Showing
24 changed files
with
224 additions
and
2459 deletions
... | @@ -2,7 +2,7 @@ import sys | ... | @@ -2,7 +2,7 @@ import sys |
2 | import os | 2 | import os |
3 | 3 | ||
4 | from flask.helpers import url_for | 4 | from flask.helpers import url_for |
5 | -from face_emotion_recognition import face_recognition, video2 | 5 | +from face_emotion_recognition import face_recognition, video4 |
6 | from flask import Flask, render_template | 6 | from flask import Flask, render_template |
7 | from flask.globals import request | 7 | from flask.globals import request |
8 | from werkzeug.utils import redirect, secure_filename | 8 | from werkzeug.utils import redirect, secure_filename |
... | @@ -39,7 +39,7 @@ def index(): | ... | @@ -39,7 +39,7 @@ def index(): |
39 | @app.route('/goTest', methods=('GET', 'POST')) # 접속하는 url | 39 | @app.route('/goTest', methods=('GET', 'POST')) # 접속하는 url |
40 | def test(): | 40 | def test(): |
41 | if request.method == 'GET': | 41 | if request.method == 'GET': |
42 | - return render_template('test.html', face_imgs=find_face_imgs()) | 42 | + return render_template('test.html') |
43 | 43 | ||
44 | 44 | ||
45 | @app.route('/uploadFace', methods=('GET', 'POST')) | 45 | @app.route('/uploadFace', methods=('GET', 'POST')) |
... | @@ -61,11 +61,19 @@ def delete_face(face_name): | ... | @@ -61,11 +61,19 @@ def delete_face(face_name): |
61 | return redirect(url_for('index')) | 61 | return redirect(url_for('index')) |
62 | 62 | ||
63 | 63 | ||
64 | -@app.route('/uploadVideo') | 64 | +@app.route('/uploadVideo', methods=('GET', 'POST')) |
65 | def upload_video(): | 65 | def upload_video(): |
66 | - f = request.files.get('video') | 66 | + if request.method == 'POST': |
67 | - f.save("./static/video/" + secure_filename(f.filename)) | 67 | + f = request.files.get('video') |
68 | - return 'video uploaded successfully' | 68 | + f.save("./static/video/" + secure_filename(f.filename)) |
69 | + return redirect(url_for('test')) | ||
70 | + | ||
71 | + | ||
72 | +@app.route('/faceEmotinoRecognition') | ||
73 | +def faceEmotinoRecognition(): | ||
74 | + face_emotion_dict = video4.videoDetector(3, 'record0') | ||
75 | + print(face_emotion_dict) | ||
76 | + return render_template('result.html', face_emotion_dict=face_emotion_dict, face_imgs=find_face_imgs()) | ||
69 | 77 | ||
70 | 78 | ||
71 | if __name__ == "__main__": | 79 | if __name__ == "__main__": | ... | ... |
No preview for this file type
This diff could not be displayed because it is too large.
1 | -node { | ||
2 | - name: "data" | ||
3 | - op: "Placeholder" | ||
4 | - attr { | ||
5 | - key: "dtype" | ||
6 | - value { | ||
7 | - type: DT_FLOAT | ||
8 | - } | ||
9 | - } | ||
10 | -} | ||
11 | -node { | ||
12 | - name: "data_bn/FusedBatchNorm" | ||
13 | - op: "FusedBatchNorm" | ||
14 | - input: "data:0" | ||
15 | - input: "data_bn/gamma" | ||
16 | - input: "data_bn/beta" | ||
17 | - input: "data_bn/mean" | ||
18 | - input: "data_bn/std" | ||
19 | - attr { | ||
20 | - key: "epsilon" | ||
21 | - value { | ||
22 | - f: 1.00099996416e-05 | ||
23 | - } | ||
24 | - } | ||
25 | -} | ||
26 | -node { | ||
27 | - name: "data_scale/Mul" | ||
28 | - op: "Mul" | ||
29 | - input: "data_bn/FusedBatchNorm" | ||
30 | - input: "data_scale/mul" | ||
31 | -} | ||
32 | -node { | ||
33 | - name: "data_scale/BiasAdd" | ||
34 | - op: "BiasAdd" | ||
35 | - input: "data_scale/Mul" | ||
36 | - input: "data_scale/add" | ||
37 | -} | ||
38 | -node { | ||
39 | - name: "SpaceToBatchND/block_shape" | ||
40 | - op: "Const" | ||
41 | - attr { | ||
42 | - key: "value" | ||
43 | - value { | ||
44 | - tensor { | ||
45 | - dtype: DT_INT32 | ||
46 | - tensor_shape { | ||
47 | - dim { | ||
48 | - size: 2 | ||
49 | - } | ||
50 | - } | ||
51 | - int_val: 1 | ||
52 | - int_val: 1 | ||
53 | - } | ||
54 | - } | ||
55 | - } | ||
56 | -} | ||
57 | -node { | ||
58 | - name: "SpaceToBatchND/paddings" | ||
59 | - op: "Const" | ||
60 | - attr { | ||
61 | - key: "value" | ||
62 | - value { | ||
63 | - tensor { | ||
64 | - dtype: DT_INT32 | ||
65 | - tensor_shape { | ||
66 | - dim { | ||
67 | - size: 2 | ||
68 | - } | ||
69 | - dim { | ||
70 | - size: 2 | ||
71 | - } | ||
72 | - } | ||
73 | - int_val: 3 | ||
74 | - int_val: 3 | ||
75 | - int_val: 3 | ||
76 | - int_val: 3 | ||
77 | - } | ||
78 | - } | ||
79 | - } | ||
80 | -} | ||
81 | -node { | ||
82 | - name: "Pad" | ||
83 | - op: "SpaceToBatchND" | ||
84 | - input: "data_scale/BiasAdd" | ||
85 | - input: "SpaceToBatchND/block_shape" | ||
86 | - input: "SpaceToBatchND/paddings" | ||
87 | -} | ||
88 | -node { | ||
89 | - name: "conv1_h/Conv2D" | ||
90 | - op: "Conv2D" | ||
91 | - input: "Pad" | ||
92 | - input: "conv1_h/weights" | ||
93 | - attr { | ||
94 | - key: "dilations" | ||
95 | - value { | ||
96 | - list { | ||
97 | - i: 1 | ||
98 | - i: 1 | ||
99 | - i: 1 | ||
100 | - i: 1 | ||
101 | - } | ||
102 | - } | ||
103 | - } | ||
104 | - attr { | ||
105 | - key: "padding" | ||
106 | - value { | ||
107 | - s: "VALID" | ||
108 | - } | ||
109 | - } | ||
110 | - attr { | ||
111 | - key: "strides" | ||
112 | - value { | ||
113 | - list { | ||
114 | - i: 1 | ||
115 | - i: 2 | ||
116 | - i: 2 | ||
117 | - i: 1 | ||
118 | - } | ||
119 | - } | ||
120 | - } | ||
121 | -} | ||
122 | -node { | ||
123 | - name: "conv1_h/BiasAdd" | ||
124 | - op: "BiasAdd" | ||
125 | - input: "conv1_h/Conv2D" | ||
126 | - input: "conv1_h/bias" | ||
127 | -} | ||
128 | -node { | ||
129 | - name: "BatchToSpaceND" | ||
130 | - op: "BatchToSpaceND" | ||
131 | - input: "conv1_h/BiasAdd" | ||
132 | -} | ||
133 | -node { | ||
134 | - name: "conv1_bn_h/FusedBatchNorm" | ||
135 | - op: "FusedBatchNorm" | ||
136 | - input: "BatchToSpaceND" | ||
137 | - input: "conv1_bn_h/gamma" | ||
138 | - input: "conv1_bn_h/beta" | ||
139 | - input: "conv1_bn_h/mean" | ||
140 | - input: "conv1_bn_h/std" | ||
141 | - attr { | ||
142 | - key: "epsilon" | ||
143 | - value { | ||
144 | - f: 1.00099996416e-05 | ||
145 | - } | ||
146 | - } | ||
147 | -} | ||
148 | -node { | ||
149 | - name: "conv1_scale_h/Mul" | ||
150 | - op: "Mul" | ||
151 | - input: "conv1_bn_h/FusedBatchNorm" | ||
152 | - input: "conv1_scale_h/mul" | ||
153 | -} | ||
154 | -node { | ||
155 | - name: "conv1_scale_h/BiasAdd" | ||
156 | - op: "BiasAdd" | ||
157 | - input: "conv1_scale_h/Mul" | ||
158 | - input: "conv1_scale_h/add" | ||
159 | -} | ||
160 | -node { | ||
161 | - name: "Relu" | ||
162 | - op: "Relu" | ||
163 | - input: "conv1_scale_h/BiasAdd" | ||
164 | -} | ||
165 | -node { | ||
166 | - name: "conv1_pool/MaxPool" | ||
167 | - op: "MaxPool" | ||
168 | - input: "Relu" | ||
169 | - attr { | ||
170 | - key: "ksize" | ||
171 | - value { | ||
172 | - list { | ||
173 | - i: 1 | ||
174 | - i: 3 | ||
175 | - i: 3 | ||
176 | - i: 1 | ||
177 | - } | ||
178 | - } | ||
179 | - } | ||
180 | - attr { | ||
181 | - key: "padding" | ||
182 | - value { | ||
183 | - s: "SAME" | ||
184 | - } | ||
185 | - } | ||
186 | - attr { | ||
187 | - key: "strides" | ||
188 | - value { | ||
189 | - list { | ||
190 | - i: 1 | ||
191 | - i: 2 | ||
192 | - i: 2 | ||
193 | - i: 1 | ||
194 | - } | ||
195 | - } | ||
196 | - } | ||
197 | -} | ||
198 | -node { | ||
199 | - name: "layer_64_1_conv1_h/Conv2D" | ||
200 | - op: "Conv2D" | ||
201 | - input: "conv1_pool/MaxPool" | ||
202 | - input: "layer_64_1_conv1_h/weights" | ||
203 | - attr { | ||
204 | - key: "dilations" | ||
205 | - value { | ||
206 | - list { | ||
207 | - i: 1 | ||
208 | - i: 1 | ||
209 | - i: 1 | ||
210 | - i: 1 | ||
211 | - } | ||
212 | - } | ||
213 | - } | ||
214 | - attr { | ||
215 | - key: "padding" | ||
216 | - value { | ||
217 | - s: "SAME" | ||
218 | - } | ||
219 | - } | ||
220 | - attr { | ||
221 | - key: "strides" | ||
222 | - value { | ||
223 | - list { | ||
224 | - i: 1 | ||
225 | - i: 1 | ||
226 | - i: 1 | ||
227 | - i: 1 | ||
228 | - } | ||
229 | - } | ||
230 | - } | ||
231 | -} | ||
232 | -node { | ||
233 | - name: "layer_64_1_bn2_h/FusedBatchNorm" | ||
234 | - op: "BiasAdd" | ||
235 | - input: "layer_64_1_conv1_h/Conv2D" | ||
236 | - input: "layer_64_1_conv1_h/Conv2D_bn_offset" | ||
237 | -} | ||
238 | -node { | ||
239 | - name: "layer_64_1_scale2_h/Mul" | ||
240 | - op: "Mul" | ||
241 | - input: "layer_64_1_bn2_h/FusedBatchNorm" | ||
242 | - input: "layer_64_1_scale2_h/mul" | ||
243 | -} | ||
244 | -node { | ||
245 | - name: "layer_64_1_scale2_h/BiasAdd" | ||
246 | - op: "BiasAdd" | ||
247 | - input: "layer_64_1_scale2_h/Mul" | ||
248 | - input: "layer_64_1_scale2_h/add" | ||
249 | -} | ||
250 | -node { | ||
251 | - name: "Relu_1" | ||
252 | - op: "Relu" | ||
253 | - input: "layer_64_1_scale2_h/BiasAdd" | ||
254 | -} | ||
255 | -node { | ||
256 | - name: "layer_64_1_conv2_h/Conv2D" | ||
257 | - op: "Conv2D" | ||
258 | - input: "Relu_1" | ||
259 | - input: "layer_64_1_conv2_h/weights" | ||
260 | - attr { | ||
261 | - key: "dilations" | ||
262 | - value { | ||
263 | - list { | ||
264 | - i: 1 | ||
265 | - i: 1 | ||
266 | - i: 1 | ||
267 | - i: 1 | ||
268 | - } | ||
269 | - } | ||
270 | - } | ||
271 | - attr { | ||
272 | - key: "padding" | ||
273 | - value { | ||
274 | - s: "SAME" | ||
275 | - } | ||
276 | - } | ||
277 | - attr { | ||
278 | - key: "strides" | ||
279 | - value { | ||
280 | - list { | ||
281 | - i: 1 | ||
282 | - i: 1 | ||
283 | - i: 1 | ||
284 | - i: 1 | ||
285 | - } | ||
286 | - } | ||
287 | - } | ||
288 | -} | ||
289 | -node { | ||
290 | - name: "add" | ||
291 | - op: "Add" | ||
292 | - input: "layer_64_1_conv2_h/Conv2D" | ||
293 | - input: "conv1_pool/MaxPool" | ||
294 | -} | ||
295 | -node { | ||
296 | - name: "layer_128_1_bn1_h/FusedBatchNorm" | ||
297 | - op: "FusedBatchNorm" | ||
298 | - input: "add" | ||
299 | - input: "layer_128_1_bn1_h/gamma" | ||
300 | - input: "layer_128_1_bn1_h/beta" | ||
301 | - input: "layer_128_1_bn1_h/mean" | ||
