x86_64-mont.pl 32.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
#! /usr/bin/env perl
# Copyright 2005-2018 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License").  You may not use
# this file except in compliance with the License.  You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html


# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================

# October 2005.
#
# Montgomery multiplication routine for x86_64. While it gives modest
# 9% improvement of rsa4096 sign on Opteron, rsa512 sign runs more
# than twice, >2x, as fast. Most common rsa1024 sign is improved by
# respectful 50%. It remains to be seen if loop unrolling and
# dedicated squaring routine can provide further improvement...

# July 2011.
#
# Add dedicated squaring procedure. Performance improvement varies
# from platform to platform, but in average it's ~5%/15%/25%/33%
# for 512-/1024-/2048-/4096-bit RSA *sign* benchmarks respectively.

# August 2011.
#
# Unroll and modulo-schedule inner loops in such manner that they
# are "fallen through" for input lengths of 8, which is critical for
# 1024-bit RSA *sign*. Average performance improvement in comparison
# to *initial* version of this module from 2005 is ~0%/30%/40%/45%
# for 512-/1024-/2048-/4096-bit RSA *sign* benchmarks respectively.

# June 2013.
#
# Optimize reduction in squaring procedure and improve 1024+-bit RSA
# sign performance by 10-16% on Intel Sandy Bridge and later
# (virtually same on non-Intel processors).

# August 2013.
#
# Add MULX/ADOX/ADCX code path.

$flavour = shift;
$output  = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);

$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";

open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\"";
*STDOUT=*OUT;

if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
		=~ /GNU assembler version ([2-9]\.[0-9]+)/) {
	$addx = ($1>=2.23);
}

if (!$addx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
	    `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) {
	$addx = ($1>=2.10);
}

if (!$addx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) &&
	    `ml64 2>&1` =~ /Version ([0-9]+)\./) {
	$addx = ($1>=12);
}

if (!$addx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([3-9])\.([0-9]+)/) {
	my $ver = $2 + $3/100.0;	# 3.1->3.01, 3.10->3.10
	$addx = ($ver>=3.03);
}

# int bn_mul_mont(
$rp="%rdi";	# BN_ULONG *rp,
$ap="%rsi";	# const BN_ULONG *ap,
$bp="%rdx";	# const BN_ULONG *bp,
$np="%rcx";	# const BN_ULONG *np,
$n0="%r8";	# const BN_ULONG *n0,
$num="%r9";	# int num);
$lo0="%r10";
$hi0="%r11";
$hi1="%r13";
$i="%r14";
$j="%r15";
$m0="%rbx";
$m1="%rbp";

$code=<<___;
.text

.extern	OPENSSL_ia32cap_P

.globl	bn_mul_mont
.type	bn_mul_mont,\@function,6
.align	16
bn_mul_mont:
.cfi_startproc
	mov	${num}d,${num}d
	mov	%rsp,%rax
.cfi_def_cfa_register	%rax
	test	\$3,${num}d
	jnz	.Lmul_enter
	cmp	\$8,${num}d
	jb	.Lmul_enter
___
$code.=<<___ if ($addx);
	mov	OPENSSL_ia32cap_P+8(%rip),%r11d
___
$code.=<<___;
	cmp	$ap,$bp
	jne	.Lmul4x_enter
	test	\$7,${num}d
	jz	.Lsqr8x_enter
	jmp	.Lmul4x_enter

.align	16
.Lmul_enter:
	push	%rbx
.cfi_push	%rbx
	push	%rbp
.cfi_push	%rbp
	push	%r12
.cfi_push	%r12
	push	%r13
.cfi_push	%r13
	push	%r14
.cfi_push	%r14
	push	%r15
.cfi_push	%r15

	neg	$num
	mov	%rsp,%r11
	lea	-16(%rsp,$num,8),%r10	# future alloca(8*(num+2))
	neg	$num			# restore $num
	and	\$-1024,%r10		# minimize TLB usage

	# An OS-agnostic version of __chkstk.
	#
	# Some OSes (Windows) insist on stack being "wired" to
	# physical memory in strictly sequential manner, i.e. if stack
	# allocation spans two pages, then reference to farmost one can
	# be punishable by SEGV. But page walking can do good even on
	# other OSes, because it guarantees that villain thread hits
	# the guard page before it can make damage to innocent one...
	sub	%r10,%r11
	and	\$-4096,%r11
	lea	(%r10,%r11),%rsp
	mov	(%rsp),%r11
	cmp	%r10,%rsp
	ja	.Lmul_page_walk
	jmp	.Lmul_page_walk_done

.align	16
.Lmul_page_walk:
	lea	-4096(%rsp),%rsp
	mov	(%rsp),%r11
	cmp	%r10,%rsp
	ja	.Lmul_page_walk
.Lmul_page_walk_done:

	mov	%rax,8(%rsp,$num,8)	# tp[num+1]=%rsp
.cfi_cfa_expression	%rsp+8,$num,8,mul,plus,deref,+8
.Lmul_body:
	mov	$bp,%r12		# reassign $bp
___
		$bp="%r12";
$code.=<<___;
	mov	($n0),$n0		# pull n0[0] value
	mov	($bp),$m0		# m0=bp[0]
	mov	($ap),%rax

	xor	$i,$i			# i=0
	xor	$j,$j			# j=0

	mov	$n0,$m1
	mulq	$m0			# ap[0]*bp[0]
	mov	%rax,$lo0
	mov	($np),%rax

	imulq	$lo0,$m1		# "tp[0]"*n0
	mov	%rdx,$hi0

	mulq	$m1			# np[0]*m1
	add	%rax,$lo0		# discarded
	mov	8($ap),%rax
	adc	\$0,%rdx
	mov	%rdx,$hi1

	lea	1($j),$j		# j++
	jmp	.L1st_enter

.align	16
.L1st:
	add	%rax,$hi1
	mov	($ap,$j,8),%rax
	adc	\$0,%rdx
	add	$hi0,$hi1		# np[j]*m1+ap[j]*bp[0]
	mov	$lo0,$hi0
	adc	\$0,%rdx
	mov	$hi1,-16(%rsp,$j,8)	# tp[j-1]
	mov	%rdx,$hi1

