ssl_ciph.c
66.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
/*
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
* Copyright 2005 Nokia. All rights reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <ctype.h>
#include <openssl/objects.h>
#include <openssl/comp.h>
#include <openssl/engine.h>
#include <openssl/crypto.h>
#include <openssl/conf.h>
#include "internal/nelem.h"
#include "ssl_locl.h"
#include "internal/thread_once.h"
#include "internal/cryptlib.h"
#define SSL_ENC_DES_IDX 0
#define SSL_ENC_3DES_IDX 1
#define SSL_ENC_RC4_IDX 2
#define SSL_ENC_RC2_IDX 3
#define SSL_ENC_IDEA_IDX 4
#define SSL_ENC_NULL_IDX 5
#define SSL_ENC_AES128_IDX 6
#define SSL_ENC_AES256_IDX 7
#define SSL_ENC_CAMELLIA128_IDX 8
#define SSL_ENC_CAMELLIA256_IDX 9
#define SSL_ENC_GOST89_IDX 10
#define SSL_ENC_SEED_IDX 11
#define SSL_ENC_AES128GCM_IDX 12
#define SSL_ENC_AES256GCM_IDX 13
#define SSL_ENC_AES128CCM_IDX 14
#define SSL_ENC_AES256CCM_IDX 15
#define SSL_ENC_AES128CCM8_IDX 16
#define SSL_ENC_AES256CCM8_IDX 17
#define SSL_ENC_GOST8912_IDX 18
#define SSL_ENC_CHACHA_IDX 19
#define SSL_ENC_ARIA128GCM_IDX 20
#define SSL_ENC_ARIA256GCM_IDX 21
#define SSL_ENC_NUM_IDX 22
/* NB: make sure indices in these tables match values above */
typedef struct {
uint32_t mask;
int nid;
} ssl_cipher_table;
/* Table of NIDs for each cipher */
static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = {
{SSL_DES, NID_des_cbc}, /* SSL_ENC_DES_IDX 0 */
{SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */
{SSL_RC4, NID_rc4}, /* SSL_ENC_RC4_IDX 2 */
{SSL_RC2, NID_rc2_cbc}, /* SSL_ENC_RC2_IDX 3 */
{SSL_IDEA, NID_idea_cbc}, /* SSL_ENC_IDEA_IDX 4 */
{SSL_eNULL, NID_undef}, /* SSL_ENC_NULL_IDX 5 */
{SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */
{SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */
{SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */
{SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */
{SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */
{SSL_SEED, NID_seed_cbc}, /* SSL_ENC_SEED_IDX 11 */
{SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */
{SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */
{SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */
{SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */
{SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */
{SSL_AES256CCM8, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM8_IDX 17 */
{SSL_eGOST2814789CNT12, NID_gost89_cnt_12}, /* SSL_ENC_GOST8912_IDX 18 */
{SSL_CHACHA20POLY1305, NID_chacha20_poly1305}, /* SSL_ENC_CHACHA_IDX 19 */
{SSL_ARIA128GCM, NID_aria_128_gcm}, /* SSL_ENC_ARIA128GCM_IDX 20 */
{SSL_ARIA256GCM, NID_aria_256_gcm}, /* SSL_ENC_ARIA256GCM_IDX 21 */
};
static const EVP_CIPHER *ssl_cipher_methods[SSL_ENC_NUM_IDX];
#define SSL_COMP_NULL_IDX 0
#define SSL_COMP_ZLIB_IDX 1
#define SSL_COMP_NUM_IDX 2
static STACK_OF(SSL_COMP) *ssl_comp_methods = NULL;
#ifndef OPENSSL_NO_COMP
static CRYPTO_ONCE ssl_load_builtin_comp_once = CRYPTO_ONCE_STATIC_INIT;
#endif
/*
* Constant SSL_MAX_DIGEST equal to size of digests array should be defined
* in the ssl_locl.h
*/
#define SSL_MD_NUM_IDX SSL_MAX_DIGEST
/* NB: make sure indices in this table matches values above */
static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = {
{SSL_MD5, NID_md5}, /* SSL_MD_MD5_IDX 0 */
{SSL_SHA1, NID_sha1}, /* SSL_MD_SHA1_IDX 1 */
{SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */
{SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */
{SSL_SHA256, NID_sha256}, /* SSL_MD_SHA256_IDX 4 */
{SSL_SHA384, NID_sha384}, /* SSL_MD_SHA384_IDX 5 */
{SSL_GOST12_256, NID_id_GostR3411_2012_256}, /* SSL_MD_GOST12_256_IDX 6 */
{SSL_GOST89MAC12, NID_gost_mac_12}, /* SSL_MD_GOST89MAC12_IDX 7 */
{SSL_GOST12_512, NID_id_GostR3411_2012_512}, /* SSL_MD_GOST12_512_IDX 8 */
{0, NID_md5_sha1}, /* SSL_MD_MD5_SHA1_IDX 9 */
{0, NID_sha224}, /* SSL_MD_SHA224_IDX 10 */
{0, NID_sha512} /* SSL_MD_SHA512_IDX 11 */
};
static const EVP_MD *ssl_digest_methods[SSL_MD_NUM_IDX] = {
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
/* *INDENT-OFF* */
static const ssl_cipher_table ssl_cipher_table_kx[] = {
{SSL_kRSA, NID_kx_rsa},
{SSL_kECDHE, NID_kx_ecdhe},
{SSL_kDHE, NID_kx_dhe},
{SSL_kECDHEPSK, NID_kx_ecdhe_psk},
{SSL_kDHEPSK, NID_kx_dhe_psk},
{SSL_kRSAPSK, NID_kx_rsa_psk},
{SSL_kPSK, NID_kx_psk},
{SSL_kSRP, NID_kx_srp},
{SSL_kGOST, NID_kx_gost},
{SSL_kANY, NID_kx_any}
};
static const ssl_cipher_table ssl_cipher_table_auth[] = {
{SSL_aRSA, NID_auth_rsa},
{SSL_aECDSA, NID_auth_ecdsa},
{SSL_aPSK, NID_auth_psk},
{SSL_aDSS, NID_auth_dss},
{SSL_aGOST01, NID_auth_gost01},
{SSL_aGOST12, NID_auth_gost12},
{SSL_aSRP, NID_auth_srp},
{SSL_aNULL, NID_auth_null},
{SSL_aANY, NID_auth_any}
};
/* *INDENT-ON* */
/* Utility function for table lookup */
static int ssl_cipher_info_find(const ssl_cipher_table * table,
size_t table_cnt, uint32_t mask)
{
size_t i;
for (i = 0; i < table_cnt; i++, table++) {
if (table->mask == mask)
return (int)i;
}
return -1;
}
#define ssl_cipher_info_lookup(table, x) \
ssl_cipher_info_find(table, OSSL_NELEM(table), x)
/*
* PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
* is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
* found
*/
static int ssl_mac_pkey_id[SSL_MD_NUM_IDX] = {
/* MD5, SHA, GOST94, MAC89 */
EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
/* SHA256, SHA384, GOST2012_256, MAC89-12 */
EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
/* GOST2012_512 */
EVP_PKEY_HMAC,
};
static size_t ssl_mac_secret_size[SSL_MD_NUM_IDX];
#define CIPHER_ADD 1
#define CIPHER_KILL 2
#define CIPHER_DEL 3
#define CIPHER_ORD 4
#define CIPHER_SPECIAL 5
/*
* Bump the ciphers to the top of the list.
* This rule isn't currently supported by the public cipherstring API.
