[x0]		@ store Htable[3..5]
___
}
$code.=<<___;
	ret
.size	gcm_init_v8,.-gcm_init_v8
___
################################################################################
# void gcm_gmult_v8(u64 Xi[2],const u128 Htable[16]);
#
# input:	Xi - current hash value;
#		Htable - table precomputed in gcm_init_v8;
# output:	Xi - next hash value Xi;
#
$code.=<<___;
.global	gcm_gmult_v8
.type	gcm_gmult_v8,%function
.align	4
gcm_gmult_v8:
	vld1.64		{$t1},[$Xi]		@ load Xi
	vmov.i8		$xC2,#0xe1
	vld1.64		{$H-$Hhl},[$Htbl]	@ load twisted H, ...
	vshl.u64	$xC2,$xC2,#57
#ifndef __ARMEB__
	vrev64.8	$t1,$t1
#endif
	vext.8		$IN,$t1,$t1,#8

	vpmull.p64	$Xl,$H,$IN		@ H.lo·Xi.lo
	veor		$t1,$t1,$IN		@ Karatsuba pre-processing
	vpmull2.p64	$Xh,$H,$IN		@ H.hi·Xi.hi
	vpmull.p64	$Xm,$Hhl,$t1		@ (H.lo+H.hi)·(Xi.lo+Xi.hi)

	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
	veor		$t2,$Xl,$Xh
	veor		$Xm,$Xm,$t1
	veor		$Xm,$Xm,$t2
	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction

	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
	veor		$Xl,$Xm,$t2

	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
	vpmull.p64	$Xl,$Xl,$xC2
	veor		$t2,$t2,$Xh
	veor		$Xl,$Xl,$t2

#ifndef __ARMEB__
	vrev64.8	$Xl,$Xl
#endif
	vext.8		$Xl,$Xl,$Xl,#8
	vst1.64		{$Xl},[$Xi]		@ write out Xi

	ret
.size	gcm_gmult_v8,.-gcm_gmult_v8
___
################################################################################
# void gcm_ghash_v8(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
#
# input:	table precomputed in gcm_init_v8;
#		current hash value Xi;
#		pointer to input data;
#		length of input data in bytes, but divisible by block size;
# output:	next hash value Xi;
#
$code.=<<___;
.global	gcm_ghash_v8
.type	gcm_ghash_v8,%function
.align	4
gcm_ghash_v8:
___
$code.=<<___	if ($flavour =~ /64/);
	cmp		$len,#64
	b.hs		.Lgcm_ghash_v8_4x
___
$code.=<<___		if ($flavour !~ /64/);
	vstmdb		sp!,{d8-d15}		@ 32-bit ABI says so
___
$code.=<<___;
	vld1.64		{$Xl},[$Xi]		@ load [rotated] Xi
						@ "[rotated]" means that
						@ loaded value would have
						@ to be rotated in order to
						@ make it appear as in
						@ algorithm specification
	subs		$len,$len,#32		@ see if $len is 32 or larger
	mov		$inc,#16		@ $inc is used as post-
						@ increment for input pointer;
						@ as loop is modulo-scheduled
						@ $inc is zeroed just in time
						@ to preclude overstepping
						@ inp[len], which means that
						@ last block[s] are actually
						@ loaded twice, but last
						@ copy is not processed
	vld1.64		{$H-$Hhl},[$Htbl],#32	@ load twisted H, ..., H^2
	vmov.i8		$xC2,#0xe1
	vld1.64		{$H2},[$Htbl]
	cclr		$inc,eq			@ is it time to zero $inc?
	vext.8		$Xl,$Xl,$Xl,#8		@ rotate Xi
	vld1.64		{$t0},[$inp],#16	@ load [rotated] I[0]
	vshl.u64	$xC2,$xC2,#57		@ compose 0xc2.0 constant
#ifndef __ARMEB__
	vrev64.8	$t0,$t0
	vrev64.8	$Xl,$Xl
#endif
	vext.8		$IN,$t0,$t0,#8		@ rotate I[0]
	b.lo		.Lodd_tail_v8		@ $len was less than 32
___
{ my ($Xln,$Xmn,$Xhn,$In) = map("q$_",(4..7));
	#######
	# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
	#	[(H*Ii+1) + (H*Xi+1)] mod P =
	#	[(H*Ii+1) + H^2*(Ii+Xi)] mod P
	#
$code.=<<___;
	vld1.64		{$t1},[$inp],$inc	@ load [rotated] I[1]
#ifndef __ARMEB__
	vrev64.8	$t1,$t1
#endif
	vext.8		$In,$t1,$t1,#8
	veor		$IN,$IN,$Xl		@ I[i]^=Xi
	vpmull.p64	$Xln,$H,$In		@ H·Ii+1
	veor		$t1,$t1,$In		@ Karatsuba pre-processing
	vpmull2.p64	$Xhn,$H,$In
	b		.Loop_mod2x_v8

