curve448.c 20.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
/*
 * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved.
 * Copyright 2015-2016 Cryptography Research, Inc.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 *
 * Originally written by Mike Hamburg
 */
#include <openssl/crypto.h>
#include "word.h"
#include "field.h"

#include "point_448.h"
#include "ed448.h"
#include "curve448_lcl.h"

#define COFACTOR 4

#define C448_WNAF_FIXED_TABLE_BITS 5
#define C448_WNAF_VAR_TABLE_BITS 3

#define EDWARDS_D       (-39081)

static const curve448_scalar_t precomputed_scalarmul_adjustment = {
    {
        {
            SC_LIMB(0xc873d6d54a7bb0cf), SC_LIMB(0xe933d8d723a70aad),
            SC_LIMB(0xbb124b65129c96fd), SC_LIMB(0x00000008335dc163)
        }
    }
};

#define TWISTED_D (EDWARDS_D - 1)

#define WBITS C448_WORD_BITS   /* NB this may be different from ARCH_WORD_BITS */

/* Inverse. */
static void gf_invert(gf y, const gf x, int assert_nonzero)
{
    mask_t ret;
    gf t1, t2;

    gf_sqr(t1, x);              /* o^2 */
    ret = gf_isr(t2, t1);       /* +-1/sqrt(o^2) = +-1/o */
    (void)ret;
    if (assert_nonzero)
        assert(ret);
    gf_sqr(t1, t2);
    gf_mul(t2, t1, x);          /* not direct to y in case of alias. */
    gf_copy(y, t2);
}

/** identity = (0,1) */
const curve448_point_t curve448_point_identity =
    { {{{{0}}}, {{{1}}}, {{{1}}}, {{{0}}}} };

static void point_double_internal(curve448_point_t p, const curve448_point_t q,
                                  int before_double)
{
    gf a, b, c, d;

    gf_sqr(c, q->x);
    gf_sqr(a, q->y);
    gf_add_nr(d, c, a);         /* 2+e */
    gf_add_nr(p->t, q->y, q->x); /* 2+e */
    gf_sqr(b, p->t);
    gf_subx_nr(b, b, d, 3);     /* 4+e */
    gf_sub_nr(p->t, a, c);      /* 3+e */
    gf_sqr(p->x, q->z);
    gf_add_nr(p->z, p->x, p->x); /* 2+e */
    gf_subx_nr(a, p->z, p->t, 4); /* 6+e */
    if (GF_HEADROOM == 5)
        gf_weak_reduce(a);      /* or 1+e */
    gf_mul(p->x, a, b);
    gf_mul(p->z, p->t, a);
    gf_mul(p->y, p->t, d);
    if (!before_double)
        gf_mul(p->t, b, d);
}

void curve448_point_double(curve448_point_t p, const curve448_point_t q)
{
    point_double_internal(p, q, 0);
}

/* Operations on [p]niels */
static ossl_inline void cond_neg_niels(niels_t n, mask_t neg)
{
    gf_cond_swap(n->a, n->b, neg);
    gf_cond_neg(n->c, neg);
}

static void pt_to_pniels(pniels_t b, const curve448_point_t a)
{
    gf_sub(b->n->a, a->y, a->x);
    gf_add(b->n->b, a->x, a->y);
    gf_mulw(b->n->c, a->t, 2 * TWISTED_D);
    gf_add(b->z, a->z, a->z);
}

static void pniels_to_pt(curve448_point_t e, const pniels_t d)
{
    gf eu;

    gf_add(eu, d->n->b, d->n->a);
    gf_sub(e->y, d->n->b, d->n->a);
    gf_mul(e->t, e->y, eu);
    gf_mul(e->x, d->z, e->y);
    gf_mul(e->y, d->z, eu);
    gf_sqr(e->z, d->z);
}

static void niels_to_pt(curve448_point_t e, const niels_t n)
{
    gf_add(e->y, n->b, n->a);
    gf_sub(e->x, n->b, n->a);
    gf_mul(e->t, e->y, e->x);
    gf_copy(e->z, ONE);
}

static void add_niels_to_pt(curve448_point_t d, const niels_t e,
                            int before_double)
{
    gf a, b, c;

