sc.ipynb 1.75 KB
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "/home/jaehun/super_resolution/dataset/IMAGENET/images/train\n"
     ]
    }
   ],
   "source": [
    "train=os.path.join(os.getcwd(),'train')\n",
    "test=os.path.join(os.getcwd(),'test')\n",
    "print(train)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'/home/jaehun/super_resolution/dataset/IMAGENET/images'"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "\n",
    "os.getcwd()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "f=open(\"iids_train.txt\", 'w')\n",
    "os.chdir(train)\n",
    "for i in os.listdir(os.getcwd()):\n",
    "    f.write(os.path.basename(i)[:-5]+'\\n')\n",
    "    #print(os.path.basename(i)[:-5])\n",
    "\n",
    "f.close()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.5.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}