ACES.cginc
45.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
#ifndef __ACES__
#define __ACES__
/**
* https://github.com/ampas/aces-dev
*
* Academy Color Encoding System (ACES) software and tools are provided by the
* Academy under the following terms and conditions: A worldwide, royalty-free,
* non-exclusive right to copy, modify, create derivatives, and use, in source and
* binary forms, is hereby granted, subject to acceptance of this license.
*
* Copyright 2015 Academy of Motion Picture Arts and Sciences (A.M.P.A.S.).
* Portions contributed by others as indicated. All rights reserved.
*
* Performance of any of the aforementioned acts indicates acceptance to be bound
* by the following terms and conditions:
*
* * Copies of source code, in whole or in part, must retain the above copyright
* notice, this list of conditions and the Disclaimer of Warranty.
*
* * Use in binary form must retain the above copyright notice, this list of
* conditions and the Disclaimer of Warranty in the documentation and/or other
* materials provided with the distribution.
*
* * Nothing in this license shall be deemed to grant any rights to trademarks,
* copyrights, patents, trade secrets or any other intellectual property of
* A.M.P.A.S. or any contributors, except as expressly stated herein.
*
* * Neither the name "A.M.P.A.S." nor the name of any other contributors to this
* software may be used to endorse or promote products derivative of or based on
* this software without express prior written permission of A.M.P.A.S. or the
* contributors, as appropriate.
*
* This license shall be construed pursuant to the laws of the State of
* California, and any disputes related thereto shall be subject to the
* jurisdiction of the courts therein.
*
* Disclaimer of Warranty: THIS SOFTWARE IS PROVIDED BY A.M.P.A.S. AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
* NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL A.M.P.A.S., OR ANY
* CONTRIBUTORS OR DISTRIBUTORS, BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, RESITUTIONARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, THE ACADEMY SPECIFICALLY
* DISCLAIMS ANY REPRESENTATIONS OR WARRANTIES WHATSOEVER RELATED TO PATENT OR
* OTHER INTELLECTUAL PROPERTY RIGHTS IN THE ACADEMY COLOR ENCODING SYSTEM, OR
* APPLICATIONS THEREOF, HELD BY PARTIES OTHER THAN A.M.P.A.S.,WHETHER DISCLOSED OR
* UNDISCLOSED.
*/
//#define CUSTOM_WHITE_POINT
/*
Basic usage :
half4 color = tex2D(_MainTex, i.uv);
half3 aces = unity_to_ACES(color.rgb);
half3 oces = RRT(aces);
half3 odt = ODT_RGBmonitor_100nits_dim(oces);
return half4(odt, color.a);
If you want to customize the white point, uncomment the previous define and set uniforms accordingly:
float whitePoint = 48f; // Default ACES value
material.SetFloat("CINEMA_WHITE", whitePoint);
material.SetFloat("CINEMA_DARK", whitePoint / 2400f);
*/
#include "Common.cginc"
#define ACEScc_MAX 1.4679964
#define ACEScc_MIDGRAY 0.4135884
//
// Precomputed matrices (pre-transposed)
// See https://github.com/ampas/aces-dev/blob/master/transforms/ctl/README-MATRIX.md
//
static const half3x3 sRGB_2_AP0 = {
0.4397010, 0.3829780, 0.1773350,
0.0897923, 0.8134230, 0.0967616,
0.0175440, 0.1115440, 0.8707040
};
static const half3x3 sRGB_2_AP1 = {
0.61319, 0.33951, 0.04737,
0.07021, 0.91634, 0.01345,
0.02062, 0.10957, 0.86961
};
static const half3x3 AP0_2_sRGB = {
2.52169, -1.13413, -0.38756,
-0.27648, 1.37272, -0.09624,
-0.01538, -0.15298, 1.16835,
};
static const half3x3 AP1_2_sRGB = {
1.70505, -0.62179, -0.08326,
-0.13026, 1.14080, -0.01055,
-0.02400, -0.12897, 1.15297,
};
static const half3x3 AP0_2_AP1_MAT = {
1.4514393161, -0.2365107469, -0.2149285693,
-0.0765537734, 1.1762296998, -0.0996759264,
0.0083161484, -0.0060324498, 0.9977163014
};
static const half3x3 AP1_2_AP0_MAT = {
0.6954522414, 0.1406786965, 0.1638690622,
0.0447945634, 0.8596711185, 0.0955343182,
-0.0055258826, 0.0040252103, 1.0015006723
};
static const half3x3 AP1_2_XYZ_MAT = {
0.6624541811, 0.1340042065, 0.1561876870,
0.2722287168, 0.6740817658, 0.0536895174,
-0.0055746495, 0.0040607335, 1.0103391003
};
static const half3x3 XYZ_2_AP1_MAT = {
1.6410233797, -0.3248032942, -0.2364246952,
-0.6636628587, 1.6153315917, 0.0167563477,
0.0117218943, -0.0082844420, 0.9883948585
};
static const half3x3 XYZ_2_REC709_MAT = {
3.2409699419, -1.5373831776, -0.4986107603,
-0.9692436363, 1.8759675015, 0.0415550574,
0.0556300797, -0.2039769589, 1.0569715142
};
static const half3x3 XYZ_2_REC2020_MAT = {
1.7166511880, -0.3556707838, -0.2533662814,
-0.6666843518, 1.6164812366, 0.0157685458,
0.0176398574, -0.0427706133, 0.9421031212
};
static const half3x3 XYZ_2_DCIP3_MAT = {
2.7253940305, -1.0180030062, -0.4401631952,
-0.7951680258, 1.6897320548, 0.0226471906,
0.0412418914, -0.0876390192, 1.1009293786