    gf_sub_nr(b, d->y, d->x);   /* 3+e */
    gf_mul(a, e->a, b);
    gf_add_nr(b, d->x, d->y);   /* 2+e */
    gf_mul(d->y, e->b, b);
    gf_mul(d->x, e->c, d->t);
    gf_add_nr(c, a, d->y);      /* 2+e */
    gf_sub_nr(b, d->y, a);      /* 3+e */
    gf_sub_nr(d->y, d->z, d->x); /* 3+e */
    gf_add_nr(a, d->x, d->z);   /* 2+e */
    gf_mul(d->z, a, d->y);
    gf_mul(d->x, d->y, b);
    gf_mul(d->y, a, c);
    if (!before_double)
        gf_mul(d->t, b, c);
}

static void sub_niels_from_pt(curve448_point_t d, const niels_t e,
                              int before_double)
{
    gf a, b, c;

    gf_sub_nr(b, d->y, d->x);   /* 3+e */
    gf_mul(a, e->b, b);
    gf_add_nr(b, d->x, d->y);   /* 2+e */
    gf_mul(d->y, e->a, b);
    gf_mul(d->x, e->c, d->t);
    gf_add_nr(c, a, d->y);      /* 2+e */
    gf_sub_nr(b, d->y, a);      /* 3+e */
    gf_add_nr(d->y, d->z, d->x); /* 2+e */
    gf_sub_nr(a, d->z, d->x);   /* 3+e */
    gf_mul(d->z, a, d->y);
    gf_mul(d->x, d->y, b);
    gf_mul(d->y, a, c);
    if (!before_double)
        gf_mul(d->t, b, c);
}

static void add_pniels_to_pt(curve448_point_t p, const pniels_t pn,
                             int before_double)
{
    gf L0;

    gf_mul(L0, p->z, pn->z);
    gf_copy(p->z, L0);
    add_niels_to_pt(p, pn->n, before_double);
}

static void sub_pniels_from_pt(curve448_point_t p, const pniels_t pn,
                               int before_double)
{
    gf L0;

    gf_mul(L0, p->z, pn->z);
    gf_copy(p->z, L0);
    sub_niels_from_pt(p, pn->n, before_double);
}

c448_bool_t curve448_point_eq(const curve448_point_t p,
                              const curve448_point_t q)
{
    mask_t succ;
    gf a, b;

    /* equality mod 2-torsion compares x/y */
    gf_mul(a, p->y, q->x);
    gf_mul(b, q->y, p->x);
    succ = gf_eq(a, b);

    return mask_to_bool(succ);
}

c448_bool_t curve448_point_valid(const curve448_point_t p)
{
    mask_t out;
    gf a, b, c;

    gf_mul(a, p->x, p->y);
    gf_mul(b, p->z, p->t);
    out = gf_eq(a, b);
    gf_sqr(a, p->x);
    gf_sqr(b, p->y);
    gf_sub(a, b, a);
    gf_sqr(b, p->t);
    gf_mulw(c, b, TWISTED_D);
    gf_sqr(b, p->z);
    gf_add(b, b, c);
    out &= gf_eq(a, b);
    out &= ~gf_eq(p->z, ZERO);
    return mask_to_bool(out);
}

static ossl_inline void constant_time_lookup_niels(niels_s * RESTRICT ni,
                                                   const niels_t * table,
                                                   int nelts, int idx)
{
    constant_time_lookup(ni, table, sizeof(niels_s), nelts, idx);
}

void curve448_precomputed_scalarmul(curve448_point_t out,
                                    const curve448_precomputed_s * table,
                                    const curve448_scalar_t scalar)
{
    unsigned int i, j, k;
    const unsigned int n = COMBS_N, t = COMBS_T, s = COMBS_S;
    niels_t ni;
    curve448_scalar_t scalar1x;

    curve448_scalar_add(scalar1x, scalar, precomputed_scalarmul_adjustment);
    curve448_scalar_halve(scalar1x, scalar1x);

    for (i = s; i > 0; i--) {
        if (i != s)
            point_double_internal(out, out, 0);

        for (j = 0; j < n; j++) {
            int tab = 0;
            mask_t invert;

            for (k = 0; k < t; k++) {
                unsigned int bit = (i - 1) + s * (k + j * t);

                if (bit < C448_SCALAR_BITS)
                    tab |=
                        (scalar1x->limb[bit / WBITS] >> (bit % WBITS) & 1) << k;
            }

            invert = (tab >> (t - 1)) - 1;
            tab ^= invert;
            tab &= (1 << (t - 1)) - 1;

            constant_time_lookup_niels(ni, &table->table[j << (t - 1)],
                                       1 << (t - 1), tab);

            cond_neg_niels(ni, invert);
            if ((i != s) || j != 0)
                add_niels_to_pt(out, ni, j == n - 1 && i != 1);
            else
                niels_to_pt(out, ni);
        }
    }

