ia64.S 44.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
.explicit
.text
.ident	"ia64.S, Version 2.1"
.ident	"IA-64 ISA artwork by Andy Polyakov <appro@openssl.org>"

// Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
//
// Licensed under the OpenSSL license (the "License").  You may not use
// this file except in compliance with the License.  You can obtain a copy
// in the file LICENSE in the source distribution or at
// https://www.openssl.org/source/license.html

//
// ====================================================================
// Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
// project.
//
// Rights for redistribution and usage in source and binary forms are
// granted according to the OpenSSL license. Warranty of any kind is
// disclaimed.
// ====================================================================
//
// Version 2.x is Itanium2 re-tune. Few words about how Itanium2 is
// different from Itanium to this module viewpoint. Most notably, is it
// "wider" than Itanium? Can you experience loop scalability as
// discussed in commentary sections? Not really:-( Itanium2 has 6
// integer ALU ports, i.e. it's 2 ports wider, but it's not enough to
// spin twice as fast, as I need 8 IALU ports. Amount of floating point
// ports is the same, i.e. 2, while I need 4. In other words, to this
// module Itanium2 remains effectively as "wide" as Itanium. Yet it's
// essentially different in respect to this module, and a re-tune was
// required. Well, because some instruction latencies has changed. Most
// noticeably those intensively used:
//
//			Itanium	Itanium2
//	ldf8		9	6		L2 hit
//	ld8		2	1		L1 hit
//	getf		2	5
//	xma[->getf]	7[+1]	4[+0]
//	add[->st8]	1[+1]	1[+0]
//
// What does it mean? You might ratiocinate that the original code
// should run just faster... Because sum of latencies is smaller...
// Wrong! Note that getf latency increased. This means that if a loop is
// scheduled for lower latency (as they were), then it will suffer from
// stall condition and the code will therefore turn anti-scalable, e.g.
// original bn_mul_words spun at 5*n or 2.5 times slower than expected
// on Itanium2! What to do? Reschedule loops for Itanium2? But then
// Itanium would exhibit anti-scalability. So I've chosen to reschedule
// for worst latency for every instruction aiming for best *all-round*
// performance.  

// Q.	How much faster does it get?
// A.	Here is the output from 'openssl speed rsa dsa' for vanilla
//	0.9.6a compiled with gcc version 2.96 20000731 (Red Hat
//	Linux 7.1 2.96-81):
//
//	                  sign    verify    sign/s verify/s
//	rsa  512 bits   0.0036s   0.0003s    275.3   2999.2
//	rsa 1024 bits   0.0203s   0.0011s     49.3    894.1
//	rsa 2048 bits   0.1331s   0.0040s      7.5    250.9
//	rsa 4096 bits   0.9270s   0.0147s      1.1     68.1
//	                  sign    verify    sign/s verify/s
//	dsa  512 bits   0.0035s   0.0043s    288.3    234.8
//	dsa 1024 bits   0.0111s   0.0135s     90.0     74.2
//
//	And here is similar output but for this assembler
//	implementation:-)
//
//	                  sign    verify    sign/s verify/s
//	rsa  512 bits   0.0021s   0.0001s    549.4   9638.5
//	rsa 1024 bits   0.0055s   0.0002s    183.8   4481.1
//	rsa 2048 bits   0.0244s   0.0006s     41.4   1726.3
//	rsa 4096 bits   0.1295s   0.0018s      7.7    561.5
//	                  sign    verify    sign/s verify/s
//	dsa  512 bits   0.0012s   0.0013s    891.9    756.6
//	dsa 1024 bits   0.0023s   0.0028s    440.4    376.2
//	
//	Yes, you may argue that it's not fair comparison as it's
//	possible to craft the C implementation with BN_UMULT_HIGH
//	inline assembler macro. But of course! Here is the output
//	with the macro:
//
//	                  sign    verify    sign/s verify/s
//	rsa  512 bits   0.0020s   0.0002s    495.0   6561.0
//	rsa 1024 bits   0.0086s   0.0004s    116.2   2235.7
//	rsa 2048 bits   0.0519s   0.0015s     19.3    667.3
//	rsa 4096 bits   0.3464s   0.0053s      2.9    187.7
//	                  sign    verify    sign/s verify/s
//	dsa  512 bits   0.0016s   0.0020s    613.1    510.5
//	dsa 1024 bits   0.0045s   0.0054s    221.0    183.9
//
//	My code is still way faster, huh:-) And I believe that even
//	higher performance can be achieved. Note that as keys get
//	longer, performance gain is larger. Why? According to the
//	profiler there is another player in the field, namely
//	BN_from_montgomery consuming larger and larger portion of CPU
//	time as keysize decreases. I therefore consider putting effort
//	to assembler implementation of the following routine:
//
//	void bn_mul_add_mont (BN_ULONG *rp,BN_ULONG *np,int nl,BN_ULONG n0)
//	{
//	int      i,j;
//	BN_ULONG v;
//
//	for (i=0; i<nl; i++)
//		{
//		v=bn_mul_add_words(rp,np,nl,(rp[0]*n0)&BN_MASK2);
//		nrp++;
//		rp++;
//		if (((nrp[-1]+=v)&BN_MASK2) < v)
//			for (j=0; ((++nrp[j])&BN_MASK2) == 0; j++) ;
//		}
//	}
//
//	It might as well be beneficial to implement even combaX
//	variants, as it appears as it can literally unleash the
//	performance (see comment section to bn_mul_comba8 below).
//
//	And finally for your reference the output for 0.9.6a compiled
//	with SGIcc version 0.01.0-12 (keep in mind that for the moment
//	of this writing it's not possible to convince SGIcc to use
//	BN_UMULT_HIGH inline assembler macro, yet the code is fast,
//	i.e. for a compiler generated one:-):
//
//	                  sign    verify    sign/s verify/s
//	rsa  512 bits   0.0022s   0.0002s    452.7   5894.3
//	rsa 1024 bits   0.0097s   0.0005s    102.7   2002.9
//	rsa 2048 bits   0.0578s   0.0017s     17.3    600.2
//	rsa 4096 bits   0.3838s   0.0061s      2.6    164.5
//	                  sign    verify    sign/s verify/s
//	dsa  512 bits   0.0018s   0.0022s    547.3    459.6
//	dsa 1024 bits   0.0051s   0.0062s    196.6    161.3
//
//	Oh! Benchmarks were performed on 733MHz Lion-class Itanium
//	system running Redhat Linux 7.1 (very special thanks to Ray
//	McCaffity of Williams Communications for providing an account).
//
// Q.	What's the heck with 'rum 1<<5' at the end of every function?
// A.	Well, by clearing the "upper FP registers written" bit of the
//	User Mask I want to excuse the kernel from preserving upper
//	(f32-f128) FP register bank over process context switch, thus
//	minimizing bus bandwidth consumption during the switch (i.e.
//	after PKI operation completes and the program is off doing
//	something else like bulk symmetric encryption). Having said
//	this, I also want to point out that it might be good idea
//	to compile the whole toolkit (as well as majority of the
//	programs for that matter) with -mfixed-range=f32-f127 command
//	line option. No, it doesn't prevent the compiler from writing
//	to upper bank, but at least discourages to do so. If you don't
//	like the idea you have the option to compile the module with
//	-Drum=nop.m in command line.
//

#if defined(_HPUX_SOURCE) && !defined(_LP64)
#define	ADDP	addp4
#else
#define	ADDP	add
#endif
#ifdef __VMS
.alias abort, "decc$abort"
#endif

#if 1
//
// bn_[add|sub]_words routines.
//
// Loops are spinning in 2*(n+5) ticks on Itanium (provided that the
// data reside in L1 cache, i.e. 2 ticks away). It's possible to
// compress the epilogue and get down to 2*n+6, but at the cost of
// scalability (the neat feature of this implementation is that it
// shall automagically spin in n+5 on "wider" IA-64 implementations:-)
// I consider that the epilogue is short enough as it is to trade tiny
// performance loss on Itanium for scalability.
//
// BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)
//
.global	bn_add_words#
.proc	bn_add_words#
.align	64
.skip	32	// makes the loop body aligned at 64-byte boundary
bn_add_words:
	.prologue
	.save	ar.pfs,r2
{ .mii;	alloc		r2=ar.pfs,4,12,0,16
	cmp4.le		p6,p0=r35,r0	};;
{ .mfb;	mov		r8=r0			// return value
(p6)	br.ret.spnt.many	b0	};;

