e_dasync.c 24.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
/*
 * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#if defined(_WIN32)
# include <windows.h>
#endif

#include <stdio.h>
#include <string.h>

#include <openssl/engine.h>
#include <openssl/sha.h>
#include <openssl/aes.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>
#include <openssl/async.h>
#include <openssl/bn.h>
#include <openssl/crypto.h>
#include <openssl/ssl.h>
#include <openssl/modes.h>

#if defined(OPENSSL_SYS_UNIX) && defined(OPENSSL_THREADS)
# undef ASYNC_POSIX
# define ASYNC_POSIX
# include <unistd.h>
#elif defined(_WIN32)
# undef ASYNC_WIN
# define ASYNC_WIN
#endif

#include "e_dasync_err.c"

/* Engine Id and Name */
static const char *engine_dasync_id = "dasync";
static const char *engine_dasync_name = "Dummy Async engine support";


/* Engine Lifetime functions */
static int dasync_destroy(ENGINE *e);
static int dasync_init(ENGINE *e);
static int dasync_finish(ENGINE *e);
void engine_load_dasync_int(void);


/* Set up digests. Just SHA1 for now */
static int dasync_digests(ENGINE *e, const EVP_MD **digest,
                          const int **nids, int nid);

static void dummy_pause_job(void);

/* SHA1 */
static int dasync_sha1_init(EVP_MD_CTX *ctx);
static int dasync_sha1_update(EVP_MD_CTX *ctx, const void *data,
                             size_t count);
static int dasync_sha1_final(EVP_MD_CTX *ctx, unsigned char *md);

/*
 * Holds the EVP_MD object for sha1 in this engine. Set up once only during
 * engine bind and can then be reused many times.
 */
static EVP_MD *_hidden_sha1_md = NULL;
static const EVP_MD *dasync_sha1(void)
{
    return _hidden_sha1_md;
}
static void destroy_digests(void)
{
    EVP_MD_meth_free(_hidden_sha1_md);
    _hidden_sha1_md = NULL;
}

static int dasync_digest_nids(const int **nids)
{
    static int digest_nids[2] = { 0, 0 };
    static int pos = 0;
    static int init = 0;

    if (!init) {
        const EVP_MD *md;
        if ((md = dasync_sha1()) != NULL)
            digest_nids[pos++] = EVP_MD_type(md);
        digest_nids[pos] = 0;
        init = 1;
    }
    *nids = digest_nids;
    return pos;
}

/* RSA */

static int dasync_pub_enc(int flen, const unsigned char *from,
                    unsigned char *to, RSA *rsa, int padding);
static int dasync_pub_dec(int flen, const unsigned char *from,
                    unsigned char *to, RSA *rsa, int padding);
static int dasync_rsa_priv_enc(int flen, const unsigned char *from,
                      unsigned char *to, RSA *rsa, int padding);
static int dasync_rsa_priv_dec(int flen, const unsigned char *from,
                      unsigned char *to, RSA *rsa, int padding);
static int dasync_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa,
                              BN_CTX *ctx);

static int dasync_rsa_init(RSA *rsa);
static int dasync_rsa_finish(RSA *rsa);

static RSA_METHOD *dasync_rsa_method = NULL;

/* AES */

static int dasync_aes128_cbc_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
                                  void *ptr);
static int dasync_aes128_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
                                  const unsigned char *iv, int enc);
static int dasync_aes128_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
                                    const unsigned char *in, size_t inl);
static int dasync_aes128_cbc_cleanup(EVP_CIPHER_CTX *ctx);

static int dasync_aes128_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type,
                                             int arg, void *ptr);
static int dasync_aes128_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
                                                 const unsigned char *key,
                                                 const unsigned char *iv,
                                                 int enc);
static int dasync_aes128_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx,
                                               unsigned char *out,
                                               const unsigned char *in,
                                               size_t inl);
static int dasync_aes128_cbc_hmac_sha1_cleanup(EVP_CIPHER_CTX *ctx);

struct dasync_pipeline_ctx {
    void *inner_cipher_data;
    unsigned int numpipes;
    unsigned char **inbufs;
    unsigned char **outbufs;
    size_t *lens;
    int enc;
    unsigned char tlsaad[SSL_MAX_PIPELINES][EVP_AEAD_TLS1_AAD_LEN];
    unsigned int aadctr;
};

