decimal128.js
20.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
"use strict"
var Long = require('./long');
var PARSE_STRING_REGEXP = /^(\+|\-)?(\d+|(\d*\.\d*))?(E|e)?([\-\+])?(\d+)?$/;
var PARSE_INF_REGEXP = /^(\+|\-)?(Infinity|inf)$/i;
var PARSE_NAN_REGEXP = /^(\+|\-)?NaN$/i;
var EXPONENT_MAX = 6111;
var EXPONENT_MIN = -6176;
var EXPONENT_BIAS = 6176;
var MAX_DIGITS = 34;
// Nan value bits as 32 bit values (due to lack of longs)
var NAN_BUFFER = [0x7c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00].reverse();
// Infinity value bits 32 bit values (due to lack of longs)
var INF_NEGATIVE_BUFFER = [0xf8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00].reverse();
var INF_POSITIVE_BUFFER = [0x78, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00].reverse();
var EXPONENT_REGEX = /^([\-\+])?(\d+)?$/;
// Detect if the value is a digit
var isDigit = function(value) {
return !isNaN(parseInt(value, 10));
}
// Divide two uint128 values
var divideu128 = function(value) {
var DIVISOR = Long.fromNumber(1000 * 1000 * 1000);
var _rem = Long.fromNumber(0);
var i = 0;
if(!value.parts[0] && !value.parts[1] &&
!value.parts[2] && !value.parts[3]) {
return { quotient: value, rem: _rem };
}
for(var i = 0; i <= 3; i++) {
// Adjust remainder to match value of next dividend
_rem = _rem.shiftLeft(32);
// Add the divided to _rem
_rem = _rem.add(new Long(value.parts[i], 0));
value.parts[i] = _rem.div(DIVISOR).low_;
_rem = _rem.modulo(DIVISOR);
}
return { quotient: value, rem: _rem };
}
// Multiply two Long values and return the 128 bit value
var multiply64x2 = function(left, right) {
if(!left && !right) {
return {high: Long.fromNumber(0), low: Long.fromNumber(0)};
}
var leftHigh = left.shiftRightUnsigned(32);
var leftLow = new Long(left.getLowBits(), 0);
var rightHigh = right.shiftRightUnsigned(32);
var rightLow = new Long(right.getLowBits(), 0);
var productHigh = leftHigh.multiply(rightHigh);
var productMid = leftHigh.multiply(rightLow);
var productMid2 = leftLow.multiply(rightHigh);
var productLow = leftLow.multiply(rightLow);
productHigh = productHigh.add(productMid.shiftRightUnsigned(32));
productMid = new Long(productMid.getLowBits(), 0)
.add(productMid2)
.add(productLow.shiftRightUnsigned(32));
productHigh = productHigh.add(productMid.shiftRightUnsigned(32));
productLow = productMid.shiftLeft(32).add(new Long(productLow.getLowBits(), 0));
// Return the 128 bit result
return {high: productHigh, low: productLow};
}
var lessThan = function(left, right) {
// Make values unsigned
var uhleft = left.high_ >>> 0;
var uhright = right.high_ >>> 0;
// Compare high bits first
if(uhleft < uhright) {
return true
} else if(uhleft == uhright) {
var ulleft = left.low_ >>> 0;
var ulright = right.low_ >>> 0;
if(ulleft < ulright) return true;
}
return false;
}
var longtoHex = function(value) {
var buffer = new Buffer(8);
var index = 0;
// Encode the low 64 bits of the decimal
// Encode low bits
buffer[index++] = value.low_ & 0xff;
buffer[index++] = (value.low_ >> 8) & 0xff;
buffer[index++] = (value.low_ >> 16) & 0xff;
buffer[index++] = (value.low_ >> 24) & 0xff;
// Encode high bits
buffer[index++] = value.high_ & 0xff;
buffer[index++] = (value.high_ >> 8) & 0xff;
buffer[index++] = (value.high_ >> 16) & 0xff;
buffer[index++] = (value.high_ >> 24) & 0xff;
return buffer.reverse().toString('hex');
}
var int32toHex = function(value) {
var buffer = new Buffer(4);
var index = 0;
// Encode the low 64 bits of the decimal
// Encode low bits
buffer[index++] = value & 0xff;
buffer[index++] = (value >> 8) & 0xff;
buffer[index++] = (value >> 16) & 0xff;
buffer[index++] = (value >> 24) & 0xff;
return buffer.reverse().toString('hex');
}
var Decimal128 = function(bytes) {
this._bsontype = 'Decimal128';
this.bytes = bytes;
}
Decimal128.fromString = function(string) {
// Parse state tracking