{ .mib;	sub		r10=r35,r0,1
	.save	ar.lc,r3
	mov		r3=ar.lc
	brp.loop.imp	.L_bn_add_words_ctop,.L_bn_add_words_cend-16
					}
{ .mib;	ADDP		r14=0,r32		// rp
	.save	pr,r9
	mov		r9=pr		};;
	.body
{ .mii;	ADDP		r15=0,r33		// ap
	mov		ar.lc=r10
	mov		ar.ec=6		}
{ .mib;	ADDP		r16=0,r34		// bp
	mov		pr.rot=1<<16	};;

.L_bn_add_words_ctop:
{ .mii;	(p16)	ld8		r32=[r16],8	  // b=*(bp++)
	(p18)	add		r39=r37,r34
	(p19)	cmp.ltu.unc	p56,p0=r40,r38	}
{ .mfb;	(p0)	nop.m		0x0
	(p0)	nop.f		0x0
	(p0)	nop.b		0x0		}
{ .mii;	(p16)	ld8		r35=[r15],8	  // a=*(ap++)
	(p58)	cmp.eq.or	p57,p0=-1,r41	  // (p20)
	(p58)	add		r41=1,r41	} // (p20)
{ .mfb;	(p21)	st8		[r14]=r42,8	  // *(rp++)=r
	(p0)	nop.f		0x0
	br.ctop.sptk	.L_bn_add_words_ctop	};;
.L_bn_add_words_cend:

{ .mii;
(p59)	add		r8=1,r8		// return value
	mov		pr=r9,0x1ffff
	mov		ar.lc=r3	}
{ .mbb;	nop.b		0x0
	br.ret.sptk.many	b0	};;
.endp	bn_add_words#

//
// BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)
//
.global	bn_sub_words#
.proc	bn_sub_words#
.align	64
.skip	32	// makes the loop body aligned at 64-byte boundary
bn_sub_words:
	.prologue
	.save	ar.pfs,r2
{ .mii;	alloc		r2=ar.pfs,4,12,0,16
	cmp4.le		p6,p0=r35,r0	};;
{ .mfb;	mov		r8=r0			// return value
(p6)	br.ret.spnt.many	b0	};;

{ .mib;	sub		r10=r35,r0,1
	.save	ar.lc,r3
	mov		r3=ar.lc
	brp.loop.imp	.L_bn_sub_words_ctop,.L_bn_sub_words_cend-16
					}
{ .mib;	ADDP		r14=0,r32		// rp
	.save	pr,r9
	mov		r9=pr		};;
	.body
{ .mii;	ADDP		r15=0,r33		// ap
	mov		ar.lc=r10
	mov		ar.ec=6		}
{ .mib;	ADDP		r16=0,r34		// bp
	mov		pr.rot=1<<16	};;

.L_bn_sub_words_ctop:
{ .mii;	(p16)	ld8		r32=[r16],8	  // b=*(bp++)
	(p18)	sub		r39=r37,r34
	(p19)	cmp.gtu.unc	p56,p0=r40,r38	}
{ .mfb;	(p0)	nop.m		0x0
	(p0)	nop.f		0x0
	(p0)	nop.b		0x0		}
{ .mii;	(p16)	ld8		r35=[r15],8	  // a=*(ap++)
	(p58)	cmp.eq.or	p57,p0=0,r41	  // (p20)
	(p58)	add		r41=-1,r41	} // (p20)
{ .mbb;	(p21)	st8		[r14]=r42,8	  // *(rp++)=r
	(p0)	nop.b		0x0
	br.ctop.sptk	.L_bn_sub_words_ctop	};;
.L_bn_sub_words_cend:

{ .mii;
(p59)	add		r8=1,r8		// return value
	mov		pr=r9,0x1ffff
	mov		ar.lc=r3	}
{ .mbb;	nop.b		0x0
	br.ret.sptk.many	b0	};;
.endp	bn_sub_words#
#endif

#if 0
#define XMA_TEMPTATION
#endif

#if 1
//
// BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)
//
.global	bn_mul_words#
.proc	bn_mul_words#
.align	64
.skip	32	// makes the loop body aligned at 64-byte boundary
bn_mul_words:
	.prologue
	.save	ar.pfs,r2
#ifdef XMA_TEMPTATION
{ .mfi;	alloc		r2=ar.pfs,4,0,0,0	};;
#else
{ .mfi;	alloc		r2=ar.pfs,4,12,0,16	};;
#endif
{ .mib;	mov		r8=r0			// return value
	cmp4.le		p6,p0=r34,r0
(p6)	br.ret.spnt.many	b0		};;

{ .mii;	sub	r10=r34,r0,1
	.save	ar.lc,r3
	mov	r3=ar.lc
	.save	pr,r9
	mov	r9=pr			};;

	.body
{ .mib;	setf.sig	f8=r35	// w
	mov		pr.rot=0x800001<<16
			// ------^----- serves as (p50) at first (p27)
	brp.loop.imp	.L_bn_mul_words_ctop,.L_bn_mul_words_cend-16
					}

#ifndef XMA_TEMPTATION

{ .mmi;	ADDP		r14=0,r32	// rp
	ADDP		r15=0,r33	// ap
	mov		ar.lc=r10	}
{ .mmi;	mov		r40=0		// serves as r35 at first (p27)
	mov		ar.ec=13	};;

// This loop spins in 2*(n+12) ticks. It's scheduled for data in Itanium
// L2 cache (i.e. 9 ticks away) as floating point load/store instructions
// bypass L1 cache and L2 latency is actually best-case scenario for
// ldf8. The loop is not scalable and shall run in 2*(n+12) even on
// "wider" IA-64 implementations. It's a trade-off here. n+24 loop
// would give us ~5% in *overall* performance improvement on "wider"
// IA-64, but would hurt Itanium for about same because of longer
// epilogue. As it's a matter of few percents in either case I've
// chosen to trade the scalability for development time (you can see
// this very instruction sequence in bn_mul_add_words loop which in
// turn is scalable).
.L_bn_mul_words_ctop:
{ .mfi;	(p25)	getf.sig	r36=f52			// low
	(p21)	xmpy.lu		f48=f37,f8
	(p28)	cmp.ltu		p54,p50=r41,r39	}
{ .mfi;	(p16)	ldf8		f32=[r15],8
	(p21)	xmpy.hu		f40=f37,f8
	(p0)	nop.i		0x0		};;
{ .mii;	(p25)	getf.sig	r32=f44			// high
	.pred.rel	"mutex",p50,p54
	(p50)	add		r40=r38,r35		// (p27)
	(p54)	add		r40=r38,r35,1	}	// (p27)
{ .mfb;	(p28)	st8		[r14]=r41,8
	(p0)	nop.f		0x0
	br.ctop.sptk	.L_bn_mul_words_ctop	};;
.L_bn_mul_words_cend:

{ .mii;	nop.m		0x0
.pred.rel	"mutex",p51,p55
(p51)	add		r8=r36,r0
(p55)	add		r8=r36,r0,1	}
{ .mfb;	nop.m	0x0
	nop.f	0x0
	nop.b	0x0			}

#else	// XMA_TEMPTATION

	setf.sig	f37=r0	// serves as carry at (p18) tick
	mov		ar.lc=r10
	mov		ar.ec=5;;

// Most of you examining this code very likely wonder why in the name
// of Intel the following loop is commented out? Indeed, it looks so
// neat that you find it hard to believe that it's something wrong
// with it, right? The catch is that every iteration depends on the
// result from previous one and the latter isn't available instantly.
// The loop therefore spins at the latency of xma minus 1, or in other
// words at 6*(n+4) ticks:-( Compare to the "production" loop above
// that runs in 2*(n+11) where the low latency problem is worked around
// by moving the dependency to one-tick latent integer ALU. Note that
// "distance" between ldf8 and xma is not latency of ldf8, but the
// *difference* between xma and ldf8 latencies.
.L_bn_mul_words_ctop:
{ .mfi;	(p16)	ldf8		f32=[r33],8
	(p18)	xma.hu		f38=f34,f8,f39	}
{ .mfb;	(p20)	stf8		[r32]=f37,8
	(p18)	xma.lu		f35=f34,f8,f39
	br.ctop.sptk	.L_bn_mul_words_ctop	};;
.L_bn_mul_words_cend:

	getf.sig	r8=f41		// the return value

#endif	// XMA_TEMPTATION

{ .mii;	nop.m		0x0
	mov		pr=r9,0x1ffff
	mov		ar.lc=r3	}
{ .mfb;	rum		1<<5		// clear um.mfh
	nop.f		0x0
	br.ret.sptk.many	b0	};;
.endp	bn_mul_words#
#endif

