김연수

YOLOv5 for LP detection

Showing 60 changed files with 8610 additions and 0 deletions
1 +# Repo-specific DockerIgnore -------------------------------------------------------------------------------------------
2 +#.git
3 +.cache
4 +.idea
5 +runs
6 +output
7 +coco
8 +storage.googleapis.com
9 +
10 +data/samples/*
11 +**/results*.txt
12 +*.jpg
13 +
14 +# Neural Network weights -----------------------------------------------------------------------------------------------
15 +**/*.weights
16 +**/*.pt
17 +**/*.pth
18 +**/*.onnx
19 +**/*.mlmodel
20 +**/*.torchscript
21 +
22 +
23 +# Below Copied From .gitignore -----------------------------------------------------------------------------------------
24 +# Below Copied From .gitignore -----------------------------------------------------------------------------------------
25 +
26 +
27 +# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
28 +# Byte-compiled / optimized / DLL files
29 +__pycache__/
30 +*.py[cod]
31 +*$py.class
32 +
33 +# C extensions
34 +*.so
35 +
36 +# Distribution / packaging
37 +.Python
38 +env/
39 +build/
40 +develop-eggs/
41 +dist/
42 +downloads/
43 +eggs/
44 +.eggs/
45 +lib/
46 +lib64/
47 +parts/
48 +sdist/
49 +var/
50 +wheels/
51 +*.egg-info/
52 +wandb/
53 +.installed.cfg
54 +*.egg
55 +
56 +# PyInstaller
57 +# Usually these files are written by a python script from a template
58 +# before PyInstaller builds the exe, so as to inject date/other infos into it.
59 +*.manifest
60 +*.spec
61 +
62 +# Installer logs
63 +pip-log.txt
64 +pip-delete-this-directory.txt
65 +
66 +# Unit test / coverage reports
67 +htmlcov/
68 +.tox/
69 +.coverage
70 +.coverage.*
71 +.cache
72 +nosetests.xml
73 +coverage.xml
74 +*.cover
75 +.hypothesis/
76 +
77 +# Translations
78 +*.mo
79 +*.pot
80 +
81 +# Django stuff:
82 +*.log
83 +local_settings.py
84 +
85 +# Flask stuff:
86 +instance/
87 +.webassets-cache
88 +
89 +# Scrapy stuff:
90 +.scrapy
91 +
92 +# Sphinx documentation
93 +docs/_build/
94 +
95 +# PyBuilder
96 +target/
97 +
98 +# Jupyter Notebook
99 +.ipynb_checkpoints
100 +
101 +# pyenv
102 +.python-version
103 +
104 +# celery beat schedule file
105 +celerybeat-schedule
106 +
107 +# SageMath parsed files
108 +*.sage.py
109 +
110 +# dotenv
111 +.env
112 +
113 +# virtualenv
114 +.venv*
115 +venv*/
116 +ENV*/
117 +
118 +# Spyder project settings
119 +.spyderproject
120 +.spyproject
121 +
122 +# Rope project settings
123 +.ropeproject
124 +
125 +# mkdocs documentation
126 +/site
127 +
128 +# mypy
129 +.mypy_cache/
130 +
131 +
132 +# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
133 +
134 +# General
135 +.DS_Store
136 +.AppleDouble
137 +.LSOverride
138 +
139 +# Icon must end with two \r
140 +Icon
141 +Icon?
142 +
143 +# Thumbnails
144 +._*
145 +
146 +# Files that might appear in the root of a volume
147 +.DocumentRevisions-V100
148 +.fseventsd
149 +.Spotlight-V100
150 +.TemporaryItems
151 +.Trashes
152 +.VolumeIcon.icns
153 +.com.apple.timemachine.donotpresent
154 +
155 +# Directories potentially created on remote AFP share
156 +.AppleDB
157 +.AppleDesktop
158 +Network Trash Folder
159 +Temporary Items
160 +.apdisk
161 +
162 +
163 +# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
164 +# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
165 +# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
166 +
167 +# User-specific stuff:
168 +.idea/*
169 +.idea/**/workspace.xml
170 +.idea/**/tasks.xml
171 +.idea/dictionaries
172 +.html # Bokeh Plots
173 +.pg # TensorFlow Frozen Graphs
174 +.avi # videos
175 +
176 +# Sensitive or high-churn files:
177 +.idea/**/dataSources/
178 +.idea/**/dataSources.ids
179 +.idea/**/dataSources.local.xml
180 +.idea/**/sqlDataSources.xml
181 +.idea/**/dynamic.xml
182 +.idea/**/uiDesigner.xml
183 +
184 +# Gradle:
185 +.idea/**/gradle.xml
186 +.idea/**/libraries
187 +
188 +# CMake
189 +cmake-build-debug/
190 +cmake-build-release/
191 +
192 +# Mongo Explorer plugin:
193 +.idea/**/mongoSettings.xml
194 +
195 +## File-based project format:
196 +*.iws
197 +
198 +## Plugin-specific files:
199 +
200 +# IntelliJ
201 +out/
202 +
203 +# mpeltonen/sbt-idea plugin
204 +.idea_modules/
205 +
206 +# JIRA plugin
207 +atlassian-ide-plugin.xml
208 +
209 +# Cursive Clojure plugin
210 +.idea/replstate.xml
211 +
212 +# Crashlytics plugin (for Android Studio and IntelliJ)
213 +com_crashlytics_export_strings.xml
214 +crashlytics.properties
215 +crashlytics-build.properties
216 +fabric.properties
1 +# this drop notebooks from GitHub language stats
2 +*.ipynb linguist-vendored
1 +# Repo-specific GitIgnore ----------------------------------------------------------------------------------------------
2 +*.jpg
3 +*.jpeg
4 +*.png
5 +*.bmp
6 +*.tif
7 +*.tiff
8 +*.heic
9 +*.JPG
10 +*.JPEG
11 +*.PNG
12 +*.BMP
13 +*.TIF
14 +*.TIFF
15 +*.HEIC
16 +*.mp4
17 +*.mov
18 +*.MOV
19 +*.avi
20 +*.data
