ossl_shim.cc 38.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
/*
 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#if !defined(__STDC_FORMAT_MACROS)
#define __STDC_FORMAT_MACROS
#endif

#include "packeted_bio.h"
#include <openssl/e_os2.h>

#if !defined(OPENSSL_SYS_WINDOWS)
#include <arpa/inet.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <signal.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <unistd.h>
#else
#include <io.h>
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <winsock2.h>
#include <ws2tcpip.h>
OPENSSL_MSVC_PRAGMA(warning(pop))

OPENSSL_MSVC_PRAGMA(comment(lib, "Ws2_32.lib"))
#endif

#include <assert.h>
#include <inttypes.h>
#include <string.h>

#include <openssl/bio.h>
#include <openssl/buffer.h>
#include <openssl/bn.h>
#include <openssl/crypto.h>
#include <openssl/dh.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/objects.h>
#include <openssl/rand.h>
#include <openssl/ssl.h>
#include <openssl/x509.h>

#include <memory>
#include <string>
#include <vector>

#include "async_bio.h"
#include "test_config.h"

namespace bssl {

#if !defined(OPENSSL_SYS_WINDOWS)
static int closesocket(int sock) {
  return close(sock);
}

static void PrintSocketError(const char *func) {
  perror(func);
}
#else
static void PrintSocketError(const char *func) {
  fprintf(stderr, "%s: %d\n", func, WSAGetLastError());
}
#endif

static int Usage(const char *program) {
  fprintf(stderr, "Usage: %s [flags...]\n", program);
  return 1;
}

struct TestState {
  // async_bio is async BIO which pauses reads and writes.
  BIO *async_bio = nullptr;
  // packeted_bio is the packeted BIO which simulates read timeouts.
  BIO *packeted_bio = nullptr;
  bool cert_ready = false;
  bool handshake_done = false;
  // private_key is the underlying private key used when testing custom keys.
  bssl::UniquePtr<EVP_PKEY> private_key;
  bool got_new_session = false;
  bssl::UniquePtr<SSL_SESSION> new_session;
  bool ticket_decrypt_done = false;
  bool alpn_select_done = false;
};

static void TestStateExFree(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
                            int index, long argl, void *argp) {
  delete ((TestState *)ptr);
}

static int g_config_index = 0;
static int g_state_index = 0;

static bool SetTestConfig(SSL *ssl, const TestConfig *config) {
  return SSL_set_ex_data(ssl, g_config_index, (void *)config) == 1;
}

static const TestConfig *GetTestConfig(const SSL *ssl) {
  return (const TestConfig *)SSL_get_ex_data(ssl, g_config_index);
}

static bool SetTestState(SSL *ssl, std::unique_ptr<TestState> state) {
  // |SSL_set_ex_data| takes ownership of |state| only on success.
  if (SSL_set_ex_data(ssl, g_state_index, state.get()) == 1) {
    state.release();
    return true;
  }
  return false;
}

static TestState *GetTestState(const SSL *ssl) {
  return (TestState *)SSL_get_ex_data(ssl, g_state_index);
}

static bssl::UniquePtr<X509> LoadCertificate(const std::string &file) {
  bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_file()));
  if (!bio || !BIO_read_filename(bio.get(), file.c_str())) {
    return nullptr;
  }
  return bssl::UniquePtr<X509>(PEM_read_bio_X509(bio.get(), NULL, NULL, NULL));
}

static bssl::UniquePtr<EVP_PKEY> LoadPrivateKey(const std::string &file) {
  bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_file()));
  if (!bio || !BIO_read_filename(bio.get(), file.c_str())) {
    return nullptr;
  }
  return bssl::UniquePtr<EVP_PKEY>(
      PEM_read_bio_PrivateKey(bio.get(), NULL, NULL, NULL));
}

template<typename T>
struct Free {
  void operator()(T *buf) {
    free(buf);
  }
};

static bool GetCertificate(SSL *ssl, bssl::UniquePtr<X509> *out_x509,
                           bssl::UniquePtr<EVP_PKEY> *out_pkey) {
  const TestConfig *config = GetTestConfig(ssl);

  if (!config->key_file.empty()) {
    *out_pkey = LoadPrivateKey(config->key_file.c_str());
    if (!*out_pkey) {
      return false;
    }
  }
  if (!config->cert_file.empty()) {
    *out_x509 = LoadCertificate(config->cert_file.c_str());
    if (!*out_x509) {
      return false;
    }
  }
  return true;
}

static bool InstallCertificate(SSL *ssl) {
  bssl::UniquePtr<X509> x509;
  bssl::UniquePtr<EVP_PKEY> pkey;
  if (!GetCertificate(ssl, &x509, &pkey)) {
    return false;
  }

  if (pkey && !SSL_use_PrivateKey(ssl, pkey.get())) {
    return false;
  }

  if (x509 && !SSL_use_certificate(ssl, x509.get())) {
    return false;
  }

  return true;
}

static int ClientCertCallback(SSL *ssl, X509 **out_x509, EVP_PKEY **out_pkey) {
  if (GetTestConfig(ssl)->async && !GetTestState(ssl)->cert_ready) {
    return -1;
  }

  bssl::UniquePtr<X509> x509;
  bssl::UniquePtr<EVP_PKEY> pkey;
  if (!GetCertificate(ssl, &x509, &pkey)) {
    return -1;
  }

