ec2_smpl.c 26.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
/*
 * Copyright 2002-2018 The OpenSSL Project Authors. All Rights Reserved.
 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <openssl/err.h>

#include "internal/bn_int.h"
#include "ec_lcl.h"

#ifndef OPENSSL_NO_EC2M

/*
 * Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members
 * are handled by EC_GROUP_new.
 */
int ec_GF2m_simple_group_init(EC_GROUP *group)
{
    group->field = BN_new();
    group->a = BN_new();
    group->b = BN_new();

    if (group->field == NULL || group->a == NULL || group->b == NULL) {
        BN_free(group->field);
        BN_free(group->a);
        BN_free(group->b);
        return 0;
    }
    return 1;
}

/*
 * Free a GF(2^m)-based EC_GROUP structure. Note that all other members are
 * handled by EC_GROUP_free.
 */
void ec_GF2m_simple_group_finish(EC_GROUP *group)
{
    BN_free(group->field);
    BN_free(group->a);
    BN_free(group->b);
}

/*
 * Clear and free a GF(2^m)-based EC_GROUP structure. Note that all other
 * members are handled by EC_GROUP_clear_free.
 */
void ec_GF2m_simple_group_clear_finish(EC_GROUP *group)
{
    BN_clear_free(group->field);
    BN_clear_free(group->a);
    BN_clear_free(group->b);
    group->poly[0] = 0;
    group->poly[1] = 0;
    group->poly[2] = 0;
    group->poly[3] = 0;
    group->poly[4] = 0;
    group->poly[5] = -1;
}

/*
 * Copy a GF(2^m)-based EC_GROUP structure. Note that all other members are
 * handled by EC_GROUP_copy.
 */
int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
{
    if (!BN_copy(dest->field, src->field))
        return 0;
    if (!BN_copy(dest->a, src->a))
        return 0;
    if (!BN_copy(dest->b, src->b))
        return 0;
    dest->poly[0] = src->poly[0];
    dest->poly[1] = src->poly[1];
    dest->poly[2] = src->poly[2];
    dest->poly[3] = src->poly[3];
    dest->poly[4] = src->poly[4];
    dest->poly[5] = src->poly[5];
    if (bn_wexpand(dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==
        NULL)
        return 0;
    if (bn_wexpand(dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==
        NULL)
        return 0;
    bn_set_all_zero(dest->a);
    bn_set_all_zero(dest->b);
    return 1;
}

/* Set the curve parameters of an EC_GROUP structure. */
int ec_GF2m_simple_group_set_curve(EC_GROUP *group,
                                   const BIGNUM *p, const BIGNUM *a,
                                   const BIGNUM *b, BN_CTX *ctx)
{
    int ret = 0, i;

    /* group->field */
    if (!BN_copy(group->field, p))
        goto err;
    i = BN_GF2m_poly2arr(group->field, group->poly, 6) - 1;
    if ((i != 5) && (i != 3)) {
        ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD);
        goto err;
    }

    /* group->a */
    if (!BN_GF2m_mod_arr(group->a, a, group->poly))
        goto err;
    if (bn_wexpand(group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
        == NULL)
        goto err;
    bn_set_all_zero(group->a);

    /* group->b */
    if (!BN_GF2m_mod_arr(group->b, b, group->poly))
        goto err;
    if (bn_wexpand(group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
        == NULL)
        goto err;
    bn_set_all_zero(group->b);

    ret = 1;
 err:
    return ret;
}

/*
 * Get the curve parameters of an EC_GROUP structure. If p, a, or b are NULL
 * then there values will not be set but the method will return with success.
 */
int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p,
                                   BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
{
    int ret = 0;

    if (p != NULL) {
        if (!BN_copy(p, group->field))
            return 0;
    }

    if (a != NULL) {
        if (!BN_copy(a, group->a))
            goto err;
    }

    if (b != NULL) {
        if (!BN_copy(b, group->b))
            goto err;
    }

    ret = 1;

 err:
    return ret;
}

/*
 * Gets the degree of the field.  For a curve over GF(2^m) this is the value
 * m.
 */
int ec_GF2m_simple_group_get_degree(const EC_GROUP *group)
{
    return BN_num_bits(group->field) - 1;
}