/*
 * Holds the EVP_CIPHER object for aes_128_cbc in this engine. Set up once only
 * during engine bind and can then be reused many times.
 */
static EVP_CIPHER *_hidden_aes_128_cbc = NULL;
static const EVP_CIPHER *dasync_aes_128_cbc(void)
{
    return _hidden_aes_128_cbc;
}

/*
 * Holds the EVP_CIPHER object for aes_128_cbc_hmac_sha1 in this engine. Set up
 * once only during engine bind and can then be reused many times.
 */
static EVP_CIPHER *_hidden_aes_128_cbc_hmac_sha1 = NULL;
static const EVP_CIPHER *dasync_aes_128_cbc_hmac_sha1(void)
{
    return _hidden_aes_128_cbc_hmac_sha1;
}

static void destroy_ciphers(void)
{
    EVP_CIPHER_meth_free(_hidden_aes_128_cbc);
    EVP_CIPHER_meth_free(_hidden_aes_128_cbc_hmac_sha1);
    _hidden_aes_128_cbc = NULL;
    _hidden_aes_128_cbc_hmac_sha1 = NULL;
}

static int dasync_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
                                   const int **nids, int nid);

static int dasync_cipher_nids[] = {
    NID_aes_128_cbc,
    NID_aes_128_cbc_hmac_sha1,
    0
};

static int bind_dasync(ENGINE *e)
{
    /* Setup RSA_METHOD */
    if ((dasync_rsa_method = RSA_meth_new("Dummy Async RSA method", 0)) == NULL
        || RSA_meth_set_pub_enc(dasync_rsa_method, dasync_pub_enc) == 0
        || RSA_meth_set_pub_dec(dasync_rsa_method, dasync_pub_dec) == 0
        || RSA_meth_set_priv_enc(dasync_rsa_method, dasync_rsa_priv_enc) == 0
        || RSA_meth_set_priv_dec(dasync_rsa_method, dasync_rsa_priv_dec) == 0
        || RSA_meth_set_mod_exp(dasync_rsa_method, dasync_rsa_mod_exp) == 0
        || RSA_meth_set_bn_mod_exp(dasync_rsa_method, BN_mod_exp_mont) == 0
        || RSA_meth_set_init(dasync_rsa_method, dasync_rsa_init) == 0
        || RSA_meth_set_finish(dasync_rsa_method, dasync_rsa_finish) == 0) {
        DASYNCerr(DASYNC_F_BIND_DASYNC, DASYNC_R_INIT_FAILED);
        return 0;
    }

    /* Ensure the dasync error handling is set up */
    ERR_load_DASYNC_strings();

    if (!ENGINE_set_id(e, engine_dasync_id)
        || !ENGINE_set_name(e, engine_dasync_name)
        || !ENGINE_set_RSA(e, dasync_rsa_method)
        || !ENGINE_set_digests(e, dasync_digests)
        || !ENGINE_set_ciphers(e, dasync_ciphers)
        || !ENGINE_set_destroy_function(e, dasync_destroy)
        || !ENGINE_set_init_function(e, dasync_init)
        || !ENGINE_set_finish_function(e, dasync_finish)) {
        DASYNCerr(DASYNC_F_BIND_DASYNC, DASYNC_R_INIT_FAILED);
        return 0;
    }