.align	4
.Loop_mod2x_v8:
	vext.8		$t2,$IN,$IN,#8
	subs		$len,$len,#32		@ is there more data?
	vpmull.p64	$Xl,$H2,$IN		@ H^2.lo·Xi.lo
	cclr		$inc,lo			@ is it time to zero $inc?

	 vpmull.p64	$Xmn,$Hhl,$t1
	veor		$t2,$t2,$IN		@ Karatsuba pre-processing
	vpmull2.p64	$Xh,$H2,$IN		@ H^2.hi·Xi.hi
	veor		$Xl,$Xl,$Xln		@ accumulate
	vpmull2.p64	$Xm,$Hhl,$t2		@ (H^2.lo+H^2.hi)·(Xi.lo+Xi.hi)
	 vld1.64	{$t0},[$inp],$inc	@ load [rotated] I[i+2]

	veor		$Xh,$Xh,$Xhn
	 cclr		$inc,eq			@ is it time to zero $inc?
	veor		$Xm,$Xm,$Xmn

	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
	veor		$t2,$Xl,$Xh
	veor		$Xm,$Xm,$t1
	 vld1.64	{$t1},[$inp],$inc	@ load [rotated] I[i+3]
#ifndef __ARMEB__
	 vrev64.8	$t0,$t0
#endif
	veor		$Xm,$Xm,$t2
	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction

#ifndef __ARMEB__
	 vrev64.8	$t1,$t1
#endif
	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
	 vext.8		$In,$t1,$t1,#8
	 vext.8		$IN,$t0,$t0,#8
	veor		$Xl,$Xm,$t2
	 vpmull.p64	$Xln,$H,$In		@ H·Ii+1
	veor		$IN,$IN,$Xh		@ accumulate $IN early

	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
	vpmull.p64	$Xl,$Xl,$xC2
	veor		$IN,$IN,$t2
	 veor		$t1,$t1,$In		@ Karatsuba pre-processing
	veor		$IN,$IN,$Xl
	 vpmull2.p64	$Xhn,$H,$In
	b.hs		.Loop_mod2x_v8		@ there was at least 32 more bytes

	veor		$Xh,$Xh,$t2
	vext.8		$IN,$t0,$t0,#8		@ re-construct $IN
	adds		$len,$len,#32		@ re-construct $len
	veor		$Xl,$Xl,$Xh		@ re-construct $Xl
	b.eq		.Ldone_v8		@ is $len zero?
___
}
$code.=<<___;
.Lodd_tail_v8:
	vext.8		$t2,$Xl,$Xl,#8
	veor		$IN,$IN,$Xl		@ inp^=Xi
	veor		$t1,$t0,$t2		@ $t1 is rotated inp^Xi

	vpmull.p64	$Xl,$H,$IN		@ H.lo·Xi.lo
	veor		$t1,$t1,$IN		@ Karatsuba pre-processing
	vpmull2.p64	$Xh,$H,$IN		@ H.hi·Xi.hi
	vpmull.p64	$Xm,$Hhl,$t1		@ (H.lo+H.hi)·(Xi.lo+Xi.hi)