};
static const half3 AP1_RGB2Y = half3(0.272229, 0.674082, 0.0536895);
static const half3x3 RRT_SAT_MAT = {
0.9708890, 0.0269633, 0.00214758,
0.0108892, 0.9869630, 0.00214758,
0.0108892, 0.0269633, 0.96214800
};
static const half3x3 ODT_SAT_MAT = {
0.949056, 0.0471857, 0.00375827,
0.019056, 0.9771860, 0.00375827,
0.019056, 0.0471857, 0.93375800
};
static const half3x3 D60_2_D65_CAT = {
0.98722400, -0.00611327, 0.0159533,
-0.00759836, 1.00186000, 0.0053302,
0.00307257, -0.00509595, 1.0816800
};
//
// Unity to ACES
//
// converts Unity raw (sRGB primaries) to
// ACES2065-1 (AP0 w/ linear encoding)
//
half3 unity_to_ACES(half3 x)
{
x = mul(sRGB_2_AP0, x);
return x;
}
//
// ACES to Unity
//
// converts ACES2065-1 (AP0 w/ linear encoding)
// Unity raw (sRGB primaries) to
//
half3 ACES_to_unity(half3 x)
{
x = mul(AP0_2_sRGB, x);
return x;
}
//
// Unity to ACEScg
//
// converts Unity raw (sRGB primaries) to
// ACEScg (AP1 w/ linear encoding)
//
half3 unity_to_ACEScg(half3 x)
{
x = mul(sRGB_2_AP1, x);
return x;
}
//
// ACEScg to Unity
//
// converts ACEScg (AP1 w/ linear encoding) to
// Unity raw (sRGB primaries)
//
half3 ACEScg_to_unity(half3 x)
{
x = mul(AP1_2_sRGB, x);
return x;
}
//
// ACES Color Space Conversion - ACES to ACEScc
//
// converts ACES2065-1 (AP0 w/ linear encoding) to
// ACEScc (AP1 w/ logarithmic encoding)
//
// This transform follows the formulas from section 4.4 in S-2014-003
//
half ACES_to_ACEScc(half x)
{
if (x <= 0.0)
return -0.35828683; // = (log2(pow(2.0, -15.0) * 0.5) + 9.72) / 17.52
else if (x < pow(2.0, -15.0))
return (log2(pow(2.0, -16.0) + x * 0.5) + 9.72) / 17.52;
else // (x >= pow(2.0, -15.0))
return (log2(x) + 9.72) / 17.52;
}
half3 ACES_to_ACEScc(half3 x)
{
x = clamp(x, 0.0, HALF_MAX);
// x is clamped to [0, HALF_MAX], skip the <= 0 check
return (x < 0.00003051757) ? (log2(0.00001525878 + x * 0.5) + 9.72) / 17.52 : (log2(x) + 9.72) / 17.52;
/*
return half3(
ACES_to_ACEScc(x.r),
ACES_to_ACEScc(x.g),
ACES_to_ACEScc(x.b)
);
*/
}
//
// ACES Color Space Conversion - ACEScc to ACES
//
// converts ACEScc (AP1 w/ ACESlog encoding) to
// ACES2065-1 (AP0 w/ linear encoding)
//
// This transform follows the formulas from section 4.4 in S-2014-003
//
half ACEScc_to_ACES(half x)
{
// TODO: Optimize me
if (x < -0.3013698630) // (9.72 - 15) / 17.52
return (pow(2.0, x * 17.52 - 9.72) - pow(2.0, -16.0)) * 2.0;
else if (x < (log2(HALF_MAX) + 9.72) / 17.52)
return pow(2.0, x * 17.52 - 9.72);
else // (x >= (log2(HALF_MAX) + 9.72) / 17.52)
return HALF_MAX;
}
half3 ACEScc_to_ACES(half3 x)
{
return half3(
ACEScc_to_ACES(x.r),
ACEScc_to_ACES(x.g),
ACEScc_to_ACES(x.b)
);
}
//
// ACES Color Space Conversion - ACES to ACEScg
//
// converts ACES2065-1 (AP0 w/ linear encoding) to
// ACEScg (AP1 w/ linear encoding)
//
half3 ACES_to_ACEScg(half3 x)
{
return mul(AP0_2_AP1_MAT, x);
}
//
// ACES Color Space Conversion - ACEScg to ACES
//
// converts ACEScg (AP1 w/ linear encoding) to
// ACES2065-1 (AP0 w/ linear encoding)
//
half3 ACEScg_to_ACES(half3 x)
{
return mul(AP1_2_AP0_MAT, x);
}
//
// Reference Rendering Transform (RRT)
//
// Input is ACES
// Output is OCES
//
half rgb_2_saturation(half3 rgb)
{
const half TINY = 1e-10;
half mi = Min3(rgb);
half ma = Max3(rgb);
return (max(ma, TINY) - max(mi, TINY)) / max(ma, 1e-2);
}
half rgb_2_yc(half3 rgb)
{
const half ycRadiusWeight = 1.75;
// Converts RGB to a luminance proxy, here called YC
// YC is ~ Y + K * Chroma
// Constant YC is a cone-shaped surface in RGB space, with the tip on the
// neutral axis, towards white.
// YC is normalized: RGB 1 1 1 maps to YC = 1
//
// ycRadiusWeight defaults to 1.75, although can be overridden in function
// call to rgb_2_yc
// ycRadiusWeight = 1 -> YC for pure cyan, magenta, yellow == YC for neutral
// of same value
// ycRadiusWeight = 2 -> YC for pure red, green, blue == YC for neutral of
// same value.
half r = rgb.x;
half g = rgb.y;
half b = rgb.z;
half chroma = sqrt(b * (b - g) + g * (g - r) + r * (r - b));
return (b + g + r + ycRadiusWeight * chroma) / 3.0;
}
half rgb_2_hue(half3 rgb)
{
// Returns a geometric hue angle in degrees (0-360) based on RGB values.
// For neutral colors, hue is undefined and the function will return a quiet NaN value.
half hue;
if (rgb.x == rgb.y && rgb.y == rgb.z)
hue = 0.0; // RGB triplets where RGB are equal have an undefined hue
else
hue = (180.0 / UNITY_PI) * atan2(sqrt(3.0) * (rgb.y - rgb.z), 2.0 * rgb.x - rgb.y - rgb.z);
if (hue < 0.0) hue = hue + 360.0;
return hue;
}
half center_hue(half hue, half centerH)
{
half hueCentered = hue - centerH;
if (hueCentered < -180.0) hueCentered = hueCentered + 360.0;
else if (hueCentered > 180.0) hueCentered = hueCentered - 360.0;
return hueCentered;
}
half sigmoid_shaper(half x)
{
// Sigmoid function in the range 0 to 1 spanning -2 to +2.
