ocb128.c 16.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
/*
 * Copyright 2014-2018 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <string.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include "modes_lcl.h"

#ifndef OPENSSL_NO_OCB

/*
 * Calculate the number of binary trailing zero's in any given number
 */
static u32 ocb_ntz(u64 n)
{
    u32 cnt = 0;

    /*
     * We do a right-to-left simple sequential search. This is surprisingly
     * efficient as the distribution of trailing zeros is not uniform,
     * e.g. the number of possible inputs with no trailing zeros is equal to
     * the number with 1 or more; the number with exactly 1 is equal to the
     * number with 2 or more, etc. Checking the last two bits covers 75% of
     * all numbers. Checking the last three covers 87.5%
     */
    while (!(n & 1)) {
        n >>= 1;
        cnt++;
    }
    return cnt;
}

/*
 * Shift a block of 16 bytes left by shift bits
 */
static void ocb_block_lshift(const unsigned char *in, size_t shift,
                             unsigned char *out)
{
    int i;
    unsigned char carry = 0, carry_next;

    for (i = 15; i >= 0; i--) {
        carry_next = in[i] >> (8 - shift);
        out[i] = (in[i] << shift) | carry;
        carry = carry_next;
    }
}

/*
 * Perform a "double" operation as per OCB spec
 */
static void ocb_double(OCB_BLOCK *in, OCB_BLOCK *out)
{
    unsigned char mask;

    /*
     * Calculate the mask based on the most significant bit. There are more
     * efficient ways to do this - but this way is constant time
     */
    mask = in->c[0] & 0x80;
    mask >>= 7;
    mask = (0 - mask) & 0x87;

    ocb_block_lshift(in->c, 1, out->c);

    out->c[15] ^= mask;
}

/*
 * Perform an xor on in1 and in2 - each of len bytes. Store result in out
 */
static void ocb_block_xor(const unsigned char *in1,
                          const unsigned char *in2, size_t len,
                          unsigned char *out)
{
    size_t i;
    for (i = 0; i < len; i++) {
        out[i] = in1[i] ^ in2[i];
    }
}

/*
 * Lookup L_index in our lookup table. If we haven't already got it we need to
 * calculate it
 */
static OCB_BLOCK *ocb_lookup_l(OCB128_CONTEXT *ctx, size_t idx)
{
    size_t l_index = ctx->l_index;

    if (idx <= l_index) {
        return ctx->l + idx;
    }

    /* We don't have it - so calculate it */
    if (idx >= ctx->max_l_index) {
        void *tmp_ptr;
        /*
         * Each additional entry allows to process almost double as
         * much data, so that in linear world the table will need to
         * be expanded with smaller and smaller increments. Originally
         * it was doubling in size, which was a waste. Growing it
         * linearly is not formally optimal, but is simpler to implement.
         * We grow table by minimally required 4*n that would accommodate
         * the index.
         */
        ctx->max_l_index += (idx - ctx->max_l_index + 4) & ~3;
        tmp_ptr = OPENSSL_realloc(ctx->l, ctx->max_l_index * sizeof(OCB_BLOCK));
        if (tmp_ptr == NULL) /* prevent ctx->l from being clobbered */
            return NULL;
        ctx->l = tmp_ptr;
    }
    while (l_index < idx) {
        ocb_double(ctx->l + l_index, ctx->l + l_index + 1);
        l_index++;
    }
    ctx->l_index = l_index;

    return ctx->l + idx;
}

/*
 * Create a new OCB128_CONTEXT
 */
OCB128_CONTEXT *CRYPTO_ocb128_new(void *keyenc, void *keydec,
                                  block128_f encrypt, block128_f decrypt,
                                  ocb128_f stream)
{
    OCB128_CONTEXT *octx;
    int ret;

    if ((octx = OPENSSL_malloc(sizeof(*octx))) != NULL) {
        ret = CRYPTO_ocb128_init(octx, keyenc, keydec, encrypt, decrypt,
                                 stream);
        if (ret)
            return octx;
        OPENSSL_free(octx);
    }

    return NULL;
}

/*
 * Initialise an existing OCB128_CONTEXT
 */
int CRYPTO_ocb128_init(OCB128_CONTEXT *ctx, void *keyenc, void *keydec,
                       block128_f encrypt, block128_f decrypt,
                       ocb128_f stream)
{
    memset(ctx, 0, sizeof(*ctx));
    ctx->l_index = 0;
    ctx->max_l_index = 5;
    if ((ctx->l = OPENSSL_malloc(ctx->max_l_index * 16)) == NULL) {
        CRYPTOerr(CRYPTO_F_CRYPTO_OCB128_INIT, ERR_R_MALLOC_FAILURE);
        return 0;
    }

