ec_mult.c 30.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
/*
 * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <string.h>
#include <openssl/err.h>

#include "internal/cryptlib.h"
#include "internal/bn_int.h"
#include "ec_lcl.h"
#include "internal/refcount.h"

/*
 * This file implements the wNAF-based interleaving multi-exponentiation method
 * Formerly at:
 *   http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp
 * You might now find it here:
 *   http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
 *   http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
 * For multiplication with precomputation, we use wNAF splitting, formerly at:
 *   http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp
 */

/* structure for precomputed multiples of the generator */
struct ec_pre_comp_st {
    const EC_GROUP *group;      /* parent EC_GROUP object */
    size_t blocksize;           /* block size for wNAF splitting */
    size_t numblocks;           /* max. number of blocks for which we have
                                 * precomputation */
    size_t w;                   /* window size */
    EC_POINT **points;          /* array with pre-calculated multiples of
                                 * generator: 'num' pointers to EC_POINT
                                 * objects followed by a NULL */
    size_t num;                 /* numblocks * 2^(w-1) */
    CRYPTO_REF_COUNT references;
    CRYPTO_RWLOCK *lock;
};

static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
{
    EC_PRE_COMP *ret = NULL;

    if (!group)
        return NULL;

    ret = OPENSSL_zalloc(sizeof(*ret));
    if (ret == NULL) {
        ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
        return ret;
    }

    ret->group = group;
    ret->blocksize = 8;         /* default */
    ret->w = 4;                 /* default */
    ret->references = 1;

    ret->lock = CRYPTO_THREAD_lock_new();
    if (ret->lock == NULL) {
        ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
        OPENSSL_free(ret);
        return NULL;
    }
    return ret;
}

EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre)
{
    int i;
    if (pre != NULL)
        CRYPTO_UP_REF(&pre->references, &i, pre->lock);
    return pre;
}

void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
{
    int i;

    if (pre == NULL)
        return;

    CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
    REF_PRINT_COUNT("EC_ec", pre);
    if (i > 0)
        return;
    REF_ASSERT_ISNT(i < 0);

    if (pre->points != NULL) {
        EC_POINT **pts;

        for (pts = pre->points; *pts != NULL; pts++)
            EC_POINT_free(*pts);
        OPENSSL_free(pre->points);
    }
    CRYPTO_THREAD_lock_free(pre->lock);
    OPENSSL_free(pre);
}

#define EC_POINT_BN_set_flags(P, flags) do { \
    BN_set_flags((P)->X, (flags)); \
    BN_set_flags((P)->Y, (flags)); \
    BN_set_flags((P)->Z, (flags)); \
} while(0)

/*-
 * This functions computes a single point multiplication over the EC group,
 * using, at a high level, a Montgomery ladder with conditional swaps, with
 * various timing attack defenses.
 *
 * It performs either a fixed point multiplication
 *          (scalar * generator)
 * when point is NULL, or a variable point multiplication
 *          (scalar * point)
 * when point is not NULL.
 *
 * `scalar` cannot be NULL and should be in the range [0,n) otherwise all
 * constant time bets are off (where n is the cardinality of the EC group).
 *
 * This function expects `group->order` and `group->cardinality` to be well
 * defined and non-zero: it fails with an error code otherwise.
 *
 * NB: This says nothing about the constant-timeness of the ladder step
 * implementation (i.e., the default implementation is based on EC_POINT_add and
 * EC_POINT_dbl, which of course are not constant time themselves) or the
 * underlying multiprecision arithmetic.
 *
 * The product is stored in `r`.
 *
 * This is an internal function: callers are in charge of ensuring that the
 * input parameters `group`, `r`, `scalar` and `ctx` are not NULL.
 *
 * Returns 1 on success, 0 otherwise.
 */
int ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r,
                         const BIGNUM *scalar, const EC_POINT *point,
                         BN_CTX *ctx)
{
    int i, cardinality_bits, group_top, kbit, pbit, Z_is_one;
    EC_POINT *p = NULL;
    EC_POINT *s = NULL;
    BIGNUM *k = NULL;
    BIGNUM *lambda = NULL;
    BIGNUM *cardinality = NULL;
    int ret = 0;

    /* early exit if the input point is the point at infinity */
    if (point != NULL && EC_POINT_is_at_infinity(group, point))
        return EC_POINT_set_to_infinity(group, r);

    if (BN_is_zero(group->order)) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_ORDER);
        return 0;
    }
    if (BN_is_zero(group->cofactor)) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_COFACTOR);
        return 0;
    }