half t = max(1.0 - abs(x / 2.0), 0.0);
half y = 1.0 + sign(x) * (1.0 - t * t);
return y / 2.0;
}
half glow_fwd(half ycIn, half glowGainIn, half glowMid)
{
half glowGainOut;
if (ycIn <= 2.0 / 3.0 * glowMid)
glowGainOut = glowGainIn;
else if (ycIn >= 2.0 * glowMid)
glowGainOut = 0.0;
else
glowGainOut = glowGainIn * (glowMid / ycIn - 1.0 / 2.0);
return glowGainOut;
}
/*
half cubic_basis_shaper
(
half x,
half w // full base width of the shaper function (in degrees)
)
{
half M[4][4] = {
{ -1.0 / 6, 3.0 / 6, -3.0 / 6, 1.0 / 6 },
{ 3.0 / 6, -6.0 / 6, 3.0 / 6, 0.0 / 6 },
{ -3.0 / 6, 0.0 / 6, 3.0 / 6, 0.0 / 6 },
{ 1.0 / 6, 4.0 / 6, 1.0 / 6, 0.0 / 6 }
};
half knots[5] = {
-w / 2.0,
-w / 4.0,
0.0,
w / 4.0,
w / 2.0
};
half y = 0.0;
if ((x > knots[0]) && (x < knots[4]))
{
half knot_coord = (x - knots[0]) * 4.0 / w;
int j = knot_coord;
half t = knot_coord - j;
half monomials[4] = { t*t*t, t*t, t, 1.0 };
// (if/else structure required for compatibility with CTL < v1.5.)
if (j == 3)
{
y = monomials[0] * M[0][0] + monomials[1] * M[1][0] +
monomials[2] * M[2][0] + monomials[3] * M[3][0];
}
else if (j == 2)
{
y = monomials[0] * M[0][1] + monomials[1] * M[1][1] +
monomials[2] * M[2][1] + monomials[3] * M[3][1];
}
else if (j == 1)
{
y = monomials[0] * M[0][2] + monomials[1] * M[1][2] +
monomials[2] * M[2][2] + monomials[3] * M[3][2];
}
else if (j == 0)
{
y = monomials[0] * M[0][3] + monomials[1] * M[1][3] +
monomials[2] * M[2][3] + monomials[3] * M[3][3];
}
else
{
y = 0.0;
}
}
return y * 3.0 / 2.0;
}
*/
static const half3x3 M = {
0.5, -1.0, 0.5,
-1.0, 1.0, 0.0,
0.5, 0.5, 0.0
};
half segmented_spline_c5_fwd(half x)
{
const half coefsLow[6] = { -4.0000000000, -4.0000000000, -3.1573765773, -0.4852499958, 1.8477324706, 1.8477324706 }; // coefs for B-spline between minPoint and midPoint (units of log luminance)
const half coefsHigh[6] = { -0.7185482425, 2.0810307172, 3.6681241237, 4.0000000000, 4.0000000000, 4.0000000000 }; // coefs for B-spline between midPoint and maxPoint (units of log luminance)
const half2 minPoint = half2(0.18 * exp2(-15.0), 0.0001); // {luminance, luminance} linear extension below this
const half2 midPoint = half2(0.18, 0.48); // {luminance, luminance}
const half2 maxPoint = half2(0.18 * exp2(18.0), 10000.0); // {luminance, luminance} linear extension above this
const half slopeLow = 0.0; // log-log slope of low linear extension
const half slopeHigh = 0.0; // log-log slope of high linear extension
const int N_KNOTS_LOW = 4;
const int N_KNOTS_HIGH = 4;
// Check for negatives or zero before taking the log. If negative or zero,
// set to ACESMIN.1
float xCheck = x;
if (xCheck <= 0.0) xCheck = 0.00006103515; // = pow(2.0, -14.0);
half logx = log10(xCheck);
half logy;
if (logx <= log10(minPoint.x))
{
logy = logx * slopeLow + (log10(minPoint.y) - slopeLow * log10(minPoint.x));
}
else if ((logx > log10(minPoint.x)) && (logx < log10(midPoint.x)))
{
half knot_coord = (N_KNOTS_LOW - 1) * (logx - log10(minPoint.x)) / (log10(midPoint.x) - log10(minPoint.x));
int j = knot_coord;
half t = knot_coord - j;
half3 cf = half3(coefsLow[j], coefsLow[j + 1], coefsLow[j + 2]);
half3 monomials = half3(t * t, t, 1.0);
logy = dot(monomials, mul(M, cf));
}
else if ((logx >= log10(midPoint.x)) && (logx < log10(maxPoint.x)))
{
half knot_coord = (N_KNOTS_HIGH - 1) * (logx - log10(midPoint.x)) / (log10(maxPoint.x) - log10(midPoint.x));
int j = knot_coord;
half t = knot_coord - j;
half3 cf = half3(coefsHigh[j], coefsHigh[j + 1], coefsHigh[j + 2]);
half3 monomials = half3(t * t, t, 1.0);
logy = dot(monomials, mul(M, cf));
}
else
{ //if (logIn >= log10(maxPoint.x)) {
logy = logx * slopeHigh + (log10(maxPoint.y) - slopeHigh * log10(maxPoint.x));
}
return pow(10.0, logy);
}
half segmented_spline_c9_fwd(half x)
{
const half coefsLow[10] = { -1.6989700043, -1.6989700043, -1.4779000000, -1.2291000000, -0.8648000000, -0.4480000000, 0.0051800000, 0.4511080334, 0.9113744414, 0.9113744414 }; // coefs for B-spline between minPoint and midPoint (units of log luminance)
const half coefsHigh[10] = { 0.5154386965, 0.8470437783, 1.1358000000, 1.3802000000, 1.5197000000, 1.5985000000, 1.6467000000, 1.6746091357, 1.6878733390, 1.6878733390 }; // coefs for B-spline between midPoint and maxPoint (units of log luminance)
const half2 minPoint = half2(segmented_spline_c5_fwd(0.18 * exp2(-6.5)), 0.02); // {luminance, luminance} linear extension below this
const half2 midPoint = half2(segmented_spline_c5_fwd(0.18), 4.8); // {luminance, luminance}
const half2 maxPoint = half2(segmented_spline_c5_fwd(0.18 * exp2(6.5)), 48.0); // {luminance, luminance} linear extension above this
const half slopeLow = 0.0; // log-log slope of low linear extension
const half slopeHigh = 0.04; // log-log slope of high linear extension
const int N_KNOTS_LOW = 8;
const int N_KNOTS_HIGH = 8;
// Check for negatives or zero before taking the log. If negative or zero,
// set to OCESMIN.
