NeuQuant.js 11.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
/* NeuQuant Neural-Net Quantization Algorithm
 * ------------------------------------------
 *
 * Copyright (c) 1994 Anthony Dekker
 *
 * NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994.
 * See "Kohonen neural networks for optimal colour quantization"
 * in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
 * for a discussion of the algorithm.
 * See also  http://members.ozemail.com.au/~dekker/NEUQUANT.HTML
 *
 * Any party obtaining a copy of these files from the author, directly or
 * indirectly, is granted, free of charge, a full and unrestricted irrevocable,
 * world-wide, paid up, royalty-free, nonexclusive right and license to deal
 * in this software and documentation files (the "Software"), including without
 * limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons who receive
 * copies from any such party to do so, with the only requirement being
 * that this copyright notice remain intact.
 *
 * (JavaScript port 2012 by Johan Nordberg)
 */

function toInt(v) {
  return ~~v;
}

var ncycles = 100; // number of learning cycles
var netsize = 256; // number of colors used
var maxnetpos = netsize - 1;

// defs for freq and bias
var netbiasshift = 4; // bias for colour values
var intbiasshift = 16; // bias for fractions
var intbias = 1 << intbiasshift;
var gammashift = 10;
var gamma = 1 << gammashift;
var betashift = 10;
var beta = intbias >> betashift; /* beta = 1/1024 */
var betagamma = intbias << (gammashift - betashift);

// defs for decreasing radius factor
var initrad = netsize >> 3; // for 256 cols, radius starts
var radiusbiasshift = 6; // at 32.0 biased by 6 bits
var radiusbias = 1 << radiusbiasshift;
var initradius = initrad * radiusbias; //and decreases by a
var radiusdec = 30; // factor of 1/30 each cycle

// defs for decreasing alpha factor
var alphabiasshift = 10; // alpha starts at 1.0
var initalpha = 1 << alphabiasshift;
var alphadec; // biased by 10 bits

/* radbias and alpharadbias used for radpower calculation */
var radbiasshift = 8;
var radbias = 1 << radbiasshift;
var alpharadbshift = alphabiasshift + radbiasshift;
var alpharadbias = 1 << alpharadbshift;

// four primes near 500 - assume no image has a length so large that it is
// divisible by all four primes
var prime1 = 499;
var prime2 = 491;
var prime3 = 487;
var prime4 = 503;
var minpicturebytes = 3 * prime4;

/*
  Constructor: NeuQuant

  Arguments:

  pixels - array of pixels in RGB format
  samplefac - sampling factor 1 to 30 where lower is better quality

  >
  > pixels = [r, g, b, r, g, b, r, g, b, ..]
  >
*/
function NeuQuant(pixels, samplefac) {
  var network; // int[netsize][4]
  var netindex; // for network lookup - really 256

  // bias and freq arrays for learning
  var bias;
  var freq;
  var radpower;

  /*
    Private Method: init

    sets up arrays
  */
  function init() {
    network = [];
    netindex = [];
    bias = [];
    freq = [];
    radpower = [];

    var i, v;
    for (i = 0; i < netsize; i++) {
      v = (i << (netbiasshift + 8)) / netsize;
      network[i] = [v, v, v];
      freq[i] = intbias / netsize;
      bias[i] = 0;
    }
  }

  /*
    Private Method: unbiasnet

    unbiases network to give byte values 0..255 and record position i to prepare for sort
  */
  function unbiasnet() {
    for (var i = 0; i < netsize; i++) {
      network[i][0] >>= netbiasshift;
      network[i][1] >>= netbiasshift;
      network[i][2] >>= netbiasshift;
      network[i][3] = i; // record color number
    }
  }

  /*
    Private Method: altersingle

    moves neuron *i* towards biased (b,g,r) by factor *alpha*
  */
  function altersingle(alpha, i, b, g, r) {
    network[i][0] -= (alpha * (network[i][0] - b)) / initalpha;
    network[i][1] -= (alpha * (network[i][1] - g)) / initalpha;
    network[i][2] -= (alpha * (network[i][2] - r)) / initalpha;
  }