	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
	veor		$t2,$Xl,$Xh
	veor		$Xm,$Xm,$t1
	veor		$Xm,$Xm,$t2
	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction

	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
	veor		$Xl,$Xm,$t2

	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
	vpmull.p64	$Xl,$Xl,$xC2
	veor		$t2,$t2,$Xh
	veor		$Xl,$Xl,$t2

.Ldone_v8:
#ifndef __ARMEB__
	vrev64.8	$Xl,$Xl
#endif
	vext.8		$Xl,$Xl,$Xl,#8
	vst1.64		{$Xl},[$Xi]		@ write out Xi

___
$code.=<<___		if ($flavour !~ /64/);
	vldmia		sp!,{d8-d15}		@ 32-bit ABI says so
___
$code.=<<___;
	ret
.size	gcm_ghash_v8,.-gcm_ghash_v8
___

if ($flavour =~ /64/) {				# 4x subroutine
my ($I0,$j1,$j2,$j3,
    $I1,$I2,$I3,$H3,$H34,$H4,$Yl,$Ym,$Yh) = map("q$_",(4..7,15..23));

$code.=<<___;
.type	gcm_ghash_v8_4x,%function
.align	4
gcm_ghash_v8_4x:
.Lgcm_ghash_v8_4x:
	vld1.64		{$Xl},[$Xi]		@ load [rotated] Xi
	vld1.64		{$H-$H2},[$Htbl],#48	@ load twisted H, ..., H^2
	vmov.i8		$xC2,#0xe1
	vld1.64		{$H3-$H4},[$Htbl]	@ load twisted H^3, ..., H^4
	vshl.u64	$xC2,$xC2,#57		@ compose 0xc2.0 constant

	vld1.64		{$I0-$j3},[$inp],#64
#ifndef __ARMEB__
	vrev64.8	$Xl,$Xl
	vrev64.8	$j1,$j1
	vrev64.8	$j2,$j2
	vrev64.8	$j3,$j3
	vrev64.8	$I0,$I0
#endif
	vext.8		$I3,$j3,$j3,#8
	vext.8		$I2,$j2,$j2,#8
	vext.8		$I1,$j1,$j1,#8

	vpmull.p64	$Yl,$H,$I3		@ H·Ii+3
	veor		$j3,$j3,$I3
	vpmull2.p64	$Yh,$H,$I3
	vpmull.p64	$Ym,$Hhl,$j3

	vpmull.p64	$t0,$H2,$I2		@ H^2·Ii+2
	veor		$j2,$j2,$I2
	vpmull2.p64	$I2,$H2,$I2
	vpmull2.p64	$j2,$Hhl,$j2

	veor		$Yl,$Yl,$t0
	veor		$Yh,$Yh,$I2
	veor		$Ym,$Ym,$j2

	vpmull.p64	$j3,$H3,$I1		@ H^3·Ii+1
	veor		$j1,$j1,$I1
	vpmull2.p64	$I1,$H3,$I1
	vpmull.p64	$j1,$H34,$j1

	veor		$Yl,$Yl,$j3
	veor		$Yh,$Yh,$I1
	veor		$Ym,$Ym,$j1

	subs		$len,$len,#128
	b.lo		.Ltail4x

	b		.Loop4x

.align	4
.Loop4x:
	veor		$t0,$I0,$Xl
	 vld1.64	{$I0-$j3},[$inp],#64
	vext.8		$IN,$t0,$t0,#8
#ifndef __ARMEB__
	 vrev64.8	$j1,$j1
	 vrev64.8	$j2,$j2
	 vrev64.8	$j3,$j3
	 vrev64.8	$I0,$I0
#endif

	vpmull.p64	$Xl,$H4,$IN		@ H^4·(Xi+Ii)
	veor		$t0,$t0,$IN
	vpmull2.p64	$Xh,$H4,$IN
	 vext.8		$I3,$j3,$j3,#8
	vpmull2.p64	$Xm,$H34,$t0

	veor		$Xl,$Xl,$Yl
	veor		$Xh,$Xh,$Yh
	 vext.8		$I2,$j2,$j2,#8
	veor		$Xm,$Xm,$Ym
	 vext.8		$I1,$j1,$j1,#8