*/
#define CIPHER_BUMP 6
typedef struct cipher_order_st {
const SSL_CIPHER *cipher;
int active;
int dead;
struct cipher_order_st *next, *prev;
} CIPHER_ORDER;
static const SSL_CIPHER cipher_aliases[] = {
/* "ALL" doesn't include eNULL (must be specifically enabled) */
{0, SSL_TXT_ALL, NULL, 0, 0, 0, ~SSL_eNULL},
/* "COMPLEMENTOFALL" */
{0, SSL_TXT_CMPALL, NULL, 0, 0, 0, SSL_eNULL},
/*
* "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
* ALL!)
*/
{0, SSL_TXT_CMPDEF, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT},
/*
* key exchange aliases (some of those using only a single bit here
* combine multiple key exchange algs according to the RFCs, e.g. kDHE
* combines DHE_DSS and DHE_RSA)
*/
{0, SSL_TXT_kRSA, NULL, 0, SSL_kRSA},
{0, SSL_TXT_kEDH, NULL, 0, SSL_kDHE},
{0, SSL_TXT_kDHE, NULL, 0, SSL_kDHE},
{0, SSL_TXT_DH, NULL, 0, SSL_kDHE},
{0, SSL_TXT_kEECDH, NULL, 0, SSL_kECDHE},
{0, SSL_TXT_kECDHE, NULL, 0, SSL_kECDHE},
{0, SSL_TXT_ECDH, NULL, 0, SSL_kECDHE},
{0, SSL_TXT_kPSK, NULL, 0, SSL_kPSK},
{0, SSL_TXT_kRSAPSK, NULL, 0, SSL_kRSAPSK},
{0, SSL_TXT_kECDHEPSK, NULL, 0, SSL_kECDHEPSK},
{0, SSL_TXT_kDHEPSK, NULL, 0, SSL_kDHEPSK},
{0, SSL_TXT_kSRP, NULL, 0, SSL_kSRP},
{0, SSL_TXT_kGOST, NULL, 0, SSL_kGOST},
/* server authentication aliases */
{0, SSL_TXT_aRSA, NULL, 0, 0, SSL_aRSA},
{0, SSL_TXT_aDSS, NULL, 0, 0, SSL_aDSS},
{0, SSL_TXT_DSS, NULL, 0, 0, SSL_aDSS},
{0, SSL_TXT_aNULL, NULL, 0, 0, SSL_aNULL},
{0, SSL_TXT_aECDSA, NULL, 0, 0, SSL_aECDSA},
{0, SSL_TXT_ECDSA, NULL, 0, 0, SSL_aECDSA},
{0, SSL_TXT_aPSK, NULL, 0, 0, SSL_aPSK},
{0, SSL_TXT_aGOST01, NULL, 0, 0, SSL_aGOST01},
{0, SSL_TXT_aGOST12, NULL, 0, 0, SSL_aGOST12},
{0, SSL_TXT_aGOST, NULL, 0, 0, SSL_aGOST01 | SSL_aGOST12},
{0, SSL_TXT_aSRP, NULL, 0, 0, SSL_aSRP},
/* aliases combining key exchange and server authentication */
{0, SSL_TXT_EDH, NULL, 0, SSL_kDHE, ~SSL_aNULL},
{0, SSL_TXT_DHE, NULL, 0, SSL_kDHE, ~SSL_aNULL},
{0, SSL_TXT_EECDH, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
{0, SSL_TXT_ECDHE, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
{0, SSL_TXT_NULL, NULL, 0, 0, 0, SSL_eNULL},
{0, SSL_TXT_RSA, NULL, 0, SSL_kRSA, SSL_aRSA},
{0, SSL_TXT_ADH, NULL, 0, SSL_kDHE, SSL_aNULL},
{0, SSL_TXT_AECDH, NULL, 0, SSL_kECDHE, SSL_aNULL},
{0, SSL_TXT_PSK, NULL, 0, SSL_PSK},
{0, SSL_TXT_SRP, NULL, 0, SSL_kSRP},
/* symmetric encryption aliases */
{0, SSL_TXT_3DES, NULL, 0, 0, 0, SSL_3DES},
{0, SSL_TXT_RC4, NULL, 0, 0, 0, SSL_RC4},
{0, SSL_TXT_RC2, NULL, 0, 0, 0, SSL_RC2},
{0, SSL_TXT_IDEA, NULL, 0, 0, 0, SSL_IDEA},
{0, SSL_TXT_SEED, NULL, 0, 0, 0, SSL_SEED},
{0, SSL_TXT_eNULL, NULL, 0, 0, 0, SSL_eNULL},
{0, SSL_TXT_GOST, NULL, 0, 0, 0, SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12},
{0, SSL_TXT_AES128, NULL, 0, 0, 0,
SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8},
{0, SSL_TXT_AES256, NULL, 0, 0, 0,
SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8},
{0, SSL_TXT_AES, NULL, 0, 0, 0, SSL_AES},
{0, SSL_TXT_AES_GCM, NULL, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM},
{0, SSL_TXT_AES_CCM, NULL, 0, 0, 0,
SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8},
{0, SSL_TXT_AES_CCM_8, NULL, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8},
{0, SSL_TXT_CAMELLIA128, NULL, 0, 0, 0, SSL_CAMELLIA128},
{0, SSL_TXT_CAMELLIA256, NULL, 0, 0, 0, SSL_CAMELLIA256},
{0, SSL_TXT_CAMELLIA, NULL, 0, 0, 0, SSL_CAMELLIA},
{0, SSL_TXT_CHACHA20, NULL, 0, 0, 0, SSL_CHACHA20},
{0, SSL_TXT_ARIA, NULL, 0, 0, 0, SSL_ARIA},
{0, SSL_TXT_ARIA_GCM, NULL, 0, 0, 0, SSL_ARIA128GCM | SSL_ARIA256GCM},
{0, SSL_TXT_ARIA128, NULL, 0, 0, 0, SSL_ARIA128GCM},
{0, SSL_TXT_ARIA256, NULL, 0, 0, 0, SSL_ARIA256GCM},
/* MAC aliases */
{0, SSL_TXT_MD5, NULL, 0, 0, 0, 0, SSL_MD5},
{0, SSL_TXT_SHA1, NULL, 0, 0, 0, 0, SSL_SHA1},
{0, SSL_TXT_SHA, NULL, 0, 0, 0, 0, SSL_SHA1},
{0, SSL_TXT_GOST94, NULL, 0, 0, 0, 0, SSL_GOST94},
{0, SSL_TXT_GOST89MAC, NULL, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12},
{0, SSL_TXT_SHA256, NULL, 0, 0, 0, 0, SSL_SHA256},
{0, SSL_TXT_SHA384, NULL, 0, 0, 0, 0, SSL_SHA384},
{0, SSL_TXT_GOST12, NULL, 0, 0, 0, 0, SSL_GOST12_256},
/* protocol version aliases */
{0, SSL_TXT_SSLV3, NULL, 0, 0, 0, 0, 0, SSL3_VERSION},
{0, SSL_TXT_TLSV1, NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
{0, "TLSv1.0", NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
{0, SSL_TXT_TLSV1_2, NULL, 0, 0, 0, 0, 0, TLS1_2_VERSION},
/* strength classes */
{0, SSL_TXT_LOW, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW},
{0, SSL_TXT_MEDIUM, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM},
{0, SSL_TXT_HIGH, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH},
/* FIPS 140-2 approved ciphersuite */
{0, SSL_TXT_FIPS, NULL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS},
/* "EDH-" aliases to "DHE-" labels (for backward compatibility) */
{0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, NULL, 0,
SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
{0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, NULL, 0,
SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
};
/*
* Search for public key algorithm with given name and return its pkey_id if
* it is available. Otherwise return 0
*/
#ifdef OPENSSL_NO_ENGINE
static int get_optional_pkey_id(const char *pkey_name)
{
const EVP_PKEY_ASN1_METHOD *ameth;
int pkey_id = 0;
ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
ameth) > 0)
return pkey_id;
return 0;
}
#else
static int get_optional_pkey_id(const char *pkey_name)
{
const EVP_PKEY_ASN1_METHOD *ameth;
ENGINE *tmpeng = NULL;
int pkey_id = 0;
ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
if (ameth) {
if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
ameth) <= 0)
pkey_id = 0;
}
ENGINE_finish(tmpeng);
return pkey_id;
}
#endif
/* masks of disabled algorithms */
static uint32_t disabled_enc_mask;
static uint32_t disabled_mac_mask;
static uint32_t disabled_mkey_mask;
static uint32_t disabled_auth_mask;
int ssl_load_ciphers(void)
{
size_t i;
const ssl_cipher_table *t;
disabled_enc_mask = 0;
ssl_sort_cipher_list();
for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) {
if (t->nid == NID_undef) {
ssl_cipher_methods[i] = NULL;
} else {
const EVP_CIPHER *cipher = EVP_get_cipherbynid(t->nid);
ssl_cipher_methods[i] = cipher;
if (cipher == NULL)
disabled_enc_mask |= t->mask;
}
}
disabled_mac_mask = 0;
for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) {
const EVP_MD *md = EVP_get_digestbynid(t->nid);
ssl_digest_methods[i] = md;
if (md == NULL) {
disabled_mac_mask |= t->mask;
} else {
int tmpsize = EVP_MD_size(md);
if (!ossl_assert(tmpsize >= 0))
return 0;
ssl_mac_secret_size[i] = tmpsize;
}
}