.L1st_enter:
	mulq	$m0			# ap[j]*bp[0]
	add	%rax,$hi0
	mov	($np,$j,8),%rax
	adc	\$0,%rdx
	lea	1($j),$j		# j++
	mov	%rdx,$lo0

	mulq	$m1			# np[j]*m1
	cmp	$num,$j
	jne	.L1st

	add	%rax,$hi1
	mov	($ap),%rax		# ap[0]
	adc	\$0,%rdx
	add	$hi0,$hi1		# np[j]*m1+ap[j]*bp[0]
	adc	\$0,%rdx
	mov	$hi1,-16(%rsp,$j,8)	# tp[j-1]
	mov	%rdx,$hi1
	mov	$lo0,$hi0

	xor	%rdx,%rdx
	add	$hi0,$hi1
	adc	\$0,%rdx
	mov	$hi1,-8(%rsp,$num,8)
	mov	%rdx,(%rsp,$num,8)	# store upmost overflow bit

	lea	1($i),$i		# i++
	jmp	.Louter
.align	16
.Louter:
	mov	($bp,$i,8),$m0		# m0=bp[i]
	xor	$j,$j			# j=0
	mov	$n0,$m1
	mov	(%rsp),$lo0
	mulq	$m0			# ap[0]*bp[i]
	add	%rax,$lo0		# ap[0]*bp[i]+tp[0]
	mov	($np),%rax
	adc	\$0,%rdx

	imulq	$lo0,$m1		# tp[0]*n0
	mov	%rdx,$hi0

	mulq	$m1			# np[0]*m1
	add	%rax,$lo0		# discarded
	mov	8($ap),%rax
	adc	\$0,%rdx
	mov	8(%rsp),$lo0		# tp[1]
	mov	%rdx,$hi1

	lea	1($j),$j		# j++
	jmp	.Linner_enter

.align	16
.Linner:
	add	%rax,$hi1
	mov	($ap,$j,8),%rax
	adc	\$0,%rdx
	add	$lo0,$hi1		# np[j]*m1+ap[j]*bp[i]+tp[j]
	mov	(%rsp,$j,8),$lo0
	adc	\$0,%rdx
	mov	$hi1,-16(%rsp,$j,8)	# tp[j-1]
	mov	%rdx,$hi1

.Linner_enter:
	mulq	$m0			# ap[j]*bp[i]
	add	%rax,$hi0
	mov	($np,$j,8),%rax
	adc	\$0,%rdx
	add	$hi0,$lo0		# ap[j]*bp[i]+tp[j]
	mov	%rdx,$hi0
	adc	\$0,$hi0
	lea	1($j),$j		# j++

	mulq	$m1			# np[j]*m1
	cmp	$num,$j
	jne	.Linner

	add	%rax,$hi1
	mov	($ap),%rax		# ap[0]
	adc	\$0,%rdx
	add	$lo0,$hi1		# np[j]*m1+ap[j]*bp[i]+tp[j]
	mov	(%rsp,$j,8),$lo0
	adc	\$0,%rdx
	mov	$hi1,-16(%rsp,$j,8)	# tp[j-1]
	mov	%rdx,$hi1

	xor	%rdx,%rdx
	add	$hi0,$hi1
	adc	\$0,%rdx
	add	$lo0,$hi1		# pull upmost overflow bit
	adc	\$0,%rdx
	mov	$hi1,-8(%rsp,$num,8)
	mov	%rdx,(%rsp,$num,8)	# store upmost overflow bit

	lea	1($i),$i		# i++
	cmp	$num,$i
	jb	.Louter

	xor	$i,$i			# i=0 and clear CF!
	mov	(%rsp),%rax		# tp[0]
	mov	$num,$j			# j=num

.align	16
.Lsub:	sbb	($np,$i,8),%rax
	mov	%rax,($rp,$i,8)		# rp[i]=tp[i]-np[i]
	mov	8(%rsp,$i,8),%rax	# tp[i+1]
	lea	1($i),$i		# i++
	dec	$j			# doesn't affect CF!
	jnz	.Lsub

	sbb	\$0,%rax		# handle upmost overflow bit
	mov	\$-1,%rbx
	xor	%rax,%rbx		# not %rax
	xor	$i,$i
	mov	$num,$j			# j=num

.Lcopy:					# conditional copy
	mov	($rp,$i,8),%rcx
	mov	(%rsp,$i,8),%rdx
	and	%rbx,%rcx
	and	%rax,%rdx
	mov	$num,(%rsp,$i,8)	# zap temporary vector
	or	%rcx,%rdx
	mov	%rdx,($rp,$i,8)		# rp[i]=tp[i]
	lea	1($i),$i
	sub	\$1,$j
	jnz	.Lcopy

	mov	8(%rsp,$num,8),%rsi	# restore %rsp
.cfi_def_cfa	%rsi,8
	mov	\$1,%rax
	mov	-48(%rsi),%r15
.cfi_restore	%r15
	mov	-40(%rsi),%r14
.cfi_restore	%r14
	mov	-32(%rsi),%r13
.cfi_restore	%r13
	mov	-24(%rsi),%r12
.cfi_restore	%r12
	mov	-16(%rsi),%rbp
.cfi_restore	%rbp
	mov	-8(%rsi),%rbx
.cfi_restore	%rbx
	lea	(%rsi),%rsp
.cfi_def_cfa_register	%rsp
.Lmul_epilogue:
	ret
.cfi_endproc
.size	bn_mul_mont,.-bn_mul_mont
___
{{{
my @A=("%r10","%r11");
my @N=("%r13","%rdi");
$code.=<<___;
.type	bn_mul4x_mont,\@function,6
.align	16
bn_mul4x_mont:
.cfi_startproc
	mov	${num}d,${num}d
	mov	%rsp,%rax
.cfi_def_cfa_register	%rax
.Lmul4x_enter:
___
$code.=<<___ if ($addx);
	and	\$0x80100,%r11d
	cmp	\$0x80100,%r11d
	je	.Lmulx4x_enter
___
$code.=<<___;
	push	%rbx
.cfi_push	%rbx
	push	%rbp
.cfi_push	%rbp
	push	%r12
.cfi_push	%r12
	push	%r13
.cfi_push	%r13
	push	%r14
.cfi_push	%r14
	push	%r15
.cfi_push	%r15

	neg	$num
	mov	%rsp,%r11
	lea	-32(%rsp,$num,8),%r10	# future alloca(8*(num+4))
	neg	$num			# restore
	and	\$-1024,%r10		# minimize TLB usage

	sub	%r10,%r11
	and	\$-4096,%r11
	lea	(%r10,%r11),%rsp
	mov	(%rsp),%r11
	cmp	%r10,%rsp
	ja	.Lmul4x_page_walk
	jmp	.Lmul4x_page_walk_done

.Lmul4x_page_walk:
	lea	-4096(%rsp),%rsp
	mov	(%rsp),%r11
	cmp	%r10,%rsp
	ja	.Lmul4x_page_walk
.Lmul4x_page_walk_done:

	mov	%rax,8(%rsp,$num,8)	# tp[num+1]=%rsp
.cfi_cfa_expression	%rsp+8,$num,8,mul,plus,deref,+8
.Lmul4x_body:
	mov	$rp,16(%rsp,$num,8)	# tp[num+2]=$rp
	mov	%rdx,%r12		# reassign $bp
___
		$bp="%r12";
$code.=<<___;
	mov	($n0),$n0		# pull n0[0] value
	mov	($bp),$m0		# m0=bp[0]
	mov	($ap),%rax

	xor	$i,$i			# i=0
	xor	$j,$j			# j=0

	mov	$n0,$m1
	mulq	$m0			# ap[0]*bp[0]
	mov	%rax,$A[0]
	mov	($np),%rax

	imulq	$A[0],$m1		# "tp[0]"*n0
	mov	%rdx,$A[1]

	mulq	$m1			# np[0]*m1
	add	%rax,$A[0]		# discarded
	mov	8($ap),%rax
	adc	\$0,%rdx
	mov	%rdx,$N[1]

	mulq	$m0
	add	%rax,$A[1]
	mov	8($np),%rax
	adc	\$0,%rdx
	mov	%rdx,$A[0]