  // Return zero for no certificate.
  if (!x509) {
    return 0;
  }

  // Asynchronous private keys are not supported with client_cert_cb.
  *out_x509 = x509.release();
  *out_pkey = pkey.release();
  return 1;
}

static int VerifySucceed(X509_STORE_CTX *store_ctx, void *arg) {
  return 1;
}

static int VerifyFail(X509_STORE_CTX *store_ctx, void *arg) {
  X509_STORE_CTX_set_error(store_ctx, X509_V_ERR_APPLICATION_VERIFICATION);
  return 0;
}

static int NextProtosAdvertisedCallback(SSL *ssl, const uint8_t **out,
                                        unsigned int *out_len, void *arg) {
  const TestConfig *config = GetTestConfig(ssl);
  if (config->advertise_npn.empty()) {
    return SSL_TLSEXT_ERR_NOACK;
  }

  *out = (const uint8_t*)config->advertise_npn.data();
  *out_len = config->advertise_npn.size();
  return SSL_TLSEXT_ERR_OK;
}

static int NextProtoSelectCallback(SSL* ssl, uint8_t** out, uint8_t* outlen,
                                   const uint8_t* in, unsigned inlen, void* arg) {
  const TestConfig *config = GetTestConfig(ssl);
  if (config->select_next_proto.empty()) {
    return SSL_TLSEXT_ERR_NOACK;
  }

  *out = (uint8_t*)config->select_next_proto.data();
  *outlen = config->select_next_proto.size();
  return SSL_TLSEXT_ERR_OK;
}

static int AlpnSelectCallback(SSL* ssl, const uint8_t** out, uint8_t* outlen,
                              const uint8_t* in, unsigned inlen, void* arg) {
  if (GetTestState(ssl)->alpn_select_done) {
    fprintf(stderr, "AlpnSelectCallback called after completion.\n");
    exit(1);
  }

  GetTestState(ssl)->alpn_select_done = true;

  const TestConfig *config = GetTestConfig(ssl);
  if (config->decline_alpn) {
    return SSL_TLSEXT_ERR_NOACK;
  }

  if (!config->expected_advertised_alpn.empty() &&
      (config->expected_advertised_alpn.size() != inlen ||
       memcmp(config->expected_advertised_alpn.data(),
              in, inlen) != 0)) {
    fprintf(stderr, "bad ALPN select callback inputs\n");
    exit(1);
  }

  *out = (const uint8_t*)config->select_alpn.data();
  *outlen = config->select_alpn.size();
  return SSL_TLSEXT_ERR_OK;
}

static unsigned PskClientCallback(SSL *ssl, const char *hint,
                                  char *out_identity,
                                  unsigned max_identity_len,
                                  uint8_t *out_psk, unsigned max_psk_len) {
  const TestConfig *config = GetTestConfig(ssl);

  if (config->psk_identity.empty()) {
    if (hint != nullptr) {
      fprintf(stderr, "Server PSK hint was non-null.\n");
      return 0;
    }
  } else if (hint == nullptr ||
             strcmp(hint, config->psk_identity.c_str()) != 0) {
    fprintf(stderr, "Server PSK hint did not match.\n");
    return 0;
  }

  // Account for the trailing '\0' for the identity.
  if (config->psk_identity.size() >= max_identity_len ||
      config->psk.size() > max_psk_len) {
    fprintf(stderr, "PSK buffers too small\n");
    return 0;
  }

  BUF_strlcpy(out_identity, config->psk_identity.c_str(),
              max_identity_len);
  memcpy(out_psk, config->psk.data(), config->psk.size());
  return config->psk.size();
}

static unsigned PskServerCallback(SSL *ssl, const char *identity,
                                  uint8_t *out_psk, unsigned max_psk_len) {
  const TestConfig *config = GetTestConfig(ssl);

  if (strcmp(identity, config->psk_identity.c_str()) != 0) {
    fprintf(stderr, "Client PSK identity did not match.\n");
    return 0;
  }

  if (config->psk.size() > max_psk_len) {
    fprintf(stderr, "PSK buffers too small\n");
    return 0;
  }

  memcpy(out_psk, config->psk.data(), config->psk.size());
  return config->psk.size();
}

static int CertCallback(SSL *ssl, void *arg) {
  const TestConfig *config = GetTestConfig(ssl);

  // Check the CertificateRequest metadata is as expected.
  //
  // TODO(davidben): Test |SSL_get_client_CA_list|.
  if (!SSL_is_server(ssl) &&
      !config->expected_certificate_types.empty()) {
    const uint8_t *certificate_types;
    size_t certificate_types_len =
        SSL_get0_certificate_types(ssl, &certificate_types);
    if (certificate_types_len != config->expected_certificate_types.size() ||
        memcmp(certificate_types,
               config->expected_certificate_types.data(),
               certificate_types_len) != 0) {
      fprintf(stderr, "certificate types mismatch\n");
      return 0;
    }
  }

  // The certificate will be installed via other means.
  if (!config->async ||
      config->use_old_client_cert_callback) {
    return 1;
  }

  if (!GetTestState(ssl)->cert_ready) {
    return -1;
  }
  if (!InstallCertificate(ssl)) {
    return 0;
  }
  return 1;
}

static void InfoCallback(const SSL *ssl, int type, int val) {
  if (type == SSL_CB_HANDSHAKE_DONE) {
    if (GetTestConfig(ssl)->handshake_never_done) {
      fprintf(stderr, "Handshake unexpectedly completed.\n");
      // Abort before any expected error code is printed, to ensure the overall
      // test fails.
      abort();
    }
    GetTestState(ssl)->handshake_done = true;