/*
 * Checks the discriminant of the curve. y^2 + x*y = x^3 + a*x^2 + b is an
 * elliptic curve <=> b != 0 (mod p)
 */
int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group,
                                            BN_CTX *ctx)
{
    int ret = 0;
    BIGNUM *b;
    BN_CTX *new_ctx = NULL;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL) {
            ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT,
                  ERR_R_MALLOC_FAILURE);
            goto err;
        }
    }
    BN_CTX_start(ctx);
    b = BN_CTX_get(ctx);
    if (b == NULL)
        goto err;

    if (!BN_GF2m_mod_arr(b, group->b, group->poly))
        goto err;

    /*
     * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic
     * curve <=> b != 0 (mod p)
     */
    if (BN_is_zero(b))
        goto err;

    ret = 1;

 err:
    if (ctx != NULL)
        BN_CTX_end(ctx);
    BN_CTX_free(new_ctx);
    return ret;
}

/* Initializes an EC_POINT. */
int ec_GF2m_simple_point_init(EC_POINT *point)
{
    point->X = BN_new();
    point->Y = BN_new();
    point->Z = BN_new();

    if (point->X == NULL || point->Y == NULL || point->Z == NULL) {
        BN_free(point->X);
        BN_free(point->Y);
        BN_free(point->Z);
        return 0;
    }
    return 1;
}

/* Frees an EC_POINT. */
void ec_GF2m_simple_point_finish(EC_POINT *point)
{
    BN_free(point->X);
    BN_free(point->Y);
    BN_free(point->Z);
}

/* Clears and frees an EC_POINT. */
void ec_GF2m_simple_point_clear_finish(EC_POINT *point)
{
    BN_clear_free(point->X);
    BN_clear_free(point->Y);
    BN_clear_free(point->Z);
    point->Z_is_one = 0;
}

/*
 * Copy the contents of one EC_POINT into another.  Assumes dest is
 * initialized.
 */
int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
{
    if (!BN_copy(dest->X, src->X))
        return 0;
    if (!BN_copy(dest->Y, src->Y))
        return 0;
    if (!BN_copy(dest->Z, src->Z))
        return 0;
    dest->Z_is_one = src->Z_is_one;
    dest->curve_name = src->curve_name;

    return 1;
}

/*
 * Set an EC_POINT to the point at infinity. A point at infinity is
 * represented by having Z=0.
 */
int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group,
                                         EC_POINT *point)
{
    point->Z_is_one = 0;
    BN_zero(point->Z);
    return 1;
}

/*
 * Set the coordinates of an EC_POINT using affine coordinates. Note that
 * the simple implementation only uses affine coordinates.
 */
int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group,
                                                EC_POINT *point,
                                                const BIGNUM *x,
                                                const BIGNUM *y, BN_CTX *ctx)
{
    int ret = 0;
    if (x == NULL || y == NULL) {
        ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES,
              ERR_R_PASSED_NULL_PARAMETER);
        return 0;
    }

    if (!BN_copy(point->X, x))
        goto err;
    BN_set_negative(point->X, 0);
    if (!BN_copy(point->Y, y))
        goto err;
    BN_set_negative(point->Y, 0);
    if (!BN_copy(point->Z, BN_value_one()))
        goto err;
    BN_set_negative(point->Z, 0);
    point->Z_is_one = 1;
    ret = 1;

 err:
    return ret;
}

/*
 * Gets the affine coordinates of an EC_POINT. Note that the simple
 * implementation only uses affine coordinates.
 */
int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group,
                                                const EC_POINT *point,
                                                BIGNUM *x, BIGNUM *y,
                                                BN_CTX *ctx)
{
    int ret = 0;