	mulq	$m1
	add	%rax,$N[1]
	mov	16($ap),%rax
	adc	\$0,%rdx
	add	$A[1],$N[1]
	lea	4($j),$j		# j++
	adc	\$0,%rdx
	mov	$N[1],(%rsp)
	mov	%rdx,$N[0]
	jmp	.L1st4x
.align	16
.L1st4x:
	mulq	$m0			# ap[j]*bp[0]
	add	%rax,$A[0]
	mov	-16($np,$j,8),%rax
	adc	\$0,%rdx
	mov	%rdx,$A[1]

	mulq	$m1			# np[j]*m1
	add	%rax,$N[0]
	mov	-8($ap,$j,8),%rax
	adc	\$0,%rdx
	add	$A[0],$N[0]		# np[j]*m1+ap[j]*bp[0]
	adc	\$0,%rdx
	mov	$N[0],-24(%rsp,$j,8)	# tp[j-1]
	mov	%rdx,$N[1]

	mulq	$m0			# ap[j]*bp[0]
	add	%rax,$A[1]
	mov	-8($np,$j,8),%rax
	adc	\$0,%rdx
	mov	%rdx,$A[0]

	mulq	$m1			# np[j]*m1
	add	%rax,$N[1]
	mov	($ap,$j,8),%rax
	adc	\$0,%rdx
	add	$A[1],$N[1]		# np[j]*m1+ap[j]*bp[0]
	adc	\$0,%rdx
	mov	$N[1],-16(%rsp,$j,8)	# tp[j-1]
	mov	%rdx,$N[0]

	mulq	$m0			# ap[j]*bp[0]
	add	%rax,$A[0]
	mov	($np,$j,8),%rax
	adc	\$0,%rdx
	mov	%rdx,$A[1]

	mulq	$m1			# np[j]*m1
	add	%rax,$N[0]
	mov	8($ap,$j,8),%rax
	adc	\$0,%rdx
	add	$A[0],$N[0]		# np[j]*m1+ap[j]*bp[0]
	adc	\$0,%rdx
	mov	$N[0],-8(%rsp,$j,8)	# tp[j-1]
	mov	%rdx,$N[1]

	mulq	$m0			# ap[j]*bp[0]
	add	%rax,$A[1]
	mov	8($np,$j,8),%rax
	adc	\$0,%rdx
	lea	4($j),$j		# j++
	mov	%rdx,$A[0]

	mulq	$m1			# np[j]*m1
	add	%rax,$N[1]
	mov	-16($ap,$j,8),%rax
	adc	\$0,%rdx
	add	$A[1],$N[1]		# np[j]*m1+ap[j]*bp[0]
	adc	\$0,%rdx
	mov	$N[1],-32(%rsp,$j,8)	# tp[j-1]
	mov	%rdx,$N[0]
	cmp	$num,$j
	jb	.L1st4x

	mulq	$m0			# ap[j]*bp[0]
	add	%rax,$A[0]
	mov	-16($np,$j,8),%rax
	adc	\$0,%rdx
	mov	%rdx,$A[1]

	mulq	$m1			# np[j]*m1
	add	%rax,$N[0]
	mov	-8($ap,$j,8),%rax
	adc	\$0,%rdx
	add	$A[0],$N[0]		# np[j]*m1+ap[j]*bp[0]
	adc	\$0,%rdx
	mov	$N[0],-24(%rsp,$j,8)	# tp[j-1]
	mov	%rdx,$N[1]

	mulq	$m0			# ap[j]*bp[0]
	add	%rax,$A[1]
	mov	-8($np,$j,8),%rax
	adc	\$0,%rdx
	mov	%rdx,$A[0]

	mulq	$m1			# np[j]*m1
	add	%rax,$N[1]
	mov	($ap),%rax		# ap[0]
	adc	\$0,%rdx
	add	$A[1],$N[1]		# np[j]*m1+ap[j]*bp[0]
	adc	\$0,%rdx
	mov	$N[1],-16(%rsp,$j,8)	# tp[j-1]
	mov	%rdx,$N[0]

	xor	$N[1],$N[1]
	add	$A[0],$N[0]
	adc	\$0,$N[1]
	mov	$N[0],-8(%rsp,$j,8)
	mov	$N[1],(%rsp,$j,8)	# store upmost overflow bit

	lea	1($i),$i		# i++
.align	4
.Louter4x:
	mov	($bp,$i,8),$m0		# m0=bp[i]
	xor	$j,$j			# j=0
	mov	(%rsp),$A[0]
	mov	$n0,$m1
	mulq	$m0			# ap[0]*bp[i]
	add	%rax,$A[0]		# ap[0]*bp[i]+tp[0]
	mov	($np),%rax
	adc	\$0,%rdx

	imulq	$A[0],$m1		# tp[0]*n0
	mov	%rdx,$A[1]

	mulq	$m1			# np[0]*m1
	add	%rax,$A[0]		# "$N[0]", discarded
	mov	8($ap),%rax
	adc	\$0,%rdx
	mov	%rdx,$N[1]

	mulq	$m0			# ap[j]*bp[i]
	add	%rax,$A[1]
	mov	8($np),%rax
	adc	\$0,%rdx
	add	8(%rsp),$A[1]		# +tp[1]
	adc	\$0,%rdx
	mov	%rdx,$A[0]

	mulq	$m1			# np[j]*m1
	add	%rax,$N[1]
	mov	16($ap),%rax
	adc	\$0,%rdx
	add	$A[1],$N[1]		# np[j]*m1+ap[j]*bp[i]+tp[j]
	lea	4($j),$j		# j+=2
	adc	\$0,%rdx
	mov	$N[1],(%rsp)		# tp[j-1]
	mov	%rdx,$N[0]
	jmp	.Linner4x
.align	16
.Linner4x:
	mulq	$m0			# ap[j]*bp[i]
	add	%rax,$A[0]
	mov	-16($np,$j,8),%rax
	adc	\$0,%rdx
	add	-16(%rsp,$j,8),$A[0]	# ap[j]*bp[i]+tp[j]
	adc	\$0,%rdx
	mov	%rdx,$A[1]

	mulq	$m1			# np[j]*m1
	add	%rax,$N[0]
	mov	-8($ap,$j,8),%rax
	adc	\$0,%rdx
	add	$A[0],$N[0]
	adc	\$0,%rdx
	mov	$N[0],-24(%rsp,$j,8)	# tp[j-1]
	mov	%rdx,$N[1]

	mulq	$m0			# ap[j]*bp[i]
	add	%rax,$A[1]
	mov	-8($np,$j,8),%rax
	adc	\$0,%rdx
	add	-8(%rsp,$j,8),$A[1]
	adc	\$0,%rdx
	mov	%rdx,$A[0]

	mulq	$m1			# np[j]*m1
	add	%rax,$N[1]
	mov	($ap,$j,8),%rax
	adc	\$0,%rdx
	add	$A[1],$N[1]
	adc	\$0,%rdx
	mov	$N[1],-16(%rsp,$j,8)	# tp[j-1]
	mov	%rdx,$N[0]

	mulq	$m0			# ap[j]*bp[i]
	add	%rax,$A[0]
	mov	($np,$j,8),%rax
	adc	\$0,%rdx
	add	(%rsp,$j,8),$A[0]	# ap[j]*bp[i]+tp[j]
	adc	\$0,%rdx
	mov	%rdx,$A[1]