    /*
     * We set both the encryption and decryption key schedules - decryption
     * needs both. Don't really need decryption schedule if only doing
     * encryption - but it simplifies things to take it anyway
     */
    ctx->encrypt = encrypt;
    ctx->decrypt = decrypt;
    ctx->stream = stream;
    ctx->keyenc = keyenc;
    ctx->keydec = keydec;

    /* L_* = ENCIPHER(K, zeros(128)) */
    ctx->encrypt(ctx->l_star.c, ctx->l_star.c, ctx->keyenc);

    /* L_$ = double(L_*) */
    ocb_double(&ctx->l_star, &ctx->l_dollar);

    /* L_0 = double(L_$) */
    ocb_double(&ctx->l_dollar, ctx->l);

    /* L_{i} = double(L_{i-1}) */
    ocb_double(ctx->l, ctx->l+1);
    ocb_double(ctx->l+1, ctx->l+2);
    ocb_double(ctx->l+2, ctx->l+3);
    ocb_double(ctx->l+3, ctx->l+4);
    ctx->l_index = 4;   /* enough to process up to 496 bytes */

    return 1;
}

/*
 * Copy an OCB128_CONTEXT object
 */
int CRYPTO_ocb128_copy_ctx(OCB128_CONTEXT *dest, OCB128_CONTEXT *src,
                           void *keyenc, void *keydec)
{
    memcpy(dest, src, sizeof(OCB128_CONTEXT));
    if (keyenc)
        dest->keyenc = keyenc;
    if (keydec)
        dest->keydec = keydec;
    if (src->l) {
        if ((dest->l = OPENSSL_malloc(src->max_l_index * 16)) == NULL) {
            CRYPTOerr(CRYPTO_F_CRYPTO_OCB128_COPY_CTX, ERR_R_MALLOC_FAILURE);
            return 0;
        }
        memcpy(dest->l, src->l, (src->l_index + 1) * 16);
    }
    return 1;
}

/*
 * Set the IV to be used for this operation. Must be 1 - 15 bytes.
 */
int CRYPTO_ocb128_setiv(OCB128_CONTEXT *ctx, const unsigned char *iv,
                        size_t len, size_t taglen)
{
    unsigned char ktop[16], tmp[16], mask;
    unsigned char stretch[24], nonce[16];
    size_t bottom, shift;

    /*
     * Spec says IV is 120 bits or fewer - it allows non byte aligned lengths.
     * We don't support this at this stage
     */
    if ((len > 15) || (len < 1) || (taglen > 16) || (taglen < 1)) {
        return -1;
    }

    /* Reset nonce-dependent variables */
    memset(&ctx->sess, 0, sizeof(ctx->sess));

    /* Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N */
    nonce[0] = ((taglen * 8) % 128) << 1;
    memset(nonce + 1, 0, 15);
    memcpy(nonce + 16 - len, iv, len);
    nonce[15 - len] |= 1;

    /* Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6)) */
    memcpy(tmp, nonce, 16);
    tmp[15] &= 0xc0;
    ctx->encrypt(tmp, ktop, ctx->keyenc);

    /* Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72]) */
    memcpy(stretch, ktop, 16);
    ocb_block_xor(ktop, ktop + 1, 8, stretch + 16);

    /* bottom = str2num(Nonce[123..128]) */
    bottom = nonce[15] & 0x3f;