    if (EC_POINT_is_at_infinity(group, point)) {
        ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,
              EC_R_POINT_AT_INFINITY);
        return 0;
    }

    if (BN_cmp(point->Z, BN_value_one())) {
        ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,
              ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
        return 0;
    }
    if (x != NULL) {
        if (!BN_copy(x, point->X))
            goto err;
        BN_set_negative(x, 0);
    }
    if (y != NULL) {
        if (!BN_copy(y, point->Y))
            goto err;
        BN_set_negative(y, 0);
    }
    ret = 1;

 err:
    return ret;
}

/*
 * Computes a + b and stores the result in r.  r could be a or b, a could be
 * b. Uses algorithm A.10.2 of IEEE P1363.
 */
int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
                       const EC_POINT *b, BN_CTX *ctx)
{
    BN_CTX *new_ctx = NULL;
    BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
    int ret = 0;

    if (EC_POINT_is_at_infinity(group, a)) {
        if (!EC_POINT_copy(r, b))
            return 0;
        return 1;
    }

    if (EC_POINT_is_at_infinity(group, b)) {
        if (!EC_POINT_copy(r, a))
            return 0;
        return 1;
    }

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return 0;
    }

    BN_CTX_start(ctx);
    x0 = BN_CTX_get(ctx);
    y0 = BN_CTX_get(ctx);
    x1 = BN_CTX_get(ctx);
    y1 = BN_CTX_get(ctx);
    x2 = BN_CTX_get(ctx);
    y2 = BN_CTX_get(ctx);
    s = BN_CTX_get(ctx);
    t = BN_CTX_get(ctx);
    if (t == NULL)
        goto err;

    if (a->Z_is_one) {
        if (!BN_copy(x0, a->X))
            goto err;
        if (!BN_copy(y0, a->Y))
            goto err;
    } else {
        if (!EC_POINT_get_affine_coordinates(group, a, x0, y0, ctx))
            goto err;
    }
    if (b->Z_is_one) {
        if (!BN_copy(x1, b->X))
            goto err;
        if (!BN_copy(y1, b->Y))
            goto err;
    } else {
        if (!EC_POINT_get_affine_coordinates(group, b, x1, y1, ctx))
            goto err;
    }

    if (BN_GF2m_cmp(x0, x1)) {
        if (!BN_GF2m_add(t, x0, x1))
            goto err;
        if (!BN_GF2m_add(s, y0, y1))
            goto err;
        if (!group->meth->field_div(group, s, s, t, ctx))
            goto err;
        if (!group->meth->field_sqr(group, x2, s, ctx))
            goto err;
        if (!BN_GF2m_add(x2, x2, group->a))
            goto err;
        if (!BN_GF2m_add(x2, x2, s))
            goto err;
        if (!BN_GF2m_add(x2, x2, t))
            goto err;
    } else {
        if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) {
            if (!EC_POINT_set_to_infinity(group, r))
                goto err;
            ret = 1;
            goto err;
        }
        if (!group->meth->field_div(group, s, y1, x1, ctx))
            goto err;
        if (!BN_GF2m_add(s, s, x1))
            goto err;

        if (!group->meth->field_sqr(group, x2, s, ctx))
            goto err;
        if (!BN_GF2m_add(x2, x2, s))
            goto err;
        if (!BN_GF2m_add(x2, x2, group->a))
            goto err;
    }

    if (!BN_GF2m_add(y2, x1, x2))
        goto err;
    if (!group->meth->field_mul(group, y2, y2, s, ctx))
        goto err;
    if (!BN_GF2m_add(y2, y2, x2))
        goto err;
    if (!BN_GF2m_add(y2, y2, y1))
        goto err;

    if (!EC_POINT_set_affine_coordinates(group, r, x2, y2, ctx))
        goto err;

    ret = 1;

 err:
    BN_CTX_end(ctx);
    BN_CTX_free(new_ctx);
    return ret;
}

/*
 * Computes 2 * a and stores the result in r.  r could be a. Uses algorithm
 * A.10.2 of IEEE P1363.
 */
int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
                       BN_CTX *ctx)
{
    return ec_GF2m_simple_add(group, r, a, a, ctx);
}

int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
{
    if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
        /* point is its own inverse */
        return 1;

    if (!EC_POINT_make_affine(group, point, ctx))
        return 0;
    return BN_GF2m_add(point->Y, point->X, point->Y);
}