half xCheck = x;
if (xCheck <= 0.0) xCheck = 1e-4;
half logx = log10(xCheck);
half logy;
if (logx <= log10(minPoint.x))
{
logy = logx * slopeLow + (log10(minPoint.y) - slopeLow * log10(minPoint.x));
}
else if ((logx > log10(minPoint.x)) && (logx < log10(midPoint.x)))
{
half knot_coord = (N_KNOTS_LOW - 1) * (logx - log10(minPoint.x)) / (log10(midPoint.x) - log10(minPoint.x));
int j = knot_coord;
half t = knot_coord - j;
half3 cf = half3(coefsLow[j], coefsLow[j + 1], coefsLow[j + 2]);
half3 monomials = half3(t * t, t, 1.0);
logy = dot(monomials, mul(M, cf));
}
else if ((logx >= log10(midPoint.x)) && (logx < log10(maxPoint.x)))
{
half knot_coord = (N_KNOTS_HIGH - 1) * (logx - log10(midPoint.x)) / (log10(maxPoint.x) - log10(midPoint.x));
int j = knot_coord;
half t = knot_coord - j;
half3 cf = half3(coefsHigh[j], coefsHigh[j + 1], coefsHigh[j + 2]);
half3 monomials = half3(t * t, t, 1.0);
logy = dot(monomials, mul(M, cf));
}
else
{ //if (logIn >= log10(maxPoint.x)) {
logy = logx * slopeHigh + (log10(maxPoint.y) - slopeHigh * log10(maxPoint.x));
}
return pow(10.0, logy);
}
static const half RRT_GLOW_GAIN = 0.05;
static const half RRT_GLOW_MID = 0.08;
static const half RRT_RED_SCALE = 0.82;
static const half RRT_RED_PIVOT = 0.03;
static const half RRT_RED_HUE = 0.0;
static const half RRT_RED_WIDTH = 135.0;
static const half RRT_SAT_FACTOR = 0.96;
half3 RRT(half3 aces)
{
// --- Glow module --- //
half saturation = rgb_2_saturation(aces);
half ycIn = rgb_2_yc(aces);
half s = sigmoid_shaper((saturation - 0.4) / 0.2);
half addedGlow = 1.0 + glow_fwd(ycIn, RRT_GLOW_GAIN * s, RRT_GLOW_MID);
aces *= addedGlow;
// --- Red modifier --- //
half hue = rgb_2_hue(aces);
half centeredHue = center_hue(hue, RRT_RED_HUE);
half hueWeight;
{
//hueWeight = cubic_basis_shaper(centeredHue, RRT_RED_WIDTH);
hueWeight = smoothstep(0.0, 1.0, 1.0 - abs(2.0 * centeredHue / RRT_RED_WIDTH));
hueWeight *= hueWeight;
}
aces.r += hueWeight * saturation * (RRT_RED_PIVOT - aces.r) * (1.0 - RRT_RED_SCALE);
// --- ACES to RGB rendering space --- //
aces = clamp(aces, 0.0, HALF_MAX); // avoids saturated negative colors from becoming positive in the matrix
half3 rgbPre = mul(AP0_2_AP1_MAT, aces);
rgbPre = clamp(rgbPre, 0, HALF_MAX);
// --- Global desaturation --- //
//rgbPre = mul(RRT_SAT_MAT, rgbPre);
rgbPre = lerp(dot(rgbPre, AP1_RGB2Y).xxx, rgbPre, RRT_SAT_FACTOR.xxx);
// --- Apply the tonescale independently in rendering-space RGB --- //
half3 rgbPost;
rgbPost.x = segmented_spline_c5_fwd(rgbPre.x);
rgbPost.y = segmented_spline_c5_fwd(rgbPre.y);
rgbPost.z = segmented_spline_c5_fwd(rgbPre.z);
// --- RGB rendering space to OCES --- //
half3 rgbOces = mul(AP1_2_AP0_MAT, rgbPost);
return rgbOces;
}
//
// Output Device Transform
//
half3 Y_2_linCV(half3 Y, half Ymax, half Ymin)
{
return (Y - Ymin) / (Ymax - Ymin);
}
half3 XYZ_2_xyY(half3 XYZ)
{
half divisor = max(dot(XYZ, (1.0).xxx), 1e-4);
return half3(XYZ.xy / divisor, XYZ.y);
}
half3 xyY_2_XYZ(half3 xyY)
{
half m = xyY.z / max(xyY.y, 1e-4);
half3 XYZ = half3(xyY.xz, (1.0 - xyY.x - xyY.y));
XYZ.xz *= m;
return XYZ;
}
static const half DIM_SURROUND_GAMMA = 0.9811;
half3 darkSurround_to_dimSurround(half3 linearCV)
{
half3 XYZ = mul(AP1_2_XYZ_MAT, linearCV);
half3 xyY = XYZ_2_xyY(XYZ);
xyY.z = clamp(xyY.z, 0.0, HALF_MAX);
xyY.z = pow(xyY.z, DIM_SURROUND_GAMMA);
XYZ = xyY_2_XYZ(xyY);
return mul(XYZ_2_AP1_MAT, XYZ);
}
half moncurve_r(half y, half gamma, half offs)
{
// Reverse monitor curve
half x;
const half yb = pow(offs * gamma / ((gamma - 1.0) * (1.0 + offs)), gamma);
const half rs = pow((gamma - 1.0) / offs, gamma - 1.0) * pow((1.0 + offs) / gamma, gamma);
if (y >= yb)
x = (1.0 + offs) * pow(y, 1.0 / gamma) - offs;
else
x = y * rs;
return x;
}
half bt1886_r(half L, half gamma, half Lw, half Lb)
{
// The reference EOTF specified in Rec. ITU-R BT.1886
// L = a(max[(V+b),0])^g
half a = pow(pow(Lw, 1.0 / gamma) - pow(Lb, 1.0 / gamma), gamma);
half b = pow(Lb, 1.0 / gamma) / (pow(Lw, 1.0 / gamma) - pow(Lb, 1.0 / gamma));
half V = pow(max(L / a, 0.0), 1.0 / gamma) - b;
return V;
}
half roll_white_fwd(
half x, // color value to adjust (white scaled to around 1.0)
half new_wht, // white adjustment (e.g. 0.9 for 10% darkening)
half width // adjusted width (e.g. 0.25 for top quarter of the tone scale)
)
{
const half x0 = -1.0;
const half x1 = x0 + width;
const half y0 = -new_wht;
const half y1 = x1;
const half m1 = (x1 - x0);
const half a = y0 - y1 + m1;
const half b = 2.0 * (y1 - y0) - m1;
const half c = y0;
const half t = (-x - x0) / (x1 - x0);
half o = 0.0;
if (t < 0.0)
o = -(t * b + c);
else if (t > 1.0)
o = x;
else
o = -((t * a + b) * t + c);
return o;
}
half3 linear_to_sRGB(half3 x)
{
return (x <= 0.0031308 ? (x * 12.9232102) : 1.055 * pow(x, 1.0 / 2.4) - 0.055);
}
half3 linear_to_bt1886(half3 x, half gamma, half Lw, half Lb)
{
// Good enough approximation for now, may consider using the exact formula instead
// TODO: Experiment
return pow(max(x, 0.0), 1.0 / 2.4);
// Correct implementation (Reference EOTF specified in Rec. ITU-R BT.1886) :
// L = a(max[(V+b),0])^g
half invgamma = 1.0 / gamma;
half p_Lw = pow(Lw, invgamma);
half p_Lb = pow(Lb, invgamma);
half3 a = pow(p_Lw - p_Lb, gamma).xxx;
half3 b = (p_Lb / p_Lw - p_Lb).xxx;
half3 V = pow(max(x / a, 0.0), invgamma.xxx) - b;
return V;
}
#if defined(CUSTOM_WHITE_POINT)
half CINEMA_WHITE;
half CINEMA_BLACK;
#else
static const half CINEMA_WHITE = 48.0;
static const half CINEMA_BLACK = CINEMA_WHITE / 2400.0;
#endif
static const half ODT_SAT_FACTOR = 0.93;
// <ACEStransformID>ODT.Academy.RGBmonitor_100nits_dim.a1.0.3</ACEStransformID>
// <ACESuserName>ACES 1.0 Output - sRGB</ACESuserName>
//
// Output Device Transform - RGB computer monitor
//
//
// Summary :
// This transform is intended for mapping OCES onto a desktop computer monitor
// typical of those used in motion picture visual effects production. These
// monitors may occasionally be referred to as "sRGB" displays, however, the
// monitor for which this transform is designed does not exactly match the
// specifications in IEC 61966-2-1:1999.