	mulq	$m1			# np[j]*m1
	add	%rax,$N[0]
	mov	8($ap,$j,8),%rax
	adc	\$0,%rdx
	add	$A[0],$N[0]
	adc	\$0,%rdx
	mov	$N[0],-8(%rsp,$j,8)	# tp[j-1]
	mov	%rdx,$N[1]

	mulq	$m0			# ap[j]*bp[i]
	add	%rax,$A[1]
	mov	8($np,$j,8),%rax
	adc	\$0,%rdx
	add	8(%rsp,$j,8),$A[1]
	adc	\$0,%rdx
	lea	4($j),$j		# j++
	mov	%rdx,$A[0]

	mulq	$m1			# np[j]*m1
	add	%rax,$N[1]
	mov	-16($ap,$j,8),%rax
	adc	\$0,%rdx
	add	$A[1],$N[1]
	adc	\$0,%rdx
	mov	$N[1],-32(%rsp,$j,8)	# tp[j-1]
	mov	%rdx,$N[0]
	cmp	$num,$j
	jb	.Linner4x

	mulq	$m0			# ap[j]*bp[i]
	add	%rax,$A[0]
	mov	-16($np,$j,8),%rax
	adc	\$0,%rdx
	add	-16(%rsp,$j,8),$A[0]	# ap[j]*bp[i]+tp[j]
	adc	\$0,%rdx
	mov	%rdx,$A[1]

	mulq	$m1			# np[j]*m1
	add	%rax,$N[0]
	mov	-8($ap,$j,8),%rax
	adc	\$0,%rdx
	add	$A[0],$N[0]
	adc	\$0,%rdx
	mov	$N[0],-24(%rsp,$j,8)	# tp[j-1]
	mov	%rdx,$N[1]

	mulq	$m0			# ap[j]*bp[i]
	add	%rax,$A[1]
	mov	-8($np,$j,8),%rax
	adc	\$0,%rdx
	add	-8(%rsp,$j,8),$A[1]
	adc	\$0,%rdx
	lea	1($i),$i		# i++
	mov	%rdx,$A[0]

	mulq	$m1			# np[j]*m1
	add	%rax,$N[1]
	mov	($ap),%rax		# ap[0]
	adc	\$0,%rdx
	add	$A[1],$N[1]
	adc	\$0,%rdx
	mov	$N[1],-16(%rsp,$j,8)	# tp[j-1]
	mov	%rdx,$N[0]

	xor	$N[1],$N[1]
	add	$A[0],$N[0]
	adc	\$0,$N[1]
	add	(%rsp,$num,8),$N[0]	# pull upmost overflow bit
	adc	\$0,$N[1]
	mov	$N[0],-8(%rsp,$j,8)
	mov	$N[1],(%rsp,$j,8)	# store upmost overflow bit

	cmp	$num,$i
	jb	.Louter4x
___
{
my @ri=("%rax","%rdx",$m0,$m1);
$code.=<<___;
	mov	16(%rsp,$num,8),$rp	# restore $rp
	lea	-4($num),$j
	mov	0(%rsp),@ri[0]		# tp[0]
	mov	8(%rsp),@ri[1]		# tp[1]
	shr	\$2,$j			# j=num/4-1
	lea	(%rsp),$ap		# borrow ap for tp
	xor	$i,$i			# i=0 and clear CF!

	sub	0($np),@ri[0]
	mov	16($ap),@ri[2]		# tp[2]
	mov	24($ap),@ri[3]		# tp[3]
	sbb	8($np),@ri[1]

.Lsub4x:
	mov	@ri[0],0($rp,$i,8)	# rp[i]=tp[i]-np[i]
	mov	@ri[1],8($rp,$i,8)	# rp[i]=tp[i]-np[i]
	sbb	16($np,$i,8),@ri[2]
	mov	32($ap,$i,8),@ri[0]	# tp[i+1]
	mov	40($ap,$i,8),@ri[1]
	sbb	24($np,$i,8),@ri[3]
	mov	@ri[2],16($rp,$i,8)	# rp[i]=tp[i]-np[i]
	mov	@ri[3],24($rp,$i,8)	# rp[i]=tp[i]-np[i]
	sbb	32($np,$i,8),@ri[0]
	mov	48($ap,$i,8),@ri[2]
	mov	56($ap,$i,8),@ri[3]
	sbb	40($np,$i,8),@ri[1]
	lea	4($i),$i		# i++
	dec	$j			# doesn't affect CF!
	jnz	.Lsub4x

	mov	@ri[0],0($rp,$i,8)	# rp[i]=tp[i]-np[i]
	mov	32($ap,$i,8),@ri[0]	# load overflow bit
	sbb	16($np,$i,8),@ri[2]
	mov	@ri[1],8($rp,$i,8)	# rp[i]=tp[i]-np[i]
	sbb	24($np,$i,8),@ri[3]
	mov	@ri[2],16($rp,$i,8)	# rp[i]=tp[i]-np[i]

	sbb	\$0,@ri[0]		# handle upmost overflow bit
	mov	@ri[3],24($rp,$i,8)	# rp[i]=tp[i]-np[i]
	pxor	%xmm0,%xmm0
	movq	@ri[0],%xmm4
	pcmpeqd	%xmm5,%xmm5
	pshufd	\$0,%xmm4,%xmm4
	mov	$num,$j
	pxor	%xmm4,%xmm5
	shr	\$2,$j			# j=num/4
	xor	%eax,%eax		# i=0

	jmp	.Lcopy4x
.align	16
.Lcopy4x:				# conditional copy
	movdqa	(%rsp,%rax),%xmm1
	movdqu	($rp,%rax),%xmm2
	pand	%xmm4,%xmm1
	pand	%xmm5,%xmm2
	movdqa	16(%rsp,%rax),%xmm3
	movdqa	%xmm0,(%rsp,%rax)
	por	%xmm2,%xmm1
	movdqu	16($rp,%rax),%xmm2
	movdqu	%xmm1,($rp,%rax)
	pand	%xmm4,%xmm3
	pand	%xmm5,%xmm2
	movdqa	%xmm0,16(%rsp,%rax)
	por	%xmm2,%xmm3
	movdqu	%xmm3,16($rp,%rax)
	lea	32(%rax),%rax
	dec	$j
	jnz	.Lcopy4x
___
}
$code.=<<___;
	mov	8(%rsp,$num,8),%rsi	# restore %rsp
.cfi_def_cfa	%rsi, 8
	mov	\$1,%rax
	mov	-48(%rsi),%r15
.cfi_restore	%r15
	mov	-40(%rsi),%r14
.cfi_restore	%r14
	mov	-32(%rsi),%r13
.cfi_restore	%r13
	mov	-24(%rsi),%r12
.cfi_restore	%r12
	mov	-16(%rsi),%rbp
.cfi_restore	%rbp
	mov	-8(%rsi),%rbx
.cfi_restore	%rbx
	lea	(%rsi),%rsp
.cfi_def_cfa_register	%rsp
.Lmul4x_epilogue:
	ret
.cfi_endproc
.size	bn_mul4x_mont,.-bn_mul4x_mont
___
}}}
{{{
######################################################################
# void bn_sqr8x_mont(
my $rptr="%rdi";	# const BN_ULONG *rptr,
my $aptr="%rsi";	# const BN_ULONG *aptr,
my $bptr="%rdx";	# not used
my $nptr="%rcx";	# const BN_ULONG *nptr,
my $n0  ="%r8";		# const BN_ULONG *n0);
my $num ="%r9";		# int num, has to be divisible by 8

my ($i,$j,$tptr)=("%rbp","%rcx",$rptr);
my @A0=("%r10","%r11");
my @A1=("%r12","%r13");
my ($a0,$a1,$ai)=("%r14","%r15","%rbx");