	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
	veor		$t2,$Xl,$Xh
	 vpmull.p64	$Yl,$H,$I3		@ H·Ii+3
	 veor		$j3,$j3,$I3
	veor		$Xm,$Xm,$t1
	 vpmull2.p64	$Yh,$H,$I3
	veor		$Xm,$Xm,$t2
	 vpmull.p64	$Ym,$Hhl,$j3

	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction
	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
	 vpmull.p64	$t0,$H2,$I2		@ H^2·Ii+2
	 veor		$j2,$j2,$I2
	 vpmull2.p64	$I2,$H2,$I2
	veor		$Xl,$Xm,$t2
	 vpmull2.p64	$j2,$Hhl,$j2

	 veor		$Yl,$Yl,$t0
	 veor		$Yh,$Yh,$I2
	 veor		$Ym,$Ym,$j2

	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
	vpmull.p64	$Xl,$Xl,$xC2
	 vpmull.p64	$j3,$H3,$I1		@ H^3·Ii+1
	 veor		$j1,$j1,$I1
	veor		$t2,$t2,$Xh
	 vpmull2.p64	$I1,$H3,$I1
	 vpmull.p64	$j1,$H34,$j1

	veor		$Xl,$Xl,$t2
	 veor		$Yl,$Yl,$j3
	 veor		$Yh,$Yh,$I1
	vext.8		$Xl,$Xl,$Xl,#8
	 veor		$Ym,$Ym,$j1

	subs		$len,$len,#64
	b.hs		.Loop4x

.Ltail4x:
	veor		$t0,$I0,$Xl
	vext.8		$IN,$t0,$t0,#8

	vpmull.p64	$Xl,$H4,$IN		@ H^4·(Xi+Ii)
	veor		$t0,$t0,$IN
	vpmull2.p64	$Xh,$H4,$IN
	vpmull2.p64	$Xm,$H34,$t0

	veor		$Xl,$Xl,$Yl
	veor		$Xh,$Xh,$Yh
	veor		$Xm,$Xm,$Ym

	adds		$len,$len,#64
	b.eq		.Ldone4x

	cmp		$len,#32
	b.lo		.Lone
	b.eq		.Ltwo
.Lthree:
	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
	veor		$t2,$Xl,$Xh
	veor		$Xm,$Xm,$t1
	 vld1.64	{$I0-$j2},[$inp]
	veor		$Xm,$Xm,$t2
#ifndef	__ARMEB__
	 vrev64.8	$j1,$j1
	 vrev64.8	$j2,$j2
	 vrev64.8	$I0,$I0
#endif

	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction
	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
	 vext.8		$I2,$j2,$j2,#8
	 vext.8		$I1,$j1,$j1,#8
	veor		$Xl,$Xm,$t2

	 vpmull.p64	$Yl,$H,$I2		@ H·Ii+2
	 veor		$j2,$j2,$I2

	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
	vpmull.p64	$Xl,$Xl,$xC2
	veor		$t2,$t2,$Xh
	 vpmull2.p64	$Yh,$H,$I2
	 vpmull.p64	$Ym,$Hhl,$j2
	veor		$Xl,$Xl,$t2
	 vpmull.p64	$j3,$H2,$I1		@ H^2·Ii+1
	 veor		$j1,$j1,$I1
	vext.8		$Xl,$Xl,$Xl,#8