    /* Offset_0 = Stretch[1+bottom..128+bottom] */
    shift = bottom % 8;
    ocb_block_lshift(stretch + (bottom / 8), shift, ctx->sess.offset.c);
    mask = 0xff;
    mask <<= 8 - shift;
    ctx->sess.offset.c[15] |=
        (*(stretch + (bottom / 8) + 16) & mask) >> (8 - shift);

    return 1;
}

/*
 * Provide any AAD. This can be called multiple times. Only the final time can
 * have a partial block
 */
int CRYPTO_ocb128_aad(OCB128_CONTEXT *ctx, const unsigned char *aad,
                      size_t len)
{
    u64 i, all_num_blocks;
    size_t num_blocks, last_len;
    OCB_BLOCK tmp;

    /* Calculate the number of blocks of AAD provided now, and so far */
    num_blocks = len / 16;
    all_num_blocks = num_blocks + ctx->sess.blocks_hashed;

    /* Loop through all full blocks of AAD */
    for (i = ctx->sess.blocks_hashed + 1; i <= all_num_blocks; i++) {
        OCB_BLOCK *lookup;

        /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
        lookup = ocb_lookup_l(ctx, ocb_ntz(i));
        if (lookup == NULL)
            return 0;
        ocb_block16_xor(&ctx->sess.offset_aad, lookup, &ctx->sess.offset_aad);

        memcpy(tmp.c, aad, 16);
        aad += 16;

        /* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */
        ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp);
        ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
        ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum);
    }

    /*
     * Check if we have any partial blocks left over. This is only valid in the
     * last call to this function
     */
    last_len = len % 16;

    if (last_len > 0) {
        /* Offset_* = Offset_m xor L_* */
        ocb_block16_xor(&ctx->sess.offset_aad, &ctx->l_star,
                        &ctx->sess.offset_aad);

        /* CipherInput = (A_* || 1 || zeros(127-bitlen(A_*))) xor Offset_* */
        memset(tmp.c, 0, 16);
        memcpy(tmp.c, aad, last_len);
        tmp.c[last_len] = 0x80;
        ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp);

        /* Sum = Sum_m xor ENCIPHER(K, CipherInput) */
        ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
        ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum);
    }

    ctx->sess.blocks_hashed = all_num_blocks;

    return 1;
}

/*
 * Provide any data to be encrypted. This can be called multiple times. Only
 * the final time can have a partial block
 */
int CRYPTO_ocb128_encrypt(OCB128_CONTEXT *ctx,
                          const unsigned char *in, unsigned char *out,
                          size_t len)
{
    u64 i, all_num_blocks;
    size_t num_blocks, last_len;

    /*
     * Calculate the number of blocks of data to be encrypted provided now, and
     * so far
     */
    num_blocks = len / 16;
    all_num_blocks = num_blocks + ctx->sess.blocks_processed;

    if (num_blocks && all_num_blocks == (size_t)all_num_blocks
        && ctx->stream != NULL) {
        size_t max_idx = 0, top = (size_t)all_num_blocks;

        /*
         * See how many L_{i} entries we need to process data at hand
         * and pre-compute missing entries in the table [if any]...
         */
        while (top >>= 1)
            max_idx++;
        if (ocb_lookup_l(ctx, max_idx) == NULL)
            return 0;

        ctx->stream(in, out, num_blocks, ctx->keyenc,
                    (size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c,
                    (const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c);
    } else {
        /* Loop through all full blocks to be encrypted */
        for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) {
            OCB_BLOCK *lookup;
            OCB_BLOCK tmp;

            /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
            lookup = ocb_lookup_l(ctx, ocb_ntz(i));
            if (lookup == NULL)
                return 0;
            ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset);

            memcpy(tmp.c, in, 16);
            in += 16;

            /* Checksum_i = Checksum_{i-1} xor P_i */
            ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum);

            /* C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i) */
            ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
            ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
            ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);

            memcpy(out, tmp.c, 16);
            out += 16;
        }
    }

    /*
     * Check if we have any partial blocks left over. This is only valid in the
     * last call to this function
     */
    last_len = len % 16;

    if (last_len > 0) {
        OCB_BLOCK pad;

        /* Offset_* = Offset_m xor L_* */
        ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset);

        /* Pad = ENCIPHER(K, Offset_*) */
        ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc);

        /* C_* = P_* xor Pad[1..bitlen(P_*)] */
        ocb_block_xor(in, pad.c, last_len, out);