/* Make sure we can access MD5 and SHA1 */
if (!ossl_assert(ssl_digest_methods[SSL_MD_MD5_IDX] != NULL))
return 0;
if (!ossl_assert(ssl_digest_methods[SSL_MD_SHA1_IDX] != NULL))
return 0;
disabled_mkey_mask = 0;
disabled_auth_mask = 0;
#ifdef OPENSSL_NO_RSA
disabled_mkey_mask |= SSL_kRSA | SSL_kRSAPSK;
disabled_auth_mask |= SSL_aRSA;
#endif
#ifdef OPENSSL_NO_DSA
disabled_auth_mask |= SSL_aDSS;
#endif
#ifdef OPENSSL_NO_DH
disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK;
#endif
#ifdef OPENSSL_NO_EC
disabled_mkey_mask |= SSL_kECDHE | SSL_kECDHEPSK;
disabled_auth_mask |= SSL_aECDSA;
#endif
#ifdef OPENSSL_NO_PSK
disabled_mkey_mask |= SSL_PSK;
disabled_auth_mask |= SSL_aPSK;
#endif
#ifdef OPENSSL_NO_SRP
disabled_mkey_mask |= SSL_kSRP;
#endif
/*
* Check for presence of GOST 34.10 algorithms, and if they are not
* present, disable appropriate auth and key exchange
*/
ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] = get_optional_pkey_id("gost-mac");
if (ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX])
ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
else
disabled_mac_mask |= SSL_GOST89MAC;
ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] =
get_optional_pkey_id("gost-mac-12");
if (ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX])
ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32;
else
disabled_mac_mask |= SSL_GOST89MAC12;
if (!get_optional_pkey_id("gost2001"))
disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12;
if (!get_optional_pkey_id("gost2012_256"))
disabled_auth_mask |= SSL_aGOST12;
if (!get_optional_pkey_id("gost2012_512"))
disabled_auth_mask |= SSL_aGOST12;
/*
* Disable GOST key exchange if no GOST signature algs are available *
*/
if ((disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) ==
(SSL_aGOST01 | SSL_aGOST12))
disabled_mkey_mask |= SSL_kGOST;
return 1;
}
#ifndef OPENSSL_NO_COMP
static int sk_comp_cmp(const SSL_COMP *const *a, const SSL_COMP *const *b)
{
return ((*a)->id - (*b)->id);
}
DEFINE_RUN_ONCE_STATIC(do_load_builtin_compressions)
{
SSL_COMP *comp = NULL;
COMP_METHOD *method = COMP_zlib();
CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE);
ssl_comp_methods = sk_SSL_COMP_new(sk_comp_cmp);
if (COMP_get_type(method) != NID_undef && ssl_comp_methods != NULL) {
comp = OPENSSL_malloc(sizeof(*comp));
if (comp != NULL) {
comp->method = method;
comp->id = SSL_COMP_ZLIB_IDX;
comp->name = COMP_get_name(method);
sk_SSL_COMP_push(ssl_comp_methods, comp);
sk_SSL_COMP_sort(ssl_comp_methods);
}
}
CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
return 1;
}
static int load_builtin_compressions(void)
{
return RUN_ONCE(&ssl_load_builtin_comp_once, do_load_builtin_compressions);
}
#endif
int ssl_cipher_get_evp(const SSL_SESSION *s, const EVP_CIPHER **enc,
const EVP_MD **md, int *mac_pkey_type,
size_t *mac_secret_size, SSL_COMP **comp, int use_etm)
{
int i;
const SSL_CIPHER *c;
c = s->cipher;
if (c == NULL)
return 0;
if (comp != NULL) {
SSL_COMP ctmp;
#ifndef OPENSSL_NO_COMP
if (!load_builtin_compressions()) {
/*
* Currently don't care, since a failure only means that
* ssl_comp_methods is NULL, which is perfectly OK
*/
}
#endif
*comp = NULL;
ctmp.id = s->compress_meth;
if (ssl_comp_methods != NULL) {
i = sk_SSL_COMP_find(ssl_comp_methods, &ctmp);
*comp = sk_SSL_COMP_value(ssl_comp_methods, i);
}
/* If were only interested in comp then return success */
if ((enc == NULL) && (md == NULL))
return 1;
}
if ((enc == NULL) || (md == NULL))
return 0;
i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
if (i == -1) {
*enc = NULL;
} else {
if (i == SSL_ENC_NULL_IDX)
*enc = EVP_enc_null();
else
*enc = ssl_cipher_methods[i];
}
i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
if (i == -1) {
*md = NULL;
if (mac_pkey_type != NULL)
*mac_pkey_type = NID_undef;
if (mac_secret_size != NULL)
*mac_secret_size = 0;
if (c->algorithm_mac == SSL_AEAD)
mac_pkey_type = NULL;
} else {
*md = ssl_digest_methods[i];
if (mac_pkey_type != NULL)
*mac_pkey_type = ssl_mac_pkey_id[i];
if (mac_secret_size != NULL)
*mac_secret_size = ssl_mac_secret_size[i];
}
if ((*enc != NULL) &&
(*md != NULL || (EVP_CIPHER_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
&& (!mac_pkey_type || *mac_pkey_type != NID_undef)) {
const EVP_CIPHER *evp;
if (use_etm)
return 1;
if (s->ssl_version >> 8 != TLS1_VERSION_MAJOR ||
s->ssl_version < TLS1_VERSION)
return 1;
if (c->algorithm_enc == SSL_RC4 &&
c->algorithm_mac == SSL_MD5 &&
(evp = EVP_get_cipherbyname("RC4-HMAC-MD5")))
*enc = evp, *md = NULL;
else if (c->algorithm_enc == SSL_AES128 &&
c->algorithm_mac == SSL_SHA1 &&
(evp = EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA1")))
*enc = evp, *md = NULL;
else if (c->algorithm_enc == SSL_AES256 &&
c->algorithm_mac == SSL_SHA1 &&
(evp = EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA1")))
*enc = evp, *md = NULL;
else if (c->algorithm_enc == SSL_AES128 &&
c->algorithm_mac == SSL_SHA256 &&
(evp = EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA256")))
*enc = evp, *md = NULL;
else if (c->algorithm_enc == SSL_AES256 &&
c->algorithm_mac == SSL_SHA256 &&
(evp = EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA256")))
*enc = evp, *md = NULL;
return 1;
} else {
return 0;
}
}
const EVP_MD *ssl_md(int idx)
{
idx &= SSL_HANDSHAKE_MAC_MASK;
if (idx < 0 || idx >= SSL_MD_NUM_IDX)
return NULL;
return ssl_digest_methods[idx];
}
const EVP_MD *ssl_handshake_md(SSL *s)
{
return ssl_md(ssl_get_algorithm2(s));
}
const EVP_MD *ssl_prf_md(SSL *s)
{
return ssl_md(ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT);
}
#define ITEM_SEP(a) \
(((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
CIPHER_ORDER **tail)
{
if (curr == *tail)
return;
if (curr == *head)
*head = curr->next;
if (curr->prev != NULL)
curr->prev->next = curr->next;
if (curr->next != NULL)
curr->next->prev = curr->prev;
(*tail)->next = curr;
curr->prev = *tail;
curr->next = NULL;
*tail = curr;
}
static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
CIPHER_ORDER **tail)
{
if (curr == *head)
return;
if (curr == *tail)
*tail = curr->prev;
if (curr->next != NULL)
curr->next->prev = curr->prev;
if (curr->prev != NULL)
curr->prev->next = curr->next;
(*head)->prev = curr;
curr->next = *head;
curr->prev = NULL;
*head = curr;
}
static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
int num_of_ciphers,
uint32_t disabled_mkey,
uint32_t disabled_auth,
uint32_t disabled_enc,
uint32_t disabled_mac,
CIPHER_ORDER *co_list,
CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p)
{
int i, co_list_num;
const SSL_CIPHER *c;
/*
* We have num_of_ciphers descriptions compiled in, depending on the
* method selected (SSLv3, TLSv1 etc).