302 | - input: "layer_128_1_bn1_h/std" | ||
303 | - attr { | ||
304 | - key: "epsilon" | ||
305 | - value { | ||
306 | - f: 1.00099996416e-05 | ||
307 | - } | ||
308 | - } | ||
309 | -} | ||
310 | -node { | ||
311 | - name: "layer_128_1_scale1_h/Mul" | ||
312 | - op: "Mul" | ||
313 | - input: "layer_128_1_bn1_h/FusedBatchNorm" | ||
314 | - input: "layer_128_1_scale1_h/mul" | ||
315 | -} | ||
316 | -node { | ||
317 | - name: "layer_128_1_scale1_h/BiasAdd" | ||
318 | - op: "BiasAdd" | ||
319 | - input: "layer_128_1_scale1_h/Mul" | ||
320 | - input: "layer_128_1_scale1_h/add" | ||
321 | -} | ||
322 | -node { | ||
323 | - name: "Relu_2" | ||
324 | - op: "Relu" | ||
325 | - input: "layer_128_1_scale1_h/BiasAdd" | ||
326 | -} | ||
327 | -node { | ||
328 | - name: "layer_128_1_conv_expand_h/Conv2D" | ||
329 | - op: "Conv2D" | ||
330 | - input: "Relu_2" | ||
331 | - input: "layer_128_1_conv_expand_h/weights" | ||
332 | - attr { | ||
333 | - key: "dilations" | ||
334 | - value { | ||
335 | - list { | ||
336 | - i: 1 | ||
337 | - i: 1 | ||
338 | - i: 1 | ||
339 | - i: 1 | ||
340 | - } | ||
341 | - } | ||
342 | - } | ||
343 | - attr { | ||
344 | - key: "padding" | ||
345 | - value { | ||
346 | - s: "SAME" | ||
347 | - } | ||
348 | - } | ||
349 | - attr { | ||
350 | - key: "strides" | ||
351 | - value { | ||
352 | - list { | ||
353 | - i: 1 | ||
354 | - i: 2 | ||
355 | - i: 2 | ||
356 | - i: 1 | ||
357 | - } | ||
358 | - } | ||
359 | - } | ||
360 | -} | ||
361 | -node { | ||
362 | - name: "layer_128_1_conv1_h/Conv2D" | ||
363 | - op: "Conv2D" | ||
364 | - input: "Relu_2" | ||
365 | - input: "layer_128_1_conv1_h/weights" | ||
366 | - attr { | ||
367 | - key: "dilations" | ||
368 | - value { | ||
369 | - list { | ||
370 | - i: 1 | ||
371 | - i: 1 | ||
372 | - i: 1 | ||
373 | - i: 1 | ||
374 | - } | ||
375 | - } | ||
376 | - } | ||
377 | - attr { | ||
378 | - key: "padding" | ||
379 | - value { | ||
380 | - s: "SAME" | ||
381 | - } | ||
382 | - } | ||
383 | - attr { | ||
384 | - key: "strides" | ||
385 | - value { | ||
386 | - list { | ||
387 | - i: 1 | ||
388 | - i: 2 | ||
389 | - i: 2 | ||
390 | - i: 1 | ||
391 | - } | ||
392 | - } | ||
393 | - } | ||
394 | -} | ||
395 | -node { | ||
396 | - name: "layer_128_1_bn2/FusedBatchNorm" | ||
397 | - op: "BiasAdd" | ||
398 | - input: "layer_128_1_conv1_h/Conv2D" | ||
399 | - input: "layer_128_1_conv1_h/Conv2D_bn_offset" | ||
400 | -} | ||
401 | -node { | ||
402 | - name: "layer_128_1_scale2/Mul" | ||
403 | - op: "Mul" | ||
404 | - input: "layer_128_1_bn2/FusedBatchNorm" | ||
405 | - input: "layer_128_1_scale2/mul" | ||
406 | -} | ||
407 | -node { | ||
408 | - name: "layer_128_1_scale2/BiasAdd" | ||
409 | - op: "BiasAdd" | ||
410 | - input: "layer_128_1_scale2/Mul" | ||
411 | - input: "layer_128_1_scale2/add" | ||
412 | -} | ||
413 | -node { | ||
414 | - name: "Relu_3" | ||
415 | - op: "Relu" | ||
416 | - input: "layer_128_1_scale2/BiasAdd" | ||
417 | -} | ||
418 | -node { | ||
419 | - name: "layer_128_1_conv2/Conv2D" | ||
420 | - op: "Conv2D" | ||
421 | - input: "Relu_3" | ||
422 | - input: "layer_128_1_conv2/weights" | ||
423 | - attr { | ||
424 | - key: "dilations" | ||
425 | - value { | ||
426 | - list { | ||
427 | - i: 1 | ||
428 | - i: 1 | ||
429 | - i: 1 | ||
430 | - i: 1 | ||
431 | - } | ||
432 | - } | ||
433 | - } | ||
434 | - attr { | ||
435 | - key: "padding" | ||
436 | - value { | ||
437 | - s: "SAME" | ||
438 | - } | ||
439 | - } | ||
440 | - attr { | ||
441 | - key: "strides" | ||
442 | - value { | ||
443 | - list { | ||
444 | - i: 1 | ||
445 | - i: 1 | ||
446 | - i: 1 | ||
447 | - i: 1 | ||
448 | - } | ||
449 | - } | ||
450 | - } | ||
451 | -} | ||
452 | -node { | ||
453 | - name: "add_1" | ||
454 | - op: "Add" | ||
455 | - input: "layer_128_1_conv2/Conv2D" | ||
456 | - input: "layer_128_1_conv_expand_h/Conv2D" | ||
457 | -} | ||
458 | -node { | ||
459 | - name: "layer_256_1_bn1/FusedBatchNorm" | ||
460 | - op: "FusedBatchNorm" | ||
461 | - input: "add_1" | ||
462 | - input: "layer_256_1_bn1/gamma" | ||
463 | - input: "layer_256_1_bn1/beta" | ||
464 | - input: "layer_256_1_bn1/mean" | ||
465 | - input: "layer_256_1_bn1/std" | ||
466 | - attr { | ||
467 | - key: "epsilon" | ||
468 | - value { | ||
469 | - f: 1.00099996416e-05 | ||
470 | - } | ||
471 | - } | ||
472 | -} | ||
473 | -node { | ||
474 | - name: "layer_256_1_scale1/Mul" | ||
475 | - op: "Mul" | ||
476 | - input: "layer_256_1_bn1/FusedBatchNorm" | ||
477 | - input: "layer_256_1_scale1/mul" | ||
478 | -} | ||
479 | -node { | ||
480 | - name: "layer_256_1_scale1/BiasAdd" | ||
481 | - op: "BiasAdd" | ||
482 | - input: "layer_256_1_scale1/Mul" | ||
483 | - input: "layer_256_1_scale1/add" | ||
484 | -} | ||
485 | -node { | ||
486 | - name: "Relu_4" | ||
487 | - op: "Relu" | ||
488 | - input: "layer_256_1_scale1/BiasAdd" | ||
489 | -} | ||
490 | -node { | ||
491 | - name: "SpaceToBatchND_1/paddings" | ||
492 | - op: "Const" | ||
493 | - attr { | ||
494 | - key: "value" | ||
495 | - value { | ||
496 | - tensor { | ||
497 | - dtype: DT_INT32 | ||
498 | - tensor_shape { | ||
499 | - dim { | ||
500 | - size: 2 | ||
501 | - } | ||
502 | - dim { | ||
503 | - size: 2 | ||
504 | - } | ||
505 | - } | ||
506 | - int_val: 1 | ||
507 | - int_val: 1 | ||
508 | - int_val: 1 | ||
509 | - int_val: 1 | ||
510 | - } | ||
511 | - } | ||
512 | - } | ||
513 | -} | ||
514 | -node { | ||
515 | - name: "layer_256_1_conv_expand/Conv2D" | ||
516 | - op: "Conv2D" | ||
517 | - input: "Relu_4" | ||
518 | - input: "layer_256_1_conv_expand/weights" | ||
519 | - attr { | ||
520 | - key: "dilations" | ||
521 | - value { | ||
522 | - list { | ||
523 | - i: 1 | ||
524 | - i: 1 | ||
525 | - i: 1 | ||
526 | - i: 1 | ||
527 | - } | ||
528 | - } | ||
529 | - } | ||
530 | - attr { | ||
531 | - key: "padding" | ||
532 | - value { | ||
533 | - s: "SAME" | ||
534 | - } | ||
535 | - } | ||
536 | - attr { | ||
537 | - key: "strides" | ||
538 | - value { | ||
539 | - list { | ||
540 | - i: 1 | ||
541 | - i: 2 | ||
542 | - i: 2 | ||
543 | - i: 1 | ||
544 | - } | ||
545 | - } | ||
546 | - } | ||
547 | -} | ||
548 | -node { | ||
549 | - name: "conv4_3_norm/l2_normalize" | ||
550 | - op: "L2Normalize" | ||
551 | - input: "Relu_4:0" | ||
552 | - input: "conv4_3_norm/l2_normalize/Sum/reduction_indices" | ||
553 | -} | ||
554 | -node { | ||
555 | - name: "conv4_3_norm/mul_1" | ||
556 | - op: "Mul" | ||
557 | - input: "conv4_3_norm/l2_normalize" | ||
558 | - input: "conv4_3_norm/mul" | ||
559 | -} | ||
560 | -node { | ||
561 | - name: "conv4_3_norm_mbox_loc/Conv2D" | ||
562 | - op: "Conv2D" | ||
563 | - input: "conv4_3_norm/mul_1" | ||
564 | - input: "conv4_3_norm_mbox_loc/weights" | ||
565 | - attr { | ||
566 | - key: "dilations" | ||
567 | - value { | ||
568 | - list { | ||
569 | - i: 1 | ||
570 | - i: 1 | ||
571 | - i: 1 | ||
572 | - i: 1 | ||
573 | - } | ||
574 | - } | ||
575 | - } | ||
576 | - attr { | ||
577 | - key: "padding" | ||
578 | - value { | ||
579 | - s: "SAME" | ||
580 | - } | ||
581 | - } | ||
582 | - attr { | ||
583 | - key: "strides" | ||
584 | - value { | ||
585 | - list { | ||
586 | - i: 1 | ||
587 | - i: 1 | ||
588 | - i: 1 | ||
589 | - i: 1 | ||
590 | - } | ||
591 | - } | ||
592 | - } | ||
593 | -} | ||
594 | -node { | ||
595 | - name: "conv4_3_norm_mbox_loc/BiasAdd" | ||
596 | - op: "BiasAdd" | ||
597 | - input: "conv4_3_norm_mbox_loc/Conv2D" | ||
598 | - input: "conv4_3_norm_mbox_loc/bias" | ||
599 | -} | ||
600 | -node { | ||
601 | - name: "flatten/Reshape" | ||
602 | - op: "Flatten" | ||
603 | - input: "conv4_3_norm_mbox_loc/BiasAdd" | ||
604 | -} | ||
605 | -node { | ||
606 | - name: "conv4_3_norm_mbox_conf/Conv2D" | ||
607 | - op: "Conv2D" | ||
608 | - input: "conv4_3_norm/mul_1" | ||
609 | - input: "conv4_3_norm_mbox_conf/weights" | ||
610 | - attr { | ||
611 | - key: "dilations" | ||
612 | - value { | ||
613 | - list { | ||
614 | - i: 1 | ||
615 | - i: 1 | ||
616 | - i: 1 | ||
617 | - i: 1 | ||
618 | - } | ||
619 | - } | ||
620 | - } | ||
621 | - attr { | ||
622 | - key: "padding" | ||
623 | - value { | ||
624 | - s: "SAME" | ||
625 | - } | ||
626 | - } | ||
627 | - attr { | ||
628 | - key: "strides" | ||
629 | - value { | ||
630 | - list { | ||
631 | - i: 1 | ||
632 | - i: 1 | ||
633 | - i: 1 | ||
634 | - i: 1 | ||
635 | - } | ||
636 | - } | ||
637 | - } | ||
638 | -} | ||
639 | -node { | ||
640 | - name: "conv4_3_norm_mbox_conf/BiasAdd" | ||
641 | - op: "BiasAdd" | ||
642 | - input: "conv4_3_norm_mbox_conf/Conv2D" | ||
643 | - input: "conv4_3_norm_mbox_conf/bias" | ||
644 | -} | ||
645 | -node { | ||
646 | - name: "flatten_6/Reshape" | ||
647 | - op: "Flatten" | ||
648 | - input: "conv4_3_norm_mbox_conf/BiasAdd" | ||
649 | -} | ||
650 | -node { | ||
651 | - name: "Pad_1" | ||
652 | - op: "SpaceToBatchND" | ||
653 | - input: "Relu_4" | ||
654 | - input: "SpaceToBatchND/block_shape" | ||
655 | - input: "SpaceToBatchND_1/paddings" | ||
656 | -} | ||
657 | -node { | ||
658 | - name: "layer_256_1_conv1/Conv2D" | ||
659 | - op: "Conv2D" | ||
660 | - input: "Pad_1" | ||
661 | - input: "layer_256_1_conv1/weights" | ||
662 | - attr { | ||
663 | - key: "dilations" | ||
664 | - value { | ||
665 | - list { | ||
666 | - i: 1 | ||
667 | - i: 1 | ||
668 | - i: 1 | ||
669 | - i: 1 | ||
670 | - } | ||
671 | - } | ||
672 | - } | ||
673 | - attr { | ||
674 | - key: "padding" | ||
675 | - value { | ||
676 | - s: "VALID" | ||
677 | - } | ||
678 | - } | ||
679 | - attr { | ||
680 | - key: "strides" | ||
681 | - value { | ||
682 | - list { | ||
683 | - i: 1 | ||
684 | - i: 2 | ||
685 | - i: 2 | ||
686 | - i: 1 | ||
687 | - } | ||
688 | - } | ||
689 | - } | ||
690 | -} | ||
691 | -node { | ||
692 | - name: "layer_256_1_bn2/FusedBatchNorm" | ||
693 | - op: "BiasAdd" | ||
694 | - input: "layer_256_1_conv1/Conv2D" | ||