21 +*.json
22 +
23 +*.cfg
24 +!cfg/yolov3*.cfg
25 +
26 +storage.googleapis.com
27 +runs/*
28 +data/*
29 +!data/images/zidane.jpg
30 +!data/images/bus.jpg
31 +!data/coco.names
32 +!data/coco_paper.names
33 +!data/coco.data
34 +!data/coco_*.data
35 +!data/coco_*.txt
36 +!data/trainvalno5k.shapes
37 +!data/*.sh
38 +
39 +pycocotools/*
40 +results*.txt
41 +gcp_test*.sh
42 +
43 +# Datasets -------------------------------------------------------------------------------------------------------------
44 +coco/
45 +coco128/
46 +VOC/
47 +
48 +# MATLAB GitIgnore -----------------------------------------------------------------------------------------------------
49 +*.m~
50 +*.mat
51 +!targets*.mat
52 +
53 +# Neural Network weights -----------------------------------------------------------------------------------------------
54 +*.weights
55 +*.pt
56 +*.onnx
57 +*.mlmodel
58 +*.torchscript
59 +darknet53.conv.74
60 +yolov3-tiny.conv.15
61 +
62 +# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
63 +# Byte-compiled / optimized / DLL files
64 +__pycache__/
65 +*.py[cod]
66 +*$py.class
67 +
68 +# C extensions
69 +*.so
70 +
71 +# Distribution / packaging
72 +.Python
73 +env/
74 +build/
75 +develop-eggs/
76 +dist/
77 +downloads/
78 +eggs/
79 +.eggs/
80 +lib/
81 +lib64/
82 +parts/
83 +sdist/
84 +var/
85 +wheels/
86 +*.egg-info/
87 +wandb/
88 +.installed.cfg
89 +*.egg
90 +
91 +
92 +# PyInstaller
93 +# Usually these files are written by a python script from a template
94 +# before PyInstaller builds the exe, so as to inject date/other infos into it.
95 +*.manifest
96 +*.spec
97 +
98 +# Installer logs
99 +pip-log.txt
100 +pip-delete-this-directory.txt
101 +
102 +# Unit test / coverage reports
103 +htmlcov/
104 +.tox/
105 +.coverage
106 +.coverage.*
107 +.cache
108 +nosetests.xml
109 +coverage.xml
110 +*.cover
111 +.hypothesis/
112 +
113 +# Translations
114 +*.mo
115 +*.pot
116 +
117 +# Django stuff:
118 +*.log
119 +local_settings.py
120 +
121 +# Flask stuff:
122 +instance/
123 +.webassets-cache
124 +
125 +# Scrapy stuff:
126 +.scrapy
127 +
128 +# Sphinx documentation
129 +docs/_build/
130 +
131 +# PyBuilder
132 +target/
133 +
134 +# Jupyter Notebook
135 +.ipynb_checkpoints
136 +
137 +# pyenv
138 +.python-version
139 +
140 +# celery beat schedule file
141 +celerybeat-schedule
142 +
143 +# SageMath parsed files
144 +*.sage.py
145 +
146 +# dotenv
147 +.env
148 +
149 +# virtualenv
150 +.venv*
151 +venv*/
152 +ENV*/
153 +
154 +# Spyder project settings
155 +.spyderproject
156 +.spyproject
157 +
158 +# Rope project settings
159 +.ropeproject
160 +
161 +# mkdocs documentation
162 +/site
163 +
164 +# mypy
165 +.mypy_cache/
166 +
167 +
168 +# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
169 +
170 +# General
171 +.DS_Store
172 +.AppleDouble
173 +.LSOverride
174 +
175 +# Icon must end with two \r
176 +Icon
177 +Icon?
178 +
179 +# Thumbnails
180 +._*
181 +
182 +# Files that might appear in the root of a volume
183 +.DocumentRevisions-V100
184 +.fseventsd
185 +.Spotlight-V100
186 +.TemporaryItems
187 +.Trashes
188 +.VolumeIcon.icns
189 +.com.apple.timemachine.donotpresent
190 +
191 +# Directories potentially created on remote AFP share
192 +.AppleDB
193 +.AppleDesktop
194 +Network Trash Folder
195 +Temporary Items
196 +.apdisk
197 +
198 +
199 +# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
200 +# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
201 +# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
202 +
203 +# User-specific stuff:
204 +.idea/*
205 +.idea/**/workspace.xml
206 +.idea/**/tasks.xml
207 +.idea/dictionaries
208 +.html # Bokeh Plots
209 +.pg # TensorFlow Frozen Graphs
210 +.avi # videos
211 +
212 +# Sensitive or high-churn files:
213 +.idea/**/dataSources/
214 +.idea/**/dataSources.ids
215 +.idea/**/dataSources.local.xml
216 +.idea/**/sqlDataSources.xml
217 +.idea/**/dynamic.xml
218 +.idea/**/uiDesigner.xml
219 +
220 +# Gradle:
221 +.idea/**/gradle.xml
222 +.idea/**/libraries
223 +
224 +# CMake
225 +cmake-build-debug/
226 +cmake-build-release/
227 +
228 +# Mongo Explorer plugin:
229 +.idea/**/mongoSettings.xml
230 +
231 +## File-based project format:
232 +*.iws
233 +
234 +## Plugin-specific files:
235 +
236 +# IntelliJ
237 +out/
238 +
239 +# mpeltonen/sbt-idea plugin
240 +.idea_modules/
241 +
242 +# JIRA plugin
243 +atlassian-ide-plugin.xml
244 +
245 +# Cursive Clojure plugin
246 +.idea/replstate.xml
247 +
248 +# Crashlytics plugin (for Android Studio and IntelliJ)
249 +com_crashlytics_export_strings.xml
250 +crashlytics.properties
251 +crashlytics-build.properties
252 +fabric.properties
1 +# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
2 +FROM nvcr.io/nvidia/pytorch:21.03-py3
3 +
4 +# Install linux packages
5 +RUN apt update && apt install -y zip htop screen libgl1-mesa-glx
6 +
7 +# Install python dependencies
8 +COPY requirements.txt .