    BN_CTX_start(ctx);

    if (((p = EC_POINT_new(group)) == NULL)
        || ((s = EC_POINT_new(group)) == NULL)) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    if (point == NULL) {
        if (!EC_POINT_copy(p, group->generator)) {
            ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
            goto err;
        }
    } else {
        if (!EC_POINT_copy(p, point)) {
            ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
            goto err;
        }
    }

    EC_POINT_BN_set_flags(p, BN_FLG_CONSTTIME);
    EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME);
    EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME);

    cardinality = BN_CTX_get(ctx);
    lambda = BN_CTX_get(ctx);
    k = BN_CTX_get(ctx);
    if (k == NULL) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
        goto err;
    }

    /*
     * Group cardinalities are often on a word boundary.
     * So when we pad the scalar, some timing diff might
     * pop if it needs to be expanded due to carries.
     * So expand ahead of time.
     */
    cardinality_bits = BN_num_bits(cardinality);
    group_top = bn_get_top(cardinality);
    if ((bn_wexpand(k, group_top + 1) == NULL)
        || (bn_wexpand(lambda, group_top + 1) == NULL)) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
        goto err;
    }

    if (!BN_copy(k, scalar)) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
        goto err;
    }

    BN_set_flags(k, BN_FLG_CONSTTIME);

    if ((BN_num_bits(k) > cardinality_bits) || (BN_is_negative(k))) {
        /*-
         * this is an unusual input, and we don't guarantee
         * constant-timeness
         */
        if (!BN_nnmod(k, k, cardinality, ctx)) {
            ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
            goto err;
        }
    }

    if (!BN_add(lambda, k, cardinality)) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
        goto err;
    }
    BN_set_flags(lambda, BN_FLG_CONSTTIME);
    if (!BN_add(k, lambda, cardinality)) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
        goto err;
    }
    /*
     * lambda := scalar + cardinality
     * k := scalar + 2*cardinality
     */
    kbit = BN_is_bit_set(lambda, cardinality_bits);
    BN_consttime_swap(kbit, k, lambda, group_top + 1);

    group_top = bn_get_top(group->field);
    if ((bn_wexpand(s->X, group_top) == NULL)
        || (bn_wexpand(s->Y, group_top) == NULL)
        || (bn_wexpand(s->Z, group_top) == NULL)
        || (bn_wexpand(r->X, group_top) == NULL)
        || (bn_wexpand(r->Y, group_top) == NULL)
        || (bn_wexpand(r->Z, group_top) == NULL)
        || (bn_wexpand(p->X, group_top) == NULL)
        || (bn_wexpand(p->Y, group_top) == NULL)
        || (bn_wexpand(p->Z, group_top) == NULL)) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
        goto err;
    }

    /*-
     * Apply coordinate blinding for EC_POINT.
     *
     * The underlying EC_METHOD can optionally implement this function:
     * ec_point_blind_coordinates() returns 0 in case of errors or 1 on
     * success or if coordinate blinding is not implemented for this
     * group.
     */
    if (!ec_point_blind_coordinates(group, p, ctx)) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_POINT_COORDINATES_BLIND_FAILURE);
        goto err;
    }

    /* Initialize the Montgomery ladder */
    if (!ec_point_ladder_pre(group, r, s, p, ctx)) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_PRE_FAILURE);
        goto err;
    }

    /* top bit is a 1, in a fixed pos */
    pbit = 1;

#define EC_POINT_CSWAP(c, a, b, w, t) do {         \
        BN_consttime_swap(c, (a)->X, (b)->X, w);   \
        BN_consttime_swap(c, (a)->Y, (b)->Y, w);   \
        BN_consttime_swap(c, (a)->Z, (b)->Z, w);   \
        t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \
        (a)->Z_is_one ^= (t);                      \
        (b)->Z_is_one ^= (t);                      \
} while(0)