$code.=<<___	if ($addx);
.extern	bn_sqrx8x_internal		# see x86_64-mont5 module
___
$code.=<<___;
.extern	bn_sqr8x_internal		# see x86_64-mont5 module

.type	bn_sqr8x_mont,\@function,6
.align	32
bn_sqr8x_mont:
.cfi_startproc
	mov	%rsp,%rax
.cfi_def_cfa_register	%rax
.Lsqr8x_enter:
	push	%rbx
.cfi_push	%rbx
	push	%rbp
.cfi_push	%rbp
	push	%r12
.cfi_push	%r12
	push	%r13
.cfi_push	%r13
	push	%r14
.cfi_push	%r14
	push	%r15
.cfi_push	%r15
.Lsqr8x_prologue:

	mov	${num}d,%r10d
	shl	\$3,${num}d		# convert $num to bytes
	shl	\$3+2,%r10		# 4*$num
	neg	$num

	##############################################################
	# ensure that stack frame doesn't alias with $aptr modulo
	# 4096. this is done to allow memory disambiguation logic
	# do its job.
	#
	lea	-64(%rsp,$num,2),%r11
	mov	%rsp,%rbp
	mov	($n0),$n0		# *n0
	sub	$aptr,%r11
	and	\$4095,%r11
	cmp	%r11,%r10
	jb	.Lsqr8x_sp_alt
	sub	%r11,%rbp		# align with $aptr
	lea	-64(%rbp,$num,2),%rbp	# future alloca(frame+2*$num)
	jmp	.Lsqr8x_sp_done

.align	32
.Lsqr8x_sp_alt:
	lea	4096-64(,$num,2),%r10	# 4096-frame-2*$num
	lea	-64(%rbp,$num,2),%rbp	# future alloca(frame+2*$num)
	sub	%r10,%r11
	mov	\$0,%r10
	cmovc	%r10,%r11
	sub	%r11,%rbp
.Lsqr8x_sp_done:
	and	\$-64,%rbp
	mov	%rsp,%r11
	sub	%rbp,%r11
	and	\$-4096,%r11
	lea	(%rbp,%r11),%rsp
	mov	(%rsp),%r10
	cmp	%rbp,%rsp
	ja	.Lsqr8x_page_walk
	jmp	.Lsqr8x_page_walk_done

.align	16
.Lsqr8x_page_walk:
	lea	-4096(%rsp),%rsp
	mov	(%rsp),%r10
	cmp	%rbp,%rsp
	ja	.Lsqr8x_page_walk
.Lsqr8x_page_walk_done:

	mov	$num,%r10
	neg	$num

	mov	$n0,  32(%rsp)
	mov	%rax, 40(%rsp)		# save original %rsp
.cfi_cfa_expression	%rsp+40,deref,+8
.Lsqr8x_body:

	movq	$nptr, %xmm2		# save pointer to modulus
	pxor	%xmm0,%xmm0
	movq	$rptr,%xmm1		# save $rptr
	movq	%r10, %xmm3		# -$num
___
$code.=<<___ if ($addx);
	mov	OPENSSL_ia32cap_P+8(%rip),%eax
	and	\$0x80100,%eax
	cmp	\$0x80100,%eax
	jne	.Lsqr8x_nox

	call	bn_sqrx8x_internal	# see x86_64-mont5 module
					# %rax	top-most carry
					# %rbp	nptr
					# %rcx	-8*num
					# %r8	end of tp[2*num]
	lea	(%r8,%rcx),%rbx
	mov	%rcx,$num
	mov	%rcx,%rdx
	movq	%xmm1,$rptr
	sar	\$3+2,%rcx		# %cf=0
	jmp	.Lsqr8x_sub

.align	32
.Lsqr8x_nox:
___
$code.=<<___;
	call	bn_sqr8x_internal	# see x86_64-mont5 module
					# %rax	top-most carry
					# %rbp	nptr
					# %r8	-8*num
					# %rdi	end of tp[2*num]
	lea	(%rdi,$num),%rbx
	mov	$num,%rcx
	mov	$num,%rdx
	movq	%xmm1,$rptr
	sar	\$3+2,%rcx		# %cf=0
	jmp	.Lsqr8x_sub

.align	32
.Lsqr8x_sub:
	mov	8*0(%rbx),%r12
	mov	8*1(%rbx),%r13
	mov	8*2(%rbx),%r14
	mov	8*3(%rbx),%r15
	lea	8*4(%rbx),%rbx
	sbb	8*0(%rbp),%r12
	sbb	8*1(%rbp),%r13
	sbb	8*2(%rbp),%r14
	sbb	8*3(%rbp),%r15
	lea	8*4(%rbp),%rbp
	mov	%r12,8*0($rptr)
	mov	%r13,8*1($rptr)
	mov	%r14,8*2($rptr)
	mov	%r15,8*3($rptr)
	lea	8*4($rptr),$rptr
	inc	%rcx			# preserves %cf
	jnz	.Lsqr8x_sub

	sbb	\$0,%rax		# top-most carry
	lea	(%rbx,$num),%rbx	# rewind
	lea	($rptr,$num),$rptr	# rewind

	movq	%rax,%xmm1
	pxor	%xmm0,%xmm0
	pshufd	\$0,%xmm1,%xmm1
	mov	40(%rsp),%rsi		# restore %rsp
.cfi_def_cfa	%rsi,8
	jmp	.Lsqr8x_cond_copy

.align	32
.Lsqr8x_cond_copy:
	movdqa	16*0(%rbx),%xmm2
	movdqa	16*1(%rbx),%xmm3
	lea	16*2(%rbx),%rbx
	movdqu	16*0($rptr),%xmm4
	movdqu	16*1($rptr),%xmm5
	lea	16*2($rptr),$rptr
	movdqa	%xmm0,-16*2(%rbx)	# zero tp
	movdqa	%xmm0,-16*1(%rbx)
	movdqa	%xmm0,-16*2(%rbx,%rdx)
	movdqa	%xmm0,-16*1(%rbx,%rdx)
	pcmpeqd	%xmm1,%xmm0
	pand	%xmm1,%xmm2
	pand	%xmm1,%xmm3
	pand	%xmm0,%xmm4
	pand	%xmm0,%xmm5
	pxor	%xmm0,%xmm0
	por	%xmm2,%xmm4
	por	%xmm3,%xmm5
	movdqu	%xmm4,-16*2($rptr)
	movdqu	%xmm5,-16*1($rptr)
	add	\$32,$num
	jnz	.Lsqr8x_cond_copy