9 +RUN python -m pip install --upgrade pip
10 +RUN pip uninstall -y nvidia-tensorboard nvidia-tensorboard-plugin-dlprof
11 +RUN pip install --no-cache -r requirements.txt coremltools onnx gsutil notebook
12 +
13 +# Create working directory
14 +RUN mkdir -p /usr/src/app
15 +WORKDIR /usr/src/app
16 +
17 +# Copy contents
18 +COPY . /usr/src/app
19 +
20 +# Set environment variables
21 +ENV HOME=/usr/src/app
22 +
23 +
24 +# --------------------------------------------------- Extras Below ---------------------------------------------------
25 +
26 +# Build and Push
27 +# t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t
28 +# for v in {300..303}; do t=ultralytics/coco:v$v && sudo docker build -t $t . && sudo docker push $t; done
29 +
30 +# Pull and Run
31 +# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
32 +
33 +# Pull and Run with local directory access
34 +# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/coco:/usr/src/coco $t
35 +
36 +# Kill all
37 +# sudo docker kill $(sudo docker ps -q)
38 +
39 +# Kill all image-based
40 +# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
41 +
42 +# Bash into running container
43 +# sudo docker exec -it 5a9b5863d93d bash
44 +
45 +# Bash into stopped container
46 +# id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash
47 +
48 +# Send weights to GCP
49 +# python -c "from utils.general import *; strip_optimizer('runs/train/exp0_*/weights/best.pt', 'tmp.pt')" && gsutil cp tmp.pt gs://*.pt
50 +
51 +# Clean up
52 +# docker system prune -a --volumes
1 +GNU GENERAL PUBLIC LICENSE
2 + Version 3, 29 June 2007
3 +
4 + Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
5 + Everyone is permitted to copy and distribute verbatim copies
6 + of this license document, but changing it is not allowed.
7 +
8 + Preamble
9 +
10 + The GNU General Public License is a free, copyleft license for
11 +software and other kinds of works.
12 +
13 + The licenses for most software and other practical works are designed
14 +to take away your freedom to share and change the works. By contrast,
15 +the GNU General Public License is intended to guarantee your freedom to
16 +share and change all versions of a program--to make sure it remains free
17 +software for all its users. We, the Free Software Foundation, use the
18 +GNU General Public License for most of our software; it applies also to
19 +any other work released this way by its authors. You can apply it to
20 +your programs, too.
21 +
22 + When we speak of free software, we are referring to freedom, not
23 +price. Our General Public Licenses are designed to make sure that you
24 +have the freedom to distribute copies of free software (and charge for
25 +them if you wish), that you receive source code or can get it if you
26 +want it, that you can change the software or use pieces of it in new
27 +free programs, and that you know you can do these things.
28 +
29 + To protect your rights, we need to prevent others from denying you
30 +these rights or asking you to surrender the rights. Therefore, you have
31 +certain responsibilities if you distribute copies of the software, or if
32 +you modify it: responsibilities to respect the freedom of others.
33 +
34 + For example, if you distribute copies of such a program, whether
35 +gratis or for a fee, you must pass on to the recipients the same
36 +freedoms that you received. You must make sure that they, too, receive
37 +or can get the source code. And you must show them these terms so they
38 +know their rights.
39 +
40 + Developers that use the GNU GPL protect your rights with two steps:
41 +(1) assert copyright on the software, and (2) offer you this License
42 +giving you legal permission to copy, distribute and/or modify it.
43 +
44 + For the developers' and authors' protection, the GPL clearly explains
45 +that there is no warranty for this free software. For both users' and
46 +authors' sake, the GPL requires that modified versions be marked as
47 +changed, so that their problems will not be attributed erroneously to
48 +authors of previous versions.
49 +
50 + Some devices are designed to deny users access to install or run
51 +modified versions of the software inside them, although the manufacturer
52 +can do so. This is fundamentally incompatible with the aim of
53 +protecting users' freedom to change the software. The systematic
54 +pattern of such abuse occurs in the area of products for individuals to
55 +use, which is precisely where it is most unacceptable. Therefore, we
56 +have designed this version of the GPL to prohibit the practice for those
57 +products. If such problems arise substantially in other domains, we
58 +stand ready to extend this provision to those domains in future versions
59 +of the GPL, as needed to protect the freedom of users.
60 +
61 + Finally, every program is threatened constantly by software patents.
62 +States should not allow patents to restrict development and use of
63 +software on general-purpose computers, but in those that do, we wish to
64 +avoid the special danger that patents applied to a free program could
65 +make it effectively proprietary. To prevent this, the GPL assures that
66 +patents cannot be used to render the program non-free.
67 +
68 + The precise terms and conditions for copying, distribution and
69 +modification follow.
70 +
71 + TERMS AND CONDITIONS
72 +
73 + 0. Definitions.
74 +
75 + "This License" refers to version 3 of the GNU General Public License.
76 +
77 + "Copyright" also means copyright-like laws that apply to other kinds of
78 +works, such as semiconductor masks.
79 +
80 + "The Program" refers to any copyrightable work licensed under this
81 +License. Each licensee is addressed as "you". "Licensees" and
82 +"recipients" may be individuals or organizations.
83 +
84 + To "modify" a work means to copy from or adapt all or part of the work
85 +in a fashion requiring copyright permission, other than the making of an
86 +exact copy. The resulting work is called a "modified version" of the
87 +earlier work or a work "based on" the earlier work.
88 +
89 + A "covered work" means either the unmodified Program or a work based
90 +on the Program.
91 +
92 + To "propagate" a work means to do anything with it that, without
93 +permission, would make you directly or secondarily liable for
94 +infringement under applicable copyright law, except executing it on a
95 +computer or modifying a private copy. Propagation includes copying,
96 +distribution (with or without modification), making available to the
97 +public, and in some countries other activities as well.
98 +
99 + To "convey" a work means any kind of propagation that enables other
100 +parties to make or receive copies. Mere interaction with a user through
101 +a computer network, with no transfer of a copy, is not conveying.