    // Callbacks may be called again on a new handshake.
    GetTestState(ssl)->ticket_decrypt_done = false;
    GetTestState(ssl)->alpn_select_done = false;
  }
}

static int NewSessionCallback(SSL *ssl, SSL_SESSION *session) {
  GetTestState(ssl)->got_new_session = true;
  GetTestState(ssl)->new_session.reset(session);
  return 1;
}

static int TicketKeyCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv,
                             EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx,
                             int encrypt) {
  if (!encrypt) {
    if (GetTestState(ssl)->ticket_decrypt_done) {
      fprintf(stderr, "TicketKeyCallback called after completion.\n");
      return -1;
    }

    GetTestState(ssl)->ticket_decrypt_done = true;
  }

  // This is just test code, so use the all-zeros key.
  static const uint8_t kZeros[16] = {0};

  if (encrypt) {
    memcpy(key_name, kZeros, sizeof(kZeros));
    RAND_bytes(iv, 16);
  } else if (memcmp(key_name, kZeros, 16) != 0) {
    return 0;
  }

  if (!HMAC_Init_ex(hmac_ctx, kZeros, sizeof(kZeros), EVP_sha256(), NULL) ||
      !EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, kZeros, iv, encrypt)) {
    return -1;
  }

  if (!encrypt) {
    return GetTestConfig(ssl)->renew_ticket ? 2 : 1;
  }
  return 1;
}

// kCustomExtensionValue is the extension value that the custom extension
// callbacks will add.
static const uint16_t kCustomExtensionValue = 1234;
static void *const kCustomExtensionAddArg =
    reinterpret_cast<void *>(kCustomExtensionValue);
static void *const kCustomExtensionParseArg =
    reinterpret_cast<void *>(kCustomExtensionValue + 1);
static const char kCustomExtensionContents[] = "custom extension";

static int CustomExtensionAddCallback(SSL *ssl, unsigned extension_value,
                                      const uint8_t **out, size_t *out_len,
                                      int *out_alert_value, void *add_arg) {
  if (extension_value != kCustomExtensionValue ||
      add_arg != kCustomExtensionAddArg) {
    abort();
  }

  if (GetTestConfig(ssl)->custom_extension_skip) {
    return 0;
  }
  if (GetTestConfig(ssl)->custom_extension_fail_add) {
    return -1;
  }

  *out = reinterpret_cast<const uint8_t*>(kCustomExtensionContents);
  *out_len = sizeof(kCustomExtensionContents) - 1;

  return 1;
}

static void CustomExtensionFreeCallback(SSL *ssl, unsigned extension_value,
                                        const uint8_t *out, void *add_arg) {
  if (extension_value != kCustomExtensionValue ||
      add_arg != kCustomExtensionAddArg ||
      out != reinterpret_cast<const uint8_t *>(kCustomExtensionContents)) {
    abort();
  }
}

static int CustomExtensionParseCallback(SSL *ssl, unsigned extension_value,
                                        const uint8_t *contents,
                                        size_t contents_len,
                                        int *out_alert_value, void *parse_arg) {
  if (extension_value != kCustomExtensionValue ||
      parse_arg != kCustomExtensionParseArg) {
    abort();
  }

  if (contents_len != sizeof(kCustomExtensionContents) - 1 ||
      memcmp(contents, kCustomExtensionContents, contents_len) != 0) {
    *out_alert_value = SSL_AD_DECODE_ERROR;
    return 0;
  }

  return 1;
}

static int ServerNameCallback(SSL *ssl, int *out_alert, void *arg) {
  // SNI must be accessible from the SNI callback.
  const TestConfig *config = GetTestConfig(ssl);
  const char *server_name = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name);
  if (server_name == nullptr ||
      std::string(server_name) != config->expected_server_name) {
    fprintf(stderr, "servername mismatch (got %s; want %s)\n", server_name,
            config->expected_server_name.c_str());
    return SSL_TLSEXT_ERR_ALERT_FATAL;
  }

  return SSL_TLSEXT_ERR_OK;
}

// Connect returns a new socket connected to localhost on |port| or -1 on
// error.
static int Connect(uint16_t port) {
  int sock = socket(AF_INET, SOCK_STREAM, 0);
  if (sock == -1) {
    PrintSocketError("socket");
    return -1;
  }
  int nodelay = 1;
  if (setsockopt(sock, IPPROTO_TCP, TCP_NODELAY,
          reinterpret_cast<const char*>(&nodelay), sizeof(nodelay)) != 0) {
    PrintSocketError("setsockopt");
    closesocket(sock);
    return -1;
  }
  sockaddr_in sin;
  memset(&sin, 0, sizeof(sin));
  sin.sin_family = AF_INET;
  sin.sin_port = htons(port);
  if (!inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr)) {
    PrintSocketError("inet_pton");
    closesocket(sock);
    return -1;
  }
  if (connect(sock, reinterpret_cast<const sockaddr*>(&sin),
              sizeof(sin)) != 0) {
    PrintSocketError("connect");
    closesocket(sock);
    return -1;
  }
  return sock;
}

class SocketCloser {
 public:
  explicit SocketCloser(int sock) : sock_(sock) {}
  ~SocketCloser() {
    // Half-close and drain the socket before releasing it. This seems to be
    // necessary for graceful shutdown on Windows. It will also avoid write
    // failures in the test runner.
#if defined(OPENSSL_SYS_WINDOWS)
    shutdown(sock_, SD_SEND);
#else
    shutdown(sock_, SHUT_WR);
#endif
    while (true) {
      char buf[1024];
      if (recv(sock_, buf, sizeof(buf), 0) <= 0) {
        break;
      }
    }
    closesocket(sock_);
  }

 private:
  const int sock_;
};

static bssl::UniquePtr<SSL_CTX> SetupCtx(const TestConfig *config) {
  const char sess_id_ctx[] = "ossl_shim";
  bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(
      config->is_dtls ? DTLS_method() : TLS_method()));
  if (!ssl_ctx) {
    return nullptr;
  }