#if 1
//
// BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)
//
.global	bn_mul_add_words#
.proc	bn_mul_add_words#
.align	64
.skip	48	// makes the loop body aligned at 64-byte boundary
bn_mul_add_words:
	.prologue
	.save	ar.pfs,r2
{ .mmi;	alloc		r2=ar.pfs,4,4,0,8
	cmp4.le		p6,p0=r34,r0
	.save	ar.lc,r3
	mov		r3=ar.lc	};;
{ .mib;	mov		r8=r0		// return value
	sub		r10=r34,r0,1
(p6)	br.ret.spnt.many	b0	};;

{ .mib;	setf.sig	f8=r35		// w
	.save	pr,r9
	mov		r9=pr
	brp.loop.imp	.L_bn_mul_add_words_ctop,.L_bn_mul_add_words_cend-16
					}
	.body
{ .mmi;	ADDP		r14=0,r32	// rp
	ADDP		r15=0,r33	// ap
	mov		ar.lc=r10	}
{ .mii;	ADDP		r16=0,r32	// rp copy
	mov		pr.rot=0x2001<<16
			// ------^----- serves as (p40) at first (p27)
	mov		ar.ec=11	};;

// This loop spins in 3*(n+10) ticks on Itanium and in 2*(n+10) on
// Itanium 2. Yes, unlike previous versions it scales:-) Previous
// version was performing *all* additions in IALU and was starving
// for those even on Itanium 2. In this version one addition is
// moved to FPU and is folded with multiplication. This is at cost
// of propagating the result from previous call to this subroutine
// to L2 cache... In other words negligible even for shorter keys.
// *Overall* performance improvement [over previous version] varies
// from 11 to 22 percent depending on key length.
.L_bn_mul_add_words_ctop:
.pred.rel	"mutex",p40,p42
{ .mfi;	(p23)	getf.sig	r36=f45			// low
	(p20)	xma.lu		f42=f36,f8,f50		// low
	(p40)	add		r39=r39,r35	}	// (p27)
{ .mfi;	(p16)	ldf8		f32=[r15],8		// *(ap++)
	(p20)	xma.hu		f36=f36,f8,f50		// high
	(p42)	add		r39=r39,r35,1	};;	// (p27)
{ .mmi;	(p24)	getf.sig	r32=f40			// high
	(p16)	ldf8		f46=[r16],8		// *(rp1++)
	(p40)	cmp.ltu		p41,p39=r39,r35	}	// (p27)
{ .mib;	(p26)	st8		[r14]=r39,8		// *(rp2++)
	(p42)	cmp.leu		p41,p39=r39,r35		// (p27)
	br.ctop.sptk	.L_bn_mul_add_words_ctop};;
.L_bn_mul_add_words_cend:

{ .mmi;	.pred.rel	"mutex",p40,p42
(p40)	add		r8=r35,r0
(p42)	add		r8=r35,r0,1
	mov		pr=r9,0x1ffff	}
{ .mib;	rum		1<<5		// clear um.mfh
	mov		ar.lc=r3
	br.ret.sptk.many	b0	};;
.endp	bn_mul_add_words#
#endif

#if 1
//
// void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num)
//
.global	bn_sqr_words#
.proc	bn_sqr_words#
.align	64
.skip	32	// makes the loop body aligned at 64-byte boundary 
bn_sqr_words:
	.prologue
	.save	ar.pfs,r2
{ .mii;	alloc		r2=ar.pfs,3,0,0,0
	sxt4		r34=r34		};;
{ .mii;	cmp.le		p6,p0=r34,r0
	mov		r8=r0		}	// return value
{ .mfb;	ADDP		r32=0,r32
	nop.f		0x0
(p6)	br.ret.spnt.many	b0	};;

{ .mii;	sub	r10=r34,r0,1
	.save	ar.lc,r3
	mov	r3=ar.lc
	.save	pr,r9
	mov	r9=pr			};;

	.body
{ .mib;	ADDP		r33=0,r33
	mov		pr.rot=1<<16
	brp.loop.imp	.L_bn_sqr_words_ctop,.L_bn_sqr_words_cend-16
					}
{ .mii;	add		r34=8,r32
	mov		ar.lc=r10
	mov		ar.ec=18	};;

// 2*(n+17) on Itanium, (n+17) on "wider" IA-64 implementations. It's
// possible to compress the epilogue (I'm getting tired to write this
// comment over and over) and get down to 2*n+16 at the cost of
// scalability. The decision will very likely be reconsidered after the
// benchmark program is profiled. I.e. if performance gain on Itanium
// will appear larger than loss on "wider" IA-64, then the loop should
// be explicitly split and the epilogue compressed.
.L_bn_sqr_words_ctop:
{ .mfi;	(p16)	ldf8		f32=[r33],8
	(p25)	xmpy.lu		f42=f41,f41
	(p0)	nop.i		0x0		}
{ .mib;	(p33)	stf8		[r32]=f50,16
	(p0)	nop.i		0x0
	(p0)	nop.b		0x0		}
{ .mfi;	(p0)	nop.m		0x0
	(p25)	xmpy.hu		f52=f41,f41
	(p0)	nop.i		0x0		}
{ .mib;	(p33)	stf8		[r34]=f60,16
	(p0)	nop.i		0x0
	br.ctop.sptk	.L_bn_sqr_words_ctop	};;
.L_bn_sqr_words_cend:

{ .mii;	nop.m		0x0
	mov		pr=r9,0x1ffff
	mov		ar.lc=r3	}
{ .mfb;	rum		1<<5		// clear um.mfh
	nop.f		0x0
	br.ret.sptk.many	b0	};;
.endp	bn_sqr_words#
#endif

#if 1
// Apparently we win nothing by implementing special bn_sqr_comba8.
// Yes, it is possible to reduce the number of multiplications by
// almost factor of two, but then the amount of additions would
// increase by factor of two (as we would have to perform those
// otherwise performed by xma ourselves). Normally we would trade
// anyway as multiplications are way more expensive, but not this
// time... Multiplication kernel is fully pipelined and as we drain
// one 128-bit multiplication result per clock cycle multiplications
// are effectively as inexpensive as additions. Special implementation
// might become of interest for "wider" IA-64 implementation as you'll
// be able to get through the multiplication phase faster (there won't
// be any stall issues as discussed in the commentary section below and
// you therefore will be able to employ all 4 FP units)... But these
// Itanium days it's simply too hard to justify the effort so I just
// drop down to bn_mul_comba8 code:-)
//
// void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a)
//
.global	bn_sqr_comba8#
.proc	bn_sqr_comba8#
.align	64
bn_sqr_comba8:
	.prologue
	.save	ar.pfs,r2
#if defined(_HPUX_SOURCE) && !defined(_LP64)
{ .mii;	alloc	r2=ar.pfs,2,1,0,0
	addp4	r33=0,r33
	addp4	r32=0,r32		};;
{ .mii;
#else
{ .mii;	alloc	r2=ar.pfs,2,1,0,0
#endif
	mov	r34=r33
	add	r14=8,r33		};;
	.body
{ .mii;	add	r17=8,r34
	add	r15=16,r33
	add	r18=16,r34		}
{ .mfb;	add	r16=24,r33
	br	.L_cheat_entry_point8	};;
.endp	bn_sqr_comba8#
#endif