102 +
103 + An interactive user interface displays "Appropriate Legal Notices"
104 +to the extent that it includes a convenient and prominently visible
105 +feature that (1) displays an appropriate copyright notice, and (2)
106 +tells the user that there is no warranty for the work (except to the
107 +extent that warranties are provided), that licensees may convey the
108 +work under this License, and how to view a copy of this License. If
109 +the interface presents a list of user commands or options, such as a
110 +menu, a prominent item in the list meets this criterion.
111 +
112 + 1. Source Code.
113 +
114 + The "source code" for a work means the preferred form of the work
115 +for making modifications to it. "Object code" means any non-source
116 +form of a work.
117 +
118 + A "Standard Interface" means an interface that either is an official
119 +standard defined by a recognized standards body, or, in the case of
120 +interfaces specified for a particular programming language, one that
121 +is widely used among developers working in that language.
122 +
123 + The "System Libraries" of an executable work include anything, other
124 +than the work as a whole, that (a) is included in the normal form of
125 +packaging a Major Component, but which is not part of that Major
126 +Component, and (b) serves only to enable use of the work with that
127 +Major Component, or to implement a Standard Interface for which an
128 +implementation is available to the public in source code form. A
129 +"Major Component", in this context, means a major essential component
130 +(kernel, window system, and so on) of the specific operating system
131 +(if any) on which the executable work runs, or a compiler used to
132 +produce the work, or an object code interpreter used to run it.
133 +
134 + The "Corresponding Source" for a work in object code form means all
135 +the source code needed to generate, install, and (for an executable
136 +work) run the object code and to modify the work, including scripts to
137 +control those activities. However, it does not include the work's
138 +System Libraries, or general-purpose tools or generally available free
139 +programs which are used unmodified in performing those activities but
140 +which are not part of the work. For example, Corresponding Source
141 +includes interface definition files associated with source files for
142 +the work, and the source code for shared libraries and dynamically
143 +linked subprograms that the work is specifically designed to require,
144 +such as by intimate data communication or control flow between those
145 +subprograms and other parts of the work.
146 +
147 + The Corresponding Source need not include anything that users
148 +can regenerate automatically from other parts of the Corresponding
149 +Source.
150 +
151 + The Corresponding Source for a work in source code form is that
152 +same work.
153 +
154 + 2. Basic Permissions.
155 +
156 + All rights granted under this License are granted for the term of
157 +copyright on the Program, and are irrevocable provided the stated
158 +conditions are met. This License explicitly affirms your unlimited
159 +permission to run the unmodified Program. The output from running a
160 +covered work is covered by this License only if the output, given its
161 +content, constitutes a covered work. This License acknowledges your
162 +rights of fair use or other equivalent, as provided by copyright law.
163 +
164 + You may make, run and propagate covered works that you do not
165 +convey, without conditions so long as your license otherwise remains
166 +in force. You may convey covered works to others for the sole purpose
167 +of having them make modifications exclusively for you, or provide you
168 +with facilities for running those works, provided that you comply with
169 +the terms of this License in conveying all material for which you do
170 +not control copyright. Those thus making or running the covered works
171 +for you must do so exclusively on your behalf, under your direction
172 +and control, on terms that prohibit them from making any copies of
173 +your copyrighted material outside their relationship with you.
174 +
175 + Conveying under any other circumstances is permitted solely under
176 +the conditions stated below. Sublicensing is not allowed; section 10
177 +makes it unnecessary.
178 +
179 + 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 +
181 + No covered work shall be deemed part of an effective technological
182 +measure under any applicable law fulfilling obligations under article
183 +11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 +similar laws prohibiting or restricting circumvention of such
185 +measures.
186 +
187 + When you convey a covered work, you waive any legal power to forbid
188 +circumvention of technological measures to the extent such circumvention
189 +is effected by exercising rights under this License with respect to
190 +the covered work, and you disclaim any intention to limit operation or
191 +modification of the work as a means of enforcing, against the work's
192 +users, your or third parties' legal rights to forbid circumvention of
193 +technological measures.
194 +
195 + 4. Conveying Verbatim Copies.
196 +
197 + You may convey verbatim copies of the Program's source code as you
198 +receive it, in any medium, provided that you conspicuously and
199 +appropriately publish on each copy an appropriate copyright notice;
200 +keep intact all notices stating that this License and any
201 +non-permissive terms added in accord with section 7 apply to the code;
202 +keep intact all notices of the absence of any warranty; and give all
203 +recipients a copy of this License along with the Program.
204 +
205 + You may charge any price or no price for each copy that you convey,
206 +and you may offer support or warranty protection for a fee.
207 +
208 + 5. Conveying Modified Source Versions.
209 +
210 + You may convey a work based on the Program, or the modifications to
211 +produce it from the Program, in the form of source code under the
212 +terms of section 4, provided that you also meet all of these conditions:
213 +
214 + a) The work must carry prominent notices stating that you modified
215 + it, and giving a relevant date.
216 +
217 + b) The work must carry prominent notices stating that it is
218 + released under this License and any conditions added under section
219 + 7. This requirement modifies the requirement in section 4 to
220 + "keep intact all notices".
221 +
222 + c) You must license the entire work, as a whole, under this
223 + License to anyone who comes into possession of a copy. This
224 + License will therefore apply, along with any applicable section 7
225 + additional terms, to the whole of the work, and all its parts,
226 + regardless of how they are packaged. This License gives no
227 + permission to license the work in any other way, but it does not
228 + invalidate such permission if you have separately received it.
229 +
230 + d) If the work has interactive user interfaces, each must display
231 + Appropriate Legal Notices; however, if the Program has interactive
232 + interfaces that do not display Appropriate Legal Notices, your
233 + work need not make them do so.
234 +
235 + A compilation of a covered work with other separate and independent
236 +works, which are not by their nature extensions of the covered work,
237 +and which are not combined with it such as to form a larger program,
238 +in or on a volume of a storage or distribution medium, is called an
239 +"aggregate" if the compilation and its resulting copyright are not
240 +used to limit the access or legal rights of the compilation's users
241 +beyond what the individual works permit. Inclusion of a covered work
242 +in an aggregate does not cause this License to apply to the other
243 +parts of the aggregate.
244 +
245 + 6. Conveying Non-Source Forms.