  SSL_CTX_set_security_level(ssl_ctx.get(), 0);
#if 0
  /* Disabled for now until we have some TLS1.3 support */
  // Enable TLS 1.3 for tests.
  if (!config->is_dtls &&
      !SSL_CTX_set_max_proto_version(ssl_ctx.get(), TLS1_3_VERSION)) {
    return nullptr;
  }
#else
  /* Ensure we don't negotiate TLSv1.3 until we can handle it */
  if (!config->is_dtls &&
      !SSL_CTX_set_max_proto_version(ssl_ctx.get(), TLS1_2_VERSION)) {
    return nullptr;
  }
#endif

  std::string cipher_list = "ALL";
  if (!config->cipher.empty()) {
    cipher_list = config->cipher;
    SSL_CTX_set_options(ssl_ctx.get(), SSL_OP_CIPHER_SERVER_PREFERENCE);
  }
  if (!SSL_CTX_set_cipher_list(ssl_ctx.get(), cipher_list.c_str())) {
    return nullptr;
  }

  DH *tmpdh;

  if (config->use_sparse_dh_prime) {
    BIGNUM *p, *g;
    p = BN_new();
    g = BN_new();
    tmpdh = DH_new();
    if (p == NULL || g == NULL || tmpdh == NULL) {
        BN_free(p);
        BN_free(g);
        DH_free(tmpdh);
        return nullptr;
    }
    // This prime number is 2^1024 + 643 – a value just above a power of two.
    // Because of its form, values modulo it are essentially certain to be one
    // byte shorter. This is used to test padding of these values.
    if (BN_hex2bn(
            &p,
            "1000000000000000000000000000000000000000000000000000000000000000"
            "0000000000000000000000000000000000000000000000000000000000000000"
            "0000000000000000000000000000000000000000000000000000000000000000"
            "0000000000000000000000000000000000000000000000000000000000000028"
            "3") == 0 ||
        !BN_set_word(g, 2)) {
      BN_free(p);
      BN_free(g);
      DH_free(tmpdh);
      return nullptr;
    }
    DH_set0_pqg(tmpdh, p, NULL, g);
  } else {
      tmpdh = DH_get_2048_256();
  }

  bssl::UniquePtr<DH> dh(tmpdh);

  if (!dh || !SSL_CTX_set_tmp_dh(ssl_ctx.get(), dh.get())) {
    return nullptr;
  }

  SSL_CTX_set_session_cache_mode(ssl_ctx.get(), SSL_SESS_CACHE_BOTH);

  if (config->use_old_client_cert_callback) {
    SSL_CTX_set_client_cert_cb(ssl_ctx.get(), ClientCertCallback);
  }

  SSL_CTX_set_npn_advertised_cb(
      ssl_ctx.get(), NextProtosAdvertisedCallback, NULL);
  if (!config->select_next_proto.empty()) {
    SSL_CTX_set_next_proto_select_cb(ssl_ctx.get(), NextProtoSelectCallback,
                                     NULL);
  }

  if (!config->select_alpn.empty() || config->decline_alpn) {
    SSL_CTX_set_alpn_select_cb(ssl_ctx.get(), AlpnSelectCallback, NULL);
  }

  SSL_CTX_set_info_callback(ssl_ctx.get(), InfoCallback);
  SSL_CTX_sess_set_new_cb(ssl_ctx.get(), NewSessionCallback);

  if (config->use_ticket_callback) {
    SSL_CTX_set_tlsext_ticket_key_cb(ssl_ctx.get(), TicketKeyCallback);
  }

  if (config->enable_client_custom_extension &&
      !SSL_CTX_add_client_custom_ext(
          ssl_ctx.get(), kCustomExtensionValue, CustomExtensionAddCallback,
          CustomExtensionFreeCallback, kCustomExtensionAddArg,
          CustomExtensionParseCallback, kCustomExtensionParseArg)) {
    return nullptr;
  }

  if (config->enable_server_custom_extension &&
      !SSL_CTX_add_server_custom_ext(
          ssl_ctx.get(), kCustomExtensionValue, CustomExtensionAddCallback,
          CustomExtensionFreeCallback, kCustomExtensionAddArg,
          CustomExtensionParseCallback, kCustomExtensionParseArg)) {
    return nullptr;
  }

  if (config->verify_fail) {
    SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), VerifyFail, NULL);
  } else {
    SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), VerifySucceed, NULL);
  }

  if (config->use_null_client_ca_list) {
    SSL_CTX_set_client_CA_list(ssl_ctx.get(), nullptr);
  }

  if (!SSL_CTX_set_session_id_context(ssl_ctx.get(),
                                      (const unsigned char *)sess_id_ctx,
                                      sizeof(sess_id_ctx) - 1))
    return nullptr;

  if (!config->expected_server_name.empty()) {
    SSL_CTX_set_tlsext_servername_callback(ssl_ctx.get(), ServerNameCallback);
  }

  return ssl_ctx;
}

// RetryAsync is called after a failed operation on |ssl| with return code
// |ret|. If the operation should be retried, it simulates one asynchronous
// event and returns true. Otherwise it returns false.
static bool RetryAsync(SSL *ssl, int ret) {
  // No error; don't retry.
  if (ret >= 0) {
    return false;
  }