* These will later be sorted in a linked list with at most num
* entries.
*/
/* Get the initial list of ciphers */
co_list_num = 0; /* actual count of ciphers */
for (i = 0; i < num_of_ciphers; i++) {
c = ssl_method->get_cipher(i);
/* drop those that use any of that is not available */
if (c == NULL || !c->valid)
continue;
if ((c->algorithm_mkey & disabled_mkey) ||
(c->algorithm_auth & disabled_auth) ||
(c->algorithm_enc & disabled_enc) ||
(c->algorithm_mac & disabled_mac))
continue;
if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) &&
c->min_tls == 0)
continue;
if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) &&
c->min_dtls == 0)
continue;
co_list[co_list_num].cipher = c;
co_list[co_list_num].next = NULL;
co_list[co_list_num].prev = NULL;
co_list[co_list_num].active = 0;
co_list_num++;
}
/*
* Prepare linked list from list entries
*/
if (co_list_num > 0) {
co_list[0].prev = NULL;
if (co_list_num > 1) {
co_list[0].next = &co_list[1];
for (i = 1; i < co_list_num - 1; i++) {
co_list[i].prev = &co_list[i - 1];
co_list[i].next = &co_list[i + 1];
}
co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
}
co_list[co_list_num - 1].next = NULL;
*head_p = &co_list[0];
*tail_p = &co_list[co_list_num - 1];
}
}
static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
int num_of_group_aliases,
uint32_t disabled_mkey,
uint32_t disabled_auth,
uint32_t disabled_enc,
uint32_t disabled_mac,
CIPHER_ORDER *head)
{
CIPHER_ORDER *ciph_curr;
const SSL_CIPHER **ca_curr;
int i;
uint32_t mask_mkey = ~disabled_mkey;
uint32_t mask_auth = ~disabled_auth;
uint32_t mask_enc = ~disabled_enc;
uint32_t mask_mac = ~disabled_mac;
/*
* First, add the real ciphers as already collected
*/
ciph_curr = head;
ca_curr = ca_list;
while (ciph_curr != NULL) {
*ca_curr = ciph_curr->cipher;
ca_curr++;
ciph_curr = ciph_curr->next;
}
/*
* Now we add the available ones from the cipher_aliases[] table.
* They represent either one or more algorithms, some of which
* in any affected category must be supported (set in enabled_mask),
* or represent a cipher strength value (will be added in any case because algorithms=0).
*/
for (i = 0; i < num_of_group_aliases; i++) {
uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey;
uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth;
uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc;
uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac;
if (algorithm_mkey)
if ((algorithm_mkey & mask_mkey) == 0)
continue;
if (algorithm_auth)
if ((algorithm_auth & mask_auth) == 0)
continue;
if (algorithm_enc)
if ((algorithm_enc & mask_enc) == 0)
continue;
if (algorithm_mac)
if ((algorithm_mac & mask_mac) == 0)
continue;
*ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
ca_curr++;
}
*ca_curr = NULL; /* end of list */
}
static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey,
uint32_t alg_auth, uint32_t alg_enc,
uint32_t alg_mac, int min_tls,
uint32_t algo_strength, int rule,
int32_t strength_bits, CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p)
{
CIPHER_ORDER *head, *tail, *curr, *next, *last;
const SSL_CIPHER *cp;
int reverse = 0;
#ifdef CIPHER_DEBUG
fprintf(stderr,
"Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n",
rule, alg_mkey, alg_auth, alg_enc, alg_mac, min_tls,
algo_strength, strength_bits);
#endif
if (rule == CIPHER_DEL || rule == CIPHER_BUMP)
reverse = 1; /* needed to maintain sorting between currently
* deleted ciphers */
head = *head_p;
tail = *tail_p;
if (reverse) {
next = tail;
last = head;
} else {
next = head;
last = tail;
}
curr = NULL;
for (;;) {
if (curr == last)
break;
curr = next;
if (curr == NULL)
break;
next = reverse ? curr->prev : curr->next;
cp = curr->cipher;
/*
* Selection criteria is either the value of strength_bits
* or the algorithms used.
*/
if (strength_bits >= 0) {
if (strength_bits != cp->strength_bits)
continue;
} else {
#ifdef CIPHER_DEBUG
fprintf(stderr,
"\nName: %s:\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n",
cp->name, cp->algorithm_mkey, cp->algorithm_auth,
cp->algorithm_enc, cp->algorithm_mac, cp->min_tls,
cp->algo_strength);
#endif
if (cipher_id != 0 && (cipher_id != cp->id))
continue;
if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
continue;
if (alg_auth && !(alg_auth & cp->algorithm_auth))
continue;
if (alg_enc && !(alg_enc & cp->algorithm_enc))
continue;
if (alg_mac && !(alg_mac & cp->algorithm_mac))
continue;
if (min_tls && (min_tls != cp->min_tls))
continue;
if ((algo_strength & SSL_STRONG_MASK)
&& !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
continue;
if ((algo_strength & SSL_DEFAULT_MASK)
&& !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength))
continue;
}
#ifdef CIPHER_DEBUG
fprintf(stderr, "Action = %d\n", rule);
#endif
/* add the cipher if it has not been added yet. */
if (rule == CIPHER_ADD) {
/* reverse == 0 */
if (!curr->active) {
ll_append_tail(&head, curr, &tail);
curr->active = 1;
}
}
/* Move the added cipher to this location */
else if (rule == CIPHER_ORD) {
/* reverse == 0 */
if (curr->active) {
ll_append_tail(&head, curr, &tail);
}
} else if (rule == CIPHER_DEL) {
/* reverse == 1 */
if (curr->active) {
/*
* most recently deleted ciphersuites get best positions for
* any future CIPHER_ADD (note that the CIPHER_DEL loop works
* in reverse to maintain the order)
*/
ll_append_head(&head, curr, &tail);
curr->active = 0;
}
} else if (rule == CIPHER_BUMP) {
if (curr->active)
ll_append_head(&head, curr, &tail);
} else if (rule == CIPHER_KILL) {
/* reverse == 0 */
if (head == curr)
head = curr->next;
else
curr->prev->next = curr->next;
if (tail == curr)
tail = curr->prev;
curr->active = 0;
if (curr->next != NULL)
curr->next->prev = curr->prev;
if (curr->prev != NULL)
curr->prev->next = curr->next;
curr->next = NULL;
curr->prev = NULL;
}
}
*head_p = head;
*tail_p = tail;
}
static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p)
{
int32_t max_strength_bits;
int i, *number_uses;
CIPHER_ORDER *curr;
/*
* This routine sorts the ciphers with descending strength. The sorting
* must keep the pre-sorted sequence, so we apply the normal sorting
* routine as '+' movement to the end of the list.