    OPENSSL_cleanse(ni, sizeof(ni));
    OPENSSL_cleanse(scalar1x, sizeof(scalar1x));
}

void curve448_point_mul_by_ratio_and_encode_like_eddsa(
                                    uint8_t enc[EDDSA_448_PUBLIC_BYTES],
                                    const curve448_point_t p)
{
    gf x, y, z, t;
    curve448_point_t q;

    /* The point is now on the twisted curve.  Move it to untwisted. */
    curve448_point_copy(q, p);

    {
        /* 4-isogeny: 2xy/(y^+x^2), (y^2-x^2)/(2z^2-y^2+x^2) */
        gf u;

        gf_sqr(x, q->x);
        gf_sqr(t, q->y);
        gf_add(u, x, t);
        gf_add(z, q->y, q->x);
        gf_sqr(y, z);
        gf_sub(y, y, u);
        gf_sub(z, t, x);
        gf_sqr(x, q->z);
        gf_add(t, x, x);
        gf_sub(t, t, z);
        gf_mul(x, t, y);
        gf_mul(y, z, u);
        gf_mul(z, u, t);
        OPENSSL_cleanse(u, sizeof(u));
    }

    /* Affinize */
    gf_invert(z, z, 1);
    gf_mul(t, x, z);
    gf_mul(x, y, z);

    /* Encode */
    enc[EDDSA_448_PRIVATE_BYTES - 1] = 0;
    gf_serialize(enc, x, 1);
    enc[EDDSA_448_PRIVATE_BYTES - 1] |= 0x80 & gf_lobit(t);

    OPENSSL_cleanse(x, sizeof(x));
    OPENSSL_cleanse(y, sizeof(y));
    OPENSSL_cleanse(z, sizeof(z));
    OPENSSL_cleanse(t, sizeof(t));
    curve448_point_destroy(q);
}

c448_error_t curve448_point_decode_like_eddsa_and_mul_by_ratio(
                                curve448_point_t p,
                                const uint8_t enc[EDDSA_448_PUBLIC_BYTES])
{
    uint8_t enc2[EDDSA_448_PUBLIC_BYTES];
    mask_t low;
    mask_t succ;

    memcpy(enc2, enc, sizeof(enc2));

    low = ~word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1] & 0x80);
    enc2[EDDSA_448_PRIVATE_BYTES - 1] &= ~0x80;

    succ = gf_deserialize(p->y, enc2, 1, 0);
    succ &= word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1]);

    gf_sqr(p->x, p->y);
    gf_sub(p->z, ONE, p->x);    /* num = 1-y^2 */
    gf_mulw(p->t, p->x, EDWARDS_D); /* dy^2 */
    gf_sub(p->t, ONE, p->t);    /* denom = 1-dy^2 or 1-d + dy^2 */

    gf_mul(p->x, p->z, p->t);
    succ &= gf_isr(p->t, p->x); /* 1/sqrt(num * denom) */

    gf_mul(p->x, p->t, p->z);   /* sqrt(num / denom) */
    gf_cond_neg(p->x, gf_lobit(p->x) ^ low);
    gf_copy(p->z, ONE);

    {
        gf a, b, c, d;

        /* 4-isogeny 2xy/(y^2-ax^2), (y^2+ax^2)/(2-y^2-ax^2) */
        gf_sqr(c, p->x);
        gf_sqr(a, p->y);
        gf_add(d, c, a);
        gf_add(p->t, p->y, p->x);
        gf_sqr(b, p->t);
        gf_sub(b, b, d);
        gf_sub(p->t, a, c);
        gf_sqr(p->x, p->z);
        gf_add(p->z, p->x, p->x);
        gf_sub(a, p->z, d);
        gf_mul(p->x, a, b);
        gf_mul(p->z, p->t, a);
        gf_mul(p->y, p->t, d);
        gf_mul(p->t, b, d);
        OPENSSL_cleanse(a, sizeof(a));
        OPENSSL_cleanse(b, sizeof(b));
        OPENSSL_cleanse(c, sizeof(c));
        OPENSSL_cleanse(d, sizeof(d));
    }