695 | - input: "layer_256_1_conv1/Conv2D_bn_offset" | ||
696 | -} | ||
697 | -node { | ||
698 | - name: "BatchToSpaceND_1" | ||
699 | - op: "BatchToSpaceND" | ||
700 | - input: "layer_256_1_bn2/FusedBatchNorm" | ||
701 | -} | ||
702 | -node { | ||
703 | - name: "layer_256_1_scale2/Mul" | ||
704 | - op: "Mul" | ||
705 | - input: "BatchToSpaceND_1" | ||
706 | - input: "layer_256_1_scale2/mul" | ||
707 | -} | ||
708 | -node { | ||
709 | - name: "layer_256_1_scale2/BiasAdd" | ||
710 | - op: "BiasAdd" | ||
711 | - input: "layer_256_1_scale2/Mul" | ||
712 | - input: "layer_256_1_scale2/add" | ||
713 | -} | ||
714 | -node { | ||
715 | - name: "Relu_5" | ||
716 | - op: "Relu" | ||
717 | - input: "layer_256_1_scale2/BiasAdd" | ||
718 | -} | ||
719 | -node { | ||
720 | - name: "layer_256_1_conv2/Conv2D" | ||
721 | - op: "Conv2D" | ||
722 | - input: "Relu_5" | ||
723 | - input: "layer_256_1_conv2/weights" | ||
724 | - attr { | ||
725 | - key: "dilations" | ||
726 | - value { | ||
727 | - list { | ||
728 | - i: 1 | ||
729 | - i: 1 | ||
730 | - i: 1 | ||
731 | - i: 1 | ||
732 | - } | ||
733 | - } | ||
734 | - } | ||
735 | - attr { | ||
736 | - key: "padding" | ||
737 | - value { | ||
738 | - s: "SAME" | ||
739 | - } | ||
740 | - } | ||
741 | - attr { | ||
742 | - key: "strides" | ||
743 | - value { | ||
744 | - list { | ||
745 | - i: 1 | ||
746 | - i: 1 | ||
747 | - i: 1 | ||
748 | - i: 1 | ||
749 | - } | ||
750 | - } | ||
751 | - } | ||
752 | -} | ||
753 | -node { | ||
754 | - name: "add_2" | ||
755 | - op: "Add" | ||
756 | - input: "layer_256_1_conv2/Conv2D" | ||
757 | - input: "layer_256_1_conv_expand/Conv2D" | ||
758 | -} | ||
759 | -node { | ||
760 | - name: "layer_512_1_bn1/FusedBatchNorm" | ||
761 | - op: "FusedBatchNorm" | ||
762 | - input: "add_2" | ||
763 | - input: "layer_512_1_bn1/gamma" | ||
764 | - input: "layer_512_1_bn1/beta" | ||
765 | - input: "layer_512_1_bn1/mean" | ||
766 | - input: "layer_512_1_bn1/std" | ||
767 | - attr { | ||
768 | - key: "epsilon" | ||
769 | - value { | ||
770 | - f: 1.00099996416e-05 | ||
771 | - } | ||
772 | - } | ||
773 | -} | ||
774 | -node { | ||
775 | - name: "layer_512_1_scale1/Mul" | ||
776 | - op: "Mul" | ||
777 | - input: "layer_512_1_bn1/FusedBatchNorm" | ||
778 | - input: "layer_512_1_scale1/mul" | ||
779 | -} | ||
780 | -node { | ||
781 | - name: "layer_512_1_scale1/BiasAdd" | ||
782 | - op: "BiasAdd" | ||
783 | - input: "layer_512_1_scale1/Mul" | ||
784 | - input: "layer_512_1_scale1/add" | ||
785 | -} | ||
786 | -node { | ||
787 | - name: "Relu_6" | ||
788 | - op: "Relu" | ||
789 | - input: "layer_512_1_scale1/BiasAdd" | ||
790 | -} | ||
791 | -node { | ||
792 | - name: "layer_512_1_conv_expand_h/Conv2D" | ||
793 | - op: "Conv2D" | ||
794 | - input: "Relu_6" | ||
795 | - input: "layer_512_1_conv_expand_h/weights" | ||
796 | - attr { | ||
797 | - key: "dilations" | ||
798 | - value { | ||
799 | - list { | ||
800 | - i: 1 | ||
801 | - i: 1 | ||
802 | - i: 1 | ||
803 | - i: 1 | ||
804 | - } | ||
805 | - } | ||
806 | - } | ||
807 | - attr { | ||
808 | - key: "padding" | ||
809 | - value { | ||
810 | - s: "SAME" | ||
811 | - } | ||
812 | - } | ||
813 | - attr { | ||
814 | - key: "strides" | ||
815 | - value { | ||
816 | - list { | ||
817 | - i: 1 | ||
818 | - i: 1 | ||
819 | - i: 1 | ||
820 | - i: 1 | ||
821 | - } | ||
822 | - } | ||
823 | - } | ||
824 | -} | ||
825 | -node { | ||
826 | - name: "layer_512_1_conv1_h/Conv2D" | ||
827 | - op: "Conv2D" | ||
828 | - input: "Relu_6" | ||
829 | - input: "layer_512_1_conv1_h/weights" | ||
830 | - attr { | ||
831 | - key: "dilations" | ||
832 | - value { | ||
833 | - list { | ||
834 | - i: 1 | ||
835 | - i: 1 | ||
836 | - i: 1 | ||
837 | - i: 1 | ||
838 | - } | ||
839 | - } | ||
840 | - } | ||
841 | - attr { | ||
842 | - key: "padding" | ||
843 | - value { | ||
844 | - s: "SAME" | ||
845 | - } | ||
846 | - } | ||
847 | - attr { | ||
848 | - key: "strides" | ||
849 | - value { | ||
850 | - list { | ||
851 | - i: 1 | ||
852 | - i: 1 | ||
853 | - i: 1 | ||
854 | - i: 1 | ||
855 | - } | ||
856 | - } | ||
857 | - } | ||
858 | -} | ||
859 | -node { | ||
860 | - name: "layer_512_1_bn2_h/FusedBatchNorm" | ||
861 | - op: "BiasAdd" | ||
862 | - input: "layer_512_1_conv1_h/Conv2D" | ||
863 | - input: "layer_512_1_conv1_h/Conv2D_bn_offset" | ||
864 | -} | ||
865 | -node { | ||
866 | - name: "layer_512_1_scale2_h/Mul" | ||
867 | - op: "Mul" | ||
868 | - input: "layer_512_1_bn2_h/FusedBatchNorm" | ||
869 | - input: "layer_512_1_scale2_h/mul" | ||
870 | -} | ||
871 | -node { | ||
872 | - name: "layer_512_1_scale2_h/BiasAdd" | ||
873 | - op: "BiasAdd" | ||
874 | - input: "layer_512_1_scale2_h/Mul" | ||
875 | - input: "layer_512_1_scale2_h/add" | ||
876 | -} | ||
877 | -node { | ||
878 | - name: "Relu_7" | ||
879 | - op: "Relu" | ||
880 | - input: "layer_512_1_scale2_h/BiasAdd" | ||
881 | -} | ||
882 | -node { | ||
883 | - name: "layer_512_1_conv2_h/convolution/SpaceToBatchND" | ||
884 | - op: "SpaceToBatchND" | ||
885 | - input: "Relu_7" | ||
886 | - input: "layer_512_1_conv2_h/convolution/SpaceToBatchND/block_shape" | ||
887 | - input: "layer_512_1_conv2_h/convolution/SpaceToBatchND/paddings" | ||
888 | -} | ||
889 | -node { | ||
890 | - name: "layer_512_1_conv2_h/convolution" | ||
891 | - op: "Conv2D" | ||
892 | - input: "layer_512_1_conv2_h/convolution/SpaceToBatchND" | ||
893 | - input: "layer_512_1_conv2_h/weights" | ||
894 | - attr { | ||
895 | - key: "dilations" | ||
896 | - value { | ||
897 | - list { | ||
898 | - i: 1 | ||
899 | - i: 1 | ||
900 | - i: 1 | ||
901 | - i: 1 | ||
902 | - } | ||
903 | - } | ||
904 | - } | ||
905 | - attr { | ||
906 | - key: "padding" | ||
907 | - value { | ||
908 | - s: "VALID" | ||
909 | - } | ||
910 | - } | ||
911 | - attr { | ||
912 | - key: "strides" | ||
913 | - value { | ||
914 | - list { | ||
915 | - i: 1 | ||
916 | - i: 1 | ||
917 | - i: 1 | ||
918 | - i: 1 | ||
919 | - } | ||
920 | - } | ||
921 | - } | ||
922 | -} | ||
923 | -node { | ||
924 | - name: "layer_512_1_conv2_h/convolution/BatchToSpaceND" | ||
925 | - op: "BatchToSpaceND" | ||
926 | - input: "layer_512_1_conv2_h/convolution" | ||
927 | - input: "layer_512_1_conv2_h/convolution/BatchToSpaceND/block_shape" | ||
928 | - input: "layer_512_1_conv2_h/convolution/BatchToSpaceND/crops" | ||
929 | -} | ||
930 | -node { | ||
931 | - name: "add_3" | ||
932 | - op: "Add" | ||
933 | - input: "layer_512_1_conv2_h/convolution/BatchToSpaceND" | ||
934 | - input: "layer_512_1_conv_expand_h/Conv2D" | ||
935 | -} | ||
936 | -node { | ||
937 | - name: "last_bn_h/FusedBatchNorm" | ||
938 | - op: "FusedBatchNorm" | ||
939 | - input: "add_3" | ||
940 | - input: "last_bn_h/gamma" | ||
941 | - input: "last_bn_h/beta" | ||
942 | - input: "last_bn_h/mean" | ||
943 | - input: "last_bn_h/std" | ||
944 | - attr { | ||
945 | - key: "epsilon" | ||
946 | - value { | ||
947 | - f: 1.00099996416e-05 | ||
948 | - } | ||
949 | - } | ||
950 | -} | ||
951 | -node { | ||
952 | - name: "last_scale_h/Mul" | ||
953 | - op: "Mul" | ||
954 | - input: "last_bn_h/FusedBatchNorm" | ||
955 | - input: "last_scale_h/mul" | ||
956 | -} | ||
957 | -node { | ||
958 | - name: "last_scale_h/BiasAdd" | ||
959 | - op: "BiasAdd" | ||
960 | - input: "last_scale_h/Mul" | ||
961 | - input: "last_scale_h/add" | ||
962 | -} | ||
963 | -node { | ||
964 | - name: "last_relu" | ||
965 | - op: "Relu" | ||
966 | - input: "last_scale_h/BiasAdd" | ||
967 | -} | ||
968 | -node { | ||
969 | - name: "conv6_1_h/Conv2D" | ||
970 | - op: "Conv2D" | ||
971 | - input: "last_relu" | ||
972 | - input: "conv6_1_h/weights" | ||
973 | - attr { | ||
974 | - key: "dilations" | ||
975 | - value { | ||
976 | - list { | ||
977 | - i: 1 | ||
978 | - i: 1 | ||
979 | - i: 1 | ||
980 | - i: 1 | ||
981 | - } | ||
982 | - } | ||
983 | - } | ||
984 | - attr { | ||
985 | - key: "padding" | ||
986 | - value { | ||
987 | - s: "SAME" | ||
988 | - } | ||
989 | - } | ||
990 | - attr { | ||
991 | - key: "strides" | ||
992 | - value { | ||
993 | - list { | ||
994 | - i: 1 | ||
995 | - i: 1 | ||
996 | - i: 1 | ||
997 | - i: 1 | ||
998 | - } | ||
999 | - } | ||
1000 | - } | ||
1001 | -} | ||
1002 | -node { | ||
1003 | - name: "conv6_1_h/BiasAdd" | ||
1004 | - op: "BiasAdd" | ||
1005 | - input: "conv6_1_h/Conv2D" | ||
1006 | - input: "conv6_1_h/bias" | ||
1007 | -} | ||
1008 | -node { | ||
1009 | - name: "conv6_1_h/Relu" | ||
1010 | - op: "Relu" | ||
1011 | - input: "conv6_1_h/BiasAdd" | ||
1012 | -} | ||
1013 | -node { | ||
1014 | - name: "conv6_2_h/Conv2D" | ||
1015 | - op: "Conv2D" | ||
1016 | - input: "conv6_1_h/Relu" | ||
1017 | - input: "conv6_2_h/weights" | ||
1018 | - attr { | ||
1019 | - key: "dilations" | ||
1020 | - value { | ||
1021 | - list { | ||
1022 | - i: 1 | ||
1023 | - i: 1 | ||
1024 | - i: 1 | ||
1025 | - i: 1 | ||
1026 | - } | ||
1027 | - } | ||
1028 | - } | ||
1029 | - attr { | ||
1030 | - key: "padding" | ||
1031 | - value { | ||
1032 | - s: "SAME" | ||
1033 | - } | ||
1034 | - } | ||
1035 | - attr { | ||
1036 | - key: "strides" | ||
1037 | - value { | ||
1038 | - list { | ||
1039 | - i: 1 | ||
1040 | - i: 2 | ||
1041 | - i: 2 | ||
1042 | - i: 1 | ||
1043 | - } | ||
1044 | - } | ||
1045 | - } | ||
1046 | -} | ||
1047 | -node { | ||
1048 | - name: "conv6_2_h/BiasAdd" | ||
1049 | - op: "BiasAdd" | ||
1050 | - input: "conv6_2_h/Conv2D" | ||
1051 | - input: "conv6_2_h/bias" | ||
1052 | -} | ||
1053 | -node { | ||
1054 | - name: "conv6_2_h/Relu" | ||
1055 | - op: "Relu" | ||
1056 | - input: "conv6_2_h/BiasAdd" | ||
1057 | -} | ||
1058 | -node { | ||
1059 | - name: "conv7_1_h/Conv2D" | ||
1060 | - op: "Conv2D" | ||
1061 | - input: "conv6_2_h/Relu" | ||
1062 | - input: "conv7_1_h/weights" | ||
1063 | - attr { | ||
1064 | - key: "dilations" | ||
1065 | - value { | ||
1066 | - list { | ||