*/
max_strength_bits = 0;
curr = *head_p;
while (curr != NULL) {
if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
max_strength_bits = curr->cipher->strength_bits;
curr = curr->next;
}
number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1));
if (number_uses == NULL) {
SSLerr(SSL_F_SSL_CIPHER_STRENGTH_SORT, ERR_R_MALLOC_FAILURE);
return 0;
}
/*
* Now find the strength_bits values actually used
*/
curr = *head_p;
while (curr != NULL) {
if (curr->active)
number_uses[curr->cipher->strength_bits]++;
curr = curr->next;
}
/*
* Go through the list of used strength_bits values in descending
* order.
*/
for (i = max_strength_bits; i >= 0; i--)
if (number_uses[i] > 0)
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
tail_p);
OPENSSL_free(number_uses);
return 1;
}
static int ssl_cipher_process_rulestr(const char *rule_str,
CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p,
const SSL_CIPHER **ca_list, CERT *c)
{
uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength;
int min_tls;
const char *l, *buf;
int j, multi, found, rule, retval, ok, buflen;
uint32_t cipher_id = 0;
char ch;
retval = 1;
l = rule_str;
for ( ; ; ) {
ch = *l;
if (ch == '\0')
break; /* done */
if (ch == '-') {
rule = CIPHER_DEL;
l++;
} else if (ch == '+') {
rule = CIPHER_ORD;
l++;
} else if (ch == '!') {
rule = CIPHER_KILL;
l++;
} else if (ch == '@') {
rule = CIPHER_SPECIAL;
l++;
} else {
rule = CIPHER_ADD;
}
if (ITEM_SEP(ch)) {
l++;
continue;
}
alg_mkey = 0;
alg_auth = 0;
alg_enc = 0;
alg_mac = 0;
min_tls = 0;
algo_strength = 0;
for (;;) {
ch = *l;
buf = l;
buflen = 0;
#ifndef CHARSET_EBCDIC
while (((ch >= 'A') && (ch <= 'Z')) ||
((ch >= '0') && (ch <= '9')) ||
((ch >= 'a') && (ch <= 'z')) ||
(ch == '-') || (ch == '.') || (ch == '='))
#else
while (isalnum((unsigned char)ch) || (ch == '-') || (ch == '.')
|| (ch == '='))
#endif
{
ch = *(++l);
buflen++;
}
if (buflen == 0) {
/*
* We hit something we cannot deal with,
* it is no command or separator nor
* alphanumeric, so we call this an error.
*/
SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, SSL_R_INVALID_COMMAND);
retval = found = 0;
l++;
break;
}
if (rule == CIPHER_SPECIAL) {
found = 0; /* unused -- avoid compiler warning */
break; /* special treatment */
}
/* check for multi-part specification */
if (ch == '+') {
multi = 1;
l++;
} else {
multi = 0;
}
/*
* Now search for the cipher alias in the ca_list. Be careful
* with the strncmp, because the "buflen" limitation
* will make the rule "ADH:SOME" and the cipher
* "ADH-MY-CIPHER" look like a match for buflen=3.
* So additionally check whether the cipher name found
* has the correct length. We can save a strlen() call:
* just checking for the '\0' at the right place is
* sufficient, we have to strncmp() anyway. (We cannot
* use strcmp(), because buf is not '\0' terminated.)
*/
j = found = 0;
cipher_id = 0;
while (ca_list[j]) {
if (strncmp(buf, ca_list[j]->name, buflen) == 0
&& (ca_list[j]->name[buflen] == '\0')) {
found = 1;
break;
} else
j++;
}
if (!found)
break; /* ignore this entry */
if (ca_list[j]->algorithm_mkey) {
if (alg_mkey) {
alg_mkey &= ca_list[j]->algorithm_mkey;
if (!alg_mkey) {
found = 0;
break;
}
} else {
alg_mkey = ca_list[j]->algorithm_mkey;
}
}
if (ca_list[j]->algorithm_auth) {
if (alg_auth) {
alg_auth &= ca_list[j]->algorithm_auth;
if (!alg_auth) {
found = 0;
break;
}
} else {
alg_auth = ca_list[j]->algorithm_auth;
}
}
if (ca_list[j]->algorithm_enc) {
if (alg_enc) {
alg_enc &= ca_list[j]->algorithm_enc;
if (!alg_enc) {
found = 0;
break;
}
} else {
alg_enc = ca_list[j]->algorithm_enc;
}
}
if (ca_list[j]->algorithm_mac) {
if (alg_mac) {
alg_mac &= ca_list[j]->algorithm_mac;
if (!alg_mac) {
found = 0;
break;
}
} else {
alg_mac = ca_list[j]->algorithm_mac;
}
}
if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
if (algo_strength & SSL_STRONG_MASK) {
algo_strength &=
(ca_list[j]->algo_strength & SSL_STRONG_MASK) |
~SSL_STRONG_MASK;
if (!(algo_strength & SSL_STRONG_MASK)) {
found = 0;
break;
}
} else {
algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK;
}
}
if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) {
if (algo_strength & SSL_DEFAULT_MASK) {
algo_strength &=
(ca_list[j]->algo_strength & SSL_DEFAULT_MASK) |
~SSL_DEFAULT_MASK;
if (!(algo_strength & SSL_DEFAULT_MASK)) {
found = 0;
break;
}
} else {
algo_strength |=
ca_list[j]->algo_strength & SSL_DEFAULT_MASK;
}
}
if (ca_list[j]->valid) {
/*
* explicit ciphersuite found; its protocol version does not
* become part of the search pattern!
*/
cipher_id = ca_list[j]->id;
} else {
/*
* not an explicit ciphersuite; only in this case, the
* protocol version is considered part of the search pattern
*/
if (ca_list[j]->min_tls) {
if (min_tls != 0 && min_tls != ca_list[j]->min_tls) {
found = 0;
break;
} else {
min_tls = ca_list[j]->min_tls;
}
}
}
if (!multi)
break;
}
/*
* Ok, we have the rule, now apply it
*/
if (rule == CIPHER_SPECIAL) { /* special command */
ok = 0;
if ((buflen == 8) && strncmp(buf, "STRENGTH", 8) == 0) {
ok = ssl_cipher_strength_sort(head_p, tail_p);
} else if (buflen == 10 && strncmp(buf, "SECLEVEL=", 9) == 0) {
int level = buf[9] - '0';
if (level < 0 || level > 5) {
SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
SSL_R_INVALID_COMMAND);
} else {
c->sec_level = level;
ok = 1;
}
} else {
SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, SSL_R_INVALID_COMMAND);
}
if (ok == 0)
retval = 0;
/*
* We do not support any "multi" options
* together with "@", so throw away the
* rest of the command, if any left, until
* end or ':' is found.