/* Indicates whether the given point is the point at infinity. */
int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group,
                                  const EC_POINT *point)
{
    return BN_is_zero(point->Z);
}

/*-
 * Determines whether the given EC_POINT is an actual point on the curve defined
 * in the EC_GROUP.  A point is valid if it satisfies the Weierstrass equation:
 *      y^2 + x*y = x^3 + a*x^2 + b.
 */
int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
                               BN_CTX *ctx)
{
    int ret = -1;
    BN_CTX *new_ctx = NULL;
    BIGNUM *lh, *y2;
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
                      const BIGNUM *, BN_CTX *);
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);

    if (EC_POINT_is_at_infinity(group, point))
        return 1;

    field_mul = group->meth->field_mul;
    field_sqr = group->meth->field_sqr;

    /* only support affine coordinates */
    if (!point->Z_is_one)
        return -1;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return -1;
    }

    BN_CTX_start(ctx);
    y2 = BN_CTX_get(ctx);
    lh = BN_CTX_get(ctx);
    if (lh == NULL)
        goto err;

    /*-
     * We have a curve defined by a Weierstrass equation
     *      y^2 + x*y = x^3 + a*x^2 + b.
     *  <=> x^3 + a*x^2 + x*y + b + y^2 = 0
     *  <=> ((x + a) * x + y ) * x + b + y^2 = 0
     */
    if (!BN_GF2m_add(lh, point->X, group->a))
        goto err;
    if (!field_mul(group, lh, lh, point->X, ctx))
        goto err;
    if (!BN_GF2m_add(lh, lh, point->Y))
        goto err;
    if (!field_mul(group, lh, lh, point->X, ctx))
        goto err;
    if (!BN_GF2m_add(lh, lh, group->b))
        goto err;
    if (!field_sqr(group, y2, point->Y, ctx))
        goto err;
    if (!BN_GF2m_add(lh, lh, y2))
        goto err;
    ret = BN_is_zero(lh);

 err:
    BN_CTX_end(ctx);
    BN_CTX_free(new_ctx);
    return ret;
}

/*-
 * Indicates whether two points are equal.
 * Return values:
 *  -1   error
 *   0   equal (in affine coordinates)
 *   1   not equal
 */
int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
                       const EC_POINT *b, BN_CTX *ctx)
{
    BIGNUM *aX, *aY, *bX, *bY;
    BN_CTX *new_ctx = NULL;
    int ret = -1;

    if (EC_POINT_is_at_infinity(group, a)) {
        return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
    }

    if (EC_POINT_is_at_infinity(group, b))
        return 1;

    if (a->Z_is_one && b->Z_is_one) {
        return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
    }

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return -1;
    }

    BN_CTX_start(ctx);
    aX = BN_CTX_get(ctx);
    aY = BN_CTX_get(ctx);
    bX = BN_CTX_get(ctx);
    bY = BN_CTX_get(ctx);
    if (bY == NULL)
        goto err;

    if (!EC_POINT_get_affine_coordinates(group, a, aX, aY, ctx))
        goto err;
    if (!EC_POINT_get_affine_coordinates(group, b, bX, bY, ctx))
        goto err;
    ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;

 err:
    BN_CTX_end(ctx);
    BN_CTX_free(new_ctx);
    return ret;
}

/* Forces the given EC_POINT to internally use affine coordinates. */
int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
                               BN_CTX *ctx)
{
    BN_CTX *new_ctx = NULL;
    BIGNUM *x, *y;
    int ret = 0;

    if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
        return 1;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return 0;
    }

