ColorGrading.cginc
7.02 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
#ifndef __COLOR_GRADING__
#define __COLOR_GRADING__
#include "ACES.cginc"
#include "Common.cginc"
// Set to 1 to use more precise but more expensive log/linear conversions. I haven't found a proper
// use case for the high precision version yet so I'm leaving this to 0.
#define COLOR_GRADING_PRECISE_LOG 0
//
// Alexa LogC converters (El 1000)
// See http://www.vocas.nl/webfm_send/964
// It's a good fit to store HDR values in log as the range is pretty wide (1 maps to ~58.85666) and
// is quick enough to compute.
//
struct ParamsLogC
{
half cut;
half a, b, c, d, e, f;
};
static const ParamsLogC LogC =
{
0.011361, // cut
5.555556, // a
0.047996, // b
0.244161, // c
0.386036, // d
5.301883, // e
0.092819 // f
};
half LinearToLogC_Precise(half x)
{
half o;
if (x > LogC.cut)
o = LogC.c * log10(LogC.a * x + LogC.b) + LogC.d;
else
o = LogC.e * x + LogC.f;
return o;
}
half3 LinearToLogC(half3 x)
{
#if COLOR_GRADING_PRECISE_LOG
return half3(
LinearToLogC_Precise(x.x),
LinearToLogC_Precise(x.y),
LinearToLogC_Precise(x.z)
);
#else
return LogC.c * log10(LogC.a * x + LogC.b) + LogC.d;
#endif
}
half LogCToLinear_Precise(half x)
{
half o;
if (x > LogC.e * LogC.cut + LogC.f)
o = (pow(10.0, (x - LogC.d) / LogC.c) - LogC.b) / LogC.a;
else
o = (x - LogC.f) / LogC.e;
return o;
}
half3 LogCToLinear(half3 x)
{
#if COLOR_GRADING_PRECISE_LOG
return half3(
LogCToLinear_Precise(x.x),
LogCToLinear_Precise(x.y),
LogCToLinear_Precise(x.z)
);
#else
return (pow(10.0, (x - LogC.d) / LogC.c) - LogC.b) / LogC.a;
#endif
}
//
// White balance
// Recommended workspace: ACEScg (linear)
//
static const half3x3 LIN_2_LMS_MAT = {
3.90405e-1, 5.49941e-1, 8.92632e-3,
7.08416e-2, 9.63172e-1, 1.35775e-3,
2.31082e-2, 1.28021e-1, 9.36245e-1
};
static const half3x3 LMS_2_LIN_MAT = {
2.85847e+0, -1.62879e+0, -2.48910e-2,
-2.10182e-1, 1.15820e+0, 3.24281e-4,
-4.18120e-2, -1.18169e-1, 1.06867e+0
};
half3 WhiteBalance(half3 c, half3 balance)
{
half3 lms = mul(LIN_2_LMS_MAT, c);
lms *= balance;
return mul(LMS_2_LIN_MAT, lms);
}
//
// Luminance (Rec.709 primaries according to ACES specs)
//
half AcesLuminance(half3 c)
{
return dot(c, half3(0.2126, 0.7152, 0.0722));
}
//
// Offset, Power, Slope (ASC-CDL)
// Works in Log & Linear. Results will be different but still correct.
//
half3 OffsetPowerSlope(half3 c, half3 offset, half3 power, half3 slope)
{
half3 so = c * slope + offset;
so = so > (0.0).xxx ? pow(so, power) : so;
return so;
}
//
// Lift, Gamma (pre-inverted), Gain
// Recommended workspace: ACEScg (linear)
//
half3 LiftGammaGain(half3 c, half3 lift, half3 invgamma, half3 gain)
{
//return gain * (lift * (1.0 - c) + pow(max(c, kEpsilon), invgamma));
//return pow(gain * (c + lift * (1.0 - c)), invgamma);
half3 power = invgamma;
half3 offset = lift * gain;
half3 slope = ((1.0).xxx - lift) * gain;
return OffsetPowerSlope(c, offset, power, slope);
}
//
// Saturation (should be used after offset/power/slope)
// Recommended workspace: ACEScc (log)
// Optimal range: [0.0, 2.0]
//
half3 Saturation(half3 c, half sat)
{
half luma = AcesLuminance(c);
return luma.xxx + sat * (c - luma.xxx);
}
//
// Basic contrast curve
// Recommended workspace: ACEScc (log)
// Optimal range: [0.0, 2.0]
//
half3 ContrastLog(half3 c, half con)
{
return (c - ACEScc_MIDGRAY) * con + ACEScc_MIDGRAY;