    OPENSSL_cleanse(enc2, sizeof(enc2));
    assert(curve448_point_valid(p) || ~succ);

    return c448_succeed_if(mask_to_bool(succ));
}

c448_error_t x448_int(uint8_t out[X_PUBLIC_BYTES],
                      const uint8_t base[X_PUBLIC_BYTES],
                      const uint8_t scalar[X_PRIVATE_BYTES])
{
    gf x1, x2, z2, x3, z3, t1, t2;
    int t;
    mask_t swap = 0;
    mask_t nz;

    (void)gf_deserialize(x1, base, 1, 0);
    gf_copy(x2, ONE);
    gf_copy(z2, ZERO);
    gf_copy(x3, x1);
    gf_copy(z3, ONE);

    for (t = X_PRIVATE_BITS - 1; t >= 0; t--) {
        uint8_t sb = scalar[t / 8];
        mask_t k_t;

        /* Scalar conditioning */
        if (t / 8 == 0)
            sb &= -(uint8_t)COFACTOR;
        else if (t == X_PRIVATE_BITS - 1)
            sb = -1;

        k_t = (sb >> (t % 8)) & 1;
        k_t = 0 - k_t;             /* set to all 0s or all 1s */

        swap ^= k_t;
        gf_cond_swap(x2, x3, swap);
        gf_cond_swap(z2, z3, swap);
        swap = k_t;

        /*
         * The "_nr" below skips coefficient reduction. In the following
         * comments, "2+e" is saying that the coefficients are at most 2+epsilon
         * times the reduction limit.
         */
        gf_add_nr(t1, x2, z2);  /* A = x2 + z2 */ /* 2+e */
        gf_sub_nr(t2, x2, z2);  /* B = x2 - z2 */ /* 3+e */
        gf_sub_nr(z2, x3, z3);  /* D = x3 - z3 */ /* 3+e */
        gf_mul(x2, t1, z2);     /* DA */
        gf_add_nr(z2, z3, x3);  /* C = x3 + z3 */ /* 2+e */
        gf_mul(x3, t2, z2);     /* CB */
        gf_sub_nr(z3, x2, x3);  /* DA-CB */ /* 3+e */
        gf_sqr(z2, z3);         /* (DA-CB)^2 */
        gf_mul(z3, x1, z2);     /* z3 = x1(DA-CB)^2 */
        gf_add_nr(z2, x2, x3);  /* (DA+CB) */ /* 2+e */
        gf_sqr(x3, z2);         /* x3 = (DA+CB)^2 */

        gf_sqr(z2, t1);         /* AA = A^2 */
        gf_sqr(t1, t2);         /* BB = B^2 */
        gf_mul(x2, z2, t1);     /* x2 = AA*BB */
        gf_sub_nr(t2, z2, t1);  /* E = AA-BB */ /* 3+e */

        gf_mulw(t1, t2, -EDWARDS_D); /* E*-d = a24*E */
        gf_add_nr(t1, t1, z2);  /* AA + a24*E */ /* 2+e */
        gf_mul(z2, t2, t1);     /* z2 = E(AA+a24*E) */
    }

    /* Finish */
    gf_cond_swap(x2, x3, swap);
    gf_cond_swap(z2, z3, swap);
    gf_invert(z2, z2, 0);
    gf_mul(x1, x2, z2);
    gf_serialize(out, x1, 1);
    nz = ~gf_eq(x1, ZERO);

    OPENSSL_cleanse(x1, sizeof(x1));
    OPENSSL_cleanse(x2, sizeof(x2));
    OPENSSL_cleanse(z2, sizeof(z2));
    OPENSSL_cleanse(x3, sizeof(x3));
    OPENSSL_cleanse(z3, sizeof(z3));
    OPENSSL_cleanse(t1, sizeof(t1));
    OPENSSL_cleanse(t2, sizeof(t2));

    return c448_succeed_if(mask_to_bool(nz));
}

void curve448_point_mul_by_ratio_and_encode_like_x448(uint8_t
                                                      out[X_PUBLIC_BYTES],
                                                      const curve448_point_t p)
{
    curve448_point_t q;