*/
while ((*l != '\0') && !ITEM_SEP(*l))
l++;
} else if (found) {
ssl_cipher_apply_rule(cipher_id,
alg_mkey, alg_auth, alg_enc, alg_mac,
min_tls, algo_strength, rule, -1, head_p,
tail_p);
} else {
while ((*l != '\0') && !ITEM_SEP(*l))
l++;
}
if (*l == '\0')
break; /* done */
}
return retval;
}
#ifndef OPENSSL_NO_EC
static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c,
const char **prule_str)
{
unsigned int suiteb_flags = 0, suiteb_comb2 = 0;
if (strncmp(*prule_str, "SUITEB128ONLY", 13) == 0) {
suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY;
} else if (strncmp(*prule_str, "SUITEB128C2", 11) == 0) {
suiteb_comb2 = 1;
suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
} else if (strncmp(*prule_str, "SUITEB128", 9) == 0) {
suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
} else if (strncmp(*prule_str, "SUITEB192", 9) == 0) {
suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS;
}
if (suiteb_flags) {
c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS;
c->cert_flags |= suiteb_flags;
} else {
suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS;
}
if (!suiteb_flags)
return 1;
/* Check version: if TLS 1.2 ciphers allowed we can use Suite B */
if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) {
SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST,
SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE);
return 0;
}
# ifndef OPENSSL_NO_EC
switch (suiteb_flags) {
case SSL_CERT_FLAG_SUITEB_128_LOS:
if (suiteb_comb2)
*prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
else
*prule_str =
"ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384";
break;
case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
*prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256";
break;
case SSL_CERT_FLAG_SUITEB_192_LOS:
*prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
break;
}
return 1;
# else
SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST, SSL_R_ECDH_REQUIRED_FOR_SUITEB_MODE);
return 0;
# endif
}
#endif
static int ciphersuite_cb(const char *elem, int len, void *arg)
{
STACK_OF(SSL_CIPHER) *ciphersuites = (STACK_OF(SSL_CIPHER) *)arg;
const SSL_CIPHER *cipher;
/* Arbitrary sized temp buffer for the cipher name. Should be big enough */
char name[80];
if (len > (int)(sizeof(name) - 1)) {
SSLerr(SSL_F_CIPHERSUITE_CB, SSL_R_NO_CIPHER_MATCH);
return 0;
}
memcpy(name, elem, len);
name[len] = '\0';
cipher = ssl3_get_cipher_by_std_name(name);
if (cipher == NULL) {
SSLerr(SSL_F_CIPHERSUITE_CB, SSL_R_NO_CIPHER_MATCH);
return 0;
}
if (!sk_SSL_CIPHER_push(ciphersuites, cipher)) {
SSLerr(SSL_F_CIPHERSUITE_CB, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
static __owur int set_ciphersuites(STACK_OF(SSL_CIPHER) **currciphers, const char *str)
{
STACK_OF(SSL_CIPHER) *newciphers = sk_SSL_CIPHER_new_null();
if (newciphers == NULL)
return 0;
/* Parse the list. We explicitly allow an empty list */
if (*str != '\0'
&& !CONF_parse_list(str, ':', 1, ciphersuite_cb, newciphers)) {
sk_SSL_CIPHER_free(newciphers);
return 0;
}
sk_SSL_CIPHER_free(*currciphers);
*currciphers = newciphers;
return 1;
}
static int update_cipher_list_by_id(STACK_OF(SSL_CIPHER) **cipher_list_by_id,
STACK_OF(SSL_CIPHER) *cipherstack)
{
STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
if (tmp_cipher_list == NULL) {
return 0;
}
sk_SSL_CIPHER_free(*cipher_list_by_id);
*cipher_list_by_id = tmp_cipher_list;
(void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp);
sk_SSL_CIPHER_sort(*cipher_list_by_id);
return 1;
}
static int update_cipher_list(STACK_OF(SSL_CIPHER) **cipher_list,
STACK_OF(SSL_CIPHER) **cipher_list_by_id,
STACK_OF(SSL_CIPHER) *tls13_ciphersuites)
{
int i;
STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(*cipher_list);
if (tmp_cipher_list == NULL)
return 0;
/*
* Delete any existing TLSv1.3 ciphersuites. These are always first in the
* list.
*/
while (sk_SSL_CIPHER_num(tmp_cipher_list) > 0
&& sk_SSL_CIPHER_value(tmp_cipher_list, 0)->min_tls
== TLS1_3_VERSION)
sk_SSL_CIPHER_delete(tmp_cipher_list, 0);
/* Insert the new TLSv1.3 ciphersuites */
for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++)
sk_SSL_CIPHER_insert(tmp_cipher_list,
sk_SSL_CIPHER_value(tls13_ciphersuites, i), i);
if (!update_cipher_list_by_id(cipher_list_by_id, tmp_cipher_list))
return 0;
sk_SSL_CIPHER_free(*cipher_list);
*cipher_list = tmp_cipher_list;
return 1;
}
int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str)
{
int ret = set_ciphersuites(&(ctx->tls13_ciphersuites), str);
if (ret && ctx->cipher_list != NULL) {
/* We already have a cipher_list, so we need to update it */
return update_cipher_list(&ctx->cipher_list, &ctx->cipher_list_by_id,
ctx->tls13_ciphersuites);
}
return ret;
}
int SSL_set_ciphersuites(SSL *s, const char *str)
{
int ret = set_ciphersuites(&(s->tls13_ciphersuites), str);
if (ret && s->cipher_list != NULL) {
/* We already have a cipher_list, so we need to update it */
return update_cipher_list(&s->cipher_list, &s->cipher_list_by_id,
s->tls13_ciphersuites);
}
return ret;
}
STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method,
STACK_OF(SSL_CIPHER) *tls13_ciphersuites,
STACK_OF(SSL_CIPHER) **cipher_list,
STACK_OF(SSL_CIPHER) **cipher_list_by_id,
const char *rule_str,
CERT *c)
{
int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases, i;
uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac;
STACK_OF(SSL_CIPHER) *cipherstack;
const char *rule_p;
CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
const SSL_CIPHER **ca_list = NULL;
/*
* Return with error if nothing to do.
*/
if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
return NULL;
#ifndef OPENSSL_NO_EC
if (!check_suiteb_cipher_list(ssl_method, c, &rule_str))
return NULL;
#endif
/*
* To reduce the work to do we only want to process the compiled
* in algorithms, so we first get the mask of disabled ciphers.
*/
disabled_mkey = disabled_mkey_mask;
disabled_auth = disabled_auth_mask;
disabled_enc = disabled_enc_mask;
disabled_mac = disabled_mac_mask;
/*
* Now we have to collect the available ciphers from the compiled
* in ciphers. We cannot get more than the number compiled in, so
* it is used for allocation.
*/
num_of_ciphers = ssl_method->num_ciphers();
co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers);
if (co_list == NULL) {
SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
return NULL; /* Failure */
}
ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
disabled_mkey, disabled_auth, disabled_enc,
disabled_mac, co_list, &head, &tail);
/* Now arrange all ciphers by preference. */
/*
* Everything else being equal, prefer ephemeral ECDH over other key
* exchange mechanisms.
* For consistency, prefer ECDSA over RSA (though this only matters if the
* server has both certificates, and is using the DEFAULT, or a client
* preference).
*/
ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD,
-1, &head, &tail);
ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
&tail);
ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
&tail);
/* Within each strength group, we prefer GCM over CHACHA... */
ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1,
&head, &tail);
ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1,
&head, &tail);
/*
* ...and generally, our preferred cipher is AES.
* Note that AEADs will be bumped to take preference after sorting by
* strength.