  TestState *test_state = GetTestState(ssl);
  assert(GetTestConfig(ssl)->async);

  if (test_state->packeted_bio != nullptr &&
      PacketedBioAdvanceClock(test_state->packeted_bio)) {
    // The DTLS retransmit logic silently ignores write failures. So the test
    // may progress, allow writes through synchronously.
    AsyncBioEnforceWriteQuota(test_state->async_bio, false);
    int timeout_ret = DTLSv1_handle_timeout(ssl);
    AsyncBioEnforceWriteQuota(test_state->async_bio, true);

    if (timeout_ret < 0) {
      fprintf(stderr, "Error retransmitting.\n");
      return false;
    }
    return true;
  }

  // See if we needed to read or write more. If so, allow one byte through on
  // the appropriate end to maximally stress the state machine.
  switch (SSL_get_error(ssl, ret)) {
    case SSL_ERROR_WANT_READ:
      AsyncBioAllowRead(test_state->async_bio, 1);
      return true;
    case SSL_ERROR_WANT_WRITE:
      AsyncBioAllowWrite(test_state->async_bio, 1);
      return true;
    case SSL_ERROR_WANT_X509_LOOKUP:
      test_state->cert_ready = true;
      return true;
    default:
      return false;
  }
}

// DoRead reads from |ssl|, resolving any asynchronous operations. It returns
// the result value of the final |SSL_read| call.
static int DoRead(SSL *ssl, uint8_t *out, size_t max_out) {
  const TestConfig *config = GetTestConfig(ssl);
  TestState *test_state = GetTestState(ssl);
  int ret;
  do {
    if (config->async) {
      // The DTLS retransmit logic silently ignores write failures. So the test
      // may progress, allow writes through synchronously. |SSL_read| may
      // trigger a retransmit, so disconnect the write quota.
      AsyncBioEnforceWriteQuota(test_state->async_bio, false);
    }
    ret = config->peek_then_read ? SSL_peek(ssl, out, max_out)
                                 : SSL_read(ssl, out, max_out);
    if (config->async) {
      AsyncBioEnforceWriteQuota(test_state->async_bio, true);
    }
  } while (config->async && RetryAsync(ssl, ret));

  if (config->peek_then_read && ret > 0) {
    std::unique_ptr<uint8_t[]> buf(new uint8_t[static_cast<size_t>(ret)]);

    // SSL_peek should synchronously return the same data.
    int ret2 = SSL_peek(ssl, buf.get(), ret);
    if (ret2 != ret ||
        memcmp(buf.get(), out, ret) != 0) {
      fprintf(stderr, "First and second SSL_peek did not match.\n");
      return -1;
    }

    // SSL_read should synchronously return the same data and consume it.
    ret2 = SSL_read(ssl, buf.get(), ret);
    if (ret2 != ret ||
        memcmp(buf.get(), out, ret) != 0) {
      fprintf(stderr, "SSL_peek and SSL_read did not match.\n");
      return -1;
    }
  }

  return ret;
}

// WriteAll writes |in_len| bytes from |in| to |ssl|, resolving any asynchronous
// operations. It returns the result of the final |SSL_write| call.
static int WriteAll(SSL *ssl, const uint8_t *in, size_t in_len) {
  const TestConfig *config = GetTestConfig(ssl);
  int ret;
  do {
    ret = SSL_write(ssl, in, in_len);
    if (ret > 0) {
      in += ret;
      in_len -= ret;
    }
  } while ((config->async && RetryAsync(ssl, ret)) || (ret > 0 && in_len > 0));
  return ret;
}

// DoShutdown calls |SSL_shutdown|, resolving any asynchronous operations. It
// returns the result of the final |SSL_shutdown| call.
static int DoShutdown(SSL *ssl) {
  const TestConfig *config = GetTestConfig(ssl);
  int ret;
  do {
    ret = SSL_shutdown(ssl);
  } while (config->async && RetryAsync(ssl, ret));
  return ret;
}

static uint16_t GetProtocolVersion(const SSL *ssl) {
  uint16_t version = SSL_version(ssl);
  if (!SSL_is_dtls(ssl)) {
    return version;
  }
  return 0x0201 + ~version;
}

// CheckHandshakeProperties checks, immediately after |ssl| completes its
// initial handshake (or False Starts), whether all the properties are
// consistent with the test configuration and invariants.
static bool CheckHandshakeProperties(SSL *ssl, bool is_resume) {
  const TestConfig *config = GetTestConfig(ssl);

  if (SSL_get_current_cipher(ssl) == nullptr) {
    fprintf(stderr, "null cipher after handshake\n");
    return false;
  }

  if (is_resume &&
      (!!SSL_session_reused(ssl) == config->expect_session_miss)) {
    fprintf(stderr, "session was%s reused\n",
            SSL_session_reused(ssl) ? "" : " not");
    return false;
  }

  if (!GetTestState(ssl)->handshake_done) {
    fprintf(stderr, "handshake was not completed\n");
    return false;
  }