#if 1
// I've estimated this routine to run in ~120 ticks, but in reality
// (i.e. according to ar.itc) it takes ~160 ticks. Are those extra
// cycles consumed for instructions fetch? Or did I misinterpret some
// clause in Itanium µ-architecture manual? Comments are welcomed and
// highly appreciated.
//
// On Itanium 2 it takes ~190 ticks. This is because of stalls on
// result from getf.sig. I do nothing about it at this point for
// reasons depicted below.
//
// However! It should be noted that even 160 ticks is darn good result
// as it's over 10 (yes, ten, spelled as t-e-n) times faster than the
// C version (compiled with gcc with inline assembler). I really
// kicked compiler's butt here, didn't I? Yeah! This brings us to the
// following statement. It's damn shame that this routine isn't called
// very often nowadays! According to the profiler most CPU time is
// consumed by bn_mul_add_words called from BN_from_montgomery. In
// order to estimate what we're missing, I've compared the performance
// of this routine against "traditional" implementation, i.e. against
// following routine:
//
// void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
// {	r[ 8]=bn_mul_words(    &(r[0]),a,8,b[0]);
//	r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
//	r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
//	r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
//	r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
//	r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
//	r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
//	r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
// }
//
// The one below is over 8 times faster than the one above:-( Even
// more reasons to "combafy" bn_mul_add_mont...
//
// And yes, this routine really made me wish there were an optimizing
// assembler! It also feels like it deserves a dedication.
//
//	To my wife for being there and to my kids...
//
// void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
//
#define	carry1	r14
#define	carry2	r15
#define	carry3	r34
.global	bn_mul_comba8#
.proc	bn_mul_comba8#
.align	64
bn_mul_comba8:
	.prologue
	.save	ar.pfs,r2
#if defined(_HPUX_SOURCE) && !defined(_LP64)
{ .mii;	alloc	r2=ar.pfs,3,0,0,0
	addp4	r33=0,r33
	addp4	r34=0,r34		};;
{ .mii;	addp4	r32=0,r32
#else
{ .mii;	alloc   r2=ar.pfs,3,0,0,0
#endif
	add	r14=8,r33
	add	r17=8,r34		}
	.body
{ .mii;	add	r15=16,r33
	add	r18=16,r34
	add	r16=24,r33		}
.L_cheat_entry_point8:
{ .mmi;	add	r19=24,r34

	ldf8	f32=[r33],32		};;

{ .mmi;	ldf8	f120=[r34],32
	ldf8	f121=[r17],32		}
{ .mmi;	ldf8	f122=[r18],32
	ldf8	f123=[r19],32		};;
{ .mmi;	ldf8	f124=[r34]
	ldf8	f125=[r17]		}
{ .mmi;	ldf8	f126=[r18]
	ldf8	f127=[r19]		}