	mov	\$1,%rax
	mov	-48(%rsi),%r15
.cfi_restore	%r15
	mov	-40(%rsi),%r14
.cfi_restore	%r14
	mov	-32(%rsi),%r13
.cfi_restore	%r13
	mov	-24(%rsi),%r12
.cfi_restore	%r12
	mov	-16(%rsi),%rbp
.cfi_restore	%rbp
	mov	-8(%rsi),%rbx
.cfi_restore	%rbx
	lea	(%rsi),%rsp
.cfi_def_cfa_register	%rsp
.Lsqr8x_epilogue:
	ret
.cfi_endproc
.size	bn_sqr8x_mont,.-bn_sqr8x_mont
___
}}}

if ($addx) {{{
my $bp="%rdx";	# original value

$code.=<<___;
.type	bn_mulx4x_mont,\@function,6
.align	32
bn_mulx4x_mont:
.cfi_startproc
	mov	%rsp,%rax
.cfi_def_cfa_register	%rax
.Lmulx4x_enter:
	push	%rbx
.cfi_push	%rbx
	push	%rbp
.cfi_push	%rbp
	push	%r12
.cfi_push	%r12
	push	%r13
.cfi_push	%r13
	push	%r14
.cfi_push	%r14
	push	%r15
.cfi_push	%r15
.Lmulx4x_prologue:

	shl	\$3,${num}d		# convert $num to bytes
	xor	%r10,%r10
	sub	$num,%r10		# -$num
	mov	($n0),$n0		# *n0
	lea	-72(%rsp,%r10),%rbp	# future alloca(frame+$num+8)
	and	\$-128,%rbp
	mov	%rsp,%r11
	sub	%rbp,%r11
	and	\$-4096,%r11
	lea	(%rbp,%r11),%rsp
	mov	(%rsp),%r10
	cmp	%rbp,%rsp
	ja	.Lmulx4x_page_walk
	jmp	.Lmulx4x_page_walk_done

.align	16
.Lmulx4x_page_walk:
	lea	-4096(%rsp),%rsp
	mov	(%rsp),%r10
	cmp	%rbp,%rsp
	ja	.Lmulx4x_page_walk
.Lmulx4x_page_walk_done:

	lea	($bp,$num),%r10
	##############################################################
	# Stack layout
	# +0	num
	# +8	off-loaded &b[i]
	# +16	end of b[num]
	# +24	saved n0
	# +32	saved rp
	# +40	saved %rsp
	# +48	inner counter
	# +56
	# +64	tmp[num+1]
	#
	mov	$num,0(%rsp)		# save $num
	shr	\$5,$num
	mov	%r10,16(%rsp)		# end of b[num]
	sub	\$1,$num
	mov	$n0, 24(%rsp)		# save *n0
	mov	$rp, 32(%rsp)		# save $rp
	mov	%rax,40(%rsp)		# save original %rsp
.cfi_cfa_expression	%rsp+40,deref,+8
	mov	$num,48(%rsp)		# inner counter
	jmp	.Lmulx4x_body

.align	32
.Lmulx4x_body:
___
my ($aptr, $bptr, $nptr, $tptr, $mi,  $bi,  $zero, $num)=
   ("%rsi","%rdi","%rcx","%rbx","%r8","%r9","%rbp","%rax");
my $rptr=$bptr;
$code.=<<___;
	lea	8($bp),$bptr
	mov	($bp),%rdx		# b[0], $bp==%rdx actually
	lea	64+32(%rsp),$tptr
	mov	%rdx,$bi

	mulx	0*8($aptr),$mi,%rax	# a[0]*b[0]
	mulx	1*8($aptr),%r11,%r14	# a[1]*b[0]
	add	%rax,%r11
	mov	$bptr,8(%rsp)		# off-load &b[i]
	mulx	2*8($aptr),%r12,%r13	# ...
	adc	%r14,%r12
	adc	\$0,%r13

	mov	$mi,$bptr		# borrow $bptr
	imulq	24(%rsp),$mi		# "t[0]"*n0
	xor	$zero,$zero		# cf=0, of=0

	mulx	3*8($aptr),%rax,%r14
	 mov	$mi,%rdx
	lea	4*8($aptr),$aptr
	adcx	%rax,%r13
	adcx	$zero,%r14		# cf=0

	mulx	0*8($nptr),%rax,%r10
	adcx	%rax,$bptr		# discarded
	adox	%r11,%r10
	mulx	1*8($nptr),%rax,%r11
	adcx	%rax,%r10
	adox	%r12,%r11
	.byte	0xc4,0x62,0xfb,0xf6,0xa1,0x10,0x00,0x00,0x00	# mulx	2*8($nptr),%rax,%r12
	mov	48(%rsp),$bptr		# counter value
	mov	%r10,-4*8($tptr)
	adcx	%rax,%r11
	adox	%r13,%r12
	mulx	3*8($nptr),%rax,%r15
	 mov	$bi,%rdx
	mov	%r11,-3*8($tptr)
	adcx	%rax,%r12
	adox	$zero,%r15		# of=0
	lea	4*8($nptr),$nptr
	mov	%r12,-2*8($tptr)

	jmp	.Lmulx4x_1st

.align	32
.Lmulx4x_1st:
	adcx	$zero,%r15		# cf=0, modulo-scheduled
	mulx	0*8($aptr),%r10,%rax	# a[4]*b[0]
	adcx	%r14,%r10
	mulx	1*8($aptr),%r11,%r14	# a[5]*b[0]
	adcx	%rax,%r11
	mulx	2*8($aptr),%r12,%rax	# ...
	adcx	%r14,%r12
	mulx	3*8($aptr),%r13,%r14
	 .byte	0x67,0x67
	 mov	$mi,%rdx
	adcx	%rax,%r13
	adcx	$zero,%r14		# cf=0
	lea	4*8($aptr),$aptr
	lea	4*8($tptr),$tptr

	adox	%r15,%r10
	mulx	0*8($nptr),%rax,%r15
	adcx	%rax,%r10
	adox	%r15,%r11
	mulx	1*8($nptr),%rax,%r15
	adcx	%rax,%r11
	adox	%r15,%r12
	mulx	2*8($nptr),%rax,%r15
	mov	%r10,-5*8($tptr)
	adcx	%rax,%r12
	mov	%r11,-4*8($tptr)
	adox	%r15,%r13
	mulx	3*8($nptr),%rax,%r15
	 mov	$bi,%rdx
	mov	%r12,-3*8($tptr)
	adcx	%rax,%r13
	adox	$zero,%r15
	lea	4*8($nptr),$nptr
	mov	%r13,-2*8($tptr)

	dec	$bptr			# of=0, pass cf
	jnz	.Lmulx4x_1st

	mov	0(%rsp),$num		# load num
	mov	8(%rsp),$bptr		# re-load &b[i]
	adc	$zero,%r15		# modulo-scheduled
	add	%r15,%r14
	sbb	%r15,%r15		# top-most carry
	mov	%r14,-1*8($tptr)
	jmp	.Lmulx4x_outer