    /*
     * Set up the EVP_CIPHER and EVP_MD objects for the ciphers/digests
     * supplied by this engine
     */
    _hidden_sha1_md = EVP_MD_meth_new(NID_sha1, NID_sha1WithRSAEncryption);
    if (_hidden_sha1_md == NULL
        || !EVP_MD_meth_set_result_size(_hidden_sha1_md, SHA_DIGEST_LENGTH)
        || !EVP_MD_meth_set_input_blocksize(_hidden_sha1_md, SHA_CBLOCK)
        || !EVP_MD_meth_set_app_datasize(_hidden_sha1_md,
                                         sizeof(EVP_MD *) + sizeof(SHA_CTX))
        || !EVP_MD_meth_set_flags(_hidden_sha1_md, EVP_MD_FLAG_DIGALGID_ABSENT)
        || !EVP_MD_meth_set_init(_hidden_sha1_md, dasync_sha1_init)
        || !EVP_MD_meth_set_update(_hidden_sha1_md, dasync_sha1_update)
        || !EVP_MD_meth_set_final(_hidden_sha1_md, dasync_sha1_final)) {
        EVP_MD_meth_free(_hidden_sha1_md);
        _hidden_sha1_md = NULL;
    }

    _hidden_aes_128_cbc = EVP_CIPHER_meth_new(NID_aes_128_cbc,
                                              16 /* block size */,
                                              16 /* key len */);
    if (_hidden_aes_128_cbc == NULL
            || !EVP_CIPHER_meth_set_iv_length(_hidden_aes_128_cbc,16)
            || !EVP_CIPHER_meth_set_flags(_hidden_aes_128_cbc,
                                          EVP_CIPH_FLAG_DEFAULT_ASN1
                                          | EVP_CIPH_CBC_MODE
                                          | EVP_CIPH_FLAG_PIPELINE)
            || !EVP_CIPHER_meth_set_init(_hidden_aes_128_cbc,
                                         dasync_aes128_init_key)
            || !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_128_cbc,
                                              dasync_aes128_cbc_cipher)
            || !EVP_CIPHER_meth_set_cleanup(_hidden_aes_128_cbc,
                                            dasync_aes128_cbc_cleanup)
            || !EVP_CIPHER_meth_set_ctrl(_hidden_aes_128_cbc,
                                         dasync_aes128_cbc_ctrl)
            || !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_128_cbc,
                                sizeof(struct dasync_pipeline_ctx))) {
        EVP_CIPHER_meth_free(_hidden_aes_128_cbc);
        _hidden_aes_128_cbc = NULL;
    }

    _hidden_aes_128_cbc_hmac_sha1 = EVP_CIPHER_meth_new(
                                                NID_aes_128_cbc_hmac_sha1,
                                                16 /* block size */,
                                                16 /* key len */);
    if (_hidden_aes_128_cbc_hmac_sha1 == NULL
            || !EVP_CIPHER_meth_set_iv_length(_hidden_aes_128_cbc_hmac_sha1,16)
            || !EVP_CIPHER_meth_set_flags(_hidden_aes_128_cbc_hmac_sha1,
                                            EVP_CIPH_CBC_MODE
                                          | EVP_CIPH_FLAG_DEFAULT_ASN1
                                          | EVP_CIPH_FLAG_AEAD_CIPHER
                                          | EVP_CIPH_FLAG_PIPELINE)
            || !EVP_CIPHER_meth_set_init(_hidden_aes_128_cbc_hmac_sha1,
                                         dasync_aes128_cbc_hmac_sha1_init_key)
            || !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_128_cbc_hmac_sha1,
                                            dasync_aes128_cbc_hmac_sha1_cipher)
            || !EVP_CIPHER_meth_set_cleanup(_hidden_aes_128_cbc_hmac_sha1,
                                            dasync_aes128_cbc_hmac_sha1_cleanup)
            || !EVP_CIPHER_meth_set_ctrl(_hidden_aes_128_cbc_hmac_sha1,
                                         dasync_aes128_cbc_hmac_sha1_ctrl)
            || !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_128_cbc_hmac_sha1,
                                sizeof(struct dasync_pipeline_ctx))) {
        EVP_CIPHER_meth_free(_hidden_aes_128_cbc_hmac_sha1);
        _hidden_aes_128_cbc_hmac_sha1 = NULL;
    }

    return 1;
}

# ifndef OPENSSL_NO_DYNAMIC_ENGINE
static int bind_helper(ENGINE *e, const char *id)
{
    if (id && (strcmp(id, engine_dasync_id) != 0))
        return 0;
    if (!bind_dasync(e))
        return 0;
    return 1;
}