    BN_CTX_start(ctx);
    x = BN_CTX_get(ctx);
    y = BN_CTX_get(ctx);
    if (y == NULL)
        goto err;

    if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
        goto err;
    if (!BN_copy(point->X, x))
        goto err;
    if (!BN_copy(point->Y, y))
        goto err;
    if (!BN_one(point->Z))
        goto err;
    point->Z_is_one = 1;

    ret = 1;

 err:
    BN_CTX_end(ctx);
    BN_CTX_free(new_ctx);
    return ret;
}

/*
 * Forces each of the EC_POINTs in the given array to use affine coordinates.
 */
int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num,
                                      EC_POINT *points[], BN_CTX *ctx)
{
    size_t i;

    for (i = 0; i < num; i++) {
        if (!group->meth->make_affine(group, points[i], ctx))
            return 0;
    }

    return 1;
}

/* Wrapper to simple binary polynomial field multiplication implementation. */
int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r,
                             const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
    return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
}

/* Wrapper to simple binary polynomial field squaring implementation. */
int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r,
                             const BIGNUM *a, BN_CTX *ctx)
{
    return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
}

/* Wrapper to simple binary polynomial field division implementation. */
int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r,
                             const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
    return BN_GF2m_mod_div(r, a, b, group->field, ctx);
}

/*-
 * Lopez-Dahab ladder, pre step.
 * See e.g. "Guide to ECC" Alg 3.40.
 * Modified to blind s and r independently.
 * s:= p, r := 2p
 */
static
int ec_GF2m_simple_ladder_pre(const EC_GROUP *group,
                              EC_POINT *r, EC_POINT *s,
                              EC_POINT *p, BN_CTX *ctx)
{
    /* if p is not affine, something is wrong */
    if (p->Z_is_one == 0)
        return 0;

    /* s blinding: make sure lambda (s->Z here) is not zero */
    do {
        if (!BN_priv_rand(s->Z, BN_num_bits(group->field) - 1,
                          BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) {
            ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB);
            return 0;
        }
    } while (BN_is_zero(s->Z));

    /* if field_encode defined convert between representations */
    if ((group->meth->field_encode != NULL
         && !group->meth->field_encode(group, s->Z, s->Z, ctx))
        || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx))
        return 0;

    /* r blinding: make sure lambda (r->Y here for storage) is not zero */
    do {
        if (!BN_priv_rand(r->Y, BN_num_bits(group->field) - 1,
                          BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) {
            ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB);
            return 0;
        }
    } while (BN_is_zero(r->Y));

    if ((group->meth->field_encode != NULL
         && !group->meth->field_encode(group, r->Y, r->Y, ctx))
        || !group->meth->field_sqr(group, r->Z, p->X, ctx)
        || !group->meth->field_sqr(group, r->X, r->Z, ctx)
        || !BN_GF2m_add(r->X, r->X, group->b)
        || !group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)
        || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx))
        return 0;

    s->Z_is_one = 0;
    r->Z_is_one = 0;

    return 1;
}

/*-
 * Ladder step: differential addition-and-doubling, mixed Lopez-Dahab coords.
 * http://www.hyperelliptic.org/EFD/g12o/auto-code/shortw/xz/ladder/mladd-2003-s.op3
 * s := r + s, r := 2r
 */
static
int ec_GF2m_simple_ladder_step(const EC_GROUP *group,
                               EC_POINT *r, EC_POINT *s,
                               EC_POINT *p, BN_CTX *ctx)
{
    if (!group->meth->field_mul(group, r->Y, r->Z, s->X, ctx)
        || !group->meth->field_mul(group, s->X, r->X, s->Z, ctx)
        || !group->meth->field_sqr(group, s->Y, r->Z, ctx)
        || !group->meth->field_sqr(group, r->Z, r->X, ctx)
        || !BN_GF2m_add(s->Z, r->Y, s->X)
        || !group->meth->field_sqr(group, s->Z, s->Z, ctx)
        || !group->meth->field_mul(group, s->X, r->Y, s->X, ctx)
        || !group->meth->field_mul(group, r->Y, s->Z, p->X, ctx)
        || !BN_GF2m_add(s->X, s->X, r->Y)
        || !group->meth->field_sqr(group, r->Y, r->Z, ctx)
        || !group->meth->field_mul(group, r->Z, r->Z, s->Y, ctx)
        || !group->meth->field_sqr(group, s->Y, s->Y, ctx)
        || !group->meth->field_mul(group, s->Y, s->Y, group->b, ctx)
        || !BN_GF2m_add(r->X, r->Y, s->Y))
        return 0;