	 vpmull2.p64	$I1,$H2,$I1
	veor		$t0,$I0,$Xl
	 vpmull2.p64	$j1,$Hhl,$j1
	vext.8		$IN,$t0,$t0,#8

	 veor		$Yl,$Yl,$j3
	 veor		$Yh,$Yh,$I1
	 veor		$Ym,$Ym,$j1

	vpmull.p64	$Xl,$H3,$IN		@ H^3·(Xi+Ii)
	veor		$t0,$t0,$IN
	vpmull2.p64	$Xh,$H3,$IN
	vpmull.p64	$Xm,$H34,$t0

	veor		$Xl,$Xl,$Yl
	veor		$Xh,$Xh,$Yh
	veor		$Xm,$Xm,$Ym
	b		.Ldone4x

.align	4
.Ltwo:
	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
	veor		$t2,$Xl,$Xh
	veor		$Xm,$Xm,$t1
	 vld1.64	{$I0-$j1},[$inp]
	veor		$Xm,$Xm,$t2
#ifndef	__ARMEB__
	 vrev64.8	$j1,$j1
	 vrev64.8	$I0,$I0
#endif

	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction
	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
	 vext.8		$I1,$j1,$j1,#8
	veor		$Xl,$Xm,$t2

	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
	vpmull.p64	$Xl,$Xl,$xC2
	veor		$t2,$t2,$Xh
	veor		$Xl,$Xl,$t2
	vext.8		$Xl,$Xl,$Xl,#8

	 vpmull.p64	$Yl,$H,$I1		@ H·Ii+1
	 veor		$j1,$j1,$I1

	veor		$t0,$I0,$Xl
	vext.8		$IN,$t0,$t0,#8

	 vpmull2.p64	$Yh,$H,$I1
	 vpmull.p64	$Ym,$Hhl,$j1

	vpmull.p64	$Xl,$H2,$IN		@ H^2·(Xi+Ii)
	veor		$t0,$t0,$IN
	vpmull2.p64	$Xh,$H2,$IN
	vpmull2.p64	$Xm,$Hhl,$t0

	veor		$Xl,$Xl,$Yl
	veor		$Xh,$Xh,$Yh
	veor		$Xm,$Xm,$Ym
	b		.Ldone4x

.align	4
.Lone:
	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
	veor		$t2,$Xl,$Xh
	veor		$Xm,$Xm,$t1
	 vld1.64	{$I0},[$inp]
	veor		$Xm,$Xm,$t2
#ifndef	__ARMEB__
	 vrev64.8	$I0,$I0
#endif

	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction
	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
	veor		$Xl,$Xm,$t2

	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
	vpmull.p64	$Xl,$Xl,$xC2
	veor		$t2,$t2,$Xh
	veor		$Xl,$Xl,$t2
	vext.8		$Xl,$Xl,$Xl,#8

	veor		$t0,$I0,$Xl
	vext.8		$IN,$t0,$t0,#8

	vpmull.p64	$Xl,$H,$IN
	veor		$t0,$t0,$IN
	vpmull2.p64	$Xh,$H,$IN
	vpmull.p64	$Xm,$Hhl,$t0

.Ldone4x:
	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
	veor		$t2,$Xl,$Xh
	veor		$Xm,$Xm,$t1
	veor		$Xm,$Xm,$t2

	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction
	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
	veor		$Xl,$Xm,$t2

	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
	vpmull.p64	$Xl,$Xl,$xC2
	veor		$t2,$t2,$Xh
	veor		$Xl,$Xl,$t2
	vext.8		$Xl,$Xl,$Xl,#8

#ifndef __ARMEB__
	vrev64.8	$Xl,$Xl
#endif
	vst1.64		{$Xl},[$Xi]		@ write out Xi

	ret
.size	gcm_ghash_v8_4x,.-gcm_ghash_v8_4x
___

}
}

$code.=<<___;
.asciz  "GHASH for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
.align  2
#endif
___

if ($flavour =~ /64/) {			######## 64-bit code
    sub unvmov {
	my $arg=shift;