    curve448_point_copy(q, p);
    gf_invert(q->t, q->x, 0);   /* 1/x */
    gf_mul(q->z, q->t, q->y);   /* y/x */
    gf_sqr(q->y, q->z);         /* (y/x)^2 */
    gf_serialize(out, q->y, 1);
    curve448_point_destroy(q);
}

void x448_derive_public_key(uint8_t out[X_PUBLIC_BYTES],
                            const uint8_t scalar[X_PRIVATE_BYTES])
{
    /* Scalar conditioning */
    uint8_t scalar2[X_PRIVATE_BYTES];
    curve448_scalar_t the_scalar;
    curve448_point_t p;
    unsigned int i;

    memcpy(scalar2, scalar, sizeof(scalar2));
    scalar2[0] &= -(uint8_t)COFACTOR;

    scalar2[X_PRIVATE_BYTES - 1] &= ~((0u - 1u) << ((X_PRIVATE_BITS + 7) % 8));
    scalar2[X_PRIVATE_BYTES - 1] |= 1 << ((X_PRIVATE_BITS + 7) % 8);

    curve448_scalar_decode_long(the_scalar, scalar2, sizeof(scalar2));

    /* Compensate for the encoding ratio */
    for (i = 1; i < X448_ENCODE_RATIO; i <<= 1)
        curve448_scalar_halve(the_scalar, the_scalar);

    curve448_precomputed_scalarmul(p, curve448_precomputed_base, the_scalar);
    curve448_point_mul_by_ratio_and_encode_like_x448(out, p);
    curve448_point_destroy(p);
}

/* Control for variable-time scalar multiply algorithms. */
struct smvt_control {
    int power, addend;
};

#if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 3))
# define NUMTRAILINGZEROS	__builtin_ctz
#else
# define NUMTRAILINGZEROS	numtrailingzeros
static uint32_t numtrailingzeros(uint32_t i)
{
    uint32_t tmp;
    uint32_t num = 31;

    if (i == 0)
        return 32;

    tmp = i << 16;
    if (tmp != 0) {
        i = tmp;
        num -= 16;
    }
    tmp = i << 8;
    if (tmp != 0) {
        i = tmp;
        num -= 8;
    }
    tmp = i << 4;
    if (tmp != 0) {
        i = tmp;
        num -= 4;
    }
    tmp = i << 2;
    if (tmp != 0) {
        i = tmp;
        num -= 2;
    }
    tmp = i << 1;
    if (tmp != 0)
        num--;

    return num;
}
#endif

static int recode_wnaf(struct smvt_control *control,
                       /* [nbits/(table_bits + 1) + 3] */
                       const curve448_scalar_t scalar,
                       unsigned int table_bits)
{
    unsigned int table_size = C448_SCALAR_BITS / (table_bits + 1) + 3;
    int position = table_size - 1; /* at the end */
    uint64_t current = scalar->limb[0] & 0xFFFF;
    uint32_t mask = (1 << (table_bits + 1)) - 1;
    unsigned int w;
    const unsigned int B_OVER_16 = sizeof(scalar->limb[0]) / 2;
    unsigned int n, i;

    /* place the end marker */
    control[position].power = -1;
    control[position].addend = 0;
    position--;

    /*
     * PERF: Could negate scalar if it's large.  But then would need more cases
     * in the actual code that uses it, all for an expected reduction of like
     * 1/5 op. Probably not worth it.
     */

    for (w = 1; w < (C448_SCALAR_BITS - 1) / 16 + 3; w++) {
        if (w < (C448_SCALAR_BITS - 1) / 16 + 1) {
            /* Refill the 16 high bits of current */
            current += (uint32_t)((scalar->limb[w / B_OVER_16]
                       >> (16 * (w % B_OVER_16))) << 16);
        }

        while (current & 0xFFFF) {
            uint32_t pos = NUMTRAILINGZEROS((uint32_t)current);
            uint32_t odd = (uint32_t)current >> pos;
            int32_t delta = odd & mask;

            assert(position >= 0);
            if (odd & (1 << (table_bits + 1)))
                delta -= (1 << (table_bits + 1));
            current -= delta * (1 << pos);
            control[position].power = pos + 16 * (w - 1);
            control[position].addend = delta;
            position--;
        }
        current >>= 16;
    }
    assert(current == 0);

    position++;
    n = table_size - position;
    for (i = 0; i < n; i++)
        control[i] = control[i + position];