246 +
247 + You may convey a covered work in object code form under the terms
248 +of sections 4 and 5, provided that you also convey the
249 +machine-readable Corresponding Source under the terms of this License,
250 +in one of these ways:
251 +
252 + a) Convey the object code in, or embodied in, a physical product
253 + (including a physical distribution medium), accompanied by the
254 + Corresponding Source fixed on a durable physical medium
255 + customarily used for software interchange.
256 +
257 + b) Convey the object code in, or embodied in, a physical product
258 + (including a physical distribution medium), accompanied by a
259 + written offer, valid for at least three years and valid for as
260 + long as you offer spare parts or customer support for that product
261 + model, to give anyone who possesses the object code either (1) a
262 + copy of the Corresponding Source for all the software in the
263 + product that is covered by this License, on a durable physical
264 + medium customarily used for software interchange, for a price no
265 + more than your reasonable cost of physically performing this
266 + conveying of source, or (2) access to copy the
267 + Corresponding Source from a network server at no charge.
268 +
269 + c) Convey individual copies of the object code with a copy of the
270 + written offer to provide the Corresponding Source. This
271 + alternative is allowed only occasionally and noncommercially, and
272 + only if you received the object code with such an offer, in accord
273 + with subsection 6b.
274 +
275 + d) Convey the object code by offering access from a designated
276 + place (gratis or for a charge), and offer equivalent access to the
277 + Corresponding Source in the same way through the same place at no
278 + further charge. You need not require recipients to copy the
279 + Corresponding Source along with the object code. If the place to
280 + copy the object code is a network server, the Corresponding Source
281 + may be on a different server (operated by you or a third party)
282 + that supports equivalent copying facilities, provided you maintain
283 + clear directions next to the object code saying where to find the
284 + Corresponding Source. Regardless of what server hosts the
285 + Corresponding Source, you remain obligated to ensure that it is
286 + available for as long as needed to satisfy these requirements.
287 +
288 + e) Convey the object code using peer-to-peer transmission, provided
289 + you inform other peers where the object code and Corresponding
290 + Source of the work are being offered to the general public at no
291 + charge under subsection 6d.
292 +
293 + A separable portion of the object code, whose source code is excluded
294 +from the Corresponding Source as a System Library, need not be
295 +included in conveying the object code work.
296 +
297 + A "User Product" is either (1) a "consumer product", which means any
298 +tangible personal property which is normally used for personal, family,
299 +or household purposes, or (2) anything designed or sold for incorporation
300 +into a dwelling. In determining whether a product is a consumer product,
301 +doubtful cases shall be resolved in favor of coverage. For a particular
302 +product received by a particular user, "normally used" refers to a
303 +typical or common use of that class of product, regardless of the status
304 +of the particular user or of the way in which the particular user
305 +actually uses, or expects or is expected to use, the product. A product
306 +is a consumer product regardless of whether the product has substantial
307 +commercial, industrial or non-consumer uses, unless such uses represent
308 +the only significant mode of use of the product.
309 +
310 + "Installation Information" for a User Product means any methods,
311 +procedures, authorization keys, or other information required to install
312 +and execute modified versions of a covered work in that User Product from
313 +a modified version of its Corresponding Source. The information must
314 +suffice to ensure that the continued functioning of the modified object
315 +code is in no case prevented or interfered with solely because
316 +modification has been made.
317 +
318 + If you convey an object code work under this section in, or with, or
319 +specifically for use in, a User Product, and the conveying occurs as
320 +part of a transaction in which the right of possession and use of the
321 +User Product is transferred to the recipient in perpetuity or for a
322 +fixed term (regardless of how the transaction is characterized), the
323 +Corresponding Source conveyed under this section must be accompanied
324 +by the Installation Information. But this requirement does not apply
325 +if neither you nor any third party retains the ability to install
326 +modified object code on the User Product (for example, the work has
327 +been installed in ROM).
328 +
329 + The requirement to provide Installation Information does not include a
330 +requirement to continue to provide support service, warranty, or updates
331 +for a work that has been modified or installed by the recipient, or for
332 +the User Product in which it has been modified or installed. Access to a
333 +network may be denied when the modification itself materially and
334 +adversely affects the operation of the network or violates the rules and
335 +protocols for communication across the network.
336 +
337 + Corresponding Source conveyed, and Installation Information provided,
338 +in accord with this section must be in a format that is publicly
339 +documented (and with an implementation available to the public in
340 +source code form), and must require no special password or key for
341 +unpacking, reading or copying.
342 +
343 + 7. Additional Terms.
344 +
345 + "Additional permissions" are terms that supplement the terms of this
346 +License by making exceptions from one or more of its conditions.
347 +Additional permissions that are applicable to the entire Program shall
348 +be treated as though they were included in this License, to the extent
349 +that they are valid under applicable law. If additional permissions
350 +apply only to part of the Program, that part may be used separately
351 +under those permissions, but the entire Program remains governed by
352 +this License without regard to the additional permissions.
353 +
354 + When you convey a copy of a covered work, you may at your option
355 +remove any additional permissions from that copy, or from any part of
356 +it. (Additional permissions may be written to require their own
357 +removal in certain cases when you modify the work.) You may place
358 +additional permissions on material, added by you to a covered work,
359 +for which you have or can give appropriate copyright permission.
360 +
361 + Notwithstanding any other provision of this License, for material you
362 +add to a covered work, you may (if authorized by the copyright holders of
363 +that material) supplement the terms of this License with terms:
364 +
365 + a) Disclaiming warranty or limiting liability differently from the
366 + terms of sections 15 and 16 of this License; or
367 +
368 + b) Requiring preservation of specified reasonable legal notices or
369 + author attributions in that material or in the Appropriate Legal
370 + Notices displayed by works containing it; or
371 +
372 + c) Prohibiting misrepresentation of the origin of that material, or
373 + requiring that modified versions of such material be marked in
374 + reasonable ways as different from the original version; or
375 +
376 + d) Limiting the use for publicity purposes of names of licensors or
377 + authors of the material; or
378 +
379 + e) Declining to grant rights under trademark law for use of some
380 + trade names, trademarks, or service marks; or
381 +
382 + f) Requiring indemnification of licensors and authors of that
383 + material by anyone who conveys the material (or modified versions of
384 + it) with contractual assumptions of liability to the recipient, for
385 + any liability that these contractual assumptions directly impose on
386 + those licensors and authors.