var isNegative = false;
var sawRadix = false;
var foundNonZero = false;
// Total number of significant digits (no leading or trailing zero)
var significantDigits = 0;
// Total number of significand digits read
var nDigitsRead = 0;
// Total number of digits (no leading zeros)
var nDigits = 0;
// The number of the digits after radix
var radixPosition = 0;
// The index of the first non-zero in *str*
var firstNonZero = 0;
// Digits Array
var digits = [0];
// The number of digits in digits
var nDigitsStored = 0;
// Insertion pointer for digits
var digitsInsert = 0;
// The index of the first non-zero digit
var firstDigit = 0;
// The index of the last digit
var lastDigit = 0;
// Exponent
var exponent = 0;
// loop index over array
var i = 0;
// The high 17 digits of the significand
var significandHigh = [0, 0];
// The low 17 digits of the significand
var significandLow = [0, 0];
// The biased exponent
var biasedExponent = 0;
// Read index
var index = 0;
// Trim the string
string = string.trim();
// Results
var stringMatch = string.match(PARSE_STRING_REGEXP);
var infMatch = string.match(PARSE_INF_REGEXP);
var nanMatch = string.match(PARSE_NAN_REGEXP);
// Validate the string
if(!stringMatch
&& ! infMatch
&& ! nanMatch || string.length == 0) {
throw new Error("" + string + " not a valid Decimal128 string");
}
// Check if we have an illegal exponent format
if(stringMatch && stringMatch[4] && stringMatch[2] === undefined) {
throw new Error("" + string + " not a valid Decimal128 string");
}
// Get the negative or positive sign
if(string[index] == '+' || string[index] == '-') {
isNegative = string[index++] == '-';
}
// Check if user passed Infinity or NaN
if(!isDigit(string[index]) && string[index] != '.') {
if(string[index] == 'i' || string[index] == 'I') {
return new Decimal128(new Buffer(isNegative ? INF_NEGATIVE_BUFFER : INF_POSITIVE_BUFFER));
} else if(string[index] == 'N') {
return new Decimal128(new Buffer(NAN_BUFFER));
}
}
// Read all the digits
while(isDigit(string[index]) || string[index] == '.') {
if(string[index] == '.') {
if(sawRadix) {
return new Decimal128(new Buffer(NAN_BUFFER));
}
sawRadix = true;
index = index + 1;
continue;
}
if(nDigitsStored < 34) {
if(string[index] != '0' || foundNonZero) {
if(!foundNonZero) {
firstNonZero = nDigitsRead;
}
foundNonZero = true;
// Only store 34 digits
digits[digitsInsert++] = parseInt(string[index], 10);
nDigitsStored = nDigitsStored + 1;
}
}
if(foundNonZero) {
nDigits = nDigits + 1;
}
if(sawRadix) {
radixPosition = radixPosition + 1;
}
nDigitsRead = nDigitsRead + 1;
index = index + 1;
}
if(sawRadix && !nDigitsRead) {
throw new Error("" + string + " not a valid Decimal128 string");
}
// Read exponent if exists
if(string[index] == 'e' || string[index] == 'E') {
// Read exponent digits
var match = string.substr(++index).match(EXPONENT_REGEX);
// No digits read
if(!match || !match[2]) {
return new Decimal128(new Buffer(NAN_BUFFER));
}
// Get exponent
exponent = parseInt(match[0], 10);
// Adjust the index
index = index + match[0].length;
}
// Return not a number
if(string[index]) {
return new Decimal128(new Buffer(NAN_BUFFER));
}
// Done reading input
// Find first non-zero digit in digits
firstDigit = 0;
if(!nDigitsStored) {
firstDigit = 0;
lastDigit = 0;
digits[0] = 0;
nDigits = 1;
nDigitsStored = 1;
significantDigits = 0;
} else {
lastDigit = nDigitsStored - 1;
significantDigits = nDigits;
if(exponent != 0 && significantDigits != 1) {
while(string[firstNonZero + significantDigits - 1] == '0') {
significantDigits = significantDigits - 1;
}
}
}
// Normalization of exponent
// Correct exponent based on radix position, and shift significand as needed
// to represent user input
// Overflow prevention
if(exponent <= radixPosition && radixPosition - exponent > (1 << 14)) {
exponent = EXPONENT_MIN;
} else {
exponent = exponent - radixPosition;