    return n - 1;
}

static void prepare_wnaf_table(pniels_t * output,
                               const curve448_point_t working,
                               unsigned int tbits)
{
    curve448_point_t tmp;
    int i;
    pniels_t twop;

    pt_to_pniels(output[0], working);

    if (tbits == 0)
        return;

    curve448_point_double(tmp, working);
    pt_to_pniels(twop, tmp);

    add_pniels_to_pt(tmp, output[0], 0);
    pt_to_pniels(output[1], tmp);

    for (i = 2; i < 1 << tbits; i++) {
        add_pniels_to_pt(tmp, twop, 0);
        pt_to_pniels(output[i], tmp);
    }

    curve448_point_destroy(tmp);
    OPENSSL_cleanse(twop, sizeof(twop));
}

void curve448_base_double_scalarmul_non_secret(curve448_point_t combo,
                                               const curve448_scalar_t scalar1,
                                               const curve448_point_t base2,
                                               const curve448_scalar_t scalar2)
{
    const int table_bits_var = C448_WNAF_VAR_TABLE_BITS;
    const int table_bits_pre = C448_WNAF_FIXED_TABLE_BITS;
    struct smvt_control control_var[C448_SCALAR_BITS /
                                    (C448_WNAF_VAR_TABLE_BITS + 1) + 3];
    struct smvt_control control_pre[C448_SCALAR_BITS /
                                    (C448_WNAF_FIXED_TABLE_BITS + 1) + 3];
    int ncb_pre = recode_wnaf(control_pre, scalar1, table_bits_pre);
    int ncb_var = recode_wnaf(control_var, scalar2, table_bits_var);
    pniels_t precmp_var[1 << C448_WNAF_VAR_TABLE_BITS];
    int contp = 0, contv = 0, i;

    prepare_wnaf_table(precmp_var, base2, table_bits_var);
    i = control_var[0].power;

    if (i < 0) {
        curve448_point_copy(combo, curve448_point_identity);
        return;
    }
    if (i > control_pre[0].power) {
        pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]);
        contv++;
    } else if (i == control_pre[0].power && i >= 0) {
        pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]);
        add_niels_to_pt(combo, curve448_wnaf_base[control_pre[0].addend >> 1],
                        i);
        contv++;
        contp++;
    } else {
        i = control_pre[0].power;
        niels_to_pt(combo, curve448_wnaf_base[control_pre[0].addend >> 1]);
        contp++;
    }

    for (i--; i >= 0; i--) {
        int cv = (i == control_var[contv].power);
        int cp = (i == control_pre[contp].power);

        point_double_internal(combo, combo, i && !(cv || cp));

        if (cv) {
            assert(control_var[contv].addend);

            if (control_var[contv].addend > 0)
                add_pniels_to_pt(combo,
                                 precmp_var[control_var[contv].addend >> 1],
                                 i && !cp);
            else
                sub_pniels_from_pt(combo,
                                   precmp_var[(-control_var[contv].addend)
                                              >> 1], i && !cp);
            contv++;
        }

        if (cp) {
            assert(control_pre[contp].addend);

            if (control_pre[contp].addend > 0)
                add_niels_to_pt(combo,
                                curve448_wnaf_base[control_pre[contp].addend
                                                   >> 1], i);
            else
                sub_niels_from_pt(combo,
                                  curve448_wnaf_base[(-control_pre
                                                      [contp].addend) >> 1], i);
            contp++;
        }
    }

    /* This function is non-secret, but whatever this is cheap. */
    OPENSSL_cleanse(control_var, sizeof(control_var));
    OPENSSL_cleanse(control_pre, sizeof(control_pre));
    OPENSSL_cleanse(precmp_var, sizeof(precmp_var));

    assert(contv == ncb_var);
    (void)ncb_var;
    assert(contp == ncb_pre);
    (void)ncb_pre;
}

void curve448_point_destroy(curve448_point_t point)
{
    OPENSSL_cleanse(point, sizeof(curve448_point_t));
}

int X448(uint8_t out_shared_key[56], const uint8_t private_key[56],
         const uint8_t peer_public_value[56])
{
    return x448_int(out_shared_key, peer_public_value, private_key)
           == C448_SUCCESS;
}

void X448_public_from_private(uint8_t out_public_value[56],
                              const uint8_t private_key[56])
{
    x448_derive_public_key(out_public_value, private_key);
}