    return 1;
}

/*-
 * Recover affine (x,y) result from Lopez-Dahab r and s, affine p.
 * See e.g. "Fast Multiplication on Elliptic Curves over GF(2**m)
 * without Precomputation" (Lopez and Dahab, CHES 1999),
 * Appendix Alg Mxy.
 */
static
int ec_GF2m_simple_ladder_post(const EC_GROUP *group,
                               EC_POINT *r, EC_POINT *s,
                               EC_POINT *p, BN_CTX *ctx)
{
    int ret = 0;
    BIGNUM *t0, *t1, *t2 = NULL;

    if (BN_is_zero(r->Z))
        return EC_POINT_set_to_infinity(group, r);

    if (BN_is_zero(s->Z)) {
        if (!EC_POINT_copy(r, p)
            || !EC_POINT_invert(group, r, ctx)) {
            ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_EC_LIB);
            return 0;
        }
        return 1;
    }

    BN_CTX_start(ctx);
    t0 = BN_CTX_get(ctx);
    t1 = BN_CTX_get(ctx);
    t2 = BN_CTX_get(ctx);
    if (t2 == NULL) {
        ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    if (!group->meth->field_mul(group, t0, r->Z, s->Z, ctx)
        || !group->meth->field_mul(group, t1, p->X, r->Z, ctx)
        || !BN_GF2m_add(t1, r->X, t1)
        || !group->meth->field_mul(group, t2, p->X, s->Z, ctx)
        || !group->meth->field_mul(group, r->Z, r->X, t2, ctx)
        || !BN_GF2m_add(t2, t2, s->X)
        || !group->meth->field_mul(group, t1, t1, t2, ctx)
        || !group->meth->field_sqr(group, t2, p->X, ctx)
        || !BN_GF2m_add(t2, p->Y, t2)
        || !group->meth->field_mul(group, t2, t2, t0, ctx)
        || !BN_GF2m_add(t1, t2, t1)
        || !group->meth->field_mul(group, t2, p->X, t0, ctx)
        || !BN_GF2m_mod_inv(t2, t2, group->field, ctx)
        || !group->meth->field_mul(group, t1, t1, t2, ctx)
        || !group->meth->field_mul(group, r->X, r->Z, t2, ctx)
        || !BN_GF2m_add(t2, p->X, r->X)
        || !group->meth->field_mul(group, t2, t2, t1, ctx)
        || !BN_GF2m_add(r->Y, p->Y, t2)
        || !BN_one(r->Z))
        goto err;

    r->Z_is_one = 1;

    /* GF(2^m) field elements should always have BIGNUM::neg = 0 */
    BN_set_negative(r->X, 0);
    BN_set_negative(r->Y, 0);

    ret = 1;

 err:
    BN_CTX_end(ctx);
    return ret;
}

static
int ec_GF2m_simple_points_mul(const EC_GROUP *group, EC_POINT *r,
                              const BIGNUM *scalar, size_t num,
                              const EC_POINT *points[],
                              const BIGNUM *scalars[],
                              BN_CTX *ctx)
{
    int ret = 0;
    EC_POINT *t = NULL;