}
// Attempt to normalize the exponent
while(exponent > EXPONENT_MAX) {
// Shift exponent to significand and decrease
lastDigit = lastDigit + 1;
if(lastDigit - firstDigit > MAX_DIGITS) {
// Check if we have a zero then just hard clamp, otherwise fail
var digitsString = digits.join('');
if(digitsString.match(/^0+$/)) {
exponent = EXPONENT_MAX;
break;
} else {
return new Decimal128(new Buffer(isNegative ? INF_NEGATIVE_BUFFER : INF_POSITIVE_BUFFER));
}
}
exponent = exponent - 1;
}
while(exponent < EXPONENT_MIN || nDigitsStored < nDigits) {
// Shift last digit
if(lastDigit == 0) {
exponent = EXPONENT_MIN;
significantDigits = 0;
break;
}
if(nDigitsStored < nDigits) {
// adjust to match digits not stored
nDigits = nDigits - 1;
} else {
// adjust to round
lastDigit = lastDigit - 1;
}
if(exponent < EXPONENT_MAX) {
exponent = exponent + 1;
} else {
// Check if we have a zero then just hard clamp, otherwise fail
var digitsString = digits.join('');
if(digitsString.match(/^0+$/)) {
exponent = EXPONENT_MAX;
break;
} else {
return new Decimal128(new Buffer(isNegative ? INF_NEGATIVE_BUFFER : INF_POSITIVE_BUFFER))
}
}
}
// Round
// We've normalized the exponent, but might still need to round.
if((lastDigit - firstDigit + 1 < significantDigits) && string[significantDigits] != '0') {
var endOfString = nDigitsRead;
// If we have seen a radix point, 'string' is 1 longer than we have
// documented with ndigits_read, so inc the position of the first nonzero
// digit and the position that digits are read to.
if(sawRadix && exponent == EXPONENT_MIN) {
firstNonZero = firstNonZero + 1;
endOfString = endOfString + 1;
}
var roundDigit = parseInt(string[firstNonZero + lastDigit + 1], 10);
var roundBit = 0;
if(roundDigit >= 5) {
roundBit = 1;
if(roundDigit == 5) {
roundBit = digits[lastDigit] % 2 == 1;
for(var i = firstNonZero + lastDigit + 2; i < endOfString; i++) {
if(parseInt(string[i], 10)) {
roundBit = 1;
break;
}
}
}
}
if(roundBit) {
var dIdx = lastDigit;
for(; dIdx >= 0; dIdx--) {
if(++digits[dIdx] > 9) {
digits[dIdx] = 0;
// overflowed most significant digit
if(dIdx == 0) {
if(exponent < EXPONENT_MAX) {
exponent = exponent + 1;
digits[dIdx] = 1;
} else {
return new Decimal128(new Buffer(isNegative ? INF_NEGATIVE_BUFFER : INF_POSITIVE_BUFFER))
}
}
} else {
break;
}
}
}
}
// Encode significand
// The high 17 digits of the significand
significandHigh = Long.fromNumber(0);
// The low 17 digits of the significand
significandLow = Long.fromNumber(0);
// read a zero
if(significantDigits == 0) {
significandHigh = Long.fromNumber(0);
significandLow = Long.fromNumber(0);
} else if(lastDigit - firstDigit < 17) {
var dIdx = firstDigit;
significandLow = Long.fromNumber(digits[dIdx++]);
significandHigh = new Long(0, 0);
for(; dIdx <= lastDigit; dIdx++) {
significandLow = significandLow.multiply(Long.fromNumber(10));
significandLow = significandLow.add(Long.fromNumber(digits[dIdx]));
}
} else {
var dIdx = firstDigit;
significandHigh = Long.fromNumber(digits[dIdx++]);
for(; dIdx <= lastDigit - 17; dIdx++) {
significandHigh = significandHigh.multiply(Long.fromNumber(10));
significandHigh = significandHigh.add(Long.fromNumber(digits[dIdx]));
}
significandLow = Long.fromNumber(digits[dIdx++]);
for(; dIdx <= lastDigit; dIdx++) {
significandLow = significandLow.multiply(Long.fromNumber(10));
significandLow = significandLow.add(Long.fromNumber(digits[dIdx]));
}
}
var significand = multiply64x2(significandHigh, Long.fromString("100000000000000000"));
significand.low = significand.low.add(significandLow);
if(lessThan(significand.low, significandLow)) {
significand.high = significand.high.add(Long.fromNumber(1));
}
// Biased exponent
var biasedExponent = (exponent + EXPONENT_BIAS);
var dec = { low: Long.fromNumber(0), high: Long.fromNumber(0) };
// Encode combination, exponent, and significand.