387 +
388 + All other non-permissive additional terms are considered "further
389 +restrictions" within the meaning of section 10. If the Program as you
390 +received it, or any part of it, contains a notice stating that it is
391 +governed by this License along with a term that is a further
392 +restriction, you may remove that term. If a license document contains
393 +a further restriction but permits relicensing or conveying under this
394 +License, you may add to a covered work material governed by the terms
395 +of that license document, provided that the further restriction does
396 +not survive such relicensing or conveying.
397 +
398 + If you add terms to a covered work in accord with this section, you
399 +must place, in the relevant source files, a statement of the
400 +additional terms that apply to those files, or a notice indicating
401 +where to find the applicable terms.
402 +
403 + Additional terms, permissive or non-permissive, may be stated in the
404 +form of a separately written license, or stated as exceptions;
405 +the above requirements apply either way.
406 +
407 + 8. Termination.
408 +
409 + You may not propagate or modify a covered work except as expressly
410 +provided under this License. Any attempt otherwise to propagate or
411 +modify it is void, and will automatically terminate your rights under
412 +this License (including any patent licenses granted under the third
413 +paragraph of section 11).
414 +
415 + However, if you cease all violation of this License, then your
416 +license from a particular copyright holder is reinstated (a)
417 +provisionally, unless and until the copyright holder explicitly and
418 +finally terminates your license, and (b) permanently, if the copyright
419 +holder fails to notify you of the violation by some reasonable means
420 +prior to 60 days after the cessation.
421 +
422 + Moreover, your license from a particular copyright holder is
423 +reinstated permanently if the copyright holder notifies you of the
424 +violation by some reasonable means, this is the first time you have
425 +received notice of violation of this License (for any work) from that
426 +copyright holder, and you cure the violation prior to 30 days after
427 +your receipt of the notice.
428 +
429 + Termination of your rights under this section does not terminate the
430 +licenses of parties who have received copies or rights from you under
431 +this License. If your rights have been terminated and not permanently
432 +reinstated, you do not qualify to receive new licenses for the same
433 +material under section 10.
434 +
435 + 9. Acceptance Not Required for Having Copies.
436 +
437 + You are not required to accept this License in order to receive or
438 +run a copy of the Program. Ancillary propagation of a covered work
439 +occurring solely as a consequence of using peer-to-peer transmission
440 +to receive a copy likewise does not require acceptance. However,
441 +nothing other than this License grants you permission to propagate or
442 +modify any covered work. These actions infringe copyright if you do
443 +not accept this License. Therefore, by modifying or propagating a
444 +covered work, you indicate your acceptance of this License to do so.
445 +
446 + 10. Automatic Licensing of Downstream Recipients.
447 +
448 + Each time you convey a covered work, the recipient automatically
449 +receives a license from the original licensors, to run, modify and
450 +propagate that work, subject to this License. You are not responsible
451 +for enforcing compliance by third parties with this License.
452 +
453 + An "entity transaction" is a transaction transferring control of an
454 +organization, or substantially all assets of one, or subdividing an
455 +organization, or merging organizations. If propagation of a covered
456 +work results from an entity transaction, each party to that
457 +transaction who receives a copy of the work also receives whatever
458 +licenses to the work the party's predecessor in interest had or could
459 +give under the previous paragraph, plus a right to possession of the
460 +Corresponding Source of the work from the predecessor in interest, if
461 +the predecessor has it or can get it with reasonable efforts.
462 +
463 + You may not impose any further restrictions on the exercise of the
464 +rights granted or affirmed under this License. For example, you may
465 +not impose a license fee, royalty, or other charge for exercise of
466 +rights granted under this License, and you may not initiate litigation
467 +(including a cross-claim or counterclaim in a lawsuit) alleging that
468 +any patent claim is infringed by making, using, selling, offering for
469 +sale, or importing the Program or any portion of it.
470 +
471 + 11. Patents.
472 +
473 + A "contributor" is a copyright holder who authorizes use under this
474 +License of the Program or a work on which the Program is based. The
475 +work thus licensed is called the contributor's "contributor version".
476 +
477 + A contributor's "essential patent claims" are all patent claims
478 +owned or controlled by the contributor, whether already acquired or
479 +hereafter acquired, that would be infringed by some manner, permitted
480 +by this License, of making, using, or selling its contributor version,
481 +but do not include claims that would be infringed only as a
482 +consequence of further modification of the contributor version. For
483 +purposes of this definition, "control" includes the right to grant
484 +patent sublicenses in a manner consistent with the requirements of
485 +this License.
486 +
487 + Each contributor grants you a non-exclusive, worldwide, royalty-free
488 +patent license under the contributor's essential patent claims, to
489 +make, use, sell, offer for sale, import and otherwise run, modify and
490 +propagate the contents of its contributor version.
491 +
492 + In the following three paragraphs, a "patent license" is any express
493 +agreement or commitment, however denominated, not to enforce a patent
494 +(such as an express permission to practice a patent or covenant not to
495 +sue for patent infringement). To "grant" such a patent license to a
496 +party means to make such an agreement or commitment not to enforce a
497 +patent against the party.
498 +
499 + If you convey a covered work, knowingly relying on a patent license,
500 +and the Corresponding Source of the work is not available for anyone
501 +to copy, free of charge and under the terms of this License, through a
502 +publicly available network server or other readily accessible means,
503 +then you must either (1) cause the Corresponding Source to be so
504 +available, or (2) arrange to deprive yourself of the benefit of the
505 +patent license for this particular work, or (3) arrange, in a manner
506 +consistent with the requirements of this License, to extend the patent
507 +license to downstream recipients. "Knowingly relying" means you have
508 +actual knowledge that, but for the patent license, your conveying the
509 +covered work in a country, or your recipient's use of the covered work
510 +in a country, would infringe one or more identifiable patents in that
511 +country that you have reason to believe are valid.