    /*-
     * We limit use of the ladder only to the following cases:
     * - r := scalar * G
     *   Fixed point mul: scalar != NULL && num == 0;
     * - r := scalars[0] * points[0]
     *   Variable point mul: scalar == NULL && num == 1;
     * - r := scalar * G + scalars[0] * points[0]
     *   used, e.g., in ECDSA verification: scalar != NULL && num == 1
     *
     * In any other case (num > 1) we use the default wNAF implementation.
     *
     * We also let the default implementation handle degenerate cases like group
     * order or cofactor set to 0.
     */
    if (num > 1 || BN_is_zero(group->order) || BN_is_zero(group->cofactor))
        return ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);

    if (scalar != NULL && num == 0)
        /* Fixed point multiplication */
        return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);

    if (scalar == NULL && num == 1)
        /* Variable point multiplication */
        return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);

    /*-
     * Double point multiplication:
     *  r := scalar * G + scalars[0] * points[0]
     */

    if ((t = EC_POINT_new(group)) == NULL) {
        ECerr(EC_F_EC_GF2M_SIMPLE_POINTS_MUL, ERR_R_MALLOC_FAILURE);
        return 0;
    }

    if (!ec_scalar_mul_ladder(group, t, scalar, NULL, ctx)
        || !ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx)
        || !EC_POINT_add(group, r, t, r, ctx))
        goto err;

    ret = 1;

 err:
    EC_POINT_free(t);
    return ret;
}

const EC_METHOD *EC_GF2m_simple_method(void)
{
    static const EC_METHOD ret = {
        EC_FLAGS_DEFAULT_OCT,
        NID_X9_62_characteristic_two_field,
        ec_GF2m_simple_group_init,
        ec_GF2m_simple_group_finish,
        ec_GF2m_simple_group_clear_finish,
        ec_GF2m_simple_group_copy,
        ec_GF2m_simple_group_set_curve,
        ec_GF2m_simple_group_get_curve,
        ec_GF2m_simple_group_get_degree,
        ec_group_simple_order_bits,
        ec_GF2m_simple_group_check_discriminant,
        ec_GF2m_simple_point_init,
        ec_GF2m_simple_point_finish,
        ec_GF2m_simple_point_clear_finish,
        ec_GF2m_simple_point_copy,
        ec_GF2m_simple_point_set_to_infinity,
        0, /* set_Jprojective_coordinates_GFp */
        0, /* get_Jprojective_coordinates_GFp */
        ec_GF2m_simple_point_set_affine_coordinates,
        ec_GF2m_simple_point_get_affine_coordinates,
        0, /* point_set_compressed_coordinates */
        0, /* point2oct */
        0, /* oct2point */
        ec_GF2m_simple_add,
        ec_GF2m_simple_dbl,
        ec_GF2m_simple_invert,
        ec_GF2m_simple_is_at_infinity,
        ec_GF2m_simple_is_on_curve,
        ec_GF2m_simple_cmp,
        ec_GF2m_simple_make_affine,
        ec_GF2m_simple_points_make_affine,
        ec_GF2m_simple_points_mul,
        0, /* precompute_mult */
        0, /* have_precompute_mult */
        ec_GF2m_simple_field_mul,
        ec_GF2m_simple_field_sqr,
        ec_GF2m_simple_field_div,
        0, /* field_encode */
        0, /* field_decode */
        0, /* field_set_to_one */
        ec_key_simple_priv2oct,
        ec_key_simple_oct2priv,
        0, /* set private */
        ec_key_simple_generate_key,
        ec_key_simple_check_key,
        ec_key_simple_generate_public_key,
        0, /* keycopy */
        0, /* keyfinish */
        ecdh_simple_compute_key,
        0, /* field_inverse_mod_ord */
        0, /* blind_coordinates */
        ec_GF2m_simple_ladder_pre,
        ec_GF2m_simple_ladder_step,
        ec_GF2m_simple_ladder_post
    };

    return &ret;
}

#endif