train.py 6.62 KB
from __future__ import print_function
import argparse
from math import log10
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn

import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from utils.data import get_training_set, get_test_set
import datetime,random,os,csv
# Training settings
parser = argparse.ArgumentParser(description='PyTorch Super Resolution')
parser.add_argument('--upscale_factor', type=int,default=2, required=False, help="super resolution upscale factor")
parser.add_argument('--data', type=str,default='BSDS300',required=False, help="train data path")
parser.add_argument('--batchSize','-b', type=int, default=32, help='training batch size')
parser.add_argument('--testBatchSize', type=int, default=100, help='testing batch size')
parser.add_argument('--nEpochs','-n', type=int, default=400, help='number of epochs to train for')
parser.add_argument('--lr', type=float, default=0.001, help='Learning Rate. Default=0.01')
parser.add_argument('--cuda', action='store_true' ,help='use cuda?')
parser.add_argument('--threads','-j', type=int, default=11, help='number of threads for data loader to use')
parser.add_argument('--model','-m', type=int, default='1', help='name of log file name')

opt = parser.parse_args()
name=''
if opt.model is 1:
    from net.model1 import Net
    name='model_1 '
elif opt.model is 2:
    from net.model2 import Net
    name='model_2 '
elif opt.model is 3:
    from net.model3 import Net
    name='model_3 '
elif opt.model is 4:
    from net.model4 import Net
    name='model_4 '
elif opt.model is 5:
    from net.model5 import Net
    name='model_5 '
elif opt.model is 6:
    from net.model6 import Net
    name='model_6 '
elif opt.model is 7:
    from net.model7 import Net
    name='model_7 '
elif opt.model is 8:
    from net.model8 import Net
    name='model_8 '
elif opt.model is 8:
    from net.model8 import Net
    name='model_8 '
elif opt.model is 9:
    from net.model9 import Net
    name='model_9 '
elif opt.model is 11:
    from net.model11 import Net
    name='model_8 '
elif opt.model is 10:
    from net.model10 import Net
    name='model_10 '
else:
    print("illigel model!!\n")
    exit()
_time="result/"+name+str(datetime.datetime.now())[:10]+"_"+str(datetime.datetime.now())[11:-7]
os.makedirs(_time)
f = open(os.path.join(os.path.join(os.getcwd(),_time),name+".txt"), 'w')
f.write(str(opt))

print(opt)

fc = open(os.path.join(os.path.join(os.getcwd(),_time),name+".csv"), 'w', encoding='utf-8', newline='')
wr = csv.writer(fc)
idx=0
wr.writerow([idx,'upscale_factor',opt.upscale_factor])
idx+=1
wr.writerow([idx,'batchSize',opt.batchSize])
idx+=1
wr.writerow([idx,'testBatchSize',opt.testBatchSize])
idx+=1
wr.writerow([idx,'Epoch',opt.nEpochs])
idx+=1
wr.writerow([idx,'learningRate',opt.lr])
idx+=1
wr.writerow([idx,'threads',opt.threads])
idx+=1

cuda = opt.cuda
if cuda and not torch.cuda.is_available():
    raise Exception("No GPU found, please run without --cuda")

torch.manual_seed(random.randint(1,1000))
if cuda:
    torch.cuda.manual_seed(random.randint(1,1000))
f.write('===> Loading datasets')
print('===> Loading datasets')
train_set = get_training_set(opt.upscale_factor,opt.data)
test_set = get_test_set(opt.upscale_factor,opt.data)
training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True, pin_memory=True)
testing_data_loader = DataLoader(dataset=test_set, num_workers=opt.threads, batch_size=opt.testBatchSize, shuffle=False, pin_memory=True)
f.write('===> Building model')
print('===> Building model')

model = Net(upscale_factor=opt.upscale_factor)
criterion = nn.MSELoss().cuda()

if cuda:
    if torch.cuda.device_count() > 1:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = nn.DataParallel(model).cuda()
    if torch.cuda.is_available():
        model = model.cuda()
    criterion = criterion.cuda()
optimizer = optim.Adam(model.parameters(), lr=opt.lr)

model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print("Num of parameters",params)




wr.writerow([idx,'Num of parameters',params])
idx+=1
f.write('Num of parameters '+str(params))

cudnn.benchmark = True


def train(epoch):
    epoch_loss = 0
    global idx
    for iteration, batch in enumerate(training_data_loader, 1):
        input, target = Variable(batch[0]), Variable(batch[1])
        if cuda:
            input = input.cuda()
            target = target.cuda(async=True)

        optimizer.zero_grad()
        loss = criterion(model(input), target)
        epoch_loss += loss.data[0]
        loss.backward()
        optimizer.step()
        f.write("===> Epoch[{}]({}/{}): Loss: {:.4f}".format(epoch, iteration, len(training_data_loader), loss.data[0]))
        print("===> Epoch[{}]({}/{}): Loss: {:.4f}".format(epoch, iteration, len(training_data_loader), loss.data[0]))
        wr.writerow([idx,'Loss',epoch,iteration,loss.data[0]])
        idx+=1
    wr.writerow([idx,'Avg_ioss',epoch,epoch_loss / len(training_data_loader)])
    idx+=1
    f.write("===> Epoch {} Complete: Avg. Loss: {:.4f}".format(epoch, epoch_loss / len(training_data_loader)))
    print("===> Epoch {} Complete: Avg. Loss: {:.4f}".format(epoch, epoch_loss / len(training_data_loader)))


def test(epoch):
    avg_psnr = 0
    for batch in testing_data_loader:
        input, target = Variable(batch[0]), Variable(batch[1])
        if cuda:
            input = input.cuda()
            target = target.cuda()

        prediction = model(input)
        mse = criterion(prediction, target)
        psnr = 10 * log10(1 / mse.data[0])
        avg_psnr += psnr
    global idx
    wr.writerow([idx,'PSNR',epoch,avg_psnr / len(testing_data_loader)])
    idx+=1
    f.write("===> Avg. PSNR: {:.4f} dB".format(avg_psnr / len(testing_data_loader)))
    print("===> Avg. PSNR: {:.4f} dB".format(avg_psnr / len(testing_data_loader)))

def adjust_learning_rate(optimizer, epoch):
    """Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
    lr = opt.lr * (0.1 ** (epoch // 10))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr


def checkpoint(epoch):
    model_out_path = "model_epoch_{}.pth".format(epoch)
    model_out_path=os.path.join(os.path.join(os.getcwd(),_time),model_out_path)
    torch.save(model, model_out_path)

    f.write("Checkpoint saved to {}".format(model_out_path))
    print("Checkpoint saved to {}".format(model_out_path))

for epoch in range(1, opt.nEpochs + 1):
    adjust_learning_rate(optimizer, epoch)
    train(epoch)
    test(epoch)
    checkpoint(epoch)
fc.close()
f.close()