    /*-
     * The ladder step, with branches, is
     *
     * k[i] == 0: S = add(R, S), R = dbl(R)
     * k[i] == 1: R = add(S, R), S = dbl(S)
     *
     * Swapping R, S conditionally on k[i] leaves you with state
     *
     * k[i] == 0: T, U = R, S
     * k[i] == 1: T, U = S, R
     *
     * Then perform the ECC ops.
     *
     * U = add(T, U)
     * T = dbl(T)
     *
     * Which leaves you with state
     *
     * k[i] == 0: U = add(R, S), T = dbl(R)
     * k[i] == 1: U = add(S, R), T = dbl(S)
     *
     * Swapping T, U conditionally on k[i] leaves you with state
     *
     * k[i] == 0: R, S = T, U
     * k[i] == 1: R, S = U, T
     *
     * Which leaves you with state
     *
     * k[i] == 0: S = add(R, S), R = dbl(R)
     * k[i] == 1: R = add(S, R), S = dbl(S)
     *
     * So we get the same logic, but instead of a branch it's a
     * conditional swap, followed by ECC ops, then another conditional swap.
     *
     * Optimization: The end of iteration i and start of i-1 looks like
     *
     * ...
     * CSWAP(k[i], R, S)
     * ECC
     * CSWAP(k[i], R, S)
     * (next iteration)
     * CSWAP(k[i-1], R, S)
     * ECC
     * CSWAP(k[i-1], R, S)
     * ...
     *
     * So instead of two contiguous swaps, you can merge the condition
     * bits and do a single swap.
     *
     * k[i]   k[i-1]    Outcome
     * 0      0         No Swap
     * 0      1         Swap
     * 1      0         Swap
     * 1      1         No Swap
     *
     * This is XOR. pbit tracks the previous bit of k.
     */

    for (i = cardinality_bits - 1; i >= 0; i--) {
        kbit = BN_is_bit_set(k, i) ^ pbit;
        EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);

        /* Perform a single step of the Montgomery ladder */
        if (!ec_point_ladder_step(group, r, s, p, ctx)) {
            ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_STEP_FAILURE);
            goto err;
        }
        /*
         * pbit logic merges this cswap with that of the
         * next iteration
         */
        pbit ^= kbit;
    }
    /* one final cswap to move the right value into r */
    EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one);
#undef EC_POINT_CSWAP

    /* Finalize ladder (and recover full point coordinates) */
    if (!ec_point_ladder_post(group, r, s, p, ctx)) {
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_POST_FAILURE);
        goto err;
    }

    ret = 1;

 err:
    EC_POINT_free(p);
    EC_POINT_free(s);
    BN_CTX_end(ctx);

    return ret;
}

#undef EC_POINT_BN_set_flags

/*
 * TODO: table should be optimised for the wNAF-based implementation,
 * sometimes smaller windows will give better performance (thus the
 * boundaries should be increased)
 */
#define EC_window_bits_for_scalar_size(b) \
                ((size_t) \
                 ((b) >= 2000 ? 6 : \
                  (b) >=  800 ? 5 : \
                  (b) >=  300 ? 4 : \
                  (b) >=   70 ? 3 : \
                  (b) >=   20 ? 2 : \
                  1))

/*-
 * Compute
 *      \sum scalars[i]*points[i],
 * also including
 *      scalar*generator
 * in the addition if scalar != NULL
 */
int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
                size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
                BN_CTX *ctx)
{
    const EC_POINT *generator = NULL;
    EC_POINT *tmp = NULL;
    size_t totalnum;
    size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
    size_t pre_points_per_block = 0;
    size_t i, j;
    int k;
    int r_is_inverted = 0;
    int r_is_at_infinity = 1;
    size_t *wsize = NULL;       /* individual window sizes */
    signed char **wNAF = NULL;  /* individual wNAFs */
    size_t *wNAF_len = NULL;
    size_t max_len = 0;
    size_t num_val;
    EC_POINT **val = NULL;      /* precomputation */
    EC_POINT **v;
    EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
                                 * 'pre_comp->points' */
    const EC_PRE_COMP *pre_comp = NULL;
    int num_scalar = 0;         /* flag: will be set to 1 if 'scalar' must be
                                 * treated like other scalars, i.e.
                                 * precomputation is not available */
    int ret = 0;