{ .mmi;	ldf8	f33=[r14],32
	ldf8	f34=[r15],32		}
{ .mmi;	ldf8	f35=[r16],32;;
	ldf8	f36=[r33]		}
{ .mmi;	ldf8	f37=[r14]
	ldf8	f38=[r15]		}
{ .mfi;	ldf8	f39=[r16]
// -------\ Entering multiplier's heaven /-------
// ------------\                    /------------
// -----------------\          /-----------------
// ----------------------\/----------------------
		xma.hu	f41=f32,f120,f0		}
{ .mfi;		xma.lu	f40=f32,f120,f0		};; // (*)
{ .mfi;		xma.hu	f51=f32,f121,f0		}
{ .mfi;		xma.lu	f50=f32,f121,f0		};;
{ .mfi;		xma.hu	f61=f32,f122,f0		}
{ .mfi;		xma.lu	f60=f32,f122,f0		};;
{ .mfi;		xma.hu	f71=f32,f123,f0		}
{ .mfi;		xma.lu	f70=f32,f123,f0		};;
{ .mfi;		xma.hu	f81=f32,f124,f0		}
{ .mfi;		xma.lu	f80=f32,f124,f0		};;
{ .mfi;		xma.hu	f91=f32,f125,f0		}
{ .mfi;		xma.lu	f90=f32,f125,f0		};;
{ .mfi;		xma.hu	f101=f32,f126,f0	}
{ .mfi;		xma.lu	f100=f32,f126,f0	};;
{ .mfi;		xma.hu	f111=f32,f127,f0	}
{ .mfi;		xma.lu	f110=f32,f127,f0	};;//
// (*)	You can argue that splitting at every second bundle would
//	prevent "wider" IA-64 implementations from achieving the peak
//	performance. Well, not really... The catch is that if you
//	intend to keep 4 FP units busy by splitting at every fourth
//	bundle and thus perform these 16 multiplications in 4 ticks,
//	the first bundle *below* would stall because the result from
//	the first xma bundle *above* won't be available for another 3
//	ticks (if not more, being an optimist, I assume that "wider"
//	implementation will have same latency:-). This stall will hold
//	you back and the performance would be as if every second bundle
//	were split *anyway*...
{ .mfi;	getf.sig	r16=f40
		xma.hu	f42=f33,f120,f41
	add		r33=8,r32		}
{ .mfi;		xma.lu	f41=f33,f120,f41	};;
{ .mfi;	getf.sig	r24=f50
		xma.hu	f52=f33,f121,f51	}
{ .mfi;		xma.lu	f51=f33,f121,f51	};;
{ .mfi;	st8		[r32]=r16,16
		xma.hu	f62=f33,f122,f61	}
{ .mfi;		xma.lu	f61=f33,f122,f61	};;
{ .mfi;		xma.hu	f72=f33,f123,f71	}
{ .mfi;		xma.lu	f71=f33,f123,f71	};;
{ .mfi;		xma.hu	f82=f33,f124,f81	}
{ .mfi;		xma.lu	f81=f33,f124,f81	};;
{ .mfi;		xma.hu	f92=f33,f125,f91	}
{ .mfi;		xma.lu	f91=f33,f125,f91	};;
{ .mfi;		xma.hu	f102=f33,f126,f101	}
{ .mfi;		xma.lu	f101=f33,f126,f101	};;
{ .mfi;		xma.hu	f112=f33,f127,f111	}
{ .mfi;		xma.lu	f111=f33,f127,f111	};;//
//-------------------------------------------------//
{ .mfi;	getf.sig	r25=f41
		xma.hu	f43=f34,f120,f42	}
{ .mfi;		xma.lu	f42=f34,f120,f42	};;
{ .mfi;	getf.sig	r16=f60
		xma.hu	f53=f34,f121,f52	}
{ .mfi;		xma.lu	f52=f34,f121,f52	};;
{ .mfi;	getf.sig	r17=f51
		xma.hu	f63=f34,f122,f62
	add		r25=r25,r24		}
{ .mfi;		xma.lu	f62=f34,f122,f62
	mov		carry1=0		};;
{ .mfi;	cmp.ltu		p6,p0=r25,r24
		xma.hu	f73=f34,f123,f72	}
{ .mfi;		xma.lu	f72=f34,f123,f72	};;
{ .mfi;	st8		[r33]=r25,16
		xma.hu	f83=f34,f124,f82
(p6)	add		carry1=1,carry1		}
{ .mfi;		xma.lu	f82=f34,f124,f82	};;
{ .mfi;		xma.hu	f93=f34,f125,f92	}
{ .mfi;		xma.lu	f92=f34,f125,f92	};;
{ .mfi;		xma.hu	f103=f34,f126,f102	}
{ .mfi;		xma.lu	f102=f34,f126,f102	};;
{ .mfi;		xma.hu	f113=f34,f127,f112	}
{ .mfi;		xma.lu	f112=f34,f127,f112	};;//
//-------------------------------------------------//
{ .mfi;	getf.sig	r18=f42
		xma.hu	f44=f35,f120,f43
	add		r17=r17,r16		}
{ .mfi;		xma.lu	f43=f35,f120,f43	};;
{ .mfi;	getf.sig	r24=f70
		xma.hu	f54=f35,f121,f53	}
{ .mfi;	mov		carry2=0
		xma.lu	f53=f35,f121,f53	};;
{ .mfi;	getf.sig	r25=f61
		xma.hu	f64=f35,f122,f63
	cmp.ltu		p7,p0=r17,r16		}
{ .mfi;	add		r18=r18,r17
		xma.lu	f63=f35,f122,f63	};;
{ .mfi;	getf.sig	r26=f52
		xma.hu	f74=f35,f123,f73
(p7)	add		carry2=1,carry2		}
{ .mfi;	cmp.ltu		p7,p0=r18,r17
		xma.lu	f73=f35,f123,f73
	add		r18=r18,carry1		};;
{ .mfi;
		xma.hu	f84=f35,f124,f83
(p7)	add		carry2=1,carry2		}
{ .mfi;	cmp.ltu		p7,p0=r18,carry1
		xma.lu	f83=f35,f124,f83	};;
{ .mfi;	st8		[r32]=r18,16
		xma.hu	f94=f35,f125,f93
(p7)	add		carry2=1,carry2		}
{ .mfi;		xma.lu	f93=f35,f125,f93	};;
{ .mfi;		xma.hu	f104=f35,f126,f103	}
{ .mfi;		xma.lu	f103=f35,f126,f103	};;
{ .mfi;		xma.hu	f114=f35,f127,f113	}
{ .mfi;	mov		carry1=0
		xma.lu	f113=f35,f127,f113
	add		r25=r25,r24		};;//
//-------------------------------------------------//
{ .mfi;	getf.sig	r27=f43
		xma.hu	f45=f36,f120,f44
	cmp.ltu		p6,p0=r25,r24		}
{ .mfi;		xma.lu	f44=f36,f120,f44	
	add		r26=r26,r25		};;
{ .mfi;	getf.sig	r16=f80
		xma.hu	f55=f36,f121,f54
(p6)	add		carry1=1,carry1		}
{ .mfi;		xma.lu	f54=f36,f121,f54	};;
{ .mfi;	getf.sig	r17=f71
		xma.hu	f65=f36,f122,f64
	cmp.ltu		p6,p0=r26,r25		}
{ .mfi;		xma.lu	f64=f36,f122,f64
	add		r27=r27,r26		};;
{ .mfi;	getf.sig	r18=f62
		xma.hu	f75=f36,f123,f74
(p6)	add		carry1=1,carry1		}
{ .mfi;	cmp.ltu		p6,p0=r27,r26
		xma.lu	f74=f36,f123,f74
	add		r27=r27,carry2		};;
{ .mfi;	getf.sig	r19=f53
		xma.hu	f85=f36,f124,f84
(p6)	add		carry1=1,carry1		}
{ .mfi;		xma.lu	f84=f36,f124,f84
	cmp.ltu		p6,p0=r27,carry2	};;
{ .mfi;	st8		[r33]=r27,16
		xma.hu	f95=f36,f125,f94
(p6)	add		carry1=1,carry1		}
{ .mfi;		xma.lu	f94=f36,f125,f94	};;
{ .mfi;		xma.hu	f105=f36,f126,f104	}
{ .mfi;	mov		carry2=0
		xma.lu	f104=f36,f126,f104
	add		r17=r17,r16		};;
{ .mfi;		xma.hu	f115=f36,f127,f114
	cmp.ltu		p7,p0=r17,r16		}
{ .mfi;		xma.lu	f114=f36,f127,f114
	add		r18=r18,r17		};;//
//-------------------------------------------------//
{ .mfi;	getf.sig	r20=f44
		xma.hu	f46=f37,f120,f45
(p7)	add		carry2=1,carry2		}
{ .mfi;	cmp.ltu		p7,p0=r18,r17
		xma.lu	f45=f37,f120,f45
	add		r19=r19,r18		};;
{ .mfi;	getf.sig	r24=f90
		xma.hu	f56=f37,f121,f55	}
{ .mfi;		xma.lu	f55=f37,f121,f55	};;
{ .mfi;	getf.sig	r25=f81
		xma.hu	f66=f37,f122,f65
(p7)	add		carry2=1,carry2		}
{ .mfi;	cmp.ltu		p7,p0=r19,r18
		xma.lu	f65=f37,f122,f65
	add		r20=r20,r19		};;
{ .mfi;	getf.sig	r26=f72
		xma.hu	f76=f37,f123,f75
(p7)	add		carry2=1,carry2		}
{ .mfi;	cmp.ltu		p7,p0=r20,r19
		xma.lu	f75=f37,f123,f75
	add		r20=r20,carry1		};;
{ .mfi;	getf.sig	r27=f63
		xma.hu	f86=f37,f124,f85
(p7)	add		carry2=1,carry2		}
{ .mfi;		xma.lu	f85=f37,f124,f85
	cmp.ltu		p7,p0=r20,carry1	};;
{ .mfi;	getf.sig	r28=f54
		xma.hu	f96=f37,f125,f95
(p7)	add		carry2=1,carry2		}
{ .mfi;	st8		[r32]=r20,16
		xma.lu	f95=f37,f125,f95	};;
{ .mfi;		xma.hu	f106=f37,f126,f105	}
{ .mfi;	mov		carry1=0
		xma.lu	f105=f37,f126,f105
	add		r25=r25,r24		};;
{ .mfi;		xma.hu	f116=f37,f127,f115
	cmp.ltu		p6,p0=r25,r24		}
{ .mfi;		xma.lu	f115=f37,f127,f115
	add		r26=r26,r25		};;//
//-------------------------------------------------//
{ .mfi;	getf.sig	r29=f45
		xma.hu	f47=f38,f120,f46
(p6)	add		carry1=1,carry1		}
{ .mfi;	cmp.ltu		p6,p0=r26,r25
		xma.lu	f46=f38,f120,f46
	add		r27=r27,r26		};;
{ .mfi;	getf.sig	r16=f100
		xma.hu	f57=f38,f121,f56
(p6)	add		carry1=1,carry1		}
{ .mfi;	cmp.ltu		p6,p0=r27,r26
		xma.lu	f56=f38,f121,f56
	add		r28=r28,r27		};;
{ .mfi;	getf.sig	r17=f91
		xma.hu	f67=f38,f122,f66
(p6)	add		carry1=1,carry1		}
{ .mfi;	cmp.ltu		p6,p0=r28,r27
		xma.lu	f66=f38,f122,f66
	add		r29=r29,r28		};;
{ .mfi;	getf.sig	r18=f82
		xma.hu	f77=f38,f123,f76
(p6)	add		carry1=1,carry1		}
{ .mfi;	cmp.ltu		p6,p0=r29,r28
		xma.lu	f76=f38,f123,f76
	add		r29=r29,carry2		};;
{ .mfi;	getf.sig	r19=f73
		xma.hu	f87=f38,f124,f86
(p6)	add		carry1=1,carry1		}
{ .mfi;		xma.lu	f86=f38,f124,f86
	cmp.ltu		p6,p0=r29,carry2	};;
{ .mfi;	getf.sig	r20=f64
		xma.hu	f97=f38,f125,f96
(p6)	add		carry1=1,carry1		}
{ .mfi;	st8		[r33]=r29,16
		xma.lu	f96=f38,f125,f96	};;
{ .mfi;	getf.sig	r21=f55
		xma.hu	f107=f38,f126,f106	}
{ .mfi;	mov		carry2=0
		xma.lu	f106=f38,f126,f106
	add		r17=r17,r16		};;
{ .mfi;		xma.hu	f117=f38,f127,f116
	cmp.ltu		p7,p0=r17,r16		}
{ .mfi;		xma.lu	f116=f38,f127,f116
	add		r18=r18,r17		};;//
//-------------------------------------------------//
{ .mfi;	getf.sig	r22=f46
		xma.hu	f48=f39,f120,f47
(p7)	add		carry2=1,carry2		}
{ .mfi;	cmp.ltu		p7,p0=r18,r17
		xma.lu	f47=f39,f120,f47
	add		r19=r19,r18		};;
{ .mfi;	getf.sig	r24=f110
		xma.hu	f58=f39,f121,f57
(p7)	add		carry2=1,carry2		}
{ .mfi;	cmp.ltu		p7,p0=r19,r18
		xma.lu	f57=f39,f121,f57
	add		r20=r20,r19		};;
{ .mfi;	getf.sig	r25=f101
		xma.hu	f68=f39,f122,f67
(p7)	add		carry2=1,carry2		}
{ .mfi;	cmp.ltu		p7,p0=r20,r19
		xma.lu	f67=f39,f122,f67
	add		r21=r21,r20		};;
{ .mfi;	getf.sig	r26=f92
		xma.hu	f78=f39,f123,f77
(p7)	add		carry2=1,carry2		}
{ .mfi;	cmp.ltu		p7,p0=r21,r20
		xma.lu	f77=f39,f123,f77
	add		r22=r22,r21		};;
{ .mfi;	getf.sig	r27=f83
		xma.hu	f88=f39,f124,f87
(p7)	add		carry2=1,carry2		}
{ .mfi;	cmp.ltu		p7,p0=r22,r21
		xma.lu	f87=f39,f124,f87
	add		r22=r22,carry1		};;
{ .mfi;	getf.sig	r28=f74
		xma.hu	f98=f39,f125,f97
(p7)	add		carry2=1,carry2		}
{ .mfi;		xma.lu	f97=f39,f125,f97
	cmp.ltu		p7,p0=r22,carry1	};;
{ .mfi;	getf.sig	r29=f65
		xma.hu	f108=f39,f126,f107
(p7)	add		carry2=1,carry2		}
{ .mfi;	st8		[r32]=r22,16
		xma.lu	f107=f39,f126,f107	};;
{ .mfi;	getf.sig	r30=f56
		xma.hu	f118=f39,f127,f117	}
{ .mfi;		xma.lu	f117=f39,f127,f117	};;//
//-------------------------------------------------//
// Leaving multiplier's heaven... Quite a ride, huh?