*/
ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD,
-1, &head, &tail);
/* Temporarily enable everything else for sorting */
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
/* Low priority for MD5 */
ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
&tail);
/*
* Move anonymous ciphers to the end. Usually, these will remain
* disabled. (For applications that allow them, they aren't too bad, but
* we prefer authenticated ciphers.)
*/
ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
&tail);
ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
&tail);
ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
&tail);
/* RC4 is sort-of broken -- move to the end */
ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
&tail);
/*
* Now sort by symmetric encryption strength. The above ordering remains
* in force within each class
*/
if (!ssl_cipher_strength_sort(&head, &tail)) {
OPENSSL_free(co_list);
return NULL;
}
/*
* Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs.
* TODO(openssl-team): is there an easier way to accomplish all this?
*/
ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1,
&head, &tail);
/*
* Irrespective of strength, enforce the following order:
* (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest.
* Within each group, ciphers remain sorted by strength and previous
* preference, i.e.,
* 1) ECDHE > DHE
* 2) GCM > CHACHA
* 3) AES > rest
* 4) TLS 1.2 > legacy
*
* Because we now bump ciphers to the top of the list, we proceed in
* reverse order of preference.
*/
ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1,
&head, &tail);
ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0,
CIPHER_BUMP, -1, &head, &tail);
ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0,
CIPHER_BUMP, -1, &head, &tail);
/* Now disable everything (maintaining the ordering!) */
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
/*
* We also need cipher aliases for selecting based on the rule_str.
* There might be two types of entries in the rule_str: 1) names
* of ciphers themselves 2) aliases for groups of ciphers.
* For 1) we need the available ciphers and for 2) the cipher
* groups of cipher_aliases added together in one list (otherwise
* we would be happy with just the cipher_aliases table).
*/
num_of_group_aliases = OSSL_NELEM(cipher_aliases);
num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max);
if (ca_list == NULL) {
OPENSSL_free(co_list);
SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
return NULL; /* Failure */
}
ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
disabled_mkey, disabled_auth, disabled_enc,
disabled_mac, head);
/*
* If the rule_string begins with DEFAULT, apply the default rule
* before using the (possibly available) additional rules.
*/
ok = 1;
rule_p = rule_str;
if (strncmp(rule_str, "DEFAULT", 7) == 0) {
ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST,
&head, &tail, ca_list, c);
rule_p += 7;
if (*rule_p == ':')
rule_p++;
}
if (ok && (strlen(rule_p) > 0))
ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c);
OPENSSL_free(ca_list); /* Not needed anymore */
if (!ok) { /* Rule processing failure */
OPENSSL_free(co_list);
return NULL;
}
/*
* Allocate new "cipherstack" for the result, return with error
* if we cannot get one.
*/
if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
OPENSSL_free(co_list);
return NULL;
}
/* Add TLSv1.3 ciphers first - we always prefer those if possible */
for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++) {
if (!sk_SSL_CIPHER_push(cipherstack,
sk_SSL_CIPHER_value(tls13_ciphersuites, i))) {
sk_SSL_CIPHER_free(cipherstack);
return NULL;
}
}
/*
* The cipher selection for the list is done. The ciphers are added
* to the resulting precedence to the STACK_OF(SSL_CIPHER).
*/
for (curr = head; curr != NULL; curr = curr->next) {
if (curr->active) {
if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
OPENSSL_free(co_list);
sk_SSL_CIPHER_free(cipherstack);
return NULL;
}
#ifdef CIPHER_DEBUG
fprintf(stderr, "<%s>\n", curr->cipher->name);
#endif
}
}
OPENSSL_free(co_list); /* Not needed any longer */
if (!update_cipher_list_by_id(cipher_list_by_id, cipherstack)) {
sk_SSL_CIPHER_free(cipherstack);
return NULL;
}
sk_SSL_CIPHER_free(*cipher_list);
*cipher_list = cipherstack;
return cipherstack;
}
char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
{
const char *ver;
const char *kx, *au, *enc, *mac;
uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
static const char *format = "%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n";
if (buf == NULL) {
len = 128;
if ((buf = OPENSSL_malloc(len)) == NULL) {
SSLerr(SSL_F_SSL_CIPHER_DESCRIPTION, ERR_R_MALLOC_FAILURE);
return NULL;
}
} else if (len < 128) {
return NULL;
}
alg_mkey = cipher->algorithm_mkey;
alg_auth = cipher->algorithm_auth;
alg_enc = cipher->algorithm_enc;
alg_mac = cipher->algorithm_mac;
ver = ssl_protocol_to_string(cipher->min_tls);
switch (alg_mkey) {
case SSL_kRSA:
kx = "RSA";
break;
case SSL_kDHE:
kx = "DH";
break;
case SSL_kECDHE:
kx = "ECDH";
break;
case SSL_kPSK:
kx = "PSK";
break;
case SSL_kRSAPSK:
kx = "RSAPSK";
break;
case SSL_kECDHEPSK:
kx = "ECDHEPSK";
break;
case SSL_kDHEPSK:
kx = "DHEPSK";
break;
case SSL_kSRP:
kx = "SRP";
break;
case SSL_kGOST:
kx = "GOST";
break;
case SSL_kANY:
kx = "any";
break;
default:
kx = "unknown";
}
switch (alg_auth) {
case SSL_aRSA:
au = "RSA";
break;
case SSL_aDSS:
au = "DSS";
break;
case SSL_aNULL:
au = "None";
break;
case SSL_aECDSA:
au = "ECDSA";
break;
case SSL_aPSK:
au = "PSK";
break;
case SSL_aSRP:
au = "SRP";
break;
case SSL_aGOST01:
au = "GOST01";
break;
/* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */
case (SSL_aGOST12 | SSL_aGOST01):
au = "GOST12";
break;
case SSL_aANY:
au = "any";
break;
default:
au = "unknown";
break;
}
switch (alg_enc) {
case SSL_DES:
enc = "DES(56)";
break;
case SSL_3DES:
enc = "3DES(168)";
break;
case SSL_RC4:
enc = "RC4(128)";
break;
case SSL_RC2:
enc = "RC2(128)";
break;
case SSL_IDEA:
enc = "IDEA(128)";
break;
case SSL_eNULL:
enc = "None";
break;
case SSL_AES128:
enc = "AES(128)";
break;
case SSL_AES256:
enc = "AES(256)";
break;
case SSL_AES128GCM:
enc = "AESGCM(128)";
break;
case SSL_AES256GCM:
enc = "AESGCM(256)";
break;
case SSL_AES128CCM:
enc = "AESCCM(128)";
break;
case SSL_AES256CCM:
enc = "AESCCM(256)";
break;
case SSL_AES128CCM8:
enc = "AESCCM8(128)";
break;
case SSL_AES256CCM8:
enc = "AESCCM8(256)";
break;
case SSL_CAMELLIA128:
enc = "Camellia(128)";
break;
case SSL_CAMELLIA256:
enc = "Camellia(256)";
break;
case SSL_ARIA128GCM:
enc = "ARIAGCM(128)";
break;
case SSL_ARIA256GCM:
enc = "ARIAGCM(256)";
break;
case SSL_SEED:
enc = "SEED(128)";
break;
case SSL_eGOST2814789CNT:
case SSL_eGOST2814789CNT12:
enc = "GOST89(256)";
break;
case SSL_CHACHA20POLY1305:
enc = "CHACHA20/POLY1305(256)";
break;
default:
enc = "unknown";
break;
}
switch (alg_mac) {
case SSL_MD5:
mac = "MD5";
break;
case SSL_SHA1:
mac = "SHA1";
break;
case SSL_SHA256:
mac = "SHA256";
break;
case SSL_SHA384:
mac = "SHA384";
break;
case SSL_AEAD:
mac = "AEAD";
break;
case SSL_GOST89MAC:
case SSL_GOST89MAC12:
mac = "GOST89";
break;
case SSL_GOST94:
mac = "GOST94";
break;
case SSL_GOST12_256:
case SSL_GOST12_512:
mac = "GOST2012";
break;
default:
mac = "unknown";
break;
}
BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac);
return buf;
}
const char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
{
if (c == NULL)
return "(NONE)";
/*
* Backwards-compatibility crutch. In almost all contexts we report TLS
* 1.0 as "TLSv1", but for ciphers we report "TLSv1.0".