//
// The assumed observer adapted white is D65, and the viewing environment is
// that of a dim surround.
//
// The monitor specified is intended to be more typical of those found in
// visual effects production.
//
// Device Primaries :
// Primaries are those specified in Rec. ITU-R BT.709
// CIE 1931 chromaticities: x y Y
// Red: 0.64 0.33
// Green: 0.3 0.6
// Blue: 0.15 0.06
// White: 0.3127 0.329 100 cd/m^2
//
// Display EOTF :
// The reference electro-optical transfer function specified in
// IEC 61966-2-1:1999.
//
// Signal Range:
// This transform outputs full range code values.
//
// Assumed observer adapted white point:
// CIE 1931 chromaticities: x y
// 0.3127 0.329
//
// Viewing Environment:
// This ODT has a compensation for viewing environment variables more typical
// of those associated with video mastering.
//
half3 ODT_RGBmonitor_100nits_dim(half3 oces)
{
// OCES to RGB rendering space
half3 rgbPre = mul(AP0_2_AP1_MAT, oces);
// Apply the tonescale independently in rendering-space RGB
half3 rgbPost;
rgbPost.x = segmented_spline_c9_fwd(rgbPre.x);
rgbPost.y = segmented_spline_c9_fwd(rgbPre.y);
rgbPost.z = segmented_spline_c9_fwd(rgbPre.z);
// Scale luminance to linear code value
half3 linearCV = Y_2_linCV(rgbPost, CINEMA_WHITE, CINEMA_BLACK);
// Apply gamma adjustment to compensate for dim surround
linearCV = darkSurround_to_dimSurround(linearCV);
// Apply desaturation to compensate for luminance difference
//linearCV = mul(ODT_SAT_MAT, linearCV);
linearCV = lerp(dot(linearCV, AP1_RGB2Y).xxx, linearCV, ODT_SAT_FACTOR.xxx);
// Convert to display primary encoding
// Rendering space RGB to XYZ
half3 XYZ = mul(AP1_2_XYZ_MAT, linearCV);
// Apply CAT from ACES white point to assumed observer adapted white point
XYZ = mul(D60_2_D65_CAT, XYZ);
// CIE XYZ to display primaries
linearCV = mul(XYZ_2_REC709_MAT, XYZ);
// Handle out-of-gamut values
// Clip values < 0 or > 1 (i.e. projecting outside the display primaries)
linearCV = saturate(linearCV);
// TODO: Revisit when it is possible to deactivate Unity default framebuffer encoding
// with sRGB opto-electrical transfer function (OETF).
/*
// Encode linear code values with transfer function
half3 outputCV;
// moncurve_r with gamma of 2.4 and offset of 0.055 matches the EOTF found in IEC 61966-2-1:1999 (sRGB)
const half DISPGAMMA = 2.4;
const half OFFSET = 0.055;
outputCV.x = moncurve_r(linearCV.x, DISPGAMMA, OFFSET);
outputCV.y = moncurve_r(linearCV.y, DISPGAMMA, OFFSET);
outputCV.z = moncurve_r(linearCV.z, DISPGAMMA, OFFSET);
outputCV = linear_to_sRGB(linearCV);
*/
// Unity already draws to a sRGB target
return linearCV;
}
// <ACEStransformID>ODT.Academy.RGBmonitor_D60sim_100nits_dim.a1.0.3</ACEStransformID>
// <ACESuserName>ACES 1.0 Output - sRGB (D60 sim.)</ACESuserName>
//
// Output Device Transform - RGB computer monitor (D60 simulation)
//
//
// Summary :
// This transform is intended for mapping OCES onto a desktop computer monitor
// typical of those used in motion picture visual effects production. These
// monitors may occasionally be referred to as "sRGB" displays, however, the
// monitor for which this transform is designed does not exactly match the
// specifications in IEC 61966-2-1:1999.
//
// The assumed observer adapted white is D60, and the viewing environment is
// that of a dim surround.
//
// The monitor specified is intended to be more typical of those found in
// visual effects production.
//
// Device Primaries :
// Primaries are those specified in Rec. ITU-R BT.709
// CIE 1931 chromaticities: x y Y
// Red: 0.64 0.33
// Green: 0.3 0.6
// Blue: 0.15 0.06
// White: 0.3127 0.329 100 cd/m^2
//
// Display EOTF :
// The reference electro-optical transfer function specified in
// IEC 61966-2-1:1999.
//
// Signal Range:
// This transform outputs full range code values.