}
//
// Hue, Saturation, Value
// Ranges:
// Hue [0.0, 1.0]
// Sat [0.0, 1.0]
// Lum [0.0, HALF_MAX]
//
half3 RgbToHsv(half3 c)
{
half4 K = half4(0.0, -1.0 / 3.0, 2.0 / 3.0, -1.0);
half4 p = lerp(half4(c.bg, K.wz), half4(c.gb, K.xy), step(c.b, c.g));
half4 q = lerp(half4(p.xyw, c.r), half4(c.r, p.yzx), step(p.x, c.r));
half d = q.x - min(q.w, q.y);
half e = EPSILON;
return half3(abs(q.z + (q.w - q.y) / (6.0 * d + e)), d / (q.x + e), q.x);
}
half3 HsvToRgb(half3 c)
{
half4 K = half4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
half3 p = abs(frac(c.xxx + K.xyz) * 6.0 - K.www);
return c.z * lerp(K.xxx, saturate(p - K.xxx), c.y);
}
half RotateHue(half value, half low, half hi)
{
return (value < low)
? value + hi
: (value > hi)
? value - hi
: value;
}
//
// Remaps Y/R/G/B values
//
half3 YrgbCurve(half3 c, sampler2D curveTex)
{
const float kHalfPixel = (1.0 / 128.0) / 2.0;
// Y
c += kHalfPixel.xxx;
float mr = tex2D(curveTex, float2(c.r, 0.75)).a;
float mg = tex2D(curveTex, float2(c.g, 0.75)).a;
float mb = tex2D(curveTex, float2(c.b, 0.75)).a;
c = saturate(float3(mr, mg, mb));
// RGB
c += kHalfPixel.xxx;
float r = tex2D(curveTex, float2(c.r, 0.75)).r;
float g = tex2D(curveTex, float2(c.g, 0.75)).g;
float b = tex2D(curveTex, float2(c.b, 0.75)).b;
return saturate(half3(r, g, b));
}
//
// (X) Hue VS Hue - Remaps hue on a curve according to the current hue
// Input is Hue [0.0, 1.0]
// Output is Hue [0.0, 1.0]
//
half SecondaryHueHue(half hue, sampler2D curveTex)
{
half offset = saturate(tex2D(curveTex, half2(hue, 0.25)).x) - 0.5;
hue += offset;
hue = RotateHue(hue, 0.0, 1.0);
return hue;
}
//
// (Y) Hue VS Saturation - Remaps saturation on a curve according to the current hue
// Input is Hue [0.0, 1.0]
// Output is Saturation multiplier [0.0, 2.0]
//
half SecondaryHueSat(half hue, sampler2D curveTex)
{
return saturate(tex2D(curveTex, half2(hue, 0.25)).y) * 2.0;
}
//
// (Z) Saturation VS Saturation - Remaps saturation on a curve according to the current saturation
// Input is Saturation [0.0, 1.0]
// Output is Saturation multiplier [0.0, 2.0]
//
half SecondarySatSat(half sat, sampler2D curveTex)
{
return saturate(tex2D(curveTex, half2(sat, 0.25)).z) * 2.0;
}
//
// (W) Luminance VS Saturation - Remaps saturation on a curve according to the current luminance
// Input is Luminance [0.0, 1.0]
// Output is Saturation multiplier [0.0, 2.0]
//
half SecondaryLumSat(half lum, sampler2D curveTex)
{
return saturate(tex2D(curveTex, half2(lum, 0.25)).w) * 2.0;
}
//
// Channel mixing (same as Photoshop's and DaVinci's Resolve)
// Recommended workspace: ACEScg (linear)
// Input mixers should be in range [-2.0;2.0]
//
half3 ChannelMixer(half3 c, half3 red, half3 green, half3 blue)
{
return half3(
dot(c, red),
dot(c, green),
dot(c, blue)
);
}
//
// LUT grading
// scaleOffset = (1 / lut_width, 1 / lut_height, lut_height - 1)
//
half3 ApplyLut2d(sampler2D tex, half3 uvw, half3 scaleOffset)
{
// Strip format where `height = sqrt(width)`
uvw.z *= scaleOffset.z;
half shift = floor(uvw.z);
uvw.xy = uvw.xy * scaleOffset.z * scaleOffset.xy + scaleOffset.xy * 0.5;
uvw.x += shift * scaleOffset.y;
uvw.xyz = lerp(tex2D(tex, uvw.xy).rgb, tex2D(tex, uvw.xy + half2(scaleOffset.y, 0)).rgb, uvw.z - shift);
return uvw;
}
half3 ApplyLut3d(sampler3D tex, half3 uvw)
{
return tex3D(tex, uvw).rgb;
}
#endif // __COLOR_GRADING__