{ .mii;	getf.sig	r31=f47
	add		r25=r25,r24
	mov		carry1=0		};;
{ .mii;		getf.sig	r16=f111
	cmp.ltu		p6,p0=r25,r24
	add		r26=r26,r25		};;
{ .mfb;		getf.sig	r17=f102	}
{ .mii;
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r26,r25
	add		r27=r27,r26		};;
{ .mfb;	nop.m	0x0				}
{ .mii;
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r27,r26
	add		r28=r28,r27		};;
{ .mii;		getf.sig	r18=f93
		add		r17=r17,r16
		mov		carry3=0	}
{ .mii;
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r28,r27
	add		r29=r29,r28		};;
{ .mii;		getf.sig	r19=f84
		cmp.ltu		p7,p0=r17,r16	}
{ .mii;
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r29,r28
	add		r30=r30,r29		};;
{ .mii;		getf.sig	r20=f75
		add		r18=r18,r17	}
{ .mii;
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r30,r29
	add		r31=r31,r30		};;
{ .mfb;		getf.sig	r21=f66		}
{ .mii;	(p7)	add		carry3=1,carry3
		cmp.ltu		p7,p0=r18,r17
		add		r19=r19,r18	}
{ .mfb;	nop.m	0x0				}
{ .mii;
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r31,r30
	add		r31=r31,carry2		};;
{ .mfb;		getf.sig	r22=f57		}
{ .mii;	(p7)	add		carry3=1,carry3
		cmp.ltu		p7,p0=r19,r18
		add		r20=r20,r19	}
{ .mfb;	nop.m	0x0				}
{ .mii;
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r31,carry2	};;
{ .mfb;		getf.sig	r23=f48		}
{ .mii;	(p7)	add		carry3=1,carry3
		cmp.ltu		p7,p0=r20,r19
		add		r21=r21,r20	}
{ .mii;
(p6)	add		carry1=1,carry1		}
{ .mfb;	st8		[r33]=r31,16		};;

{ .mfb;	getf.sig	r24=f112		}
{ .mii;	(p7)	add		carry3=1,carry3
		cmp.ltu		p7,p0=r21,r20
		add		r22=r22,r21	};;
{ .mfb;	getf.sig	r25=f103		}
{ .mii;	(p7)	add		carry3=1,carry3
		cmp.ltu		p7,p0=r22,r21
		add		r23=r23,r22	};;
{ .mfb;	getf.sig	r26=f94			}
{ .mii;	(p7)	add		carry3=1,carry3
		cmp.ltu		p7,p0=r23,r22
		add		r23=r23,carry1	};;
{ .mfb;	getf.sig	r27=f85			}
{ .mii;	(p7)	add		carry3=1,carry3
		cmp.ltu		p7,p8=r23,carry1};;
{ .mii;	getf.sig	r28=f76
	add		r25=r25,r24
	mov		carry1=0		}
{ .mii;		st8		[r32]=r23,16
	(p7)	add		carry2=1,carry3
	(p8)	add		carry2=0,carry3	};;

{ .mfb;	nop.m	0x0				}
{ .mii;	getf.sig	r29=f67
	cmp.ltu		p6,p0=r25,r24
	add		r26=r26,r25		};;
{ .mfb;	getf.sig	r30=f58			}
{ .mii;
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r26,r25
	add		r27=r27,r26		};;
{ .mfb;		getf.sig	r16=f113	}
{ .mii;
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r27,r26
	add		r28=r28,r27		};;
{ .mfb;		getf.sig	r17=f104	}
{ .mii;
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r28,r27
	add		r29=r29,r28		};;
{ .mfb;		getf.sig	r18=f95		}
{ .mii;
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r29,r28
	add		r30=r30,r29		};;
{ .mii;		getf.sig	r19=f86
		add		r17=r17,r16
		mov		carry3=0	}
{ .mii;
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r30,r29
	add		r30=r30,carry2		};;
{ .mii;		getf.sig	r20=f77
		cmp.ltu		p7,p0=r17,r16
		add		r18=r18,r17	}
{ .mii;
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r30,carry2	};;
{ .mfb;		getf.sig	r21=f68		}
{ .mii;	st8		[r33]=r30,16
(p6)	add		carry1=1,carry1		};;

{ .mfb;	getf.sig	r24=f114		}
{ .mii;	(p7)	add		carry3=1,carry3
		cmp.ltu		p7,p0=r18,r17
		add		r19=r19,r18	};;
{ .mfb;	getf.sig	r25=f105		}
{ .mii;	(p7)	add		carry3=1,carry3
		cmp.ltu		p7,p0=r19,r18
		add		r20=r20,r19	};;
{ .mfb;	getf.sig	r26=f96			}
{ .mii;	(p7)	add		carry3=1,carry3
		cmp.ltu		p7,p0=r20,r19
		add		r21=r21,r20	};;
{ .mfb;	getf.sig	r27=f87			}
{ .mii;	(p7)	add		carry3=1,carry3
		cmp.ltu		p7,p0=r21,r20
		add		r21=r21,carry1	};;
{ .mib;	getf.sig	r28=f78			
	add		r25=r25,r24		}
{ .mib;	(p7)	add		carry3=1,carry3
		cmp.ltu		p7,p8=r21,carry1};;
{ .mii;		st8		[r32]=r21,16
	(p7)	add		carry2=1,carry3
	(p8)	add		carry2=0,carry3	}

{ .mii;	mov		carry1=0
	cmp.ltu		p6,p0=r25,r24
	add		r26=r26,r25		};;
{ .mfb;		getf.sig	r16=f115	}
{ .mii;
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r26,r25
	add		r27=r27,r26		};;
{ .mfb;		getf.sig	r17=f106	}
{ .mii;
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r27,r26
	add		r28=r28,r27		};;
{ .mfb;		getf.sig	r18=f97		}
{ .mii;
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r28,r27
	add		r28=r28,carry2		};;
{ .mib;		getf.sig	r19=f88
		add		r17=r17,r16	}
{ .mib;
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r28,carry2	};;
{ .mii;	st8		[r33]=r28,16
(p6)	add		carry1=1,carry1		}

{ .mii;		mov		carry2=0
		cmp.ltu		p7,p0=r17,r16
		add		r18=r18,r17	};;
{ .mfb;	getf.sig	r24=f116		}
{ .mii;	(p7)	add		carry2=1,carry2
		cmp.ltu		p7,p0=r18,r17
		add		r19=r19,r18	};;
{ .mfb;	getf.sig	r25=f107		}
{ .mii;	(p7)	add		carry2=1,carry2
		cmp.ltu		p7,p0=r19,r18
		add		r19=r19,carry1	};;
{ .mfb;	getf.sig	r26=f98			}
{ .mii;	(p7)	add		carry2=1,carry2
		cmp.ltu		p7,p0=r19,carry1};;
{ .mii;		st8		[r32]=r19,16
	(p7)	add		carry2=1,carry2	}

{ .mfb;	add		r25=r25,r24		};;

{ .mfb;		getf.sig	r16=f117	}
{ .mii;	mov		carry1=0
	cmp.ltu		p6,p0=r25,r24
	add		r26=r26,r25		};;
{ .mfb;		getf.sig	r17=f108	}
{ .mii;
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r26,r25
	add		r26=r26,carry2		};;
{ .mfb;	nop.m	0x0				}
{ .mii;
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r26,carry2	};;
{ .mii;	st8		[r33]=r26,16
(p6)	add		carry1=1,carry1		}