1067 | - i: 1 | ||
1068 | - i: 1 | ||
1069 | - i: 1 | ||
1070 | - i: 1 | ||
1071 | - } | ||
1072 | - } | ||
1073 | - } | ||
1074 | - attr { | ||
1075 | - key: "padding" | ||
1076 | - value { | ||
1077 | - s: "SAME" | ||
1078 | - } | ||
1079 | - } | ||
1080 | - attr { | ||
1081 | - key: "strides" | ||
1082 | - value { | ||
1083 | - list { | ||
1084 | - i: 1 | ||
1085 | - i: 1 | ||
1086 | - i: 1 | ||
1087 | - i: 1 | ||
1088 | - } | ||
1089 | - } | ||
1090 | - } | ||
1091 | -} | ||
1092 | -node { | ||
1093 | - name: "conv7_1_h/BiasAdd" | ||
1094 | - op: "BiasAdd" | ||
1095 | - input: "conv7_1_h/Conv2D" | ||
1096 | - input: "conv7_1_h/bias" | ||
1097 | -} | ||
1098 | -node { | ||
1099 | - name: "conv7_1_h/Relu" | ||
1100 | - op: "Relu" | ||
1101 | - input: "conv7_1_h/BiasAdd" | ||
1102 | -} | ||
1103 | -node { | ||
1104 | - name: "Pad_2" | ||
1105 | - op: "SpaceToBatchND" | ||
1106 | - input: "conv7_1_h/Relu" | ||
1107 | - input: "SpaceToBatchND/block_shape" | ||
1108 | - input: "SpaceToBatchND_1/paddings" | ||
1109 | -} | ||
1110 | -node { | ||
1111 | - name: "conv7_2_h/Conv2D" | ||
1112 | - op: "Conv2D" | ||
1113 | - input: "Pad_2" | ||
1114 | - input: "conv7_2_h/weights" | ||
1115 | - attr { | ||
1116 | - key: "dilations" | ||
1117 | - value { | ||
1118 | - list { | ||
1119 | - i: 1 | ||
1120 | - i: 1 | ||
1121 | - i: 1 | ||
1122 | - i: 1 | ||
1123 | - } | ||
1124 | - } | ||
1125 | - } | ||
1126 | - attr { | ||
1127 | - key: "padding" | ||
1128 | - value { | ||
1129 | - s: "VALID" | ||
1130 | - } | ||
1131 | - } | ||
1132 | - attr { | ||
1133 | - key: "strides" | ||
1134 | - value { | ||
1135 | - list { | ||
1136 | - i: 1 | ||
1137 | - i: 2 | ||
1138 | - i: 2 | ||
1139 | - i: 1 | ||
1140 | - } | ||
1141 | - } | ||
1142 | - } | ||
1143 | -} | ||
1144 | -node { | ||
1145 | - name: "conv7_2_h/BiasAdd" | ||
1146 | - op: "BiasAdd" | ||
1147 | - input: "conv7_2_h/Conv2D" | ||
1148 | - input: "conv7_2_h/bias" | ||
1149 | -} | ||
1150 | -node { | ||
1151 | - name: "BatchToSpaceND_2" | ||
1152 | - op: "BatchToSpaceND" | ||
1153 | - input: "conv7_2_h/BiasAdd" | ||
1154 | -} | ||
1155 | -node { | ||
1156 | - name: "conv7_2_h/Relu" | ||
1157 | - op: "Relu" | ||
1158 | - input: "BatchToSpaceND_2" | ||
1159 | -} | ||
1160 | -node { | ||
1161 | - name: "conv8_1_h/Conv2D" | ||
1162 | - op: "Conv2D" | ||
1163 | - input: "conv7_2_h/Relu" | ||
1164 | - input: "conv8_1_h/weights" | ||
1165 | - attr { | ||
1166 | - key: "dilations" | ||
1167 | - value { | ||
1168 | - list { | ||
1169 | - i: 1 | ||
1170 | - i: 1 | ||
1171 | - i: 1 | ||
1172 | - i: 1 | ||
1173 | - } | ||
1174 | - } | ||
1175 | - } | ||
1176 | - attr { | ||
1177 | - key: "padding" | ||
1178 | - value { | ||
1179 | - s: "SAME" | ||
1180 | - } | ||
1181 | - } | ||
1182 | - attr { | ||
1183 | - key: "strides" | ||
1184 | - value { | ||
1185 | - list { | ||
1186 | - i: 1 | ||
1187 | - i: 1 | ||
1188 | - i: 1 | ||
1189 | - i: 1 | ||
1190 | - } | ||
1191 | - } | ||
1192 | - } | ||
1193 | -} | ||
1194 | -node { | ||
1195 | - name: "conv8_1_h/BiasAdd" | ||
1196 | - op: "BiasAdd" | ||
1197 | - input: "conv8_1_h/Conv2D" | ||
1198 | - input: "conv8_1_h/bias" | ||
1199 | -} | ||
1200 | -node { | ||
1201 | - name: "conv8_1_h/Relu" | ||
1202 | - op: "Relu" | ||
1203 | - input: "conv8_1_h/BiasAdd" | ||
1204 | -} | ||
1205 | -node { | ||
1206 | - name: "conv8_2_h/Conv2D" | ||
1207 | - op: "Conv2D" | ||
1208 | - input: "conv8_1_h/Relu" | ||
1209 | - input: "conv8_2_h/weights" | ||
1210 | - attr { | ||
1211 | - key: "dilations" | ||
1212 | - value { | ||
1213 | - list { | ||
1214 | - i: 1 | ||
1215 | - i: 1 | ||
1216 | - i: 1 | ||
1217 | - i: 1 | ||
1218 | - } | ||
1219 | - } | ||
1220 | - } | ||
1221 | - attr { | ||
1222 | - key: "padding" | ||
1223 | - value { | ||
1224 | - s: "SAME" | ||
1225 | - } | ||
1226 | - } | ||
1227 | - attr { | ||
1228 | - key: "strides" | ||
1229 | - value { | ||
1230 | - list { | ||
1231 | - i: 1 | ||
1232 | - i: 1 | ||
1233 | - i: 1 | ||
1234 | - i: 1 | ||
1235 | - } | ||
1236 | - } | ||
1237 | - } | ||
1238 | -} | ||
1239 | -node { | ||
1240 | - name: "conv8_2_h/BiasAdd" | ||
1241 | - op: "BiasAdd" | ||
1242 | - input: "conv8_2_h/Conv2D" | ||
1243 | - input: "conv8_2_h/bias" | ||
1244 | -} | ||
1245 | -node { | ||
1246 | - name: "conv8_2_h/Relu" | ||
1247 | - op: "Relu" | ||
1248 | - input: "conv8_2_h/BiasAdd" | ||
1249 | -} | ||
1250 | -node { | ||
1251 | - name: "conv9_1_h/Conv2D" | ||
1252 | - op: "Conv2D" | ||
1253 | - input: "conv8_2_h/Relu" | ||
1254 | - input: "conv9_1_h/weights" | ||
1255 | - attr { | ||
1256 | - key: "dilations" | ||
1257 | - value { | ||
1258 | - list { | ||
1259 | - i: 1 | ||
1260 | - i: 1 | ||
1261 | - i: 1 | ||
1262 | - i: 1 | ||
1263 | - } | ||
1264 | - } | ||
1265 | - } | ||
1266 | - attr { | ||
1267 | - key: "padding" | ||
1268 | - value { | ||
1269 | - s: "SAME" | ||
1270 | - } | ||
1271 | - } | ||
1272 | - attr { | ||
1273 | - key: "strides" | ||
1274 | - value { | ||
1275 | - list { | ||
1276 | - i: 1 | ||
1277 | - i: 1 | ||
1278 | - i: 1 | ||
1279 | - i: 1 | ||
1280 | - } | ||
1281 | - } | ||
1282 | - } | ||
1283 | -} | ||
1284 | -node { | ||
1285 | - name: "conv9_1_h/BiasAdd" | ||
1286 | - op: "BiasAdd" | ||
1287 | - input: "conv9_1_h/Conv2D" | ||
1288 | - input: "conv9_1_h/bias" | ||
1289 | -} | ||
1290 | -node { | ||
1291 | - name: "conv9_1_h/Relu" | ||
1292 | - op: "Relu" | ||
1293 | - input: "conv9_1_h/BiasAdd" | ||
1294 | -} | ||
1295 | -node { | ||
1296 | - name: "conv9_2_h/Conv2D" | ||
1297 | - op: "Conv2D" | ||
1298 | - input: "conv9_1_h/Relu" | ||
1299 | - input: "conv9_2_h/weights" | ||
1300 | - attr { | ||
1301 | - key: "dilations" | ||
1302 | - value { | ||
1303 | - list { | ||
1304 | - i: 1 | ||
1305 | - i: 1 | ||
1306 | - i: 1 | ||
1307 | - i: 1 | ||
1308 | - } | ||
1309 | - } | ||
1310 | - } | ||
1311 | - attr { | ||
1312 | - key: "padding" | ||
1313 | - value { | ||
1314 | - s: "SAME" | ||
1315 | - } | ||
1316 | - } | ||
1317 | - attr { | ||
1318 | - key: "strides" | ||
1319 | - value { | ||
1320 | - list { | ||
1321 | - i: 1 | ||
1322 | - i: 1 | ||
1323 | - i: 1 | ||
1324 | - i: 1 | ||
1325 | - } | ||
1326 | - } | ||
1327 | - } | ||
1328 | -} | ||
1329 | -node { | ||
1330 | - name: "conv9_2_h/BiasAdd" | ||
1331 | - op: "BiasAdd" | ||
1332 | - input: "conv9_2_h/Conv2D" | ||
1333 | - input: "conv9_2_h/bias" | ||
1334 | -} | ||
1335 | -node { | ||
1336 | - name: "conv9_2_h/Relu" | ||
1337 | - op: "Relu" | ||
1338 | - input: "conv9_2_h/BiasAdd" | ||
1339 | -} | ||
1340 | -node { | ||
1341 | - name: "conv9_2_mbox_loc/Conv2D" | ||
1342 | - op: "Conv2D" | ||
1343 | - input: "conv9_2_h/Relu" | ||
1344 | - input: "conv9_2_mbox_loc/weights" | ||
1345 | - attr { | ||
1346 | - key: "dilations" | ||
1347 | - value { | ||
1348 | - list { | ||
1349 | - i: 1 | ||
1350 | - i: 1 | ||
1351 | - i: 1 | ||
1352 | - i: 1 | ||
1353 | - } | ||
1354 | - } | ||
1355 | - } | ||
1356 | - attr { | ||
1357 | - key: "padding" | ||
1358 | - value { | ||
1359 | - s: "SAME" | ||
1360 | - } | ||
1361 | - } | ||
1362 | - attr { | ||
1363 | - key: "strides" | ||
1364 | - value { | ||
1365 | - list { | ||
1366 | - i: 1 | ||
1367 | - i: 1 | ||
1368 | - i: 1 | ||
1369 | - i: 1 | ||
1370 | - } | ||
1371 | - } | ||
1372 | - } | ||
1373 | -} | ||
1374 | -node { | ||
1375 | - name: "conv9_2_mbox_loc/BiasAdd" | ||
1376 | - op: "BiasAdd" | ||
1377 | - input: "conv9_2_mbox_loc/Conv2D" | ||
1378 | - input: "conv9_2_mbox_loc/bias" | ||
1379 | -} | ||
1380 | -node { | ||
1381 | - name: "flatten_5/Reshape" | ||
1382 | - op: "Flatten" | ||
1383 | - input: "conv9_2_mbox_loc/BiasAdd" | ||
1384 | -} | ||
1385 | -node { | ||
1386 | - name: "conv9_2_mbox_conf/Conv2D" | ||
1387 | - op: "Conv2D" | ||
1388 | - input: "conv9_2_h/Relu" | ||
1389 | - input: "conv9_2_mbox_conf/weights" | ||
1390 | - attr { | ||
1391 | - key: "dilations" | ||
1392 | - value { | ||
1393 | - list { | ||
1394 | - i: 1 | ||
1395 | - i: 1 | ||
1396 | - i: 1 | ||
1397 | - i: 1 | ||
1398 | - } | ||
1399 | - } | ||
1400 | - } | ||
1401 | - attr { | ||
1402 | - key: "padding" | ||
1403 | - value { | ||
1404 | - s: "SAME" | ||
1405 | - } | ||
1406 | - } | ||
1407 | - attr { | ||
1408 | - key: "strides" | ||
1409 | - value { | ||
1410 | - list { | ||
1411 | - i: 1 | ||
1412 | - i: 1 | ||
1413 | - i: 1 | ||
1414 | - i: 1 | ||
1415 | - } | ||
1416 | - } | ||
1417 | - } | ||
1418 | -} | ||
1419 | -node { | ||
1420 | - name: "conv9_2_mbox_conf/BiasAdd" | ||
1421 | - op: "BiasAdd" | ||
1422 | - input: "conv9_2_mbox_conf/Conv2D" | ||
1423 | - input: "conv9_2_mbox_conf/bias" | ||
1424 | -} | ||
1425 | -node { | ||
1426 | - name: "flatten_11/Reshape" | ||
1427 | - op: "Flatten" | ||
1428 | - input: "conv9_2_mbox_conf/BiasAdd" | ||
1429 | -} | ||
1430 | -node { | ||
1431 | - name: "conv8_2_mbox_loc/Conv2D" | ||
1432 | - op: "Conv2D" | ||
1433 | - input: "conv8_2_h/Relu" | ||
1434 | - input: "conv8_2_mbox_loc/weights" | ||
1435 | - attr { | ||
1436 | - key: "dilations" | ||
1437 | - value { | ||
1438 | - list { | ||
1439 | - i: 1 | ||
1440 | - i: 1 | ||
1441 | - i: 1 | ||
1442 | - i: 1 | ||
1443 | - } | ||
1444 | - } | ||
1445 | - } | ||
1446 | - attr { | ||
1447 | - key: "padding" | ||
1448 | - value { | ||
1449 | - s: "SAME" | ||
1450 | - } | ||
1451 | - } | ||
1452 | - attr { | ||
1453 | - key: "strides" | ||
1454 | - value { | ||
1455 | - list { | ||
1456 | - i: 1 | ||
1457 | - i: 1 | ||
1458 | - i: 1 | ||
1459 | - i: 1 | ||
1460 | - } | ||
1461 | - } | ||
1462 | - } | ||
1463 | -} | ||
1464 | -node { | ||
1465 | - name: "conv8_2_mbox_loc/BiasAdd" | ||
1466 | - op: "BiasAdd" | ||
1467 | - input: "conv8_2_mbox_loc/Conv2D" | ||
1468 | - input: "conv8_2_mbox_loc/bias" | ||
1469 | -} | ||
1470 | -node { | ||
1471 | - name: "flatten_4/Reshape" | ||