if(significand.high.shiftRightUnsigned(49).and(Long.fromNumber(1)).equals(Long.fromNumber)) {
// Encode '11' into bits 1 to 3
dec.high = dec.high.or(Long.fromNumber(0x3).shiftLeft(61));
dec.high = dec.high.or(Long.fromNumber(biasedExponent).and(Long.fromNumber(0x3fff).shiftLeft(47)));
dec.high = dec.high.or(significand.high.and(Long.fromNumber(0x7fffffffffff)));
} else {
dec.high = dec.high.or(Long.fromNumber(biasedExponent & 0x3fff).shiftLeft(49));
dec.high = dec.high.or(significand.high.and(Long.fromNumber(0x1ffffffffffff)));
}
dec.low = significand.low;
// Encode sign
if(isNegative) {
dec.high = dec.high.or(Long.fromString('9223372036854775808'));
}
// Encode into a buffer
var buffer = new Buffer(16);
var index = 0;
// Encode the low 64 bits of the decimal
// Encode low bits
buffer[index++] = dec.low.low_ & 0xff;
buffer[index++] = (dec.low.low_ >> 8) & 0xff;
buffer[index++] = (dec.low.low_ >> 16) & 0xff;
buffer[index++] = (dec.low.low_ >> 24) & 0xff;
// Encode high bits
buffer[index++] = dec.low.high_ & 0xff;
buffer[index++] = (dec.low.high_ >> 8) & 0xff;
buffer[index++] = (dec.low.high_ >> 16) & 0xff;
buffer[index++] = (dec.low.high_ >> 24) & 0xff;
// Encode the high 64 bits of the decimal
// Encode low bits
buffer[index++] = dec.high.low_ & 0xff;
buffer[index++] = (dec.high.low_ >> 8) & 0xff;
buffer[index++] = (dec.high.low_ >> 16) & 0xff;
buffer[index++] = (dec.high.low_ >> 24) & 0xff;
// Encode high bits
buffer[index++] = dec.high.high_ & 0xff;
buffer[index++] = (dec.high.high_ >> 8) & 0xff;
buffer[index++] = (dec.high.high_ >> 16) & 0xff;
buffer[index++] = (dec.high.high_ >> 24) & 0xff;
// Return the new Decimal128
return new Decimal128(buffer);
}
// Extract least significant 5 bits
var COMBINATION_MASK = 0x1f;
// Extract least significant 14 bits
var EXPONENT_MASK = 0x3fff;
// Value of combination field for Inf
var COMBINATION_INFINITY = 30;
// Value of combination field for NaN
var COMBINATION_NAN = 31;
// Value of combination field for NaN
var COMBINATION_SNAN = 32;
// decimal128 exponent bias
var EXPONENT_BIAS = 6176;
Decimal128.prototype.toString = function() {
// Note: bits in this routine are referred to starting at 0,
// from the sign bit, towards the coefficient.