    if (!BN_is_zero(group->order) && !BN_is_zero(group->cofactor)) {
        /*-
         * Handle the common cases where the scalar is secret, enforcing a
         * scalar multiplication implementation based on a Montgomery ladder,
         * with various timing attack defenses.
         */
        if ((scalar != NULL) && (num == 0)) {
            /*-
             * In this case we want to compute scalar * GeneratorPoint: this
             * codepath is reached most prominently by (ephemeral) key
             * generation of EC cryptosystems (i.e. ECDSA keygen and sign setup,
             * ECDH keygen/first half), where the scalar is always secret. This
             * is why we ignore if BN_FLG_CONSTTIME is actually set and we
             * always call the ladder version.
             */
            return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
        }
        if ((scalar == NULL) && (num == 1)) {
            /*-
             * In this case we want to compute scalar * VariablePoint: this
             * codepath is reached most prominently by the second half of ECDH,
             * where the secret scalar is multiplied by the peer's public point.
             * To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is
             * actually set and we always call the ladder version.
             */
            return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);
        }
    }

    if (scalar != NULL) {
        generator = EC_GROUP_get0_generator(group);
        if (generator == NULL) {
            ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
            goto err;
        }

        /* look if we can use precomputed multiples of generator */

        pre_comp = group->pre_comp.ec;
        if (pre_comp && pre_comp->numblocks
            && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
                0)) {
            blocksize = pre_comp->blocksize;

            /*
             * determine maximum number of blocks that wNAF splitting may
             * yield (NB: maximum wNAF length is bit length plus one)
             */
            numblocks = (BN_num_bits(scalar) / blocksize) + 1;

            /*
             * we cannot use more blocks than we have precomputation for
             */
            if (numblocks > pre_comp->numblocks)
                numblocks = pre_comp->numblocks;

            pre_points_per_block = (size_t)1 << (pre_comp->w - 1);

            /* check that pre_comp looks sane */
            if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
                goto err;
            }
        } else {
            /* can't use precomputation */
            pre_comp = NULL;
            numblocks = 1;
            num_scalar = 1;     /* treat 'scalar' like 'num'-th element of
                                 * 'scalars' */
        }
    }

    totalnum = num + numblocks;

    wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0]));
    wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0]));
    /* include space for pivot */
    wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0]));
    val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0]));

    /* Ensure wNAF is initialised in case we end up going to err */
    if (wNAF != NULL)
        wNAF[0] = NULL;         /* preliminary pivot */

    if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) {
        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    /*
     * num_val will be the total number of temporarily precomputed points
     */
    num_val = 0;

    for (i = 0; i < num + num_scalar; i++) {
        size_t bits;

        bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
        wsize[i] = EC_window_bits_for_scalar_size(bits);
        num_val += (size_t)1 << (wsize[i] - 1);
        wNAF[i + 1] = NULL;     /* make sure we always have a pivot */
        wNAF[i] =
            bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
                            &wNAF_len[i]);
        if (wNAF[i] == NULL)
            goto err;
        if (wNAF_len[i] > max_len)
            max_len = wNAF_len[i];
    }

    if (numblocks) {
        /* we go here iff scalar != NULL */

        if (pre_comp == NULL) {
            if (num_scalar != 1) {
                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
                goto err;
            }
            /* we have already generated a wNAF for 'scalar' */
        } else {
            signed char *tmp_wNAF = NULL;
            size_t tmp_len = 0;

            if (num_scalar != 0) {
                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
                goto err;
            }

            /*
             * use the window size for which we have precomputation
             */
            wsize[num] = pre_comp->w;
            tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len);
            if (!tmp_wNAF)
                goto err;

            if (tmp_len <= max_len) {
                /*
                 * One of the other wNAFs is at least as long as the wNAF
                 * belonging to the generator, so wNAF splitting will not buy
                 * us anything.
                 */

                numblocks = 1;
                totalnum = num + 1; /* don't use wNAF splitting */
                wNAF[num] = tmp_wNAF;
                wNAF[num + 1] = NULL;
                wNAF_len[num] = tmp_len;
                /*
                 * pre_comp->points starts with the points that we need here:
                 */
                val_sub[num] = pre_comp->points;
            } else {
                /*
                 * don't include tmp_wNAF directly into wNAF array - use wNAF
                 * splitting and include the blocks
                 */

                signed char *pp;
                EC_POINT **tmp_points;

                if (tmp_len < numblocks * blocksize) {
                    /*
                     * possibly we can do with fewer blocks than estimated
                     */
                    numblocks = (tmp_len + blocksize - 1) / blocksize;
                    if (numblocks > pre_comp->numblocks) {
                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
                        OPENSSL_free(tmp_wNAF);
                        goto err;
                    }
                    totalnum = num + numblocks;
                }