1472 | - op: "Flatten" | ||
1473 | - input: "conv8_2_mbox_loc/BiasAdd" | ||
1474 | -} | ||
1475 | -node { | ||
1476 | - name: "conv8_2_mbox_conf/Conv2D" | ||
1477 | - op: "Conv2D" | ||
1478 | - input: "conv8_2_h/Relu" | ||
1479 | - input: "conv8_2_mbox_conf/weights" | ||
1480 | - attr { | ||
1481 | - key: "dilations" | ||
1482 | - value { | ||
1483 | - list { | ||
1484 | - i: 1 | ||
1485 | - i: 1 | ||
1486 | - i: 1 | ||
1487 | - i: 1 | ||
1488 | - } | ||
1489 | - } | ||
1490 | - } | ||
1491 | - attr { | ||
1492 | - key: "padding" | ||
1493 | - value { | ||
1494 | - s: "SAME" | ||
1495 | - } | ||
1496 | - } | ||
1497 | - attr { | ||
1498 | - key: "strides" | ||
1499 | - value { | ||
1500 | - list { | ||
1501 | - i: 1 | ||
1502 | - i: 1 | ||
1503 | - i: 1 | ||
1504 | - i: 1 | ||
1505 | - } | ||
1506 | - } | ||
1507 | - } | ||
1508 | -} | ||
1509 | -node { | ||
1510 | - name: "conv8_2_mbox_conf/BiasAdd" | ||
1511 | - op: "BiasAdd" | ||
1512 | - input: "conv8_2_mbox_conf/Conv2D" | ||
1513 | - input: "conv8_2_mbox_conf/bias" | ||
1514 | -} | ||
1515 | -node { | ||
1516 | - name: "flatten_10/Reshape" | ||
1517 | - op: "Flatten" | ||
1518 | - input: "conv8_2_mbox_conf/BiasAdd" | ||
1519 | -} | ||
1520 | -node { | ||
1521 | - name: "conv7_2_mbox_loc/Conv2D" | ||
1522 | - op: "Conv2D" | ||
1523 | - input: "conv7_2_h/Relu" | ||
1524 | - input: "conv7_2_mbox_loc/weights" | ||
1525 | - attr { | ||
1526 | - key: "dilations" | ||
1527 | - value { | ||
1528 | - list { | ||
1529 | - i: 1 | ||
1530 | - i: 1 | ||
1531 | - i: 1 | ||
1532 | - i: 1 | ||
1533 | - } | ||
1534 | - } | ||
1535 | - } | ||
1536 | - attr { | ||
1537 | - key: "padding" | ||
1538 | - value { | ||
1539 | - s: "SAME" | ||
1540 | - } | ||
1541 | - } | ||
1542 | - attr { | ||
1543 | - key: "strides" | ||
1544 | - value { | ||
1545 | - list { | ||
1546 | - i: 1 | ||
1547 | - i: 1 | ||
1548 | - i: 1 | ||
1549 | - i: 1 | ||
1550 | - } | ||
1551 | - } | ||
1552 | - } | ||
1553 | -} | ||
1554 | -node { | ||
1555 | - name: "conv7_2_mbox_loc/BiasAdd" | ||
1556 | - op: "BiasAdd" | ||
1557 | - input: "conv7_2_mbox_loc/Conv2D" | ||
1558 | - input: "conv7_2_mbox_loc/bias" | ||
1559 | -} | ||
1560 | -node { | ||
1561 | - name: "flatten_3/Reshape" | ||
1562 | - op: "Flatten" | ||
1563 | - input: "conv7_2_mbox_loc/BiasAdd" | ||
1564 | -} | ||
1565 | -node { | ||
1566 | - name: "conv7_2_mbox_conf/Conv2D" | ||
1567 | - op: "Conv2D" | ||
1568 | - input: "conv7_2_h/Relu" | ||
1569 | - input: "conv7_2_mbox_conf/weights" | ||
1570 | - attr { | ||
1571 | - key: "dilations" | ||
1572 | - value { | ||
1573 | - list { | ||
1574 | - i: 1 | ||
1575 | - i: 1 | ||
1576 | - i: 1 | ||
1577 | - i: 1 | ||
1578 | - } | ||
1579 | - } | ||
1580 | - } | ||
1581 | - attr { | ||
1582 | - key: "padding" | ||
1583 | - value { | ||
1584 | - s: "SAME" | ||
1585 | - } | ||
1586 | - } | ||
1587 | - attr { | ||
1588 | - key: "strides" | ||
1589 | - value { | ||
1590 | - list { | ||
1591 | - i: 1 | ||
1592 | - i: 1 | ||
1593 | - i: 1 | ||
1594 | - i: 1 | ||
1595 | - } | ||
1596 | - } | ||
1597 | - } | ||
1598 | -} | ||
1599 | -node { | ||
1600 | - name: "conv7_2_mbox_conf/BiasAdd" | ||
1601 | - op: "BiasAdd" | ||
1602 | - input: "conv7_2_mbox_conf/Conv2D" | ||
1603 | - input: "conv7_2_mbox_conf/bias" | ||
1604 | -} | ||
1605 | -node { | ||
1606 | - name: "flatten_9/Reshape" | ||
1607 | - op: "Flatten" | ||
1608 | - input: "conv7_2_mbox_conf/BiasAdd" | ||
1609 | -} | ||
1610 | -node { | ||
1611 | - name: "conv6_2_mbox_loc/Conv2D" | ||
1612 | - op: "Conv2D" | ||
1613 | - input: "conv6_2_h/Relu" | ||
1614 | - input: "conv6_2_mbox_loc/weights" | ||
1615 | - attr { | ||
1616 | - key: "dilations" | ||
1617 | - value { | ||
1618 | - list { | ||
1619 | - i: 1 | ||
1620 | - i: 1 | ||
1621 | - i: 1 | ||
1622 | - i: 1 | ||
1623 | - } | ||
1624 | - } | ||
1625 | - } | ||
1626 | - attr { | ||
1627 | - key: "padding" | ||
1628 | - value { | ||
1629 | - s: "SAME" | ||
1630 | - } | ||
1631 | - } | ||
1632 | - attr { | ||
1633 | - key: "strides" | ||
1634 | - value { | ||
1635 | - list { | ||
1636 | - i: 1 | ||
1637 | - i: 1 | ||
1638 | - i: 1 | ||
1639 | - i: 1 | ||
1640 | - } | ||
1641 | - } | ||
1642 | - } | ||
1643 | -} | ||
1644 | -node { | ||
1645 | - name: "conv6_2_mbox_loc/BiasAdd" | ||
1646 | - op: "BiasAdd" | ||
1647 | - input: "conv6_2_mbox_loc/Conv2D" | ||
1648 | - input: "conv6_2_mbox_loc/bias" | ||
1649 | -} | ||
1650 | -node { | ||
1651 | - name: "flatten_2/Reshape" | ||
1652 | - op: "Flatten" | ||
1653 | - input: "conv6_2_mbox_loc/BiasAdd" | ||
1654 | -} | ||
1655 | -node { | ||
1656 | - name: "conv6_2_mbox_conf/Conv2D" | ||
1657 | - op: "Conv2D" | ||
1658 | - input: "conv6_2_h/Relu" | ||
1659 | - input: "conv6_2_mbox_conf/weights" | ||
1660 | - attr { | ||
1661 | - key: "dilations" | ||
1662 | - value { | ||
1663 | - list { | ||
1664 | - i: 1 | ||
1665 | - i: 1 | ||
1666 | - i: 1 | ||
1667 | - i: 1 | ||
1668 | - } | ||
1669 | - } | ||
1670 | - } | ||
1671 | - attr { | ||
1672 | - key: "padding" | ||
1673 | - value { | ||
1674 | - s: "SAME" | ||
1675 | - } | ||
1676 | - } | ||
1677 | - attr { | ||
1678 | - key: "strides" | ||
1679 | - value { | ||
1680 | - list { | ||
1681 | - i: 1 | ||
1682 | - i: 1 | ||
1683 | - i: 1 | ||
1684 | - i: 1 | ||
1685 | - } | ||
1686 | - } | ||
1687 | - } | ||
1688 | -} | ||
1689 | -node { | ||
1690 | - name: "conv6_2_mbox_conf/BiasAdd" | ||
1691 | - op: "BiasAdd" | ||
1692 | - input: "conv6_2_mbox_conf/Conv2D" | ||
1693 | - input: "conv6_2_mbox_conf/bias" | ||
1694 | -} | ||
1695 | -node { | ||
1696 | - name: "flatten_8/Reshape" | ||
1697 | - op: "Flatten" | ||
1698 | - input: "conv6_2_mbox_conf/BiasAdd" | ||
1699 | -} | ||
1700 | -node { | ||
1701 | - name: "fc7_mbox_loc/Conv2D" | ||
1702 | - op: "Conv2D" | ||
1703 | - input: "last_relu" | ||
1704 | - input: "fc7_mbox_loc/weights" | ||
1705 | - attr { | ||
1706 | - key: "dilations" | ||
1707 | - value { | ||
1708 | - list { | ||
1709 | - i: 1 | ||
1710 | - i: 1 | ||
1711 | - i: 1 | ||
1712 | - i: 1 | ||
1713 | - } | ||
1714 | - } | ||
1715 | - } | ||
1716 | - attr { | ||
1717 | - key: "padding" | ||
1718 | - value { | ||
1719 | - s: "SAME" | ||
1720 | - } | ||
1721 | - } | ||
1722 | - attr { | ||
1723 | - key: "strides" | ||
1724 | - value { | ||
1725 | - list { | ||
1726 | - i: 1 | ||
1727 | - i: 1 | ||
1728 | - i: 1 | ||
1729 | - i: 1 | ||
1730 | - } | ||
1731 | - } | ||
1732 | - } | ||
1733 | -} | ||
1734 | -node { | ||
1735 | - name: "fc7_mbox_loc/BiasAdd" | ||
1736 | - op: "BiasAdd" | ||
1737 | - input: "fc7_mbox_loc/Conv2D" | ||
1738 | - input: "fc7_mbox_loc/bias" | ||
1739 | -} | ||
1740 | -node { | ||
1741 | - name: "flatten_1/Reshape" | ||
1742 | - op: "Flatten" | ||
1743 | - input: "fc7_mbox_loc/BiasAdd" | ||
1744 | -} | ||
1745 | -node { | ||
1746 | - name: "mbox_loc" | ||
1747 | - op: "ConcatV2" | ||
1748 | - input: "flatten/Reshape" | ||
1749 | - input: "flatten_1/Reshape" | ||
1750 | - input: "flatten_2/Reshape" | ||
1751 | - input: "flatten_3/Reshape" | ||
1752 | - input: "flatten_4/Reshape" | ||
1753 | - input: "flatten_5/Reshape" | ||
1754 | - input: "mbox_loc/axis" | ||
1755 | -} | ||
1756 | -node { | ||
1757 | - name: "fc7_mbox_conf/Conv2D" | ||
1758 | - op: "Conv2D" | ||
1759 | - input: "last_relu" | ||
1760 | - input: "fc7_mbox_conf/weights" | ||
1761 | - attr { | ||
1762 | - key: "dilations" | ||
1763 | - value { | ||
1764 | - list { | ||
1765 | - i: 1 | ||
1766 | - i: 1 | ||
1767 | - i: 1 | ||
1768 | - i: 1 | ||
1769 | - } | ||
1770 | - } | ||
1771 | - } | ||
1772 | - attr { | ||
1773 | - key: "padding" | ||
1774 | - value { | ||
1775 | - s: "SAME" | ||
1776 | - } | ||
1777 | - } | ||
1778 | - attr { | ||
1779 | - key: "strides" | ||
1780 | - value { | ||
1781 | - list { | ||
1782 | - i: 1 | ||
1783 | - i: 1 | ||
1784 | - i: 1 | ||
1785 | - i: 1 | ||
1786 | - } | ||
1787 | - } | ||
1788 | - } | ||
1789 | -} | ||
1790 | -node { | ||
1791 | - name: "fc7_mbox_conf/BiasAdd" | ||
1792 | - op: "BiasAdd" | ||
1793 | - input: "fc7_mbox_conf/Conv2D" | ||
1794 | - input: "fc7_mbox_conf/bias" | ||
1795 | -} | ||
1796 | -node { | ||
1797 | - name: "flatten_7/Reshape" | ||
1798 | - op: "Flatten" | ||
1799 | - input: "fc7_mbox_conf/BiasAdd" | ||
1800 | -} | ||
1801 | -node { | ||
1802 | - name: "mbox_conf" | ||
1803 | - op: "ConcatV2" | ||
1804 | - input: "flatten_6/Reshape" | ||
1805 | - input: "flatten_7/Reshape" | ||
1806 | - input: "flatten_8/Reshape" | ||
1807 | - input: "flatten_9/Reshape" | ||
1808 | - input: "flatten_10/Reshape" | ||
1809 | - input: "flatten_11/Reshape" | ||
1810 | - input: "mbox_conf/axis" | ||
1811 | -} | ||
1812 | -node { | ||
1813 | - name: "mbox_conf_reshape" | ||
1814 | - op: "Reshape" | ||
1815 | - input: "mbox_conf" | ||
1816 | - input: "reshape_before_softmax" | ||
1817 | -} | ||
1818 | -node { | ||
1819 | - name: "mbox_conf_softmax" | ||
1820 | - op: "Softmax" | ||
1821 | - input: "mbox_conf_reshape" | ||
1822 | - attr { | ||
1823 | - key: "axis" | ||
1824 | - value { | ||
1825 | - i: 2 | ||
1826 | - } | ||
1827 | - } | ||
1828 | -} | ||
1829 | -node { | ||
1830 | - name: "mbox_conf_flatten" | ||
1831 | - op: "Flatten" | ||
1832 | - input: "mbox_conf_softmax" | ||
1833 | -} | ||
1834 | -node { | ||
1835 | - name: "PriorBox_0" | ||
1836 | - op: "PriorBox" | ||
1837 | - input: "conv4_3_norm/mul_1" | ||
1838 | - input: "data" | ||
1839 | - attr { | ||
1840 | - key: "aspect_ratio" | ||
1841 | - value { | ||
1842 | - tensor { | ||
1843 | - dtype: DT_FLOAT | ||
1844 | - tensor_shape { | ||
1845 | - dim { | ||
1846 | - size: 1 | ||
1847 | - } | ||
1848 | - } | ||
1849 | - float_val: 2.0 | ||
1850 | - } | ||
1851 | - } | ||
1852 | - } | ||
1853 | - attr { | ||
1854 | - key: "clip" | ||
1855 | - value { | ||
1856 | - b: false | ||
1857 | - } | ||