{ .mfb;		add		r17=r17,r16	};;
{ .mfb;	getf.sig	r24=f118		}
{ .mii;		mov		carry2=0
		cmp.ltu		p7,p0=r17,r16
		add		r17=r17,carry1	};;
{ .mii;	(p7)	add		carry2=1,carry2
		cmp.ltu		p7,p0=r17,carry1};;
{ .mii;		st8		[r32]=r17
	(p7)	add		carry2=1,carry2	};;
{ .mfb;	add		r24=r24,carry2		};;
{ .mib;	st8		[r33]=r24		}

{ .mib;	rum		1<<5		// clear um.mfh
	br.ret.sptk.many	b0	};;
.endp	bn_mul_comba8#
#undef	carry3
#undef	carry2
#undef	carry1
#endif

#if 1
// It's possible to make it faster (see comment to bn_sqr_comba8), but
// I reckon it doesn't worth the effort. Basically because the routine
// (actually both of them) practically never called... So I just play
// same trick as with bn_sqr_comba8.
//
// void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a)
//
.global	bn_sqr_comba4#
.proc	bn_sqr_comba4#
.align	64
bn_sqr_comba4:
	.prologue
	.save	ar.pfs,r2
#if defined(_HPUX_SOURCE) && !defined(_LP64)
{ .mii;	alloc   r2=ar.pfs,2,1,0,0
	addp4	r32=0,r32
	addp4	r33=0,r33		};;
{ .mii;
#else
{ .mii;	alloc	r2=ar.pfs,2,1,0,0
#endif
	mov	r34=r33
	add	r14=8,r33		};;
	.body
{ .mii;	add	r17=8,r34
	add	r15=16,r33
	add	r18=16,r34		}
{ .mfb;	add	r16=24,r33
	br	.L_cheat_entry_point4	};;
.endp	bn_sqr_comba4#
#endif

#if 1
// Runs in ~115 cycles and ~4.5 times faster than C. Well, whatever...
//
// void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
//
#define	carry1	r14
#define	carry2	r15
.global	bn_mul_comba4#
.proc	bn_mul_comba4#
.align	64
bn_mul_comba4:
	.prologue
	.save	ar.pfs,r2
#if defined(_HPUX_SOURCE) && !defined(_LP64)
{ .mii;	alloc   r2=ar.pfs,3,0,0,0
	addp4	r33=0,r33
	addp4	r34=0,r34		};;
{ .mii;	addp4	r32=0,r32
#else
{ .mii;	alloc	r2=ar.pfs,3,0,0,0
#endif
	add	r14=8,r33
	add	r17=8,r34		}
	.body
{ .mii;	add	r15=16,r33
	add	r18=16,r34
	add	r16=24,r33		};;
.L_cheat_entry_point4:
{ .mmi;	add	r19=24,r34

	ldf8	f32=[r33]		}

{ .mmi;	ldf8	f120=[r34]
	ldf8	f121=[r17]		};;
{ .mmi;	ldf8	f122=[r18]
	ldf8	f123=[r19]		}

{ .mmi;	ldf8	f33=[r14]
	ldf8	f34=[r15]		}
{ .mfi;	ldf8	f35=[r16]

		xma.hu	f41=f32,f120,f0		}
{ .mfi;		xma.lu	f40=f32,f120,f0		};;
{ .mfi;		xma.hu	f51=f32,f121,f0		}
{ .mfi;		xma.lu	f50=f32,f121,f0		};;
{ .mfi;		xma.hu	f61=f32,f122,f0		}
{ .mfi;		xma.lu	f60=f32,f122,f0		};;
{ .mfi;		xma.hu	f71=f32,f123,f0		}
{ .mfi;		xma.lu	f70=f32,f123,f0		};;//
// Major stall takes place here, and 3 more places below. Result from
// first xma is not available for another 3 ticks.
{ .mfi;	getf.sig	r16=f40
		xma.hu	f42=f33,f120,f41
	add		r33=8,r32		}
{ .mfi;		xma.lu	f41=f33,f120,f41	};;
{ .mfi;	getf.sig	r24=f50
		xma.hu	f52=f33,f121,f51	}
{ .mfi;		xma.lu	f51=f33,f121,f51	};;
{ .mfi;	st8		[r32]=r16,16
		xma.hu	f62=f33,f122,f61	}
{ .mfi;		xma.lu	f61=f33,f122,f61	};;
{ .mfi;		xma.hu	f72=f33,f123,f71	}
{ .mfi;		xma.lu	f71=f33,f123,f71	};;//
//-------------------------------------------------//
{ .mfi;	getf.sig	r25=f41
		xma.hu	f43=f34,f120,f42	}
{ .mfi;		xma.lu	f42=f34,f120,f42	};;
{ .mfi;	getf.sig	r16=f60
		xma.hu	f53=f34,f121,f52	}
{ .mfi;		xma.lu	f52=f34,f121,f52	};;
{ .mfi;	getf.sig	r17=f51
		xma.hu	f63=f34,f122,f62
	add		r25=r25,r24		}
{ .mfi;	mov		carry1=0
		xma.lu	f62=f34,f122,f62	};;
{ .mfi;	st8		[r33]=r25,16
		xma.hu	f73=f34,f123,f72
	cmp.ltu		p6,p0=r25,r24		}
{ .mfi;		xma.lu	f72=f34,f123,f72	};;//
//-------------------------------------------------//
{ .mfi;	getf.sig	r18=f42
		xma.hu	f44=f35,f120,f43
(p6)	add		carry1=1,carry1		}
{ .mfi;	add		r17=r17,r16
		xma.lu	f43=f35,f120,f43
	mov		carry2=0		};;
{ .mfi;	getf.sig	r24=f70
		xma.hu	f54=f35,f121,f53
	cmp.ltu		p7,p0=r17,r16		}
{ .mfi;		xma.lu	f53=f35,f121,f53	};;
{ .mfi;	getf.sig	r25=f61
		xma.hu	f64=f35,f122,f63
	add		r18=r18,r17		}
{ .mfi;		xma.lu	f63=f35,f122,f63
(p7)	add		carry2=1,carry2		};;
{ .mfi;	getf.sig	r26=f52
		xma.hu	f74=f35,f123,f73
	cmp.ltu		p7,p0=r18,r17		}
{ .mfi;		xma.lu	f73=f35,f123,f73
	add		r18=r18,carry1		};;
//-------------------------------------------------//
{ .mii;	st8		[r32]=r18,16
(p7)	add		carry2=1,carry2
	cmp.ltu		p7,p0=r18,carry1	};;

{ .mfi;	getf.sig	r27=f43	// last major stall
(p7)	add		carry2=1,carry2		};;
{ .mii;		getf.sig	r16=f71
	add		r25=r25,r24
	mov		carry1=0		};;
{ .mii;		getf.sig	r17=f62	
	cmp.ltu		p6,p0=r25,r24
	add		r26=r26,r25		};;
{ .mii;
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r26,r25
	add		r27=r27,r26		};;
{ .mii;
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r27,r26
	add		r27=r27,carry2		};;
{ .mii;		getf.sig	r18=f53
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r27,carry2	};;
{ .mfi;	st8		[r33]=r27,16
(p6)	add		carry1=1,carry1		}

{ .mii;		getf.sig	r19=f44
		add		r17=r17,r16
		mov		carry2=0	};;
{ .mii;	getf.sig	r24=f72
		cmp.ltu		p7,p0=r17,r16
		add		r18=r18,r17	};;
{ .mii;	(p7)	add		carry2=1,carry2
		cmp.ltu		p7,p0=r18,r17
		add		r19=r19,r18	};;
{ .mii;	(p7)	add		carry2=1,carry2
		cmp.ltu		p7,p0=r19,r18
		add		r19=r19,carry1	};;
{ .mii;	getf.sig	r25=f63
	(p7)	add		carry2=1,carry2
		cmp.ltu		p7,p0=r19,carry1};;
{ .mii;		st8		[r32]=r19,16
	(p7)	add		carry2=1,carry2	}

{ .mii;	getf.sig	r26=f54
	add		r25=r25,r24
	mov		carry1=0		};;
{ .mii;		getf.sig	r16=f73
	cmp.ltu		p6,p0=r25,r24
	add		r26=r26,r25		};;
{ .mii;
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r26,r25
	add		r26=r26,carry2		};;
{ .mii;		getf.sig	r17=f64
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r26,carry2	};;
{ .mii;	st8		[r33]=r26,16
(p6)	add		carry1=1,carry1		}