*/
if (c->min_tls == TLS1_VERSION)
return "TLSv1.0";
return ssl_protocol_to_string(c->min_tls);
}
/* return the actual cipher being used */
const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
{
if (c != NULL)
return c->name;
return "(NONE)";
}
/* return the actual cipher being used in RFC standard name */
const char *SSL_CIPHER_standard_name(const SSL_CIPHER *c)
{
if (c != NULL)
return c->stdname;
return "(NONE)";
}
/* return the OpenSSL name based on given RFC standard name */
const char *OPENSSL_cipher_name(const char *stdname)
{
const SSL_CIPHER *c;
if (stdname == NULL)
return "(NONE)";
c = ssl3_get_cipher_by_std_name(stdname);
return SSL_CIPHER_get_name(c);
}
/* number of bits for symmetric cipher */
int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
{
int ret = 0;
if (c != NULL) {
if (alg_bits != NULL)
*alg_bits = (int)c->alg_bits;
ret = (int)c->strength_bits;
}
return ret;
}
uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c)
{
return c->id;
}
uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *c)
{
return c->id & 0xFFFF;
}
SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
{
SSL_COMP *ctmp;
int i, nn;
if ((n == 0) || (sk == NULL))
return NULL;
nn = sk_SSL_COMP_num(sk);
for (i = 0; i < nn; i++) {
ctmp = sk_SSL_COMP_value(sk, i);
if (ctmp->id == n)
return ctmp;
}
return NULL;
}
#ifdef OPENSSL_NO_COMP
STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
{
return NULL;
}
STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
*meths)
{
return meths;
}
int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
{
return 1;
}
#else
STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
{
load_builtin_compressions();
return ssl_comp_methods;
}
STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
*meths)
{
STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
ssl_comp_methods = meths;
return old_meths;
}
static void cmeth_free(SSL_COMP *cm)
{
OPENSSL_free(cm);
}
void ssl_comp_free_compression_methods_int(void)
{
STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
ssl_comp_methods = NULL;
sk_SSL_COMP_pop_free(old_meths, cmeth_free);
}
int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
{
SSL_COMP *comp;
if (cm == NULL || COMP_get_type(cm) == NID_undef)
return 1;
/*-
* According to draft-ietf-tls-compression-04.txt, the
* compression number ranges should be the following:
*
* 0 to 63: methods defined by the IETF
* 64 to 192: external party methods assigned by IANA
* 193 to 255: reserved for private use
*/
if (id < 193 || id > 255) {
SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,
SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
return 1;
}
CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE);
comp = OPENSSL_malloc(sizeof(*comp));
if (comp == NULL) {
CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, ERR_R_MALLOC_FAILURE);
return 1;
}
comp->id = id;
comp->method = cm;
load_builtin_compressions();
if (ssl_comp_methods && sk_SSL_COMP_find(ssl_comp_methods, comp) >= 0) {
OPENSSL_free(comp);
CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,
SSL_R_DUPLICATE_COMPRESSION_ID);
return 1;
}
if (ssl_comp_methods == NULL || !sk_SSL_COMP_push(ssl_comp_methods, comp)) {
OPENSSL_free(comp);
CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, ERR_R_MALLOC_FAILURE);
return 1;
}
CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
return 0;
}
#endif
const char *SSL_COMP_get_name(const COMP_METHOD *comp)
{
#ifndef OPENSSL_NO_COMP
return comp ? COMP_get_name(comp) : NULL;
#else
return NULL;
#endif
}
const char *SSL_COMP_get0_name(const SSL_COMP *comp)
{
#ifndef OPENSSL_NO_COMP
return comp->name;
#else
return NULL;
#endif
}
int SSL_COMP_get_id(const SSL_COMP *comp)
{
#ifndef OPENSSL_NO_COMP
return comp->id;
#else
return -1;
#endif
}
const SSL_CIPHER *ssl_get_cipher_by_char(SSL *ssl, const unsigned char *ptr,
int all)
{
const SSL_CIPHER *c = ssl->method->get_cipher_by_char(ptr);
if (c == NULL || (!all && c->valid == 0))
return NULL;
return c;
}
const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
{
return ssl->method->get_cipher_by_char(ptr);
}
int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
{
int i;
if (c == NULL)
return NID_undef;
i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
if (i == -1)
return NID_undef;
return ssl_cipher_table_cipher[i].nid;
}
int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
{
int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
if (i == -1)
return NID_undef;
return ssl_cipher_table_mac[i].nid;
}
int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
{
int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey);
if (i == -1)
return NID_undef;
return ssl_cipher_table_kx[i].nid;
}
int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
{
int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth);
if (i == -1)
return NID_undef;
return ssl_cipher_table_auth[i].nid;
}
const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *c)
{
int idx = c->algorithm2 & SSL_HANDSHAKE_MAC_MASK;
if (idx < 0 || idx >= SSL_MD_NUM_IDX)
return NULL;
return ssl_digest_methods[idx];
}
int SSL_CIPHER_is_aead(const SSL_CIPHER *c)
{
return (c->algorithm_mac & SSL_AEAD) ? 1 : 0;
}
int ssl_cipher_get_overhead(const SSL_CIPHER *c, size_t *mac_overhead,
size_t *int_overhead, size_t *blocksize,
size_t *ext_overhead)
{
size_t mac = 0, in = 0, blk = 0, out = 0;
/* Some hard-coded numbers for the CCM/Poly1305 MAC overhead
* because there are no handy #defines for those. */
if (c->algorithm_enc & (SSL_AESGCM | SSL_ARIAGCM)) {
out = EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
} else if (c->algorithm_enc & (SSL_AES128CCM | SSL_AES256CCM)) {
out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 16;
} else if (c->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) {
out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 8;
} else if (c->algorithm_enc & SSL_CHACHA20POLY1305) {
out = 16;
} else if (c->algorithm_mac & SSL_AEAD) {
/* We're supposed to have handled all the AEAD modes above */
return 0;
} else {
/* Non-AEAD modes. Calculate MAC/cipher overhead separately */
int digest_nid = SSL_CIPHER_get_digest_nid(c);
const EVP_MD *e_md = EVP_get_digestbynid(digest_nid);
if (e_md == NULL)
return 0;
mac = EVP_MD_size(e_md);
if (c->algorithm_enc != SSL_eNULL) {
int cipher_nid = SSL_CIPHER_get_cipher_nid(c);
const EVP_CIPHER *e_ciph = EVP_get_cipherbynid(cipher_nid);
/* If it wasn't AEAD or SSL_eNULL, we expect it to be a
known CBC cipher. */
if (e_ciph == NULL ||
EVP_CIPHER_mode(e_ciph) != EVP_CIPH_CBC_MODE)
return 0;
in = 1; /* padding length byte */
out = EVP_CIPHER_iv_length(e_ciph);
blk = EVP_CIPHER_block_size(e_ciph);
}
}
*mac_overhead = mac;
*int_overhead = in;
*blocksize = blk;
*ext_overhead = out;
return 1;
}
int ssl_cert_is_disabled(size_t idx)
{
const SSL_CERT_LOOKUP *cl = ssl_cert_lookup_by_idx(idx);
if (cl == NULL || (cl->amask & disabled_auth_mask) != 0)
return 1;
return 0;
}