.align	32
.Lmulx4x_outer:
	mov	($bptr),%rdx		# b[i]
	lea	8($bptr),$bptr		# b++
	sub	$num,$aptr		# rewind $aptr
	mov	%r15,($tptr)		# save top-most carry
	lea	64+4*8(%rsp),$tptr
	sub	$num,$nptr		# rewind $nptr

	mulx	0*8($aptr),$mi,%r11	# a[0]*b[i]
	xor	%ebp,%ebp		# xor	$zero,$zero	# cf=0, of=0
	mov	%rdx,$bi
	mulx	1*8($aptr),%r14,%r12	# a[1]*b[i]
	adox	-4*8($tptr),$mi
	adcx	%r14,%r11
	mulx	2*8($aptr),%r15,%r13	# ...
	adox	-3*8($tptr),%r11
	adcx	%r15,%r12
	adox	-2*8($tptr),%r12
	adcx	$zero,%r13
	adox	$zero,%r13

	mov	$bptr,8(%rsp)		# off-load &b[i]
	mov	$mi,%r15
	imulq	24(%rsp),$mi		# "t[0]"*n0
	xor	%ebp,%ebp		# xor	$zero,$zero	# cf=0, of=0

	mulx	3*8($aptr),%rax,%r14
	 mov	$mi,%rdx
	adcx	%rax,%r13
	adox	-1*8($tptr),%r13
	adcx	$zero,%r14
	lea	4*8($aptr),$aptr
	adox	$zero,%r14

	mulx	0*8($nptr),%rax,%r10
	adcx	%rax,%r15		# discarded
	adox	%r11,%r10
	mulx	1*8($nptr),%rax,%r11
	adcx	%rax,%r10
	adox	%r12,%r11
	mulx	2*8($nptr),%rax,%r12
	mov	%r10,-4*8($tptr)
	adcx	%rax,%r11
	adox	%r13,%r12
	mulx	3*8($nptr),%rax,%r15
	 mov	$bi,%rdx
	mov	%r11,-3*8($tptr)
	lea	4*8($nptr),$nptr
	adcx	%rax,%r12
	adox	$zero,%r15		# of=0
	mov	48(%rsp),$bptr		# counter value
	mov	%r12,-2*8($tptr)

	jmp	.Lmulx4x_inner

.align	32
.Lmulx4x_inner:
	mulx	0*8($aptr),%r10,%rax	# a[4]*b[i]
	adcx	$zero,%r15		# cf=0, modulo-scheduled
	adox	%r14,%r10
	mulx	1*8($aptr),%r11,%r14	# a[5]*b[i]
	adcx	0*8($tptr),%r10
	adox	%rax,%r11
	mulx	2*8($aptr),%r12,%rax	# ...
	adcx	1*8($tptr),%r11
	adox	%r14,%r12
	mulx	3*8($aptr),%r13,%r14
	 mov	$mi,%rdx
	adcx	2*8($tptr),%r12
	adox	%rax,%r13
	adcx	3*8($tptr),%r13
	adox	$zero,%r14		# of=0
	lea	4*8($aptr),$aptr
	lea	4*8($tptr),$tptr
	adcx	$zero,%r14		# cf=0

	adox	%r15,%r10
	mulx	0*8($nptr),%rax,%r15
	adcx	%rax,%r10
	adox	%r15,%r11
	mulx	1*8($nptr),%rax,%r15
	adcx	%rax,%r11
	adox	%r15,%r12
	mulx	2*8($nptr),%rax,%r15
	mov	%r10,-5*8($tptr)
	adcx	%rax,%r12
	adox	%r15,%r13
	mulx	3*8($nptr),%rax,%r15
	 mov	$bi,%rdx
	mov	%r11,-4*8($tptr)
	mov	%r12,-3*8($tptr)
	adcx	%rax,%r13
	adox	$zero,%r15
	lea	4*8($nptr),$nptr
	mov	%r13,-2*8($tptr)

	dec	$bptr			# of=0, pass cf
	jnz	.Lmulx4x_inner

	mov	0(%rsp),$num		# load num
	mov	8(%rsp),$bptr		# re-load &b[i]
	adc	$zero,%r15		# modulo-scheduled
	sub	0*8($tptr),$zero	# pull top-most carry
	adc	%r15,%r14
	sbb	%r15,%r15		# top-most carry
	mov	%r14,-1*8($tptr)

	cmp	16(%rsp),$bptr
	jne	.Lmulx4x_outer

	lea	64(%rsp),$tptr
	sub	$num,$nptr		# rewind $nptr
	neg	%r15
	mov	$num,%rdx
	shr	\$3+2,$num		# %cf=0
	mov	32(%rsp),$rptr		# restore rp
	jmp	.Lmulx4x_sub

.align	32
.Lmulx4x_sub:
	mov	8*0($tptr),%r11
	mov	8*1($tptr),%r12
	mov	8*2($tptr),%r13
	mov	8*3($tptr),%r14
	lea	8*4($tptr),$tptr
	sbb	8*0($nptr),%r11
	sbb	8*1($nptr),%r12
	sbb	8*2($nptr),%r13
	sbb	8*3($nptr),%r14
	lea	8*4($nptr),$nptr
	mov	%r11,8*0($rptr)
	mov	%r12,8*1($rptr)
	mov	%r13,8*2($rptr)
	mov	%r14,8*3($rptr)
	lea	8*4($rptr),$rptr
	dec	$num			# preserves %cf
	jnz	.Lmulx4x_sub

	sbb	\$0,%r15		# top-most carry
	lea	64(%rsp),$tptr
	sub	%rdx,$rptr		# rewind

	movq	%r15,%xmm1
	pxor	%xmm0,%xmm0
	pshufd	\$0,%xmm1,%xmm1
	mov	40(%rsp),%rsi		# restore %rsp
.cfi_def_cfa	%rsi,8
	jmp	.Lmulx4x_cond_copy

.align	32
.Lmulx4x_cond_copy:
	movdqa	16*0($tptr),%xmm2
	movdqa	16*1($tptr),%xmm3
	lea	16*2($tptr),$tptr
	movdqu	16*0($rptr),%xmm4
	movdqu	16*1($rptr),%xmm5
	lea	16*2($rptr),$rptr
	movdqa	%xmm0,-16*2($tptr)	# zero tp
	movdqa	%xmm0,-16*1($tptr)
	pcmpeqd	%xmm1,%xmm0
	pand	%xmm1,%xmm2
	pand	%xmm1,%xmm3
	pand	%xmm0,%xmm4
	pand	%xmm0,%xmm5
	pxor	%xmm0,%xmm0
	por	%xmm2,%xmm4
	por	%xmm3,%xmm5
	movdqu	%xmm4,-16*2($rptr)
	movdqu	%xmm5,-16*1($rptr)
	sub	\$32,%rdx
	jnz	.Lmulx4x_cond_copy

	mov	%rdx,($tptr)

	mov	\$1,%rax
	mov	-48(%rsi),%r15
.cfi_restore	%r15
	mov	-40(%rsi),%r14
.cfi_restore	%r14
	mov	-32(%rsi),%r13
.cfi_restore	%r13
	mov	-24(%rsi),%r12
.cfi_restore	%r12
	mov	-16(%rsi),%rbp
.cfi_restore	%rbp
	mov	-8(%rsi),%rbx
.cfi_restore	%rbx
	lea	(%rsi),%rsp
.cfi_def_cfa_register	%rsp
.Lmulx4x_epilogue:
	ret
.cfi_endproc
.size	bn_mulx4x_mont,.-bn_mulx4x_mont
___
}}}
$code.=<<___;
.asciz	"Montgomery Multiplication for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
.align	16
___

# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
#		CONTEXT *context,DISPATCHER_CONTEXT *disp)
if ($win64) {
$rec="%rcx";
$frame="%rdx";
$context="%r8";
$disp="%r9";

$code.=<<___;
.extern	__imp_RtlVirtualUnwind
.type	mul_handler,\@abi-omnipotent
.align	16
mul_handler:
	push	%rsi
	push	%rdi
	push	%rbx
	push	%rbp
	push	%r12
	push	%r13
	push	%r14
	push	%r15
	pushfq
	sub	\$64,%rsp

	mov	120($context),%rax	# pull context->Rax
	mov	248($context),%rbx	# pull context->Rip

	mov	8($disp),%rsi		# disp->ImageBase
	mov	56($disp),%r11		# disp->HandlerData

	mov	0(%r11),%r10d		# HandlerData[0]
	lea	(%rsi,%r10),%r10	# end of prologue label
	cmp	%r10,%rbx		# context->Rip<end of prologue label
	jb	.Lcommon_seh_tail

	mov	152($context),%rax	# pull context->Rsp

	mov	4(%r11),%r10d		# HandlerData[1]
	lea	(%rsi,%r10),%r10	# epilogue label
	cmp	%r10,%rbx		# context->Rip>=epilogue label
	jae	.Lcommon_seh_tail

	mov	192($context),%r10	# pull $num
	mov	8(%rax,%r10,8),%rax	# pull saved stack pointer

	jmp	.Lcommon_pop_regs
.size	mul_handler,.-mul_handler

.type	sqr_handler,\@abi-omnipotent
.align	16
sqr_handler:
	push	%rsi
	push	%rdi
	push	%rbx
	push	%rbp
	push	%r12
	push	%r13
	push	%r14
	push	%r15
	pushfq
	sub	\$64,%rsp

	mov	120($context),%rax	# pull context->Rax
	mov	248($context),%rbx	# pull context->Rip

	mov	8($disp),%rsi		# disp->ImageBase
	mov	56($disp),%r11		# disp->HandlerData

	mov	0(%r11),%r10d		# HandlerData[0]
	lea	(%rsi,%r10),%r10	# end of prologue label
	cmp	%r10,%rbx		# context->Rip<.Lsqr_prologue
	jb	.Lcommon_seh_tail

	mov	4(%r11),%r10d		# HandlerData[1]
	lea	(%rsi,%r10),%r10	# body label
	cmp	%r10,%rbx		# context->Rip<.Lsqr_body
	jb	.Lcommon_pop_regs

	mov	152($context),%rax	# pull context->Rsp

	mov	8(%r11),%r10d		# HandlerData[2]
	lea	(%rsi,%r10),%r10	# epilogue label
	cmp	%r10,%rbx		# context->Rip>=.Lsqr_epilogue
	jae	.Lcommon_seh_tail

	mov	40(%rax),%rax		# pull saved stack pointer

.Lcommon_pop_regs:
	mov	-8(%rax),%rbx
	mov	-16(%rax),%rbp
	mov	-24(%rax),%r12
	mov	-32(%rax),%r13
	mov	-40(%rax),%r14
	mov	-48(%rax),%r15
	mov	%rbx,144($context)	# restore context->Rbx
	mov	%rbp,160($context)	# restore context->Rbp
	mov	%r12,216($context)	# restore context->R12
	mov	%r13,224($context)	# restore context->R13
	mov	%r14,232($context)	# restore context->R14
	mov	%r15,240($context)	# restore context->R15

.Lcommon_seh_tail:
	mov	8(%rax),%rdi
	mov	16(%rax),%rsi
	mov	%rax,152($context)	# restore context->Rsp
	mov	%rsi,168($context)	# restore context->Rsi
	mov	%rdi,176($context)	# restore context->Rdi

	mov	40($disp),%rdi		# disp->ContextRecord
	mov	$context,%rsi		# context
	mov	\$154,%ecx		# sizeof(CONTEXT)
	.long	0xa548f3fc		# cld; rep movsq

	mov	$disp,%rsi
	xor	%rcx,%rcx		# arg1, UNW_FLAG_NHANDLER
	mov	8(%rsi),%rdx		# arg2, disp->ImageBase
	mov	0(%rsi),%r8		# arg3, disp->ControlPc
	mov	16(%rsi),%r9		# arg4, disp->FunctionEntry
	mov	40(%rsi),%r10		# disp->ContextRecord
	lea	56(%rsi),%r11		# &disp->HandlerData
	lea	24(%rsi),%r12		# &disp->EstablisherFrame
	mov	%r10,32(%rsp)		# arg5
	mov	%r11,40(%rsp)		# arg6
	mov	%r12,48(%rsp)		# arg7
	mov	%rcx,56(%rsp)		# arg8, (NULL)
	call	*__imp_RtlVirtualUnwind(%rip)

	mov	\$1,%eax		# ExceptionContinueSearch
	add	\$64,%rsp
	popfq
	pop	%r15
	pop	%r14
	pop	%r13
	pop	%r12
	pop	%rbp
	pop	%rbx
	pop	%rdi
	pop	%rsi
	ret
.size	sqr_handler,.-sqr_handler

.section	.pdata
.align	4
	.rva	.LSEH_begin_bn_mul_mont
	.rva	.LSEH_end_bn_mul_mont
	.rva	.LSEH_info_bn_mul_mont

	.rva	.LSEH_begin_bn_mul4x_mont
	.rva	.LSEH_end_bn_mul4x_mont
	.rva	.LSEH_info_bn_mul4x_mont

	.rva	.LSEH_begin_bn_sqr8x_mont
	.rva	.LSEH_end_bn_sqr8x_mont
	.rva	.LSEH_info_bn_sqr8x_mont
___
$code.=<<___ if ($addx);
	.rva	.LSEH_begin_bn_mulx4x_mont
	.rva	.LSEH_end_bn_mulx4x_mont
	.rva	.LSEH_info_bn_mulx4x_mont
___
$code.=<<___;
.section	.xdata
.align	8
.LSEH_info_bn_mul_mont:
	.byte	9,0,0,0
	.rva	mul_handler
	.rva	.Lmul_body,.Lmul_epilogue	# HandlerData[]
.LSEH_info_bn_mul4x_mont:
	.byte	9,0,0,0
	.rva	mul_handler
	.rva	.Lmul4x_body,.Lmul4x_epilogue	# HandlerData[]
.LSEH_info_bn_sqr8x_mont:
	.byte	9,0,0,0
	.rva	sqr_handler
	.rva	.Lsqr8x_prologue,.Lsqr8x_body,.Lsqr8x_epilogue		# HandlerData[]
.align	8
___
$code.=<<___ if ($addx);
.LSEH_info_bn_mulx4x_mont:
	.byte	9,0,0,0
	.rva	sqr_handler
	.rva	.Lmulx4x_prologue,.Lmulx4x_body,.Lmulx4x_epilogue	# HandlerData[]
.align	8
___
}

print $code;
close STDOUT;