        /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */
        memset(pad.c, 0, 16);           /* borrow pad */
        memcpy(pad.c, in, last_len);
        pad.c[last_len] = 0x80;
        ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum);
    }

    ctx->sess.blocks_processed = all_num_blocks;

    return 1;
}

/*
 * Provide any data to be decrypted. This can be called multiple times. Only
 * the final time can have a partial block
 */
int CRYPTO_ocb128_decrypt(OCB128_CONTEXT *ctx,
                          const unsigned char *in, unsigned char *out,
                          size_t len)
{
    u64 i, all_num_blocks;
    size_t num_blocks, last_len;

    /*
     * Calculate the number of blocks of data to be decrypted provided now, and
     * so far
     */
    num_blocks = len / 16;
    all_num_blocks = num_blocks + ctx->sess.blocks_processed;

    if (num_blocks && all_num_blocks == (size_t)all_num_blocks
        && ctx->stream != NULL) {
        size_t max_idx = 0, top = (size_t)all_num_blocks;

        /*
         * See how many L_{i} entries we need to process data at hand
         * and pre-compute missing entries in the table [if any]...
         */
        while (top >>= 1)
            max_idx++;
        if (ocb_lookup_l(ctx, max_idx) == NULL)
            return 0;

        ctx->stream(in, out, num_blocks, ctx->keydec,
                    (size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c,
                    (const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c);
    } else {
        OCB_BLOCK tmp;

        /* Loop through all full blocks to be decrypted */
        for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) {

            /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
            OCB_BLOCK *lookup = ocb_lookup_l(ctx, ocb_ntz(i));
            if (lookup == NULL)
                return 0;
            ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset);

            memcpy(tmp.c, in, 16);
            in += 16;

            /* P_i = Offset_i xor DECIPHER(K, C_i xor Offset_i) */
            ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
            ctx->decrypt(tmp.c, tmp.c, ctx->keydec);
            ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);

            /* Checksum_i = Checksum_{i-1} xor P_i */
            ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum);

            memcpy(out, tmp.c, 16);
            out += 16;
        }
    }

    /*
     * Check if we have any partial blocks left over. This is only valid in the
     * last call to this function
     */
    last_len = len % 16;

    if (last_len > 0) {
        OCB_BLOCK pad;

        /* Offset_* = Offset_m xor L_* */
        ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset);

        /* Pad = ENCIPHER(K, Offset_*) */
        ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc);

        /* P_* = C_* xor Pad[1..bitlen(C_*)] */
        ocb_block_xor(in, pad.c, last_len, out);

        /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */
        memset(pad.c, 0, 16);           /* borrow pad */
        memcpy(pad.c, out, last_len);
        pad.c[last_len] = 0x80;
        ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum);
    }

    ctx->sess.blocks_processed = all_num_blocks;

    return 1;
}

static int ocb_finish(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len,
                      int write)
{
    OCB_BLOCK tmp;

    if (len > 16 || len < 1) {
        return -1;
    }

    /*
     * Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A)
     */
    ocb_block16_xor(&ctx->sess.checksum, &ctx->sess.offset, &tmp);
    ocb_block16_xor(&ctx->l_dollar, &tmp, &tmp);
    ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
    ocb_block16_xor(&tmp, &ctx->sess.sum, &tmp);

    if (write) {
        memcpy(tag, &tmp, len);
        return 1;
    } else {
        return CRYPTO_memcmp(&tmp, tag, len);
    }
}

/*
 * Calculate the tag and verify it against the supplied tag
 */
int CRYPTO_ocb128_finish(OCB128_CONTEXT *ctx, const unsigned char *tag,
                         size_t len)
{
    return ocb_finish(ctx, (unsigned char*)tag, len, 0);
}

/*
 * Retrieve the calculated tag
 */
int CRYPTO_ocb128_tag(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len)
{
    return ocb_finish(ctx, tag, len, 1);
}

/*
 * Release all resources
 */
void CRYPTO_ocb128_cleanup(OCB128_CONTEXT *ctx)
{
    if (ctx) {
        OPENSSL_clear_free(ctx->l, ctx->max_l_index * 16);
        OPENSSL_cleanse(ctx, sizeof(*ctx));
    }
}

#endif                          /* OPENSSL_NO_OCB */