//
// Assumed observer adapted white point:
// CIE 1931 chromaticities: x y
// 0.32168 0.33767
//
// Viewing Environment:
// This ODT has a compensation for viewing environment variables more typical
// of those associated with video mastering.
//
half3 ODT_RGBmonitor_D60sim_100nits_dim(half3 oces)
{
// OCES to RGB rendering space
half3 rgbPre = mul(AP0_2_AP1_MAT, oces);
// Apply the tonescale independently in rendering-space RGB
half3 rgbPost;
rgbPost.x = segmented_spline_c9_fwd(rgbPre.x);
rgbPost.y = segmented_spline_c9_fwd(rgbPre.y);
rgbPost.z = segmented_spline_c9_fwd(rgbPre.z);
// Scale luminance to linear code value
half3 linearCV = Y_2_linCV(rgbPost, CINEMA_WHITE, CINEMA_BLACK);
// --- Compensate for different white point being darker --- //
// This adjustment is to correct an issue that exists in ODTs where the device
// is calibrated to a white chromaticity other than D60. In order to simulate
// D60 on such devices, unequal code values are sent to the display to achieve
// neutrals at D60. In order to produce D60 on a device calibrated to the DCI
// white point (i.e. equal code values yield CIE x,y chromaticities of 0.314,
// 0.351) the red channel is higher than green and blue to compensate for the
// "greenish" DCI white. This is the correct behavior but it means that as
// highlight increase, the red channel will hit the device maximum first and
// clip, resulting in a chromaticity shift as the green and blue channels
// continue to increase.
// To avoid this clipping error, a slight scale factor is applied to allow the
// ODTs to simulate D60 within the D65 calibration white point.
// Scale and clamp white to avoid casted highlights due to D60 simulation
const half SCALE = 0.955;
linearCV = min(linearCV, 1.0) * SCALE;
// Apply gamma adjustment to compensate for dim surround
linearCV = darkSurround_to_dimSurround(linearCV);
// Apply desaturation to compensate for luminance difference
//linearCV = mul(ODT_SAT_MAT, linearCV);
linearCV = lerp(dot(linearCV, AP1_RGB2Y).xxx, linearCV, ODT_SAT_FACTOR.xxx);
// Convert to display primary encoding
// Rendering space RGB to XYZ
half3 XYZ = mul(AP1_2_XYZ_MAT, linearCV);
// CIE XYZ to display primaries
linearCV = mul(XYZ_2_REC709_MAT, XYZ);
// Handle out-of-gamut values
// Clip values < 0 or > 1 (i.e. projecting outside the display primaries)
linearCV = saturate(linearCV);
// TODO: Revisit when it is possible to deactivate Unity default framebuffer encoding
// with sRGB opto-electrical transfer function (OETF).
/*
// Encode linear code values with transfer function
half3 outputCV;
// moncurve_r with gamma of 2.4 and offset of 0.055 matches the EOTF found in IEC 61966-2-1:1999 (sRGB)
const half DISPGAMMA = 2.4;
const half OFFSET = 0.055;
outputCV.x = moncurve_r(linearCV.x, DISPGAMMA, OFFSET);
outputCV.y = moncurve_r(linearCV.y, DISPGAMMA, OFFSET);
outputCV.z = moncurve_r(linearCV.z, DISPGAMMA, OFFSET);
outputCV = linear_to_sRGB(linearCV);
*/
// Unity already draws to a sRGB target
return linearCV;
}
// <ACEStransformID>ODT.Academy.Rec709_100nits_dim.a1.0.3</ACEStransformID>
// <ACESuserName>ACES 1.0 Output - Rec.709</ACESuserName>
//
// Output Device Transform - Rec709
//
//
// Summary :
// This transform is intended for mapping OCES onto a Rec.709 broadcast monitor
// that is calibrated to a D65 white point at 100 cd/m^2. The assumed observer
// adapted white is D65, and the viewing environment is a dim surround.
//
// A possible use case for this transform would be HDTV/video mastering.
//
// Device Primaries :
// Primaries are those specified in Rec. ITU-R BT.709
// CIE 1931 chromaticities: x y Y
// Red: 0.64 0.33
// Green: 0.3 0.6
// Blue: 0.15 0.06
// White: 0.3127 0.329 100 cd/m^2
//
// Display EOTF :
// The reference electro-optical transfer function specified in
// Rec. ITU-R BT.1886.
//
// Signal Range:
// By default, this transform outputs full range code values. If instead a
// SMPTE "legal" signal is desired, there is a runtime flag to output
// SMPTE legal signal. In ctlrender, this can be achieved by appending
// '-param1 legalRange 1' after the '-ctl odt.ctl' string.
//
// Assumed observer adapted white point:
// CIE 1931 chromaticities: x y
// 0.3127 0.329
//
// Viewing Environment:
// This ODT has a compensation for viewing environment variables more typical
// of those associated with video mastering.
//
half3 ODT_Rec709_100nits_dim(half3 oces)
{
// OCES to RGB rendering space
half3 rgbPre = mul(AP0_2_AP1_MAT, oces);
// Apply the tonescale independently in rendering-space RGB
half3 rgbPost;
rgbPost.x = segmented_spline_c9_fwd(rgbPre.x);
rgbPost.y = segmented_spline_c9_fwd(rgbPre.y);
rgbPost.z = segmented_spline_c9_fwd(rgbPre.z);
// Scale luminance to linear code value
half3 linearCV = Y_2_linCV(rgbPost, CINEMA_WHITE, CINEMA_BLACK);
// Apply gamma adjustment to compensate for dim surround
linearCV = darkSurround_to_dimSurround(linearCV);
// Apply desaturation to compensate for luminance difference
//linearCV = mul(ODT_SAT_MAT, linearCV);
linearCV = lerp(dot(linearCV, AP1_RGB2Y).xxx, linearCV, ODT_SAT_FACTOR.xxx);
// Convert to display primary encoding
// Rendering space RGB to XYZ
half3 XYZ = mul(AP1_2_XYZ_MAT, linearCV);
// Apply CAT from ACES white point to assumed observer adapted white point
XYZ = mul(D60_2_D65_CAT, XYZ);
// CIE XYZ to display primaries
linearCV = mul(XYZ_2_REC709_MAT, XYZ);
// Handle out-of-gamut values
// Clip values < 0 or > 1 (i.e. projecting outside the display primaries)
linearCV = saturate(linearCV);
// Encode linear code values with transfer function
const half DISPGAMMA = 2.4;
const half L_W = 1.0;
const half L_B = 0.0;
half3 outputCV = linear_to_bt1886(linearCV, DISPGAMMA, L_W, L_B);
// TODO: Implement support for legal range.