  if (!config->is_server) {
    bool expect_new_session =
        !config->expect_no_session &&
        (!SSL_session_reused(ssl) || config->expect_ticket_renewal) &&
        // Session tickets are sent post-handshake in TLS 1.3.
        GetProtocolVersion(ssl) < TLS1_3_VERSION;
    if (expect_new_session != GetTestState(ssl)->got_new_session) {
      fprintf(stderr,
              "new session was%s cached, but we expected the opposite\n",
              GetTestState(ssl)->got_new_session ? "" : " not");
      return false;
    }
  }

  if (!config->expected_server_name.empty()) {
    const char *server_name =
        SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name);
    if (server_name == nullptr ||
            std::string(server_name) != config->expected_server_name) {
      fprintf(stderr, "servername mismatch (got %s; want %s)\n",
              server_name, config->expected_server_name.c_str());
      return false;
    }
  }

  if (!config->expected_next_proto.empty()) {
    const uint8_t *next_proto;
    unsigned next_proto_len;
    SSL_get0_next_proto_negotiated(ssl, &next_proto, &next_proto_len);
    if (next_proto_len != config->expected_next_proto.size() ||
        memcmp(next_proto, config->expected_next_proto.data(),
               next_proto_len) != 0) {
      fprintf(stderr, "negotiated next proto mismatch\n");
      return false;
    }
  }

  if (!config->expected_alpn.empty()) {
    const uint8_t *alpn_proto;
    unsigned alpn_proto_len;
    SSL_get0_alpn_selected(ssl, &alpn_proto, &alpn_proto_len);
    if (alpn_proto_len != config->expected_alpn.size() ||
        memcmp(alpn_proto, config->expected_alpn.data(),
               alpn_proto_len) != 0) {
      fprintf(stderr, "negotiated alpn proto mismatch\n");
      return false;
    }
  }

  if (config->expect_extended_master_secret) {
    if (!SSL_get_extms_support(ssl)) {
      fprintf(stderr, "No EMS for connection when expected");
      return false;
    }
  }

  if (config->expect_verify_result) {
    int expected_verify_result = config->verify_fail ?
      X509_V_ERR_APPLICATION_VERIFICATION :
      X509_V_OK;

    if (SSL_get_verify_result(ssl) != expected_verify_result) {
      fprintf(stderr, "Wrong certificate verification result\n");
      return false;
    }
  }

  if (!config->psk.empty()) {
    if (SSL_get_peer_cert_chain(ssl) != nullptr) {
      fprintf(stderr, "Received peer certificate on a PSK cipher.\n");
      return false;
    }
  } else if (!config->is_server || config->require_any_client_certificate) {
    if (SSL_get_peer_certificate(ssl) == nullptr) {
      fprintf(stderr, "Received no peer certificate but expected one.\n");
      return false;
    }
  }

  return true;
}

// DoExchange runs a test SSL exchange against the peer. On success, it returns
// true and sets |*out_session| to the negotiated SSL session. If the test is a
// resumption attempt, |is_resume| is true and |session| is the session from the
// previous exchange.
static bool DoExchange(bssl::UniquePtr<SSL_SESSION> *out_session,
                       SSL_CTX *ssl_ctx, const TestConfig *config,
                       bool is_resume, SSL_SESSION *session) {
  bssl::UniquePtr<SSL> ssl(SSL_new(ssl_ctx));
  if (!ssl) {
    return false;
  }

  if (!SetTestConfig(ssl.get(), config) ||
      !SetTestState(ssl.get(), std::unique_ptr<TestState>(new TestState))) {
    return false;
  }

  if (config->fallback_scsv &&
      !SSL_set_mode(ssl.get(), SSL_MODE_SEND_FALLBACK_SCSV)) {
    return false;
  }
  // Install the certificate synchronously if nothing else will handle it.
  if (!config->use_old_client_cert_callback &&
      !config->async &&
      !InstallCertificate(ssl.get())) {
    return false;
  }
  SSL_set_cert_cb(ssl.get(), CertCallback, nullptr);
  if (config->require_any_client_certificate) {
    SSL_set_verify(ssl.get(), SSL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
                   NULL);
  }
  if (config->verify_peer) {
    SSL_set_verify(ssl.get(), SSL_VERIFY_PEER, NULL);
  }
  if (config->partial_write) {
    SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_PARTIAL_WRITE);
  }
  if (config->no_tls13) {
    SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_3);
  }
  if (config->no_tls12) {
    SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_2);
  }
  if (config->no_tls11) {
    SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_1);
  }
  if (config->no_tls1) {
    SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1);
  }
  if (config->no_ssl3) {
    SSL_set_options(ssl.get(), SSL_OP_NO_SSLv3);
  }
  if (!config->host_name.empty() &&
      !SSL_set_tlsext_host_name(ssl.get(), config->host_name.c_str())) {
    return false;
  }
  if (!config->advertise_alpn.empty() &&
      SSL_set_alpn_protos(ssl.get(),
                          (const uint8_t *)config->advertise_alpn.data(),
                          config->advertise_alpn.size()) != 0) {
    return false;
  }
  if (!config->psk.empty()) {
    SSL_set_psk_client_callback(ssl.get(), PskClientCallback);
    SSL_set_psk_server_callback(ssl.get(), PskServerCallback);
  }
  if (!config->psk_identity.empty() &&
      !SSL_use_psk_identity_hint(ssl.get(), config->psk_identity.c_str())) {
    return false;
  }
  if (!config->srtp_profiles.empty() &&
      SSL_set_tlsext_use_srtp(ssl.get(), config->srtp_profiles.c_str())) {
    return false;
  }
  if (config->min_version != 0 &&
      !SSL_set_min_proto_version(ssl.get(), (uint16_t)config->min_version)) {
    return false;
  }
  if (config->max_version != 0 &&
      !SSL_set_max_proto_version(ssl.get(), (uint16_t)config->max_version)) {
    return false;
  }
  if (config->mtu != 0) {
    SSL_set_options(ssl.get(), SSL_OP_NO_QUERY_MTU);
    SSL_set_mtu(ssl.get(), config->mtu);
  }
  if (config->renegotiate_freely) {
    // This is always on for OpenSSL.
  }
  if (!config->check_close_notify) {
    SSL_set_quiet_shutdown(ssl.get(), 1);
  }
  if (config->p384_only) {
    int nid = NID_secp384r1;
    if (!SSL_set1_curves(ssl.get(), &nid, 1)) {
      return false;
    }
  }
  if (config->enable_all_curves) {
    static const int kAllCurves[] = {
      NID_X25519, NID_X9_62_prime256v1, NID_X448, NID_secp521r1, NID_secp384r1
    };
    if (!SSL_set1_curves(ssl.get(), kAllCurves,
                         OPENSSL_ARRAY_SIZE(kAllCurves))) {
      return false;
    }
  }
  if (config->max_cert_list > 0) {
    SSL_set_max_cert_list(ssl.get(), config->max_cert_list);
  }