  /*
    Private Method: alterneigh

    moves neurons in *radius* around index *i* towards biased (b,g,r) by factor *alpha*
  */
  function alterneigh(radius, i, b, g, r) {
    var lo = Math.abs(i - radius);
    var hi = Math.min(i + radius, netsize);

    var j = i + 1;
    var k = i - 1;
    var m = 1;

    var p, a;
    while (j < hi || k > lo) {
      a = radpower[m++];

      if (j < hi) {
        p = network[j++];
        p[0] -= (a * (p[0] - b)) / alpharadbias;
        p[1] -= (a * (p[1] - g)) / alpharadbias;
        p[2] -= (a * (p[2] - r)) / alpharadbias;
      }

      if (k > lo) {
        p = network[k--];
        p[0] -= (a * (p[0] - b)) / alpharadbias;
        p[1] -= (a * (p[1] - g)) / alpharadbias;
        p[2] -= (a * (p[2] - r)) / alpharadbias;
      }
    }
  }

  /*
    Private Method: contest

    searches for biased BGR values
  */
  function contest(b, g, r) {
    /*
      finds closest neuron (min dist) and updates freq
      finds best neuron (min dist-bias) and returns position
      for frequently chosen neurons, freq[i] is high and bias[i] is negative
      bias[i] = gamma * ((1 / netsize) - freq[i])
    */

    var bestd = ~(1 << 31);
    var bestbiasd = bestd;
    var bestpos = -1;
    var bestbiaspos = bestpos;

    var i, n, dist, biasdist, betafreq;
    for (i = 0; i < netsize; i++) {
      n = network[i];

      dist = Math.abs(n[0] - b) + Math.abs(n[1] - g) + Math.abs(n[2] - r);
      if (dist < bestd) {
        bestd = dist;
        bestpos = i;
      }

      biasdist = dist - (bias[i] >> (intbiasshift - netbiasshift));
      if (biasdist < bestbiasd) {
        bestbiasd = biasdist;
        bestbiaspos = i;
      }

      betafreq = freq[i] >> betashift;
      freq[i] -= betafreq;
      bias[i] += betafreq << gammashift;
    }

    freq[bestpos] += beta;
    bias[bestpos] -= betagamma;

    return bestbiaspos;
  }

  /*
    Private Method: inxbuild

    sorts network and builds netindex[0..255]
  */
  function inxbuild() {
    var i,
      j,
      p,
      q,
      smallpos,
      smallval,
      previouscol = 0,
      startpos = 0;
    for (i = 0; i < netsize; i++) {
      p = network[i];
      smallpos = i;
      smallval = p[1]; // index on g
      // find smallest in i..netsize-1
      for (j = i + 1; j < netsize; j++) {
        q = network[j];
        if (q[1] < smallval) {
          // index on g
          smallpos = j;
          smallval = q[1]; // index on g
        }
      }
      q = network[smallpos];
      // swap p (i) and q (smallpos) entries
      if (i != smallpos) {
        j = q[0];
        q[0] = p[0];
        p[0] = j;
        j = q[1];
        q[1] = p[1];
        p[1] = j;
        j = q[2];
        q[2] = p[2];
        p[2] = j;
        j = q[3];
        q[3] = p[3];
        p[3] = j;
      }
      // smallval entry is now in position i

      if (smallval != previouscol) {
        netindex[previouscol] = (startpos + i) >> 1;
        for (j = previouscol + 1; j < smallval; j++) netindex[j] = i;
        previouscol = smallval;
        startpos = i;
      }
    }
    netindex[previouscol] = (startpos + maxnetpos) >> 1;
    for (j = previouscol + 1; j < 256; j++) netindex[j] = maxnetpos; // really 256
  }