{ .mii;	getf.sig	r24=f74
		add		r17=r17,r16	
		mov		carry2=0	};;
{ .mii;		cmp.ltu		p7,p0=r17,r16
		add		r17=r17,carry1	};;

{ .mii;	(p7)	add		carry2=1,carry2
		cmp.ltu		p7,p0=r17,carry1};;
{ .mii;		st8		[r32]=r17,16
	(p7)	add		carry2=1,carry2	};;

{ .mii;	add		r24=r24,carry2		};;
{ .mii;	st8		[r33]=r24		}

{ .mib;	rum		1<<5		// clear um.mfh
	br.ret.sptk.many	b0	};;
.endp	bn_mul_comba4#
#undef	carry2
#undef	carry1
#endif

#if 1
//
// BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
//
// In the nutshell it's a port of my MIPS III/IV implementation.
//
#define	AT	r14
#define	H	r16
#define	HH	r20
#define	L	r17
#define	D	r18
#define	DH	r22
#define	I	r21

#if 0
// Some preprocessors (most notably HP-UX) appear to be allergic to
// macros enclosed to parenthesis [as these three were].
#define	cont	p16
#define	break	p0	// p20
#define	equ	p24
#else
cont=p16
break=p0
equ=p24
#endif

.global	abort#
.global	bn_div_words#
.proc	bn_div_words#
.align	64
bn_div_words:
	.prologue
	.save	ar.pfs,r2
{ .mii;	alloc		r2=ar.pfs,3,5,0,8
	.save	b0,r3
	mov		r3=b0
	.save	pr,r10
	mov		r10=pr		};;
{ .mmb;	cmp.eq		p6,p0=r34,r0
	mov		r8=-1
(p6)	br.ret.spnt.many	b0	};;

	.body
{ .mii;	mov		H=r32		// save h
	mov		ar.ec=0		// don't rotate at exit
	mov		pr.rot=0	}
{ .mii;	mov		L=r33		// save l
	mov		r25=r0		// needed if abort is called on VMS
	mov		r36=r0		};;

.L_divw_shift:	// -vv- note signed comparison
{ .mfi;	(p0)	cmp.lt		p16,p0=r0,r34	// d
	(p0)	shladd		r33=r34,1,r0	}
{ .mfb;	(p0)	add		r35=1,r36
	(p0)	nop.f		0x0
(p16)	br.wtop.dpnt		.L_divw_shift	};;

{ .mii;	mov		D=r34
	shr.u		DH=r34,32
	sub		r35=64,r36		};;
{ .mii;	setf.sig	f7=DH
	shr.u		AT=H,r35
	mov		I=r36			};;
{ .mib;	cmp.ne		p6,p0=r0,AT
	shl		H=H,r36
(p6)	br.call.spnt.clr	b0=abort	};;	// overflow, die...

{ .mfi;	fcvt.xuf.s1	f7=f7
	shr.u		AT=L,r35		};;
{ .mii;	shl		L=L,r36
	or		H=H,AT			};;

{ .mii;	nop.m		0x0
	cmp.leu		p6,p0=D,H;;
(p6)	sub		H=H,D			}

{ .mlx;	setf.sig	f14=D
	movl		AT=0xffffffff		};;
///////////////////////////////////////////////////////////
{ .mii;	setf.sig	f6=H
	shr.u		HH=H,32;;
	cmp.eq		p6,p7=HH,DH		};;
{ .mfb;
(p6)	setf.sig	f8=AT
(p7)	fcvt.xuf.s1	f6=f6
(p7)	br.call.sptk	b6=.L_udiv64_32_b6	};;

{ .mfi;	getf.sig	r33=f8				// q
	xmpy.lu		f9=f8,f14		}
{ .mfi;	xmpy.hu		f10=f8,f14
	shrp		H=H,L,32		};;

{ .mmi;	getf.sig	r35=f9				// tl
	getf.sig	r31=f10			};;	// th

.L_divw_1st_iter:
{ .mii;	(p0)	add		r32=-1,r33
	(p0)	cmp.eq		equ,cont=HH,r31		};;
{ .mii;	(p0)	cmp.ltu		p8,p0=r35,D
	(p0)	sub		r34=r35,D
	(equ)	cmp.leu		break,cont=r35,H	};;
{ .mib;	(cont)	cmp.leu		cont,break=HH,r31
	(p8)	add		r31=-1,r31
(cont)	br.wtop.spnt		.L_divw_1st_iter	};;
///////////////////////////////////////////////////////////
{ .mii;	sub		H=H,r35
	shl		r8=r33,32
	shl		L=L,32			};;
///////////////////////////////////////////////////////////
{ .mii;	setf.sig	f6=H
	shr.u		HH=H,32;;
	cmp.eq		p6,p7=HH,DH		};;
{ .mfb;
(p6)	setf.sig	f8=AT
(p7)	fcvt.xuf.s1	f6=f6
(p7)	br.call.sptk	b6=.L_udiv64_32_b6	};;

{ .mfi;	getf.sig	r33=f8				// q
	xmpy.lu		f9=f8,f14		}
{ .mfi;	xmpy.hu		f10=f8,f14
	shrp		H=H,L,32		};;

{ .mmi;	getf.sig	r35=f9				// tl
	getf.sig	r31=f10			};;	// th

.L_divw_2nd_iter:
{ .mii;	(p0)	add		r32=-1,r33
	(p0)	cmp.eq		equ,cont=HH,r31		};;
{ .mii;	(p0)	cmp.ltu		p8,p0=r35,D
	(p0)	sub		r34=r35,D
	(equ)	cmp.leu		break,cont=r35,H	};;
{ .mib;	(cont)	cmp.leu		cont,break=HH,r31
	(p8)	add		r31=-1,r31
(cont)	br.wtop.spnt		.L_divw_2nd_iter	};;
///////////////////////////////////////////////////////////
{ .mii;	sub	H=H,r35
	or	r8=r8,r33
	mov	ar.pfs=r2		};;
{ .mii;	shr.u	r9=H,I			// remainder if anybody wants it
	mov	pr=r10,0x1ffff		}
{ .mfb;	br.ret.sptk.many	b0	};;

// Unsigned 64 by 32 (well, by 64 for the moment) bit integer division
// procedure.
//
// inputs:	f6 = (double)a, f7 = (double)b
// output:	f8 = (int)(a/b)
// clobbered:	f8,f9,f10,f11,pred
pred=p15
// This snippet is based on text found in the "Divide, Square
// Root and Remainder" section at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
// Yes, I admit that the referred code was used as template,
// but after I realized that there hardly is any other instruction
// sequence which would perform this operation. I mean I figure that
// any independent attempt to implement high-performance division
// will result in code virtually identical to the Intel code. It
// should be noted though that below division kernel is 1 cycle
// faster than Intel one (note commented splits:-), not to mention
// original prologue (rather lack of one) and epilogue.
.align	32
.skip	16
.L_udiv64_32_b6:
	frcpa.s1	f8,pred=f6,f7;;		// [0]  y0 = 1 / b

(pred)	fnma.s1		f9=f7,f8,f1		// [5]  e0 = 1 - b * y0
(pred)	fmpy.s1		f10=f6,f8;;		// [5]  q0 = a * y0
(pred)	fmpy.s1		f11=f9,f9		// [10] e1 = e0 * e0
(pred)	fma.s1		f10=f9,f10,f10;;	// [10] q1 = q0 + e0 * q0
(pred)	fma.s1		f8=f9,f8,f8	//;;	// [15] y1 = y0 + e0 * y0
(pred)	fma.s1		f9=f11,f10,f10;;	// [15] q2 = q1 + e1 * q1
(pred)	fma.s1		f8=f11,f8,f8	//;;	// [20] y2 = y1 + e1 * y1
(pred)	fnma.s1		f10=f7,f9,f6;;		// [20] r2 = a - b * q2
(pred)	fma.s1		f8=f10,f8,f9;;		// [25] q3 = q2 + r2 * y2

	fcvt.fxu.trunc.s1	f8=f8		// [30] q = trunc(q3)
	br.ret.sptk.many	b6;;
.endp	bn_div_words#
#endif