Toggle navigation
Toggle navigation
This project
Loading...
Sign in
2021-1-capstone-design2
/
2015104196
Go to a project
Toggle navigation
Toggle navigation pinning
Projects
Groups
Snippets
Help
Project
Activity
Repository
Pipelines
Graphs
Issues
0
Merge Requests
0
Wiki
Snippets
Network
Create a new issue
Builds
Commits
Issue Boards
Authored by
이민규
2021-06-14 02:56:06 +0900
Browse Files
Options
Browse Files
Download
Email Patches
Plain Diff
Commit
f13fc556f29af560613ce169eba3031aeb26a6bf
f13fc556
1 parent
8cd9a353
add code
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
125 additions
and
0 deletions
code/main_controller.py
code/main_controller.py
0 → 100644
View file @
f13fc55
import
serial
import
cv2
from
time
import
sleep
import
numpy
as
np
import
ocr_image
import
findDB
ser
=
serial
.
Serial
(
'/dev/ttyAMA0'
,
115200
)
if
(
ser
.
isOpen
()):
print
(
"Serial Communication in operation"
)
LiveCam
=
cv2
.
VideoCapture
(
0
)
YOLO_net
=
cv2
.
dnn
.
readNet
(
'yolov3-tiny_best.weights'
,
'yolov3-tiny.cfg'
)
classes
=
[
'box'
]
layer_names
=
YOLO_net
.
getLayerNames
()
output_layers
=
[
layer_names
[
i
[
0
]
-
1
]
for
i
in
YOLO_net
.
getUnconnectedOutLayers
()]
frame_num
=
0
count
=
0
while
LiveCam
.
isOpened
():
ret
,
frame
=
LiveCam
.
read
()
if
ret
is
False
:
print
(
"No Video Input"
)
break
if
frame_num
!=
20
:
frame_num
+=
1
elif
frame_num
==
20
:
frame_num
=
0
h
,
w
,
c
=
frame
.
shape
blob
=
cv2
.
dnn
.
blobFromImage
(
frame
,
0.00392
,
(
416
,
416
),
(
0
,
0
,
0
),
True
,
crop
=
False
)
YOLO_net
.
setInput
(
blob
)
outs
=
YOLO_net
.
forward
(
output_layers
)
class_ids
=
[]
confidences
=
[]
boxes
=
[]
for
out
in
outs
:
for
detection
in
out
:
scores
=
detection
[
5
:]
class_id
=
np
.
argmax
(
scores
)
confidence
=
scores
[
class_id
]
if
confidence
>
0.4
:
center_x
=
int
(
detection
[
0
]
*
w
)
center_y
=
int
(
detection
[
1
]
*
h
)
dw
=
int
(
detection
[
2
]
*
w
)
dh
=
int
(
detection
[
3
]
*
h
)
x
=
int
(
center_x
-
dw
/
2
)
y
=
int
(
center_y
-
dh
/
2
)
boxes
.
append
([
x
,
y
,
dw
,
dh
])
confidences
.
append
(
float
(
confidence
))
class_ids
.
append
(
class_id
)
indexes
=
cv2
.
dnn
.
NMSBoxes
(
boxes
,
confidences
,
0.45
,
0.4
)
if
confidences
:
bestscore
=
confidences
.
index
(
max
(
confidences
))
best_x
,
best_y
,
best_w
,
best_h
=
boxes
[
bestscore
]
if
best_x
>
310
:
print
(
"오른쪽으로 이동"
)
ser
.
write
(
serial
.
to_bytes
([
int
(
'1'
,
16
)]))
elif
best_x
+
best_w
<
330
:
print
(
"왼쪽으로 이동"
)
ser
.
write
(
serial
.
to_bytes
([
int
(
'2'
,
16
)]))
else
:
print
(
"직진"
)
count
=
1
cv2
.
rectangle
(
frame
,
(
best_x
,
best_y
),
(
best_x
+
best_w
,
best_y
+
best_h
),
(
0
,
0
,
255
),
5
)
cv2
.
putText
(
frame
,
'box'
,
(
best_x
,
best_y
-
20
),
cv2
.
FONT_ITALIC
,
0.5
,
(
255
,
255
,
255
),
1
)
cv2
.
imshow
(
"YOLOv3"
,
frame
)
if
count
==
1
:
if
cv2
.
waitKey
(
100
)
>
0
:
cv2
.
imwrite
(
'cap_img.jpg'
,
frame
)
ser
.
write
(
serial
.
to_bytes
([
int
(
'3'
,
16
)]))
break
if
cv2
.
waitKey
(
100
)
>
0
:
break
image
=
cv2
.
imread
(
"cap_img.jpg"
)
template
=
cv2
.
imread
(
"myform.jpg"
)
ocr_result
=
ocr_image
.
ocr
(
image
,
template
)
(
name
,
result
)
=
ocr_result
[
"name"
]
(
address
,
result
)
=
ocr_result
[
"address"
]
(
detail_address
,
result
)
=
ocr_result
[
"detail_address"
]
name
=
name
.
replace
(
" "
,
""
)
address
=
address
.
replace
(
" "
,
""
)
detail_address
=
detail_address
.
replace
(
" "
,
""
)
print
(
name
)
print
(
address
)
print
(
detail_address
)
name
=
findDB
.
find_name
(
name
)
detail_address
=
findDB
.
find_address
(
detail_address
)
destination_num
=
findDB
.
set_destination
(
name
,
detail_address
)
print
(
destination_num
)
sleep
(
5
)
while
(
1
)
:
ser
.
write
(
serial
.
to_bytes
([
int
(
'6'
,
16
)]))
Please
register
or
login
to post a comment