                /* split wNAF in 'numblocks' parts */
                pp = tmp_wNAF;
                tmp_points = pre_comp->points;

                for (i = num; i < totalnum; i++) {
                    if (i < totalnum - 1) {
                        wNAF_len[i] = blocksize;
                        if (tmp_len < blocksize) {
                            ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
                            OPENSSL_free(tmp_wNAF);
                            goto err;
                        }
                        tmp_len -= blocksize;
                    } else
                        /*
                         * last block gets whatever is left (this could be
                         * more or less than 'blocksize'!)
                         */
                        wNAF_len[i] = tmp_len;

                    wNAF[i + 1] = NULL;
                    wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
                    if (wNAF[i] == NULL) {
                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
                        OPENSSL_free(tmp_wNAF);
                        goto err;
                    }
                    memcpy(wNAF[i], pp, wNAF_len[i]);
                    if (wNAF_len[i] > max_len)
                        max_len = wNAF_len[i];

                    if (*tmp_points == NULL) {
                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
                        OPENSSL_free(tmp_wNAF);
                        goto err;
                    }
                    val_sub[i] = tmp_points;
                    tmp_points += pre_points_per_block;
                    pp += blocksize;
                }
                OPENSSL_free(tmp_wNAF);
            }
        }
    }

    /*
     * All points we precompute now go into a single array 'val'.
     * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
     * subarray of 'pre_comp->points' if we already have precomputation.
     */
    val = OPENSSL_malloc((num_val + 1) * sizeof(val[0]));
    if (val == NULL) {
        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
        goto err;
    }
    val[num_val] = NULL;        /* pivot element */

    /* allocate points for precomputation */
    v = val;
    for (i = 0; i < num + num_scalar; i++) {
        val_sub[i] = v;
        for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
            *v = EC_POINT_new(group);
            if (*v == NULL)
                goto err;
            v++;
        }
    }
    if (!(v == val + num_val)) {
        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
        goto err;
    }

    if ((tmp = EC_POINT_new(group)) == NULL)
        goto err;

    /*-
     * prepare precomputed values:
     *    val_sub[i][0] :=     points[i]
     *    val_sub[i][1] := 3 * points[i]
     *    val_sub[i][2] := 5 * points[i]
     *    ...
     */
    for (i = 0; i < num + num_scalar; i++) {
        if (i < num) {
            if (!EC_POINT_copy(val_sub[i][0], points[i]))
                goto err;
        } else {
            if (!EC_POINT_copy(val_sub[i][0], generator))
                goto err;
        }

        if (wsize[i] > 1) {
            if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
                goto err;
            for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
                if (!EC_POINT_add
                    (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
                    goto err;
            }
        }
    }

    if (!EC_POINTs_make_affine(group, num_val, val, ctx))
        goto err;

    r_is_at_infinity = 1;

    for (k = max_len - 1; k >= 0; k--) {
        if (!r_is_at_infinity) {
            if (!EC_POINT_dbl(group, r, r, ctx))
                goto err;
        }

        for (i = 0; i < totalnum; i++) {
            if (wNAF_len[i] > (size_t)k) {
                int digit = wNAF[i][k];
                int is_neg;

                if (digit) {
                    is_neg = digit < 0;

                    if (is_neg)
                        digit = -digit;

                    if (is_neg != r_is_inverted) {
                        if (!r_is_at_infinity) {
                            if (!EC_POINT_invert(group, r, ctx))
                                goto err;
                        }
                        r_is_inverted = !r_is_inverted;
                    }

                    /* digit > 0 */

                    if (r_is_at_infinity) {
                        if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
                            goto err;
                        r_is_at_infinity = 0;
                    } else {
                        if (!EC_POINT_add
                            (group, r, r, val_sub[i][digit >> 1], ctx))
                            goto err;
                    }
                }
            }
        }
    }

    if (r_is_at_infinity) {
        if (!EC_POINT_set_to_infinity(group, r))
            goto err;
    } else {
        if (r_is_inverted)
            if (!EC_POINT_invert(group, r, ctx))
                goto err;
    }

    ret = 1;

 err:
    EC_POINT_free(tmp);
    OPENSSL_free(wsize);
    OPENSSL_free(wNAF_len);
    if (wNAF != NULL) {
        signed char **w;

        for (w = wNAF; *w != NULL; w++)
            OPENSSL_free(*w);

        OPENSSL_free(wNAF);
    }
    if (val != NULL) {
        for (v = val; *v != NULL; v++)
            EC_POINT_clear_free(*v);