// bits 0 - 31
var high;
// bits 32 - 63
var midh;
// bits 64 - 95
var midl;
// bits 96 - 127
var low;
// bits 1 - 5
var combination;
// decoded biased exponent (14 bits)
var biased_exponent;
// the number of significand digits
var significand_digits = 0;
// the base-10 digits in the significand
var significand = new Array(36);
for(var i = 0; i < significand.length; i++) significand[i] = 0;
// read pointer into significand
var index = 0;
// unbiased exponent
var exponent;
// the exponent if scientific notation is used
var scientific_exponent;
// true if the number is zero
var is_zero = false;
// the most signifcant significand bits (50-46)
var significand_msb;
// temporary storage for significand decoding
var significand128 = {parts: new Array(4)};
// indexing variables
var i;
var j, k;
// Output string
var string = [];
// Unpack index
var index = 0;
// Buffer reference
var buffer = this.bytes;
// Unpack the low 64bits into a long
low = buffer[index++] | buffer[index++] << 8 | buffer[index++] << 16 | buffer[index++] << 24;
midl = buffer[index++] | buffer[index++] << 8 | buffer[index++] << 16 | buffer[index++] << 24;
// Unpack the high 64bits into a long
midh = buffer[index++] | buffer[index++] << 8 | buffer[index++] << 16 | buffer[index++] << 24;
high = buffer[index++] | buffer[index++] << 8 | buffer[index++] << 16 | buffer[index++] << 24;
// Unpack index
var index = 0;
// Create the state of the decimal
var dec = {
low: new Long(low, midl),
high: new Long(midh, high) };
if(dec.high.lessThan(Long.ZERO)) {
string.push('-');
}
// Decode combination field and exponent
combination = (high >> 26) & COMBINATION_MASK;
if((combination >> 3) == 3) {
// Check for 'special' values
if(combination == COMBINATION_INFINITY) {
return string.join('') + "Infinity";
} else if(combination == COMBINATION_NAN) {
return "NaN";
} else {
biased_exponent = (high >> 15) & EXPONENT_MASK;
significand_msb = 0x08 + ((high >> 14) & 0x01);
}
} else {
significand_msb = (high >> 14) & 0x07;
biased_exponent = (high >> 17) & EXPONENT_MASK;
}
exponent = biased_exponent - EXPONENT_BIAS;
// Create string of significand digits
// Convert the 114-bit binary number represented by
// (significand_high, significand_low) to at most 34 decimal
// digits through modulo and division.
significand128.parts[0] = (high & 0x3fff) + ((significand_msb & 0xf) << 14);
significand128.parts[1] = midh;
significand128.parts[2] = midl;
significand128.parts[3] = low;
if(significand128.parts[0] == 0 && significand128.parts[1] == 0
&& significand128.parts[2] == 0 && significand128.parts[3] == 0) {
is_zero = true;
} else {
for(var k = 3; k >= 0; k--) {
var least_digits = 0;
// Peform the divide
var result = divideu128(significand128);
significand128 = result.quotient;
least_digits = result.rem.low_;
// We now have the 9 least significant digits (in base 2).
// Convert and output to string.
if(!least_digits) continue;
for(var j = 8; j >= 0; j--) {
// significand[k * 9 + j] = Math.round(least_digits % 10);
significand[k * 9 + j] = least_digits % 10;
// least_digits = Math.round(least_digits / 10);
least_digits = Math.floor(least_digits / 10);
}
}
}
// Output format options:
// Scientific - [-]d.dddE(+/-)dd or [-]dE(+/-)dd
// Regular - ddd.ddd
if(is_zero) {
significand_digits = 1;
significand[index] = 0;
} else {
significand_digits = 36;
var i = 0;
while(!significand[index]) {
i++;
significand_digits = significand_digits - 1;
index = index + 1;
}
}
scientific_exponent = significand_digits - 1 + exponent;
// The scientific exponent checks are dictated by the string conversion
// specification and are somewhat arbitrary cutoffs.
//
// We must check exponent > 0, because if this is the case, the number
// has trailing zeros. However, we *cannot* output these trailing zeros,
// because doing so would change the precision of the value, and would
// change stored data if the string converted number is round tripped.
if(scientific_exponent >= 34 || scientific_exponent <= -7 ||
exponent > 0) {
// Scientific format
string.push(significand[index++]);
significand_digits = significand_digits - 1;
if(significand_digits) {
string.push('.');
}
for(var i = 0; i < significand_digits; i++) {
string.push(significand[index++]);
}
// Exponent
string.push('E');
if(scientific_exponent > 0) {
string.push('+' + scientific_exponent);
} else {
string.push(scientific_exponent);
}
} else {
// Regular format with no decimal place
if(exponent >= 0) {
for(var i = 0; i < significand_digits; i++) {
string.push(significand[index++]);
}
} else {
var radix_position = significand_digits + exponent;
// non-zero digits before radix
if(radix_position > 0) {
for(var i = 0; i < radix_position; i++) {
string.push(significand[index++]);
}
} else {
string.push('0');
}
string.push('.');
// add leading zeros after radix
while(radix_position++ < 0) {
string.push('0');
}
for(var i = 0; i < significand_digits - Math.max(radix_position - 1, 0); i++) {
string.push(significand[index++]);
}
}
}
return string.join('');
}
Decimal128.prototype.toJSON = function() {
return { "$numberDecimal": this.toString() };
}
module.exports = Decimal128;
module.exports.Decimal128 = Decimal128;