  if (!config->async) {
    SSL_set_mode(ssl.get(), SSL_MODE_AUTO_RETRY);
  }

  int sock = Connect(config->port);
  if (sock == -1) {
    return false;
  }
  SocketCloser closer(sock);

  bssl::UniquePtr<BIO> bio(BIO_new_socket(sock, BIO_NOCLOSE));
  if (!bio) {
    return false;
  }
  if (config->is_dtls) {
    bssl::UniquePtr<BIO> packeted = PacketedBioCreate(!config->async);
    if (!packeted) {
      return false;
    }
    GetTestState(ssl.get())->packeted_bio = packeted.get();
    BIO_push(packeted.get(), bio.release());
    bio = std::move(packeted);
  }
  if (config->async) {
    bssl::UniquePtr<BIO> async_scoped =
        config->is_dtls ? AsyncBioCreateDatagram() : AsyncBioCreate();
    if (!async_scoped) {
      return false;
    }
    BIO_push(async_scoped.get(), bio.release());
    GetTestState(ssl.get())->async_bio = async_scoped.get();
    bio = std::move(async_scoped);
  }
  SSL_set_bio(ssl.get(), bio.get(), bio.get());
  bio.release();  // SSL_set_bio takes ownership.

  if (session != NULL) {
    if (!config->is_server) {
      if (SSL_set_session(ssl.get(), session) != 1) {
        return false;
      }
    }
  }

#if 0
  // KNOWN BUG: OpenSSL's SSL_get_current_cipher behaves incorrectly when
  // offering resumption.
  if (SSL_get_current_cipher(ssl.get()) != nullptr) {
    fprintf(stderr, "non-null cipher before handshake\n");
    return false;
  }
#endif

  int ret;
  if (config->implicit_handshake) {
    if (config->is_server) {
      SSL_set_accept_state(ssl.get());
    } else {
      SSL_set_connect_state(ssl.get());
    }
  } else {
    do {
      if (config->is_server) {
        ret = SSL_accept(ssl.get());
      } else {
        ret = SSL_connect(ssl.get());
      }
    } while (config->async && RetryAsync(ssl.get(), ret));
    if (ret != 1 ||
        !CheckHandshakeProperties(ssl.get(), is_resume)) {
      return false;
    }

    // Reset the state to assert later that the callback isn't called in
    // renegotiations.
    GetTestState(ssl.get())->got_new_session = false;
  }

  if (config->export_keying_material > 0) {
    std::vector<uint8_t> result(
        static_cast<size_t>(config->export_keying_material));
    if (SSL_export_keying_material(
            ssl.get(), result.data(), result.size(),
            config->export_label.data(), config->export_label.size(),
            reinterpret_cast<const uint8_t*>(config->export_context.data()),
            config->export_context.size(), config->use_export_context) != 1) {
      fprintf(stderr, "failed to export keying material\n");
      return false;
    }
    if (WriteAll(ssl.get(), result.data(), result.size()) < 0) {
      return false;
    }
  }

  if (config->write_different_record_sizes) {
    if (config->is_dtls) {
      fprintf(stderr, "write_different_record_sizes not supported for DTLS\n");
      return false;
    }
    // This mode writes a number of different record sizes in an attempt to
    // trip up the CBC record splitting code.
    static const size_t kBufLen = 32769;
    std::unique_ptr<uint8_t[]> buf(new uint8_t[kBufLen]);
    memset(buf.get(), 0x42, kBufLen);
    static const size_t kRecordSizes[] = {
        0, 1, 255, 256, 257, 16383, 16384, 16385, 32767, 32768, 32769};
    for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kRecordSizes); i++) {
      const size_t len = kRecordSizes[i];
      if (len > kBufLen) {
        fprintf(stderr, "Bad kRecordSizes value.\n");
        return false;
      }
      if (WriteAll(ssl.get(), buf.get(), len) < 0) {
        return false;
      }
    }
  } else {
    if (config->shim_writes_first) {
      if (WriteAll(ssl.get(), reinterpret_cast<const uint8_t *>("hello"),
                   5) < 0) {
        return false;
      }
    }
    if (!config->shim_shuts_down) {
      for (;;) {
        static const size_t kBufLen = 16384;
        std::unique_ptr<uint8_t[]> buf(new uint8_t[kBufLen]);