1858 | - } | ||
1859 | - attr { | ||
1860 | - key: "flip" | ||
1861 | - value { | ||
1862 | - b: true | ||
1863 | - } | ||
1864 | - } | ||
1865 | - attr { | ||
1866 | - key: "max_size" | ||
1867 | - value { | ||
1868 | - i: 60 | ||
1869 | - } | ||
1870 | - } | ||
1871 | - attr { | ||
1872 | - key: "min_size" | ||
1873 | - value { | ||
1874 | - i: 30 | ||
1875 | - } | ||
1876 | - } | ||
1877 | - attr { | ||
1878 | - key: "offset" | ||
1879 | - value { | ||
1880 | - f: 0.5 | ||
1881 | - } | ||
1882 | - } | ||
1883 | - attr { | ||
1884 | - key: "step" | ||
1885 | - value { | ||
1886 | - f: 8.0 | ||
1887 | - } | ||
1888 | - } | ||
1889 | - attr { | ||
1890 | - key: "variance" | ||
1891 | - value { | ||
1892 | - tensor { | ||
1893 | - dtype: DT_FLOAT | ||
1894 | - tensor_shape { | ||
1895 | - dim { | ||
1896 | - size: 4 | ||
1897 | - } | ||
1898 | - } | ||
1899 | - float_val: 0.10000000149 | ||
1900 | - float_val: 0.10000000149 | ||
1901 | - float_val: 0.20000000298 | ||
1902 | - float_val: 0.20000000298 | ||
1903 | - } | ||
1904 | - } | ||
1905 | - } | ||
1906 | -} | ||
1907 | -node { | ||
1908 | - name: "PriorBox_1" | ||
1909 | - op: "PriorBox" | ||
1910 | - input: "last_relu" | ||
1911 | - input: "data" | ||
1912 | - attr { | ||
1913 | - key: "aspect_ratio" | ||
1914 | - value { | ||
1915 | - tensor { | ||
1916 | - dtype: DT_FLOAT | ||
1917 | - tensor_shape { | ||
1918 | - dim { | ||
1919 | - size: 2 | ||
1920 | - } | ||
1921 | - } | ||
1922 | - float_val: 2.0 | ||
1923 | - float_val: 3.0 | ||
1924 | - } | ||
1925 | - } | ||
1926 | - } | ||
1927 | - attr { | ||
1928 | - key: "clip" | ||
1929 | - value { | ||
1930 | - b: false | ||
1931 | - } | ||
1932 | - } | ||
1933 | - attr { | ||
1934 | - key: "flip" | ||
1935 | - value { | ||
1936 | - b: true | ||
1937 | - } | ||
1938 | - } | ||
1939 | - attr { | ||
1940 | - key: "max_size" | ||
1941 | - value { | ||
1942 | - i: 111 | ||
1943 | - } | ||
1944 | - } | ||
1945 | - attr { | ||
1946 | - key: "min_size" | ||
1947 | - value { | ||
1948 | - i: 60 | ||
1949 | - } | ||
1950 | - } | ||
1951 | - attr { | ||
1952 | - key: "offset" | ||
1953 | - value { | ||
1954 | - f: 0.5 | ||
1955 | - } | ||
1956 | - } | ||
1957 | - attr { | ||
1958 | - key: "step" | ||
1959 | - value { | ||
1960 | - f: 16.0 | ||
1961 | - } | ||
1962 | - } | ||
1963 | - attr { | ||
1964 | - key: "variance" | ||
1965 | - value { | ||
1966 | - tensor { | ||
1967 | - dtype: DT_FLOAT | ||
1968 | - tensor_shape { | ||
1969 | - dim { | ||
1970 | - size: 4 | ||
1971 | - } | ||
1972 | - } | ||
1973 | - float_val: 0.10000000149 | ||
1974 | - float_val: 0.10000000149 | ||
1975 | - float_val: 0.20000000298 | ||
1976 | - float_val: 0.20000000298 | ||
1977 | - } | ||
1978 | - } | ||
1979 | - } | ||
1980 | -} | ||
1981 | -node { | ||
1982 | - name: "PriorBox_2" | ||
1983 | - op: "PriorBox" | ||
1984 | - input: "conv6_2_h/Relu" | ||
1985 | - input: "data" | ||
1986 | - attr { | ||
1987 | - key: "aspect_ratio" | ||
1988 | - value { | ||
1989 | - tensor { | ||
1990 | - dtype: DT_FLOAT | ||
1991 | - tensor_shape { | ||
1992 | - dim { | ||
1993 | - size: 2 | ||
1994 | - } | ||
1995 | - } | ||
1996 | - float_val: 2.0 | ||
1997 | - float_val: 3.0 | ||
1998 | - } | ||
1999 | - } | ||
2000 | - } | ||
2001 | - attr { | ||
2002 | - key: "clip" | ||
2003 | - value { | ||
2004 | - b: false | ||
2005 | - } | ||
2006 | - } | ||
2007 | - attr { | ||
2008 | - key: "flip" | ||
2009 | - value { | ||
2010 | - b: true | ||
2011 | - } | ||
2012 | - } | ||
2013 | - attr { | ||
2014 | - key: "max_size" | ||
2015 | - value { | ||
2016 | - i: 162 | ||
2017 | - } | ||
2018 | - } | ||
2019 | - attr { | ||
2020 | - key: "min_size" | ||
2021 | - value { | ||
2022 | - i: 111 | ||
2023 | - } | ||
2024 | - } | ||
2025 | - attr { | ||
2026 | - key: "offset" | ||
2027 | - value { | ||
2028 | - f: 0.5 | ||
2029 | - } | ||
2030 | - } | ||
2031 | - attr { | ||
2032 | - key: "step" | ||
2033 | - value { | ||
2034 | - f: 32.0 | ||
2035 | - } | ||
2036 | - } | ||
2037 | - attr { | ||
2038 | - key: "variance" | ||
2039 | - value { | ||
2040 | - tensor { | ||
2041 | - dtype: DT_FLOAT | ||
2042 | - tensor_shape { | ||
2043 | - dim { | ||
2044 | - size: 4 | ||
2045 | - } | ||
2046 | - } | ||
2047 | - float_val: 0.10000000149 | ||
2048 | - float_val: 0.10000000149 | ||
2049 | - float_val: 0.20000000298 | ||
2050 | - float_val: 0.20000000298 | ||
2051 | - } | ||
2052 | - } | ||
2053 | - } | ||
2054 | -} | ||
2055 | -node { | ||
2056 | - name: "PriorBox_3" | ||
2057 | - op: "PriorBox" | ||
2058 | - input: "conv7_2_h/Relu" | ||
2059 | - input: "data" | ||
2060 | - attr { | ||
2061 | - key: "aspect_ratio" | ||
2062 | - value { | ||
2063 | - tensor { | ||
2064 | - dtype: DT_FLOAT | ||
2065 | - tensor_shape { | ||
2066 | - dim { | ||
2067 | - size: 2 | ||
2068 | - } | ||
2069 | - } | ||
2070 | - float_val: 2.0 | ||
2071 | - float_val: 3.0 | ||
2072 | - } | ||
2073 | - } | ||
2074 | - } | ||
2075 | - attr { | ||
2076 | - key: "clip" | ||
2077 | - value { | ||
2078 | - b: false | ||
2079 | - } | ||
2080 | - } | ||
2081 | - attr { | ||
2082 | - key: "flip" | ||
2083 | - value { | ||
2084 | - b: true | ||
2085 | - } | ||
2086 | - } | ||
2087 | - attr { | ||
2088 | - key: "max_size" | ||
2089 | - value { | ||
2090 | - i: 213 | ||
2091 | - } | ||
2092 | - } | ||
2093 | - attr { | ||
2094 | - key: "min_size" | ||
2095 | - value { | ||
2096 | - i: 162 | ||
2097 | - } | ||
2098 | - } | ||
2099 | - attr { | ||
2100 | - key: "offset" | ||
2101 | - value { | ||
2102 | - f: 0.5 | ||
2103 | - } | ||
2104 | - } | ||
2105 | - attr { | ||
2106 | - key: "step" | ||
2107 | - value { | ||
2108 | - f: 64.0 | ||
2109 | - } | ||
2110 | - } | ||
2111 | - attr { | ||
2112 | - key: "variance" | ||
2113 | - value { | ||
2114 | - tensor { | ||
2115 | - dtype: DT_FLOAT | ||
2116 | - tensor_shape { | ||
2117 | - dim { | ||
2118 | - size: 4 | ||
2119 | - } | ||
2120 | - } | ||
2121 | - float_val: 0.10000000149 | ||
2122 | - float_val: 0.10000000149 | ||
2123 | - float_val: 0.20000000298 | ||
2124 | - float_val: 0.20000000298 | ||
2125 | - } | ||
2126 | - } | ||
2127 | - } | ||
2128 | -} | ||
2129 | -node { | ||
2130 | - name: "PriorBox_4" | ||
2131 | - op: "PriorBox" | ||
2132 | - input: "conv8_2_h/Relu" | ||
2133 | - input: "data" | ||
2134 | - attr { | ||
2135 | - key: "aspect_ratio" | ||
2136 | - value { | ||
2137 | - tensor { | ||
2138 | - dtype: DT_FLOAT | ||
2139 | - tensor_shape { | ||
2140 | - dim { | ||
2141 | - size: 1 | ||
2142 | - } | ||
2143 | - } | ||
2144 | - float_val: 2.0 | ||
2145 | - } | ||
2146 | - } | ||
2147 | - } | ||
2148 | - attr { | ||
2149 | - key: "clip" | ||
2150 | - value { | ||
2151 | - b: false | ||
2152 | - } | ||
2153 | - } | ||
2154 | - attr { | ||
2155 | - key: "flip" | ||
2156 | - value { | ||
2157 | - b: true | ||
2158 | - } | ||
2159 | - } | ||
2160 | - attr { | ||
2161 | - key: "max_size" | ||
2162 | - value { | ||
2163 | - i: 264 | ||
2164 | - } | ||
2165 | - } | ||
2166 | - attr { | ||
2167 | - key: "min_size" | ||
2168 | - value { | ||
2169 | - i: 213 | ||
2170 | - } | ||
2171 | - } | ||
2172 | - attr { | ||
2173 | - key: "offset" | ||
2174 | - value { | ||
2175 | - f: 0.5 | ||
2176 | - } | ||
2177 | - } | ||
2178 | - attr { | ||
2179 | - key: "step" | ||
2180 | - value { | ||
2181 | - f: 100.0 | ||
2182 | - } | ||
2183 | - } | ||
2184 | - attr { | ||
2185 | - key: "variance" | ||
2186 | - value { | ||
2187 | - tensor { | ||
2188 | - dtype: DT_FLOAT | ||
2189 | - tensor_shape { | ||
2190 | - dim { | ||
2191 | - size: 4 | ||
2192 | - } | ||
2193 | - } | ||
2194 | - float_val: 0.10000000149 | ||
2195 | - float_val: 0.10000000149 | ||
2196 | - float_val: 0.20000000298 | ||
2197 | - float_val: 0.20000000298 | ||
2198 | - } | ||
2199 | - } | ||
2200 | - } | ||
2201 | -} | ||
2202 | -node { | ||
2203 | - name: "PriorBox_5" | ||
2204 | - op: "PriorBox" | ||
2205 | - input: "conv9_2_h/Relu" | ||
2206 | - input: "data" | ||
2207 | - attr { | ||
2208 | - key: "aspect_ratio" | ||
2209 | - value { | ||
2210 | - tensor { | ||
2211 | - dtype: DT_FLOAT | ||
2212 | - tensor_shape { | ||
2213 | - dim { | ||
2214 | - size: 1 | ||
2215 | - } | ||
2216 | - } | ||
2217 | - float_val: 2.0 | ||
2218 | - } | ||
2219 | - } | ||
2220 | - } | ||
2221 | - attr { | ||
2222 | - key: "clip" | ||
2223 | - value { | ||
2224 | - b: false | ||
2225 | - } | ||
2226 | - } | ||
2227 | - attr { | ||
2228 | - key: "flip" | ||
2229 | - value { | ||
2230 | - b: true | ||
2231 | - } | ||
2232 | - } | ||
2233 | - attr { | ||
2234 | - key: "max_size" | ||
2235 | - value { | ||
2236 | - i: 315 | ||
2237 | - } | ||
2238 | - } | ||
2239 | - attr { | ||
2240 | - key: "min_size" | ||
2241 | - value { | ||
2242 | - i: 264 | ||
2243 | - } | ||
2244 | - } | ||
2245 | - attr { | ||
2246 | - key: "offset" | ||
2247 | - value { | ||
2248 | - f: 0.5 | ||
2249 | - } | ||
2250 | - } | ||
2251 | - attr { | ||
2252 | - key: "step" | ||
2253 | - value { | ||
2254 | - f: 300.0 | ||
2255 | - } | ||
2256 | - } | ||
2257 | - attr { | ||
2258 | - key: "variance" | ||
2259 | - value { | ||
2260 | - tensor { | ||
2261 | - dtype: DT_FLOAT | ||
2262 | - tensor_shape { | ||
2263 | - dim { | ||
2264 | - size: 4 | ||
2265 | - } | ||
2266 | - } | ||
2267 | - float_val: 0.10000000149 | ||
2268 | - float_val: 0.10000000149 | ||
2269 | - float_val: 0.20000000298 | ||
2270 | - float_val: 0.20000000298 | ||
2271 | - } | ||
2272 | - } | ||
2273 | - } | ||
2274 | -} | ||
2275 | -node { | ||
2276 | - name: "mbox_priorbox" | ||
2277 | - op: "ConcatV2" | ||
2278 | - input: "PriorBox_0" | ||
2279 | - input: "PriorBox_1" | ||
2280 | - input: "PriorBox_2" | ||
2281 | - input: "PriorBox_3" | ||
2282 | - input: "PriorBox_4" | ||
2283 | - input: "PriorBox_5" | ||
2284 | - input: "mbox_loc/axis" | ||
2285 | -} | ||