	$arg =~ m/q([0-9]+)#(lo|hi),\s*q([0-9]+)#(lo|hi)/o &&
	sprintf	"ins	v%d.d[%d],v%d.d[%d]",$1<8?$1:$1+8,($2 eq "lo")?0:1,
					     $3<8?$3:$3+8,($4 eq "lo")?0:1;
    }
    foreach(split("\n",$code)) {
	s/cclr\s+([wx])([^,]+),\s*([a-z]+)/csel	$1$2,$1zr,$1$2,$3/o	or
	s/vmov\.i8/movi/o		or	# fix up legacy mnemonics
	s/vmov\s+(.*)/unvmov($1)/geo	or
	s/vext\.8/ext/o			or
	s/vshr\.s/sshr\.s/o		or
	s/vshr/ushr/o			or
	s/^(\s+)v/$1/o			or	# strip off v prefix
	s/\bbx\s+lr\b/ret/o;

	s/\bq([0-9]+)\b/"v".($1<8?$1:$1+8).".16b"/geo;	# old->new registers
	s/@\s/\/\//o;				# old->new style commentary

	# fix up remaining legacy suffixes
	s/\.[ui]?8(\s)/$1/o;
	s/\.[uis]?32//o and s/\.16b/\.4s/go;
	m/\.p64/o and s/\.16b/\.1q/o;		# 1st pmull argument
	m/l\.p64/o and s/\.16b/\.1d/go;		# 2nd and 3rd pmull arguments
	s/\.[uisp]?64//o and s/\.16b/\.2d/go;
	s/\.[42]([sd])\[([0-3])\]/\.$1\[$2\]/o;

	print $_,"\n";
    }
} else {				######## 32-bit code
    sub unvdup32 {
	my $arg=shift;

	$arg =~ m/q([0-9]+),\s*q([0-9]+)\[([0-3])\]/o &&
	sprintf	"vdup.32	q%d,d%d[%d]",$1,2*$2+($3>>1),$3&1;
    }
    sub unvpmullp64 {
	my ($mnemonic,$arg)=@_;

	if ($arg =~ m/q([0-9]+),\s*q([0-9]+),\s*q([0-9]+)/o) {
	    my $word = 0xf2a00e00|(($1&7)<<13)|(($1&8)<<19)
				 |(($2&7)<<17)|(($2&8)<<4)
				 |(($3&7)<<1) |(($3&8)<<2);
	    $word |= 0x00010001	 if ($mnemonic =~ "2");
	    # since ARMv7 instructions are always encoded little-endian.
	    # correct solution is to use .inst directive, but older
	    # assemblers don't implement it:-(
	    sprintf ".byte\t0x%02x,0x%02x,0x%02x,0x%02x\t@ %s %s",
			$word&0xff,($word>>8)&0xff,
			($word>>16)&0xff,($word>>24)&0xff,
			$mnemonic,$arg;
	}
    }

    foreach(split("\n",$code)) {
	s/\b[wx]([0-9]+)\b/r$1/go;		# new->old registers
	s/\bv([0-9])\.[12468]+[bsd]\b/q$1/go;	# new->old registers
	s/\/\/\s?/@ /o;				# new->old style commentary

	# fix up remaining new-style suffixes
	s/\],#[0-9]+/]!/o;

	s/cclr\s+([^,]+),\s*([a-z]+)/mov$2	$1,#0/o			or
	s/vdup\.32\s+(.*)/unvdup32($1)/geo				or
	s/v?(pmull2?)\.p64\s+(.*)/unvpmullp64($1,$2)/geo		or
	s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo	or
	s/^(\s+)b\./$1b/o						or
	s/^(\s+)ret/$1bx\tlr/o;

	print $_,"\n";
    }
}

close STDOUT; # enforce flush