        // Read only 512 bytes at a time in TLS to ensure records may be
        // returned in multiple reads.
        int n = DoRead(ssl.get(), buf.get(), config->is_dtls ? kBufLen : 512);
        int err = SSL_get_error(ssl.get(), n);
        if (err == SSL_ERROR_ZERO_RETURN ||
            (n == 0 && err == SSL_ERROR_SYSCALL)) {
          if (n != 0) {
            fprintf(stderr, "Invalid SSL_get_error output\n");
            return false;
          }
          // Stop on either clean or unclean shutdown.
          break;
        } else if (err != SSL_ERROR_NONE) {
          if (n > 0) {
            fprintf(stderr, "Invalid SSL_get_error output\n");
            return false;
          }
          return false;
        }
        // Successfully read data.
        if (n <= 0) {
          fprintf(stderr, "Invalid SSL_get_error output\n");
          return false;
        }

        // After a successful read, with or without False Start, the handshake
        // must be complete.
        if (!GetTestState(ssl.get())->handshake_done) {
          fprintf(stderr, "handshake was not completed after SSL_read\n");
          return false;
        }

        for (int i = 0; i < n; i++) {
          buf[i] ^= 0xff;
        }
        if (WriteAll(ssl.get(), buf.get(), n) < 0) {
          return false;
        }
      }
    }
  }

  if (!config->is_server &&
      !config->implicit_handshake &&
      // Session tickets are sent post-handshake in TLS 1.3.
      GetProtocolVersion(ssl.get()) < TLS1_3_VERSION &&
      GetTestState(ssl.get())->got_new_session) {
    fprintf(stderr, "new session was established after the handshake\n");
    return false;
  }

  if (GetProtocolVersion(ssl.get()) >= TLS1_3_VERSION && !config->is_server) {
    bool expect_new_session =
        !config->expect_no_session && !config->shim_shuts_down;
    if (expect_new_session != GetTestState(ssl.get())->got_new_session) {
      fprintf(stderr,
              "new session was%s cached, but we expected the opposite\n",
              GetTestState(ssl.get())->got_new_session ? "" : " not");
      return false;
    }
  }

  if (out_session) {
    *out_session = std::move(GetTestState(ssl.get())->new_session);
  }

  ret = DoShutdown(ssl.get());

  if (config->shim_shuts_down && config->check_close_notify) {
    // We initiate shutdown, so |SSL_shutdown| will return in two stages. First
    // it returns zero when our close_notify is sent, then one when the peer's
    // is received.
    if (ret != 0) {
      fprintf(stderr, "Unexpected SSL_shutdown result: %d != 0\n", ret);
      return false;
    }
    ret = DoShutdown(ssl.get());
  }

  if (ret != 1) {
    fprintf(stderr, "Unexpected SSL_shutdown result: %d != 1\n", ret);
    return false;
  }

  if (SSL_total_renegotiations(ssl.get()) !=
      config->expect_total_renegotiations) {
    fprintf(stderr, "Expected %d renegotiations, got %ld\n",
            config->expect_total_renegotiations,
            SSL_total_renegotiations(ssl.get()));
    return false;
  }

  return true;
}

class StderrDelimiter {
 public:
  ~StderrDelimiter() { fprintf(stderr, "--- DONE ---\n"); }
};

static int Main(int argc, char **argv) {
  // To distinguish ASan's output from ours, add a trailing message to stderr.
  // Anything following this line will be considered an error.
  StderrDelimiter delimiter;

#if defined(OPENSSL_SYS_WINDOWS)
  /* Initialize Winsock. */
  WORD wsa_version = MAKEWORD(2, 2);
  WSADATA wsa_data;
  int wsa_err = WSAStartup(wsa_version, &wsa_data);
  if (wsa_err != 0) {
    fprintf(stderr, "WSAStartup failed: %d\n", wsa_err);
    return 1;
  }
  if (wsa_data.wVersion != wsa_version) {
    fprintf(stderr, "Didn't get expected version: %x\n", wsa_data.wVersion);
    return 1;
  }
#else
  signal(SIGPIPE, SIG_IGN);
#endif

  OPENSSL_init_crypto(0, NULL);
  OPENSSL_init_ssl(0, NULL);
  g_config_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, NULL);
  g_state_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, TestStateExFree);
  if (g_config_index < 0 || g_state_index < 0) {
    return 1;
  }

  TestConfig config;
  if (!ParseConfig(argc - 1, argv + 1, &config)) {
    return Usage(argv[0]);
  }

  bssl::UniquePtr<SSL_CTX> ssl_ctx = SetupCtx(&config);
  if (!ssl_ctx) {
    ERR_print_errors_fp(stderr);
    return 1;
  }

  bssl::UniquePtr<SSL_SESSION> session;
  for (int i = 0; i < config.resume_count + 1; i++) {
    bool is_resume = i > 0;
    if (is_resume && !config.is_server && !session) {
      fprintf(stderr, "No session to offer.\n");
      return 1;
    }

    bssl::UniquePtr<SSL_SESSION> offer_session = std::move(session);
    if (!DoExchange(&session, ssl_ctx.get(), &config, is_resume,
                    offer_session.get())) {
      fprintf(stderr, "Connection %d failed.\n", i + 1);
      ERR_print_errors_fp(stderr);
      return 1;
    }
  }

  return 0;
}

}  // namespace bssl

int main(int argc, char **argv) {
  return bssl::Main(argc, argv);
}