512 +
513 + If, pursuant to or in connection with a single transaction or
514 +arrangement, you convey, or propagate by procuring conveyance of, a
515 +covered work, and grant a patent license to some of the parties
516 +receiving the covered work authorizing them to use, propagate, modify
517 +or convey a specific copy of the covered work, then the patent license
518 +you grant is automatically extended to all recipients of the covered
519 +work and works based on it.
520 +
521 + A patent license is "discriminatory" if it does not include within
522 +the scope of its coverage, prohibits the exercise of, or is
523 +conditioned on the non-exercise of one or more of the rights that are
524 +specifically granted under this License. You may not convey a covered
525 +work if you are a party to an arrangement with a third party that is
526 +in the business of distributing software, under which you make payment
527 +to the third party based on the extent of your activity of conveying
528 +the work, and under which the third party grants, to any of the
529 +parties who would receive the covered work from you, a discriminatory
530 +patent license (a) in connection with copies of the covered work
531 +conveyed by you (or copies made from those copies), or (b) primarily
532 +for and in connection with specific products or compilations that
533 +contain the covered work, unless you entered into that arrangement,
534 +or that patent license was granted, prior to 28 March 2007.
535 +
536 + Nothing in this License shall be construed as excluding or limiting
537 +any implied license or other defenses to infringement that may
538 +otherwise be available to you under applicable patent law.
539 +
540 + 12. No Surrender of Others' Freedom.
541 +
542 + If conditions are imposed on you (whether by court order, agreement or
543 +otherwise) that contradict the conditions of this License, they do not
544 +excuse you from the conditions of this License. If you cannot convey a
545 +covered work so as to satisfy simultaneously your obligations under this
546 +License and any other pertinent obligations, then as a consequence you may
547 +not convey it at all. For example, if you agree to terms that obligate you
548 +to collect a royalty for further conveying from those to whom you convey
549 +the Program, the only way you could satisfy both those terms and this
550 +License would be to refrain entirely from conveying the Program.
551 +
552 + 13. Use with the GNU Affero General Public License.
553 +
554 + Notwithstanding any other provision of this License, you have
555 +permission to link or combine any covered work with a work licensed
556 +under version 3 of the GNU Affero General Public License into a single
557 +combined work, and to convey the resulting work. The terms of this
558 +License will continue to apply to the part which is the covered work,
559 +but the special requirements of the GNU Affero General Public License,
560 +section 13, concerning interaction through a network will apply to the
561 +combination as such.
562 +
563 + 14. Revised Versions of this License.
564 +
565 + The Free Software Foundation may publish revised and/or new versions of
566 +the GNU General Public License from time to time. Such new versions will
567 +be similar in spirit to the present version, but may differ in detail to
568 +address new problems or concerns.
569 +
570 + Each version is given a distinguishing version number. If the
571 +Program specifies that a certain numbered version of the GNU General
572 +Public License "or any later version" applies to it, you have the
573 +option of following the terms and conditions either of that numbered
574 +version or of any later version published by the Free Software
575 +Foundation. If the Program does not specify a version number of the
576 +GNU General Public License, you may choose any version ever published
577 +by the Free Software Foundation.
578 +
579 + If the Program specifies that a proxy can decide which future
580 +versions of the GNU General Public License can be used, that proxy's
581 +public statement of acceptance of a version permanently authorizes you
582 +to choose that version for the Program.
583 +
584 + Later license versions may give you additional or different
585 +permissions. However, no additional obligations are imposed on any
586 +author or copyright holder as a result of your choosing to follow a
587 +later version.
588 +
589 + 15. Disclaimer of Warranty.
590 +
591 + THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 +APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 +HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 +OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 +THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 +PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 +IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 +ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 +
600 + 16. Limitation of Liability.
601 +
602 + IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 +THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 +GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 +USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 +DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 +PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 +EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 +SUCH DAMAGES.
611 +
612 + 17. Interpretation of Sections 15 and 16.
613 +
614 + If the disclaimer of warranty and limitation of liability provided
615 +above cannot be given local legal effect according to their terms,
616 +reviewing courts shall apply local law that most closely approximates
617 +an absolute waiver of all civil liability in connection with the
618 +Program, unless a warranty or assumption of liability accompanies a
619 +copy of the Program in return for a fee.
620 +
621 + END OF TERMS AND CONDITIONS
622 +
623 + How to Apply These Terms to Your New Programs
624 +
625 + If you develop a new program, and you want it to be of the greatest
626 +possible use to the public, the best way to achieve this is to make it
627 +free software which everyone can redistribute and change under these terms.
628 +
629 + To do so, attach the following notices to the program. It is safest
630 +to attach them to the start of each source file to most effectively
631 +state the exclusion of warranty; and each file should have at least
632 +the "copyright" line and a pointer to where the full notice is found.
633 +
634 + <one line to give the program's name and a brief idea of what it does.>
635 + Copyright (C) <year> <name of author>
636 +
637 + This program is free software: you can redistribute it and/or modify
638 + it under the terms of the GNU General Public License as published by
639 + the Free Software Foundation, either version 3 of the License, or
640 + (at your option) any later version.
641 +
642 + This program is distributed in the hope that it will be useful,
643 + but WITHOUT ANY WARRANTY; without even the implied warranty of
644 + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 + GNU General Public License for more details.
646 +
647 + You should have received a copy of the GNU General Public License
648 + along with this program. If not, see <http://www.gnu.org/licenses/>.
649 +
650 +Also add information on how to contact you by electronic and paper mail.
651 +
652 + If the program does terminal interaction, make it output a short
653 +notice like this when it starts in an interactive mode:
654 +
655 + <program> Copyright (C) <year> <name of author>
656 + This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 + This is free software, and you are welcome to redistribute it
658 + under certain conditions; type `show c' for details.
659 +
660 +The hypothetical commands `show w' and `show c' should show the appropriate
661 +parts of the General Public License. Of course, your program's commands
662 +might be different; for a GUI interface, you would use an "about box".
663 +
664 + You should also get your employer (if you work as a programmer) or school,
665 +if any, to sign a "copyright disclaimer" for the program, if necessary.
666 +For more information on this, and how to apply and follow the GNU GPL, see
667 +<http://www.gnu.org/licenses/>.