IMPLEMENT_DYNAMIC_CHECK_FN()
    IMPLEMENT_DYNAMIC_BIND_FN(bind_helper)
# endif

static ENGINE *engine_dasync(void)
{
    ENGINE *ret = ENGINE_new();
    if (!ret)
        return NULL;
    if (!bind_dasync(ret)) {
        ENGINE_free(ret);
        return NULL;
    }
    return ret;
}

void engine_load_dasync_int(void)
{
    ENGINE *toadd = engine_dasync();
    if (!toadd)
        return;
    ENGINE_add(toadd);
    ENGINE_free(toadd);
    ERR_clear_error();
}

static int dasync_init(ENGINE *e)
{
    return 1;
}


static int dasync_finish(ENGINE *e)
{
    return 1;
}


static int dasync_destroy(ENGINE *e)
{
    destroy_digests();
    destroy_ciphers();
    RSA_meth_free(dasync_rsa_method);
    ERR_unload_DASYNC_strings();
    return 1;
}

static int dasync_digests(ENGINE *e, const EVP_MD **digest,
                          const int **nids, int nid)
{
    int ok = 1;
    if (!digest) {
        /* We are returning a list of supported nids */
        return dasync_digest_nids(nids);
    }
    /* We are being asked for a specific digest */
    switch (nid) {
    case NID_sha1:
        *digest = dasync_sha1();
        break;
    default:
        ok = 0;
        *digest = NULL;
        break;
    }
    return ok;
}

static int dasync_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
                                   const int **nids, int nid)
{
    int ok = 1;
    if (cipher == NULL) {
        /* We are returning a list of supported nids */
        *nids = dasync_cipher_nids;
        return (sizeof(dasync_cipher_nids) -
                1) / sizeof(dasync_cipher_nids[0]);
    }
    /* We are being asked for a specific cipher */
    switch (nid) {
    case NID_aes_128_cbc:
        *cipher = dasync_aes_128_cbc();
        break;
    case NID_aes_128_cbc_hmac_sha1:
        *cipher = dasync_aes_128_cbc_hmac_sha1();
        break;
    default:
        ok = 0;
        *cipher = NULL;
        break;
    }
    return ok;
}

static void wait_cleanup(ASYNC_WAIT_CTX *ctx, const void *key,
                         OSSL_ASYNC_FD readfd, void *pvwritefd)
{
    OSSL_ASYNC_FD *pwritefd = (OSSL_ASYNC_FD *)pvwritefd;
#if defined(ASYNC_WIN)
    CloseHandle(readfd);
    CloseHandle(*pwritefd);
#elif defined(ASYNC_POSIX)
    close(readfd);
    close(*pwritefd);
#endif
    OPENSSL_free(pwritefd);
}

#define DUMMY_CHAR 'X'

static void dummy_pause_job(void) {
    ASYNC_JOB *job;
    ASYNC_WAIT_CTX *waitctx;
    OSSL_ASYNC_FD pipefds[2] = {0, 0};
    OSSL_ASYNC_FD *writefd;
#if defined(ASYNC_WIN)
    DWORD numwritten, numread;
    char buf = DUMMY_CHAR;
#elif defined(ASYNC_POSIX)
    char buf = DUMMY_CHAR;
#endif

    if ((job = ASYNC_get_current_job()) == NULL)
        return;

    waitctx = ASYNC_get_wait_ctx(job);