// NOTE: Unity framebuffer encoding is encoded with sRGB opto-electrical transfer function (OETF)
// by default which will result in double perceptual encoding, thus for now if one want to use
// this ODT, he needs to decode its output with sRGB electro-optical transfer function (EOTF) to
// compensate for Unity default behaviour.
return outputCV;
}
// <ACEStransformID>ODT.Academy.Rec709_D60sim_100nits_dim.a1.0.3</ACEStransformID>
// <ACESuserName>ACES 1.0 Output - Rec.709 (D60 sim.)</ACESuserName>
//
// Output Device Transform - Rec709 (D60 simulation)
//
//
// Summary :
// This transform is intended for mapping OCES onto a Rec.709 broadcast monitor
// that is calibrated to a D65 white point at 100 cd/m^2. The assumed observer
// adapted white is D60, and the viewing environment is a dim surround.
//
// A possible use case for this transform would be cinema "soft-proofing".
//
// Device Primaries :
// Primaries are those specified in Rec. ITU-R BT.709
// CIE 1931 chromaticities: x y Y
// Red: 0.64 0.33
// Green: 0.3 0.6
// Blue: 0.15 0.06
// White: 0.3127 0.329 100 cd/m^2
//
// Display EOTF :
// The reference electro-optical transfer function specified in
// Rec. ITU-R BT.1886.
//
// Signal Range:
// By default, this transform outputs full range code values. If instead a
// SMPTE "legal" signal is desired, there is a runtime flag to output
// SMPTE legal signal. In ctlrender, this can be achieved by appending
// '-param1 legalRange 1' after the '-ctl odt.ctl' string.
//
// Assumed observer adapted white point:
// CIE 1931 chromaticities: x y
// 0.32168 0.33767
//
// Viewing Environment:
// This ODT has a compensation for viewing environment variables more typical
// of those associated with video mastering.
//
half3 ODT_Rec709_D60sim_100nits_dim(half3 oces)
{
// OCES to RGB rendering space
half3 rgbPre = mul(AP0_2_AP1_MAT, oces);
// Apply the tonescale independently in rendering-space RGB
half3 rgbPost;
rgbPost.x = segmented_spline_c9_fwd(rgbPre.x);
rgbPost.y = segmented_spline_c9_fwd(rgbPre.y);
rgbPost.z = segmented_spline_c9_fwd(rgbPre.z);
// Scale luminance to linear code value
half3 linearCV = Y_2_linCV(rgbPost, CINEMA_WHITE, CINEMA_BLACK);
// --- Compensate for different white point being darker --- //
// This adjustment is to correct an issue that exists in ODTs where the device
// is calibrated to a white chromaticity other than D60. In order to simulate
// D60 on such devices, unequal code values must be sent to the display to achieve
// the chromaticities of D60. More specifically, in order to produce D60 on a device
// calibrated to a D65 white point (i.e. equal code values yield CIE x,y
// chromaticities of 0.3127, 0.329) the red channel must be slightly higher than
// that of green and blue in order to compensate for the relatively more "blue-ish"
// D65 white. This unequalness of color channels is the correct behavior but it
// means that as neutral highlights increase, the red channel will hit the
// device maximum first and clip, resulting in a small chromaticity shift as the
// green and blue channels continue to increase to their maximums.
// To avoid this clipping error, a slight scale factor is applied to allow the
// ODTs to simulate D60 within the D65 calibration white point.
// Scale and clamp white to avoid casted highlights due to D60 simulation
const half SCALE = 0.955;
linearCV = min(linearCV, 1.0) * SCALE;
// Apply gamma adjustment to compensate for dim surround
linearCV = darkSurround_to_dimSurround(linearCV);
// Apply desaturation to compensate for luminance difference
//linearCV = mul(ODT_SAT_MAT, linearCV);
linearCV = lerp(dot(linearCV, AP1_RGB2Y).xxx, linearCV, ODT_SAT_FACTOR.xxx);
// Convert to display primary encoding
// Rendering space RGB to XYZ
half3 XYZ = mul(AP1_2_XYZ_MAT, linearCV);
// CIE XYZ to display primaries
linearCV = mul(XYZ_2_REC709_MAT, XYZ);
// Handle out-of-gamut values
// Clip values < 0 or > 1 (i.e. projecting outside the display primaries)
linearCV = saturate(linearCV);
// Encode linear code values with transfer function
const half DISPGAMMA = 2.4;
const half L_W = 1.0;
const half L_B = 0.0;
half3 outputCV = linear_to_bt1886(linearCV, DISPGAMMA, L_W, L_B);
// TODO: Implement support for legal range.
// NOTE: Unity framebuffer encoding is encoded with sRGB opto-electrical transfer function (OETF)
// by default which will result in double perceptual encoding, thus for now if one want to use
// this ODT, he needs to decode its output with sRGB electro-optical transfer function (EOTF) to
// compensate for Unity default behaviour.
return outputCV;
}
// <ACEStransformID>ODT.Academy.Rec2020_100nits_dim.a1.0.3</ACEStransformID>
// <ACESuserName>ACES 1.0 Output - Rec.2020</ACESuserName>
//
// Output Device Transform - Rec2020
//
//
// Summary :
// This transform is intended for mapping OCES onto a Rec.2020 broadcast
// monitor that is calibrated to a D65 white point at 100 cd/m^2. The assumed
// observer adapted white is D65, and the viewing environment is that of a dim
// surround.
//
// A possible use case for this transform would be UHDTV/video mastering.
//
// Device Primaries :
// Primaries are those specified in Rec. ITU-R BT.2020
// CIE 1931 chromaticities: x y Y
// Red: 0.708 0.292
// Green: 0.17 0.797
// Blue: 0.131 0.046
// White: 0.3127 0.329 100 cd/m^2
//
// Display EOTF :
// The reference electro-optical transfer function specified in
// Rec. ITU-R BT.1886.
//
// Signal Range:
// By default, this transform outputs full range code values. If instead a
// SMPTE "legal" signal is desired, there is a runtime flag to output
// SMPTE legal signal. In ctlrender, this can be achieved by appending
// '-param1 legalRange 1' after the '-ctl odt.ctl' string.
//
// Assumed observer adapted white point:
// CIE 1931 chromaticities: x y
// 0.3127 0.329
//
// Viewing Environment:
// This ODT has a compensation for viewing environment variables more typical
// of those associated with video mastering.