2286 | -node { | ||
2287 | - name: "detection_out" | ||
2288 | - op: "DetectionOutput" | ||
2289 | - input: "mbox_loc" | ||
2290 | - input: "mbox_conf_flatten" | ||
2291 | - input: "mbox_priorbox" | ||
2292 | - attr { | ||
2293 | - key: "background_label_id" | ||
2294 | - value { | ||
2295 | - i: 0 | ||
2296 | - } | ||
2297 | - } | ||
2298 | - attr { | ||
2299 | - key: "code_type" | ||
2300 | - value { | ||
2301 | - s: "CENTER_SIZE" | ||
2302 | - } | ||
2303 | - } | ||
2304 | - attr { | ||
2305 | - key: "confidence_threshold" | ||
2306 | - value { | ||
2307 | - f: 0.00999999977648 | ||
2308 | - } | ||
2309 | - } | ||
2310 | - attr { | ||
2311 | - key: "keep_top_k" | ||
2312 | - value { | ||
2313 | - i: 200 | ||
2314 | - } | ||
2315 | - } | ||
2316 | - attr { | ||
2317 | - key: "nms_threshold" | ||
2318 | - value { | ||
2319 | - f: 0.449999988079 | ||
2320 | - } | ||
2321 | - } | ||
2322 | - attr { | ||
2323 | - key: "num_classes" | ||
2324 | - value { | ||
2325 | - i: 2 | ||
2326 | - } | ||
2327 | - } | ||
2328 | - attr { | ||
2329 | - key: "share_location" | ||
2330 | - value { | ||
2331 | - b: true | ||
2332 | - } | ||
2333 | - } | ||
2334 | - attr { | ||
2335 | - key: "top_k" | ||
2336 | - value { | ||
2337 | - i: 400 | ||
2338 | - } | ||
2339 | - } | ||
2340 | -} | ||
2341 | -node { | ||
2342 | - name: "reshape_before_softmax" | ||
2343 | - op: "Const" | ||
2344 | - attr { | ||
2345 | - key: "value" | ||
2346 | - value { | ||
2347 | - tensor { | ||
2348 | - dtype: DT_INT32 | ||
2349 | - tensor_shape { | ||
2350 | - dim { | ||
2351 | - size: 3 | ||
2352 | - } | ||
2353 | - } | ||
2354 | - int_val: 0 | ||
2355 | - int_val: -1 | ||
2356 | - int_val: 2 | ||
2357 | - } | ||
2358 | - } | ||
2359 | - } | ||
2360 | -} | ||
2361 | -library { | ||
2362 | -} |
No preview for this file type
... | @@ -23,13 +23,6 @@ import time | ... | @@ -23,13 +23,6 @@ import time |
23 | # model = load_model( | 23 | # model = load_model( |
24 | # 'checkpoint/er-best-mobilenet1-bt32-model-classweight-adam.h5') | 24 | # 'checkpoint/er-best-mobilenet1-bt32-model-classweight-adam.h5') |
25 | 25 | ||
26 | - | ||
27 | -def get_key(val): | ||
28 | - for key, value in labels_dict_.items(): | ||
29 | - if(value == val): | ||
30 | - return key | ||
31 | - | ||
32 | - | ||
33 | def convertMillis(millis): | 26 | def convertMillis(millis): |
34 | seconds = (millis/1000) % 60 | 27 | seconds = (millis/1000) % 60 |
35 | minutes = (millis/(1000*60)) % 60 | 28 | minutes = (millis/(1000*60)) % 60 |
... | @@ -51,7 +44,7 @@ def videoDetector(input_fps, video_name): | ... | @@ -51,7 +44,7 @@ def videoDetector(input_fps, video_name): |
51 | detector = dlib.get_frontal_face_detector() | 44 | detector = dlib.get_frontal_face_detector() |
52 | 45 | ||
53 | # face & emotion detection time dict | 46 | # face & emotion detection time dict |
54 | - descs = np.load('../static/img/descs.npy', allow_pickle=True)[()] | 47 | + descs = np.load('static/img/descs.npy', allow_pickle=True)[()] |
55 | labels_dict_ = {0: 'angry', 1: 'fear', 2: 'happy', | 48 | labels_dict_ = {0: 'angry', 1: 'fear', 2: 'happy', |
56 | 3: 'neutral', 4: 'sad', 5: 'surprise'} | 49 | 3: 'neutral', 4: 'sad', 5: 'surprise'} |
57 | face_emotion_dict = {} | 50 | face_emotion_dict = {} |
... | @@ -129,3 +122,5 @@ def videoDetector(input_fps, video_name): | ... | @@ -129,3 +122,5 @@ def videoDetector(input_fps, video_name): |
129 | for i in range(1, 5): | 122 | for i in range(1, 5): |
130 | cv2.destroyAllWindows() | 123 | cv2.destroyAllWindows() |
131 | cv2.waitKey(1) | 124 | cv2.waitKey(1) |
125 | + | ||
126 | + return face_emotion_dict | ... | ... |
... | @@ -9,114 +9,99 @@ import pathlib | ... | @@ -9,114 +9,99 @@ import pathlib |
9 | import time | 9 | import time |
10 | import pandas as pd | 10 | import pandas as pd |
11 | import tensorflow as tf | 11 | import tensorflow as tf |
12 | -from tensorflow.keras.preprocessing.image import ImageDataGenerator,load_img | 12 | +from tensorflow.keras.preprocessing.image import ImageDataGenerator, load_img |
13 | from tensorflow.keras.models import load_model | 13 | from tensorflow.keras.models import load_model |
14 | from tensorflow.keras import regularizers | 14 | from tensorflow.keras import regularizers |
15 | from tensorflow import keras | 15 | from tensorflow import keras |
16 | import time | 16 | import time |
17 | 17 | ||
18 | 18 | ||
19 | -start = time.time() | ||
20 | -detector = dlib.get_frontal_face_detector() | ||
21 | -predictor = dlib.shape_predictor('./models/shape_predictor_68_face_landmarks.dat') | ||
22 | -facerec = dlib.face_recognition_model_v1('./models/dlib_face_recognition_resnet_model_v1.dat') | ||
23 | -model = load_model('../checkpoint/er-best-mobilenet1-bt32-model-classweight-adam.h5') | ||
24 | - | ||
25 | - | ||
26 | -def get_key(val): | ||
27 | - for key, value in labels_dict_.items(): | ||
28 | - if(value == val): | ||
29 | - return key | ||
30 | - | ||
31 | - | ||
32 | def convertMillis(millis): | 19 | def convertMillis(millis): |
33 | - seconds=(millis/1000)%60 | 20 | + seconds = (millis/1000) % 60 |
34 | - minutes=(millis/(1000*60))%60 | 21 | + minutes = (millis/(1000*60)) % 60 |
35 | - hours=(millis/(1000*60*60))%24 | 22 | + hours = (millis/(1000*60*60)) % 24 |
36 | return seconds, int(minutes), int(hours) | 23 | return seconds, int(minutes), int(hours) |
37 | 24 | ||
38 | 25 | ||
39 | -def videoDetector(input_fps, video_name): | 26 | +def videoDetector(second, video_name): |
27 | + | ||
28 | + # face & emotion detection model load | ||
29 | + detector = dlib.get_frontal_face_detector() | ||
30 | + predictor = dlib.shape_predictor( | ||
31 | + 'face_emotion_recognition/models/shape_predictor_68_face_landmarks.dat') | ||
32 | + facerec = dlib.face_recognition_model_v1( | ||
33 | + 'face_emotion_recognition/models/dlib_face_recognition_resnet_model_v1.dat') | ||
34 | + model = load_model( | ||
35 | + 'checkpoint/er-best-mobilenet1-bt32-model-classweight-adam.h5') | ||
40 | 36 | ||
41 | # face & emotion detection time dict | 37 | # face & emotion detection time dict |
42 | - descs = np.load('./img/descs.npy', allow_pickle=True)[()] | 38 | + descs = np.load('static/img/descs.npy', allow_pickle=True)[()] |
43 | - labels_dict_ = {0 : 'angry', 1 : 'fear' , 2: 'happy', 3: 'neutral', 4: 'sad', 5: 'surprise'} | 39 | + labels_dict_ = {0: 'angry', 1: 'fear', 2: 'happy', |
40 | + 3: 'neutral', 4: 'sad', 5: 'surprise'} | ||
44 | face_emotion_dict = {} | 41 | face_emotion_dict = {} |
45 | for name, saved_desc in descs.items(): | 42 | for name, saved_desc in descs.items(): |
46 | - face_emotion_dict[name] = {'angry': [], 'fear': [], 'happy': [], 'neutral': [], 'sad': [], 'surprise': []} | 43 | + face_emotion_dict[name] = {'angry': [], 'fear': [ |
47 | - | 44 | + ], 'happy': [], 'neutral': [], 'sad': [], 'surprise': []} |
48 | 45 | ||
49 | # video 정보 불러오기 | 46 | # video 정보 불러오기 |
50 | - video_path = './data/' + video_name + '.mp4' | 47 | + video_path = 'static/video/' + video_name + '.mp4' |
51 | - cap=cv2.VideoCapture(video_path) | 48 | + cap = cv2.VideoCapture(video_path) |
52 | 49 | ||
53 | # 동영상 크기(frame정보)를 읽어옴 | 50 | # 동영상 크기(frame정보)를 읽어옴 |
54 | - frameWidth = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | 51 | + fps = cap.get(cv2.CAP_PROP_FPS) |
55 | - frameHeight = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | 52 | + multiplier = fps * second |
56 | - frame_size = (frameWidth, frameHeight) | ||
57 | - fps = cap.get((cv2.CAP_PROP_FPS)) | ||
58 | - print(fps) | ||
59 | - | ||
60 | 53 | ||
61 | - _, img_bgr = cap.read() # (800, 1920, 3) | 54 | + frameCount = 0 |
62 | - padding_size = 0 | 55 | + ret = 1 |
63 | - resized_width = 1920 | ||
64 | - video_size = (resized_width, int(img_bgr.shape[0] * resized_width // img_bgr.shape[1])) | ||
65 | - timestamps = [cap.get(cv2.CAP_PROP_POS_MSEC)] | ||
66 | - prev_time = 0 | ||
67 | 56 | ||
68 | - fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v') | 57 | + while ret: |
69 | - while True: | 58 | + frameId = int(round(cap.get(1))) # 현재 프레임 번호 가져오기 |
70 | - retval, frameBGR = cap.read() # 영상을 한 frame씩 읽어오기 | 59 | + ret, frameBGR = cap.read() # 영상을 한 frame씩 읽어오기 |
71 | - current_time = time.time() - prev_time | ||
72 | 60 | ||
73 | if(type(frameBGR) == type(None)): | 61 | if(type(frameBGR) == type(None)): |
74 | pass | 62 | pass |
75 | else: | 63 | else: |
76 | - frameBGR = cv2.resize(frameBGR, video_size) | ||
77 | frame = cv2.cvtColor(frameBGR, cv2.COLOR_BGR2RGB) | 64 | frame = cv2.cvtColor(frameBGR, cv2.COLOR_BGR2RGB) |
78 | 65 | ||
79 | - if (retval is True) and (current_time > 1.5) : | 66 | + if (ret is True) and (frameId % multiplier < 1): |
80 | - prev_time = time.time() | ||
81 | faces = detector(frame, 1) | 67 | faces = detector(frame, 1) |
82 | 68 | ||
83 | for (i, face) in enumerate(faces): | 69 | for (i, face) in enumerate(faces): |
84 | - shape = predictor(frame, face) | 70 | + try: |
85 | - face_descriptor = facerec.compute_face_descriptor(frame, shape) | 71 | + shape = predictor(frame, face) |
86 | - | 72 | + face_descriptor = facerec.compute_face_descriptor( |
87 | - img = cv2.resize(frame[face.top():face.bottom(), face.left():face.right()], dsize=(224, 224), interpolation = cv2.INTER_CUBIC) | 73 | + frame, shape) |
88 | - imgarr = np.array(img).reshape(1, 224, 224, 3) /255 | 74 | + |
89 | - emotion = labels_dict_[model.predict(imgarr).argmax(axis=-1)[0]] | 75 | + img = cv2.resize(frame[face.top():face.bottom(), face.left( |
90 | - | 76 | + ):face.right()], dsize=(224, 224), interpolation=cv2.INTER_CUBIC) |
91 | - last_found = {'name': 'unknown', 'dist': 0.6, 'color': (0,0,255)} | 77 | + imgarr = np.array(img).reshape(1, 224, 224, 3) / 255 |
92 | - | 78 | + emotion = labels_dict_[ |