    if (ASYNC_WAIT_CTX_get_fd(waitctx, engine_dasync_id, &pipefds[0],
                              (void **)&writefd)) {
        pipefds[1] = *writefd;
    } else {
        writefd = OPENSSL_malloc(sizeof(*writefd));
        if (writefd == NULL)
            return;
#if defined(ASYNC_WIN)
        if (CreatePipe(&pipefds[0], &pipefds[1], NULL, 256) == 0) {
            OPENSSL_free(writefd);
            return;
        }
#elif defined(ASYNC_POSIX)
        if (pipe(pipefds) != 0) {
            OPENSSL_free(writefd);
            return;
        }
#endif
        *writefd = pipefds[1];

        if (!ASYNC_WAIT_CTX_set_wait_fd(waitctx, engine_dasync_id, pipefds[0],
                                        writefd, wait_cleanup)) {
            wait_cleanup(waitctx, engine_dasync_id, pipefds[0], writefd);
            return;
        }
    }
    /*
     * In the Dummy async engine we are cheating. We signal that the job
     * is complete by waking it before the call to ASYNC_pause_job(). A real
     * async engine would only wake when the job was actually complete
     */
#if defined(ASYNC_WIN)
    WriteFile(pipefds[1], &buf, 1, &numwritten, NULL);
#elif defined(ASYNC_POSIX)
    if (write(pipefds[1], &buf, 1) < 0)
        return;
#endif

    /* Ignore errors - we carry on anyway */
    ASYNC_pause_job();

    /* Clear the wake signal */
#if defined(ASYNC_WIN)
    ReadFile(pipefds[0], &buf, 1, &numread, NULL);
#elif defined(ASYNC_POSIX)
    if (read(pipefds[0], &buf, 1) < 0)
        return;
#endif
}

/*
 * SHA1 implementation. At the moment we just defer to the standard
 * implementation
 */
#undef data
#define data(ctx) ((SHA_CTX *)EVP_MD_CTX_md_data(ctx))
static int dasync_sha1_init(EVP_MD_CTX *ctx)
{
    dummy_pause_job();

    return SHA1_Init(data(ctx));
}

static int dasync_sha1_update(EVP_MD_CTX *ctx, const void *data,
                             size_t count)
{
    dummy_pause_job();

    return SHA1_Update(data(ctx), data, (size_t)count);
}

static int dasync_sha1_final(EVP_MD_CTX *ctx, unsigned char *md)
{
    dummy_pause_job();

    return SHA1_Final(md, data(ctx));
}

/*
 * RSA implementation
 */

static int dasync_pub_enc(int flen, const unsigned char *from,
                    unsigned char *to, RSA *rsa, int padding) {
    /* Ignore errors - we carry on anyway */
    dummy_pause_job();
    return RSA_meth_get_pub_enc(RSA_PKCS1_OpenSSL())
        (flen, from, to, rsa, padding);
}

static int dasync_pub_dec(int flen, const unsigned char *from,
                    unsigned char *to, RSA *rsa, int padding) {
    /* Ignore errors - we carry on anyway */
    dummy_pause_job();
    return RSA_meth_get_pub_dec(RSA_PKCS1_OpenSSL())
        (flen, from, to, rsa, padding);
}

static int dasync_rsa_priv_enc(int flen, const unsigned char *from,
                      unsigned char *to, RSA *rsa, int padding)
{
    /* Ignore errors - we carry on anyway */
    dummy_pause_job();
    return RSA_meth_get_priv_enc(RSA_PKCS1_OpenSSL())
        (flen, from, to, rsa, padding);
}

static int dasync_rsa_priv_dec(int flen, const unsigned char *from,
                      unsigned char *to, RSA *rsa, int padding)
{
    /* Ignore errors - we carry on anyway */
    dummy_pause_job();
    return RSA_meth_get_priv_dec(RSA_PKCS1_OpenSSL())
        (flen, from, to, rsa, padding);
}

static int dasync_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
{
    /* Ignore errors - we carry on anyway */
    dummy_pause_job();
    return RSA_meth_get_mod_exp(RSA_PKCS1_OpenSSL())(r0, I, rsa, ctx);
}

static int dasync_rsa_init(RSA *rsa)
{
    return RSA_meth_get_init(RSA_PKCS1_OpenSSL())(rsa);
}
static int dasync_rsa_finish(RSA *rsa)
{
    return RSA_meth_get_finish(RSA_PKCS1_OpenSSL())(rsa);
}