        OPENSSL_free(val);
    }
    OPENSSL_free(val_sub);
    return ret;
}

/*-
 * ec_wNAF_precompute_mult()
 * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
 * for use with wNAF splitting as implemented in ec_wNAF_mul().
 *
 * 'pre_comp->points' is an array of multiples of the generator
 * of the following form:
 * points[0] =     generator;
 * points[1] = 3 * generator;
 * ...
 * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
 * points[2^(w-1)]   =     2^blocksize * generator;
 * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
 * ...
 * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
 * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
 * ...
 * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
 * points[2^(w-1)*numblocks]       = NULL
 */
int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
{
    const EC_POINT *generator;
    EC_POINT *tmp_point = NULL, *base = NULL, **var;
    BN_CTX *new_ctx = NULL;
    const BIGNUM *order;
    size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
    EC_POINT **points = NULL;
    EC_PRE_COMP *pre_comp;
    int ret = 0;

    /* if there is an old EC_PRE_COMP object, throw it away */
    EC_pre_comp_free(group);
    if ((pre_comp = ec_pre_comp_new(group)) == NULL)
        return 0;

    generator = EC_GROUP_get0_generator(group);
    if (generator == NULL) {
        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
        goto err;
    }

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            goto err;
    }

    BN_CTX_start(ctx);

    order = EC_GROUP_get0_order(group);
    if (order == NULL)
        goto err;
    if (BN_is_zero(order)) {
        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
        goto err;
    }

    bits = BN_num_bits(order);
    /*
     * The following parameters mean we precompute (approximately) one point
     * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
     * bit lengths, other parameter combinations might provide better
     * efficiency.
     */
    blocksize = 8;
    w = 4;
    if (EC_window_bits_for_scalar_size(bits) > w) {
        /* let's not make the window too small ... */
        w = EC_window_bits_for_scalar_size(bits);
    }

    numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
                                                     * to use for wNAF
                                                     * splitting */

    pre_points_per_block = (size_t)1 << (w - 1);
    num = pre_points_per_block * numblocks; /* number of points to compute
                                             * and store */

    points = OPENSSL_malloc(sizeof(*points) * (num + 1));
    if (points == NULL) {
        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    var = points;
    var[num] = NULL;            /* pivot */
    for (i = 0; i < num; i++) {
        if ((var[i] = EC_POINT_new(group)) == NULL) {
            ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
            goto err;
        }
    }

    if ((tmp_point = EC_POINT_new(group)) == NULL
        || (base = EC_POINT_new(group)) == NULL) {
        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    if (!EC_POINT_copy(base, generator))
        goto err;

    /* do the precomputation */
    for (i = 0; i < numblocks; i++) {
        size_t j;

        if (!EC_POINT_dbl(group, tmp_point, base, ctx))
            goto err;

        if (!EC_POINT_copy(*var++, base))
            goto err;

        for (j = 1; j < pre_points_per_block; j++, var++) {
            /*
             * calculate odd multiples of the current base point
             */
            if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
                goto err;
        }

        if (i < numblocks - 1) {
            /*
             * get the next base (multiply current one by 2^blocksize)
             */
            size_t k;

            if (blocksize <= 2) {
                ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
                goto err;
            }

            if (!EC_POINT_dbl(group, base, tmp_point, ctx))
                goto err;
            for (k = 2; k < blocksize; k++) {
                if (!EC_POINT_dbl(group, base, base, ctx))
                    goto err;
            }
        }
    }

    if (!EC_POINTs_make_affine(group, num, points, ctx))
        goto err;

    pre_comp->group = group;
    pre_comp->blocksize = blocksize;
    pre_comp->numblocks = numblocks;
    pre_comp->w = w;
    pre_comp->points = points;
    points = NULL;
    pre_comp->num = num;
    SETPRECOMP(group, ec, pre_comp);
    pre_comp = NULL;
    ret = 1;

 err:
    if (ctx != NULL)
        BN_CTX_end(ctx);
    BN_CTX_free(new_ctx);
    EC_ec_pre_comp_free(pre_comp);
    if (points) {
        EC_POINT **p;

        for (p = points; *p != NULL; p++)
            EC_POINT_free(*p);
        OPENSSL_free(points);
    }
    EC_POINT_free(tmp_point);
    EC_POINT_free(base);
    return ret;
}

int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
{
    return HAVEPRECOMP(group, ec);
}