//
half3 ODT_Rec2020_100nits_dim(half3 oces)
{
// OCES to RGB rendering space
half3 rgbPre = mul(AP0_2_AP1_MAT, oces);
// Apply the tonescale independently in rendering-space RGB
half3 rgbPost;
rgbPost.x = segmented_spline_c9_fwd(rgbPre.x);
rgbPost.y = segmented_spline_c9_fwd(rgbPre.y);
rgbPost.z = segmented_spline_c9_fwd(rgbPre.z);
// Scale luminance to linear code value
half3 linearCV = Y_2_linCV(rgbPost, CINEMA_WHITE, CINEMA_BLACK);
// Apply gamma adjustment to compensate for dim surround
linearCV = darkSurround_to_dimSurround(linearCV);
// Apply desaturation to compensate for luminance difference
//linearCV = mul(ODT_SAT_MAT, linearCV);
linearCV = lerp(dot(linearCV, AP1_RGB2Y).xxx, linearCV, ODT_SAT_FACTOR.xxx);
// Convert to display primary encoding
// Rendering space RGB to XYZ
half3 XYZ = mul(AP1_2_XYZ_MAT, linearCV);
// Apply CAT from ACES white point to assumed observer adapted white point
XYZ = mul(D60_2_D65_CAT, XYZ);
// CIE XYZ to display primaries
linearCV = mul(XYZ_2_REC2020_MAT, XYZ);
// Handle out-of-gamut values
// Clip values < 0 or > 1 (i.e. projecting outside the display primaries)
linearCV = saturate(linearCV);
// Encode linear code values with transfer function
const half DISPGAMMA = 2.4;
const half L_W = 1.0;
const half L_B = 0.0;
half3 outputCV = linear_to_bt1886(linearCV, DISPGAMMA, L_W, L_B);
// TODO: Implement support for legal range.
// NOTE: Unity framebuffer encoding is encoded with sRGB opto-electrical transfer function (OETF)
// by default which will result in double perceptual encoding, thus for now if one want to use
// this ODT, he needs to decode its output with sRGB electro-optical transfer function (EOTF) to
// compensate for Unity default behaviour.
return outputCV;
}
// <ACEStransformID>ODT.Academy.P3DCI_48nits.a1.0.3</ACEStransformID>
// <ACESuserName>ACES 1.0 Output - P3-DCI</ACESuserName>
//
// Output Device Transform - P3DCI (D60 Simulation)
//
//
// Summary :
// This transform is intended for mapping OCES onto a P3 digital cinema
// projector that is calibrated to a DCI white point at 48 cd/m^2. The assumed
// observer adapted white is D60, and the viewing environment is that of a dark
// theater.
//
// Device Primaries :
// CIE 1931 chromaticities: x y Y
// Red: 0.68 0.32
// Green: 0.265 0.69
// Blue: 0.15 0.06
// White: 0.314 0.351 48 cd/m^2
//
// Display EOTF :
// Gamma: 2.6
//
// Assumed observer adapted white point:
// CIE 1931 chromaticities: x y
// 0.32168 0.33767
//
// Viewing Environment:
// Environment specified in SMPTE RP 431-2-2007
//
half3 ODT_P3DCI_48nits(half3 oces)
{
// OCES to RGB rendering space
half3 rgbPre = mul(AP0_2_AP1_MAT, oces);
// Apply the tonescale independently in rendering-space RGB
half3 rgbPost;
rgbPost.x = segmented_spline_c9_fwd(rgbPre.x);
rgbPost.y = segmented_spline_c9_fwd(rgbPre.y);
rgbPost.z = segmented_spline_c9_fwd(rgbPre.z);
// Scale luminance to linear code value
half3 linearCV = Y_2_linCV(rgbPost, CINEMA_WHITE, CINEMA_BLACK);
// --- Compensate for different white point being darker --- //
// This adjustment is to correct an issue that exists in ODTs where the device
// is calibrated to a white chromaticity other than D60. In order to simulate
// D60 on such devices, unequal code values are sent to the display to achieve
// neutrals at D60. In order to produce D60 on a device calibrated to the DCI
// white point (i.e. equal code values yield CIE x,y chromaticities of 0.314,
// 0.351) the red channel is higher than green and blue to compensate for the
// "greenish" DCI white. This is the correct behavior but it means that as
// highlight increase, the red channel will hit the device maximum first and
// clip, resulting in a chromaticity shift as the green and blue channels
// continue to increase.
// To avoid this clipping error, a slight scale factor is applied to allow the
// ODTs to simulate D60 within the D65 calibration white point. However, the
// magnitude of the scale factor required for the P3DCI ODT was considered too
// large. Therefore, the scale factor was reduced and the additional required
// compression was achieved via a reshaping of the highlight rolloff in
// conjunction with the scale. The shape of this rolloff was determined
// throught subjective experiments and deemed to best reproduce the
// "character" of the highlights in the P3D60 ODT.
// Roll off highlights to avoid need for as much scaling
const half NEW_WHT = 0.918;
const half ROLL_WIDTH = 0.5;
linearCV.x = roll_white_fwd(linearCV.x, NEW_WHT, ROLL_WIDTH);
linearCV.y = roll_white_fwd(linearCV.y, NEW_WHT, ROLL_WIDTH);
linearCV.z = roll_white_fwd(linearCV.z, NEW_WHT, ROLL_WIDTH);
// Scale and clamp white to avoid casted highlights due to D60 simulation
const half SCALE = 0.96;
linearCV = min(linearCV, NEW_WHT) * SCALE;
// Convert to display primary encoding
// Rendering space RGB to XYZ
half3 XYZ = mul(AP1_2_XYZ_MAT, linearCV);
// CIE XYZ to display primaries
linearCV = mul(XYZ_2_DCIP3_MAT, XYZ);
// Handle out-of-gamut values
// Clip values < 0 or > 1 (i.e. projecting outside the display primaries)
linearCV = saturate(linearCV);
// Encode linear code values with transfer function
const half DISPGAMMA = 2.6;
half3 outputCV = pow(linearCV, 1.0 / DISPGAMMA);
// NOTE: Unity framebuffer encoding is encoded with sRGB opto-electrical transfer function (OETF)
// by default which will result in double perceptual encoding, thus for now if one want to use
// this ODT, he needs to decode its output with sRGB electro-optical transfer function (EOTF) to
// compensate for Unity default behaviour.
return outputCV;
}
#endif // __ACES__