/* Cipher helper functions */

static int dasync_cipher_ctrl_helper(EVP_CIPHER_CTX *ctx, int type, int arg,
                                     void *ptr, int aeadcapable)
{
    int ret;
    struct dasync_pipeline_ctx *pipe_ctx =
        (struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);

    if (pipe_ctx == NULL)
        return 0;

    switch (type) {
        case EVP_CTRL_SET_PIPELINE_OUTPUT_BUFS:
            pipe_ctx->numpipes = arg;
            pipe_ctx->outbufs = (unsigned char **)ptr;
            break;

        case EVP_CTRL_SET_PIPELINE_INPUT_BUFS:
            pipe_ctx->numpipes = arg;
            pipe_ctx->inbufs = (unsigned char **)ptr;
            break;

        case EVP_CTRL_SET_PIPELINE_INPUT_LENS:
            pipe_ctx->numpipes = arg;
            pipe_ctx->lens = (size_t *)ptr;
            break;

        case EVP_CTRL_AEAD_SET_MAC_KEY:
            if (!aeadcapable)
                return -1;
            EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
            ret = EVP_CIPHER_meth_get_ctrl(EVP_aes_128_cbc_hmac_sha1())
                                          (ctx, type, arg, ptr);
            EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
            return ret;

        case EVP_CTRL_AEAD_TLS1_AAD:
        {
            unsigned char *p = ptr;
            unsigned int len;

            if (!aeadcapable || arg != EVP_AEAD_TLS1_AAD_LEN)
                return -1;

            if (pipe_ctx->aadctr >= SSL_MAX_PIPELINES)
                return -1;

            memcpy(pipe_ctx->tlsaad[pipe_ctx->aadctr], ptr,
                   EVP_AEAD_TLS1_AAD_LEN);
            pipe_ctx->aadctr++;

            len = p[arg - 2] << 8 | p[arg - 1];

            if (pipe_ctx->enc) {
                if ((p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) {
                    if (len < AES_BLOCK_SIZE)
                        return 0;
                    len -= AES_BLOCK_SIZE;
                }

                return ((len + SHA_DIGEST_LENGTH + AES_BLOCK_SIZE)
                        & -AES_BLOCK_SIZE) - len;
            } else {
                return SHA_DIGEST_LENGTH;
            }
        }

        default:
            return 0;
    }

    return 1;
}

static int dasync_cipher_init_key_helper(EVP_CIPHER_CTX *ctx,
                                         const unsigned char *key,
                                         const unsigned char *iv, int enc,
                                         const EVP_CIPHER *cipher)
{
    int ret;
    struct dasync_pipeline_ctx *pipe_ctx =
        (struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);

    if (pipe_ctx->inner_cipher_data == NULL
            && EVP_CIPHER_impl_ctx_size(cipher) != 0) {
        pipe_ctx->inner_cipher_data = OPENSSL_zalloc(
            EVP_CIPHER_impl_ctx_size(cipher));
        if (pipe_ctx->inner_cipher_data == NULL) {
            DASYNCerr(DASYNC_F_DASYNC_CIPHER_INIT_KEY_HELPER,
                        ERR_R_MALLOC_FAILURE);
            return 0;
        }
    }

    pipe_ctx->numpipes = 0;
    pipe_ctx->aadctr = 0;

    EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
    ret = EVP_CIPHER_meth_get_init(cipher)(ctx, key, iv, enc);
    EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);

    return ret;
}

static int dasync_cipher_helper(EVP_CIPHER_CTX *ctx, unsigned char *out,
                                const unsigned char *in, size_t inl,
                                const EVP_CIPHER *cipher)
{
    int ret = 1;
    unsigned int i, pipes;
    struct dasync_pipeline_ctx *pipe_ctx =
        (struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);

    pipes = pipe_ctx->numpipes;
    EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
    if (pipes == 0) {
        if (pipe_ctx->aadctr != 0) {
            if (pipe_ctx->aadctr != 1)
                return -1;
            EVP_CIPHER_meth_get_ctrl(cipher)
                                    (ctx, EVP_CTRL_AEAD_TLS1_AAD,
                                     EVP_AEAD_TLS1_AAD_LEN,
                                     pipe_ctx->tlsaad[0]);
        }
        ret = EVP_CIPHER_meth_get_do_cipher(cipher)
                                           (ctx, out, in, inl);
    } else {
        if (pipe_ctx->aadctr > 0 && pipe_ctx->aadctr != pipes)
            return -1;
        for (i = 0; i < pipes; i++) {
            if (pipe_ctx->aadctr > 0) {
                EVP_CIPHER_meth_get_ctrl(cipher)
                                        (ctx, EVP_CTRL_AEAD_TLS1_AAD,
                                         EVP_AEAD_TLS1_AAD_LEN,
                                         pipe_ctx->tlsaad[i]);
            }
            ret = ret && EVP_CIPHER_meth_get_do_cipher(cipher)
                                (ctx, pipe_ctx->outbufs[i], pipe_ctx->inbufs[i],
                                 pipe_ctx->lens[i]);
        }
        pipe_ctx->numpipes = 0;
    }
    pipe_ctx->aadctr = 0;
    EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
    return ret;
}

static int dasync_cipher_cleanup_helper(EVP_CIPHER_CTX *ctx,
                                        const EVP_CIPHER *cipher)
{
    struct dasync_pipeline_ctx *pipe_ctx =
        (struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);

    OPENSSL_clear_free(pipe_ctx->inner_cipher_data,
                       EVP_CIPHER_impl_ctx_size(cipher));

    return 1;
}

/*
 * AES128 CBC Implementation
 */

static int dasync_aes128_cbc_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
                                  void *ptr)
{
    return dasync_cipher_ctrl_helper(ctx, type, arg, ptr, 0);
}

static int dasync_aes128_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
                             const unsigned char *iv, int enc)
{
    return dasync_cipher_init_key_helper(ctx, key, iv, enc, EVP_aes_128_cbc());
}

static int dasync_aes128_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
                               const unsigned char *in, size_t inl)
{
    return dasync_cipher_helper(ctx, out, in, inl, EVP_aes_128_cbc());
}

static int dasync_aes128_cbc_cleanup(EVP_CIPHER_CTX *ctx)
{
    return dasync_cipher_cleanup_helper(ctx, EVP_aes_128_cbc());
}


/*
 * AES128 CBC HMAC SHA1 Implementation
 */

static int dasync_aes128_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type,
                                             int arg, void *ptr)
{
    return dasync_cipher_ctrl_helper(ctx, type, arg, ptr, 1);
}

static int dasync_aes128_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
                                                const unsigned char *key,
                                                const unsigned char *iv,
                                                int enc)
{
    return dasync_cipher_init_key_helper(ctx, key, iv, enc,
                                         EVP_aes_128_cbc_hmac_sha1());
}

static int dasync_aes128_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx,
                                               unsigned char *out,
                                               const unsigned char *in,
                                               size_t inl)
{
    return dasync_cipher_helper(ctx, out, in, inl, EVP_aes_128_cbc_hmac_sha1());
}

static int dasync_aes128_cbc_hmac_sha1_cleanup(EVP_CIPHER_CTX *ctx)
{
    return dasync_cipher_cleanup_helper(ctx, EVP_aes_128_cbc_hmac_sha1());
}