93 | - for name, saved_desc in descs.items(): | 79 | + model.predict(imgarr).argmax(axis=-1)[0]] |
94 | - dist = np.linalg.norm([face_descriptor] - saved_desc, axis=1) | 80 | + |
95 | - if dist < last_found['dist']: | 81 | + last_found = {'name': 'unknown', |
96 | - last_found = {'name': name, 'dist': dist, 'color': (255,255,255)} | 82 | + 'dist': 0.6, 'color': (0, 0, 255)} |
97 | - | 83 | + |
98 | - cv2.rectangle(frameBGR, pt1=(face.left(), face.top()), pt2=(face.right(), face.bottom()), color=last_found['color'], thickness=2) | 84 | + for name, saved_desc in descs.items(): |
99 | - cv2.putText(frameBGR, last_found['name'] + ',' + emotion , org=(face.left(), face.top()), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=last_found['color'], thickness=2) | 85 | + dist = np.linalg.norm( |
100 | - | 86 | + [face_descriptor] - saved_desc, axis=1) |
101 | - con_sec, con_min, con_hour = convertMillis(cap.get(cv2.CAP_PROP_POS_MSEC)) | 87 | + if dist < last_found['dist']: |
102 | - face_emotion_dict[last_found['name']][emotion].append("{0}:{1}:{2}".format(con_hour, con_min, round(con_sec, 3))) | 88 | + last_found = { |
103 | - print("{0}:{1}:{2} {3}".format(con_hour, con_min, round(con_sec, 3), emotion)) | 89 | + 'name': name, 'dist': dist, 'color': (255, 255, 255)} |
104 | - | 90 | + |
105 | - cv2.imshow('frame', frameBGR) | 91 | + cv2.rectangle(frameBGR, pt1=(face.left(), face.top()), pt2=( |
106 | - | 92 | + face.right(), face.bottom()), color=last_found['color'], thickness=2) |
107 | - key = cv2.waitKey(25) | 93 | + cv2.putText(frameBGR, last_found['name'] + ',' + emotion, org=(face.left(), face.top( |
108 | - if key == 27 : | 94 | + )), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=last_found['color'], thickness=2) |
109 | - break | 95 | + |
110 | - | 96 | + con_sec, con_min, con_hour = convertMillis( |
97 | + cap.get(cv2.CAP_PROP_POS_MSEC)) | ||
98 | + face_emotion_dict[last_found['name']][emotion].append( | ||
99 | + "{0}:{1}:{2}".format(con_hour, con_min, round(con_sec, 3))) | ||
100 | + print("{0}:{1}:{2} {3}".format( | ||
101 | + con_hour, con_min, round(con_sec, 3), emotion)) | ||
102 | + except Exception as e: | ||
103 | + print(str(e)) | ||
104 | + | ||
105 | + frameCount += 1 | ||
111 | print(face_emotion_dict) | 106 | print(face_emotion_dict) |
112 | - print("총 시간 : ", time.time() - start) | ||
113 | - if cap.isOpened(): | ||
114 | - cap.release() | ||
115 | - | ||
116 | - for i in range(1,5): | ||
117 | - cv2.destroyAllWindows() | ||
118 | - cv2.waitKey(1) | ||
119 | - | ||
120 | - | ||
121 | -if __name__ == '__main__': | ||
122 | - videoDetector(3, 'zoom_1') | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
107 | + return face_emotion_dict | ... | ... |
code/web/templates/result.html
0 → 100644
1 | +<!doctype html> | ||
2 | +<html lang="en"> | ||
3 | + | ||
4 | +<head> | ||
5 | + <meta charset="UTF-8"> | ||
6 | + <meta name="viewport" | ||
7 | + content="width=device-width, user-scalable=no, initial-scale=1.0, maximum-scale=1.0, minimum-scale=1.0"> | ||
8 | + <meta http-equiv="X-UA-Compatible" content="ie=edge"> | ||
9 | + <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css" | ||
10 | + integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous"> | ||
11 | + <title>Flask Face Emotion Recognition App</title> | ||
12 | +</head> | ||
13 | + | ||
14 | +<body> | ||
15 | + | ||
16 | + <div class="container" style="margin-top: 100px"> | ||
17 | + <h3>Face Emotion Recognition Platform</h3> | ||
18 | + <hr> | ||
19 | + | ||
20 | + <form action="http://localhost:5000/uploadFace" method="POST" enctype="multipart/form-data"> | ||
21 | + <div class="form-group"> | ||
22 | + <label for="title" class="text-uppercase">Video Upload</label> | ||
23 | + <input type="file" name="file"> | ||
24 | + <button type="submit" class="btn btn-outline-primary">Add</button> | ||
25 | + </div> | ||
26 | + </form> | ||
27 | + | ||
28 | + <video autoplay width="320" height="240" controls> | ||
29 | + <source src={{ url_for('static', filename="video/zoom_1.mp4") }} type="video/mp4"> | ||
30 | + </video> | ||
31 | + | ||
32 | + <a href="/faceEmotinoRecognition" class="btn btn-outline-primary">얼굴 감정 인식 분석하기</a> | ||
33 | + | ||
34 | + | ||
35 | + <table class="table"> | ||
36 | + <thead> | ||
37 | + <tr> | ||
38 | + <th scope="col ">name</th> | ||
39 | + <th scope="col">happy</th> | ||
40 | + <th scope="col">sad</th> | ||
41 | + <th scope="col">fear</th> | ||
42 | + <th scope="col">angry</th> | ||
43 | + <th scope="col">neutral</th> | ||
44 | + <th scope="col">surprise</th> | ||
45 | + </tr> | ||
46 | + </thead> | ||
47 | + <tbody> | ||
48 | + | ||
49 | + {% for face_img in face_imgs %} | ||
50 | + <tr> | ||
51 | + <td scope="row">{{ face_img.name }}</td> | ||
52 | + {% if face_emotion_dict[face_img.name].happy %} | ||
53 | + <td> | ||
54 | + {% for time in face_emotion_dict[face_img.name].happy %} | ||
55 | + <span>{{time}}</span> | ||
56 | + {% endfor %} | ||
57 | + </td> | ||
58 | + {% else %} | ||
59 | + <td> X </td> | ||
60 | + {% endif %} | ||
61 | + | ||
62 | + {% if face_emotion_dict[face_img.name].sad %} | ||
63 | + <td> | ||
64 | + {% for time in face_emotion_dict[face_img.name].sad %} | ||
65 | + <span>{{time}}</span> | ||
66 | + {% endfor %} | ||
67 | + </td> | ||
68 | + {% else %} | ||
69 | + <td> X </td> | ||
70 | + {% endif %} | ||
71 | + | ||
72 | + {% if face_emotion_dict[face_img.name].fear %} | ||
73 | + <td> | ||
74 | + {% for time in face_emotion_dict[face_img.name].fear %} | ||
75 | + <span>{{time}}</span> | ||
76 | + {% endfor %} | ||
77 | + </td> | ||
78 | + {% else %} | ||
79 | + <td> X </td> | ||
80 | + {% endif %} | ||
81 | + | ||
82 | + {% if face_emotion_dict[face_img.name].angry %} | ||
83 | + <td> | ||
84 | + {% for time in face_emotion_dict[face_img.name].angry %} | ||
85 | + <span>{{time}}</span> | ||
86 | + {% endfor %} | ||
87 | + </td> | ||
88 | + {% else %} | ||
89 | + <td> X </td> | ||
90 | + {% endif %} | ||
91 | + | ||
92 | + {% if face_emotion_dict[face_img.name].neutral %} | ||
93 | + <td> | ||
94 | + {% for time in face_emotion_dict[face_img.name].neutral %} | ||
95 | + <span>{{time}}</span> | ||
96 | + {% endfor %} | ||
97 | + </td> | ||
98 | + {% else %} | ||
99 | + <td> X </td> | ||
100 | + {% endif %} | ||
101 | + | ||
102 | + {% if face_emotion_dict[face_img.name].surprise %} | ||
103 | + <td> | ||
104 | + {% for time in face_emotion_dict[face_img.name].surprise %} | ||
105 | + <span>{{time}}</span> | ||
106 | + {% endfor %} | ||
107 | + </td> | ||
108 | + {% else %} | ||
109 | + <td> X </td> | ||
110 | + {% endif %} | ||
111 | + | ||
112 | + </tr> | ||
113 | + {% endfor %} | ||
114 | + </tbody> | ||
115 | + </table> | ||
116 | + <hr/> | ||
117 | + </div> | ||
118 | + | ||
119 | + | ||
120 | + <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" | ||
121 | + integrity="sha384-KJ3o2DKtIkvYIK3UENzmM7KCkRr/rE9/Qpg6aAZGJwFDMVNA/GpGFF93hXpG5KkN" | ||
122 | + crossorigin="anonymous"></script> | ||
123 | + <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.12.9/umd/popper.min.js" | ||
124 | + integrity="sha384-ApNbgh9B+Y1QKtv3Rn7W3mgPxhU9K/ScQsAP7hUibX39j7fakFPskvXusvfa0b4Q" | ||
125 | + crossorigin="anonymous"></script> | ||
126 | + <script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/js/bootstrap.min.js" | ||
127 | + integrity="sha384-JZR6Spejh4U02d8jOt6vLEHfe/JQGiRRSQQxSfFWpi1MquVdAyjUar5+76PVCmYl" | ||
128 | + crossorigin="anonymous"></script> | ||
129 | +</body> | ||
130 | + | ||
131 | +</html> | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
... | @@ -17,13 +17,21 @@ | ... | @@ -17,13 +17,21 @@ |
17 | <h3>Face Emotion Recognition Platform</h3> | 17 | <h3>Face Emotion Recognition Platform</h3> |
18 | <hr> | 18 | <hr> |
19 | 19 | ||
20 | - <form action="http://localhost:5000/uploadFace" method="POST" enctype="multipart/form-data"> | 20 | + <form action="http://localhost:5000/uploadVideo" method="POST" enctype="multipart/form-data"> |
21 | <div class="form-group"> | 21 | <div class="form-group"> |
22 | <label for="title" class="text-uppercase">Video Upload</label> | 22 | <label for="title" class="text-uppercase">Video Upload</label> |
23 | - <input type="file" name="file"> | 23 | + <input type="file" name="video"> |
24 | <button type="submit" class="btn btn-outline-primary">Add</button> | 24 | <button type="submit" class="btn btn-outline-primary">Add</button> |
25 | </div> | 25 | </div> |
26 | </form> | 26 | </form> |
27 | + | ||
28 | + <video autoplay width="320" height="240" controls> | ||
29 | + <source src={{ url_for('static', filename="video/zoom_1.mp4") }} type="video/mp4"> | ||
30 | + </video> | ||
31 | + | ||
32 | + <a href="/faceEmotinoRecognition" class="btn btn-outline-primary">얼굴 감정 인식 분석하기</a> | ||
33 | + | ||
34 | + <hr/> | ||
27 | </div> | 35 | </div> |
28 | 36 | ||
29 | 37 | ... | ... |
No preview for this file type
No preview for this file type
report/면담 및 진행보고서/면담보고서/4월면담보고서.docx
0 → 100644
No preview for this file type
report/면담 및 진행보고서/면담보고서/5월면담보고서.docx
0 → 100644
No preview for this file type
report/면담 및 진행보고서/진행보고서/10주차진행보고서.docx
0 → 100644
No preview for this file type
report/면담 및 진행보고서/진행보고서/11주차진행보고서.docx
0 → 100644
No preview for this file type
report/면담 및 진행보고서/진행보고서/12주차진행보고서.docx
0 → 100644
No preview for this file type
report/면담 및 진행보고서/진행보고서/13주차진행보고서.docx
0 → 100644
No preview for this file type
No preview for this file type
No preview for this file type
report/면담 및 진행보고서/진행보고서/6주차진행보고서.docx
0 → 100644
No preview for this file type
report/면담 및 진행보고서/진행보고서/7주차진행보고서.docx
0 → 100644
No preview for this file type
report/면담 및 진행보고서/진행보고서/8주차진행보고서.docx
0 → 100644
No preview for this file type
report/면담 및 진행보고서/진행보고서/9주차진행보고서.docx
0 → 100644
No preview for this file type
-
Please register or login to post a comment