  /*
    Private Method: inxsearch

    searches for BGR values 0..255 and returns a color index
  */
  function inxsearch(b, g, r) {
    var a, p, dist;

    var bestd = 1000; // biggest possible dist is 256*3
    var best = -1;

    var i = netindex[g]; // index on g
    var j = i - 1; // start at netindex[g] and work outwards

    while (i < netsize || j >= 0) {
      if (i < netsize) {
        p = network[i];
        dist = p[1] - g; // inx key
        if (dist >= bestd) i = netsize;
        // stop iter
        else {
          i++;
          if (dist < 0) dist = -dist;
          a = p[0] - b;
          if (a < 0) a = -a;
          dist += a;
          if (dist < bestd) {
            a = p[2] - r;
            if (a < 0) a = -a;
            dist += a;
            if (dist < bestd) {
              bestd = dist;
              best = p[3];
            }
          }
        }
      }
      if (j >= 0) {
        p = network[j];
        dist = g - p[1]; // inx key - reverse dif
        if (dist >= bestd) j = -1;
        // stop iter
        else {
          j--;
          if (dist < 0) dist = -dist;
          a = p[0] - b;
          if (a < 0) a = -a;
          dist += a;
          if (dist < bestd) {
            a = p[2] - r;
            if (a < 0) a = -a;
            dist += a;
            if (dist < bestd) {
              bestd = dist;
              best = p[3];
            }
          }
        }
      }
    }

    return best;
  }

  /*
    Private Method: learn

    "Main Learning Loop"
  */
  function learn() {
    var i;

    var lengthcount = pixels.length;
    var alphadec = toInt(30 + (samplefac - 1) / 3);
    var samplepixels = toInt(lengthcount / (3 * samplefac));
    var delta = toInt(samplepixels / ncycles);
    var alpha = initalpha;
    var radius = initradius;

    var rad = radius >> radiusbiasshift;

    if (rad <= 1) rad = 0;
    for (i = 0; i < rad; i++)
      radpower[i] = toInt(
        alpha * (((rad * rad - i * i) * radbias) / (rad * rad))
      );

    var step;
    if (lengthcount < minpicturebytes) {
      samplefac = 1;
      step = 3;
    } else if (lengthcount % prime1 !== 0) {
      step = 3 * prime1;
    } else if (lengthcount % prime2 !== 0) {
      step = 3 * prime2;
    } else if (lengthcount % prime3 !== 0) {
      step = 3 * prime3;
    } else {
      step = 3 * prime4;
    }

    var b, g, r, j;
    var pix = 0; // current pixel

    i = 0;
    while (i < samplepixels) {
      b = (pixels[pix] & 0xff) << netbiasshift;
      g = (pixels[pix + 1] & 0xff) << netbiasshift;
      r = (pixels[pix + 2] & 0xff) << netbiasshift;

      j = contest(b, g, r);

      altersingle(alpha, j, b, g, r);
      if (rad !== 0) alterneigh(rad, j, b, g, r); // alter neighbours

      pix += step;
      if (pix >= lengthcount) pix -= lengthcount;

      i++;

      if (delta === 0) delta = 1;
      if (i % delta === 0) {
        alpha -= alpha / alphadec;
        radius -= radius / radiusdec;
        rad = radius >> radiusbiasshift;

        if (rad <= 1) rad = 0;
        for (j = 0; j < rad; j++)
          radpower[j] = toInt(
            alpha * (((rad * rad - j * j) * radbias) / (rad * rad))
          );
      }
    }
  }

  /*
    Method: buildColormap

    1. initializes network
    2. trains it
    3. removes misconceptions
    4. builds colorindex
  */
  function buildColormap() {
    init();
    learn();
    unbiasnet();
    inxbuild();
  }
  this.buildColormap = buildColormap;

  /*
    Method: getColormap

    builds colormap from the index

    returns array in the format:

    >
    > [r, g, b, r, g, b, r, g, b, ..]
    >
  */
  function getColormap() {
    var map = [];
    var index = [];

    for (var i = 0; i < netsize; i++) index[network[i][3]] = i;

    var k = 0;
    for (var l = 0; l < netsize; l++) {
      var j = index[l];
      map[k++] = network[j][0];
      map[k++] = network[j][1];
      map[k++] = network[j][2];
    }
    return map;
  }
  this.getColormap = getColormap;

  /*
    Method: lookupRGB

    looks for the closest *r*, *g*, *b* color in the map and
    returns its index
  */
  this.lookupRGB = inxsearch;
}

module.exports = NeuQuant;