668 +
669 + The GNU General Public License does not permit incorporating your program
670 +into proprietary programs. If your program is a subroutine library, you
671 +may consider it more useful to permit linking proprietary applications with
672 +the library. If this is what you want to do, use the GNU Lesser General
673 +Public License instead of this License. But first, please read
674 +<http://www.gnu.org/philosophy/why-not-lgpl.html>.
...\ No newline at end of file ...\ No newline at end of file
1 +<a align="left" href="https://apps.apple.com/app/id1452689527" target="_blank">
2 +<img width="800" src="https://user-images.githubusercontent.com/26833433/98699617-a1595a00-2377-11eb-8145-fc674eb9b1a7.jpg"></a>
3 +&nbsp
4 +
5 +<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
6 +
7 +This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and evolution on anonymized client datasets. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.
8 +
9 +<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313216-f0a5e100-9af5-11eb-8445-c682b60da2e3.png"></p>
10 +<details>
11 + <summary>YOLOv5-P5 640 Figure (click to expand)</summary>
12 +
13 +<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313219-f1d70e00-9af5-11eb-9973-52b1f98d321a.png"></p>
14 +</details>
15 +<details>
16 + <summary>Figure Notes (click to expand)</summary>
17 +
18 + * GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
19 + * EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
20 + * **Reproduce** by `python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
21 +</details>
22 +
23 +- **April 11, 2021**: [v5.0 release](https://github.com/ultralytics/yolov5/releases/tag/v5.0): YOLOv5-P6 1280 models, [AWS](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart), [Supervise.ly](https://github.com/ultralytics/yolov5/issues/2518) and [YouTube](https://github.com/ultralytics/yolov5/pull/2752) integrations.
24 +- **January 5, 2021**: [v4.0 release](https://github.com/ultralytics/yolov5/releases/tag/v4.0): nn.SiLU() activations, [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme) logging, [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/) integration.
25 +- **August 13, 2020**: [v3.0 release](https://github.com/ultralytics/yolov5/releases/tag/v3.0): nn.Hardswish() activations, data autodownload, native AMP.
26 +- **July 23, 2020**: [v2.0 release](https://github.com/ultralytics/yolov5/releases/tag/v2.0): improved model definition, training and mAP.
27 +
28 +
29 +## Pretrained Checkpoints
30 +
31 +[assets]: https://github.com/ultralytics/yolov5/releases
32 +
33 +Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>test<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>V100 (ms) | |params<br><sup>(M) |FLOPS<br><sup>640 (B)
34 +--- |--- |--- |--- |--- |--- |---|--- |---
35 +[YOLOv5s][assets] |640 |36.7 |36.7 |55.4 |**2.0** | |7.3 |17.0
36 +[YOLOv5m][assets] |640 |44.5 |44.5 |63.1 |2.7 | |21.4 |51.3
37 +[YOLOv5l][assets] |640 |48.2 |48.2 |66.9 |3.8 | |47.0 |115.4
38 +[YOLOv5x][assets] |640 |**50.4** |**50.4** |**68.8** |6.1 | |87.7 |218.8
39 +| | | | | | || |
40 +[YOLOv5s6][assets] |1280 |43.3 |43.3 |61.9 |**4.3** | |12.7 |17.4
41 +[YOLOv5m6][assets] |1280 |50.5 |50.5 |68.7 |8.4 | |35.9 |52.4
42 +[YOLOv5l6][assets] |1280 |53.4 |53.4 |71.1 |12.3 | |77.2 |117.7
43 +[YOLOv5x6][assets] |1280 |**54.4** |**54.4** |**72.0** |22.4 | |141.8 |222.9
44 +| | | | | | || |
45 +[YOLOv5x6][assets] TTA |1280 |**55.0** |**55.0** |**72.0** |70.8 | |- |-
46 +
47 +<details>
48 + <summary>Table Notes (click to expand)</summary>
49 +
50 + * AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy.
51 + * AP values are for single-model single-scale unless otherwise noted. **Reproduce mAP** by `python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
52 + * Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes FP16 inference, postprocessing and NMS. **Reproduce speed** by `python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45`
53 + * All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
54 + * Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) includes reflection and scale augmentation. **Reproduce TTA** by `python test.py --data coco.yaml --img 1536 --iou 0.7 --augment`
55 +</details>
56 +
57 +
58 +## Requirements
59 +
60 +Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) dependencies installed, including `torch>=1.7`. To install run:
61 +<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->
62 +```bash
63 +$ pip install -r requirements.txt
64 +```
65 +
66 +
67 +## Tutorials
68 +
69 +* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)&nbsp; 🚀 RECOMMENDED
70 +* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)&nbsp; ☘️ RECOMMENDED
71 +* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)&nbsp; 🌟 NEW
72 +* [Supervisely Ecosystem](https://github.com/ultralytics/yolov5/issues/2518)&nbsp; 🌟 NEW
73 +* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
74 +* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)&nbsp; ⭐ NEW
75 +* [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) 🚀
76 +* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
77 +* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
78 +* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
79 +* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
80 +* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)&nbsp; ⭐ NEW
81 +* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
82 +
83 +
84 +## Environments
85 +
86 +YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
87 +
88 +- **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
89 +- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
90 +- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
91 +- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
92 +
93 +
94 +## Inference
95 +
96 +`detect.py` runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
97 +```bash
98 +$ python detect.py --source 0 # webcam
99 + file.jpg # image
100 + file.mp4 # video
101 + path/ # directory
102 + path/*.jpg # glob
103 + 'https://youtu.be/NUsoVlDFqZg' # YouTube video
104 + 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
105 +```
106 +
107 +To run inference on example images in `data/images`:
108 +```bash
109 +$ python detect.py --source data/images --weights yolov5s.pt --conf 0.25
110 +
111 +Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', exist_ok=False, img_size=640, iou_thres=0.45, name='exp', project='runs/detect', save_conf=False, save_txt=False, source='data/images/', update=False, view_img=False, weights=['yolov5s.pt'])
112 +YOLOv5 v4.0-96-g83dc1b4 torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)
113 +
114 +Fusing layers...
115 +Model Summary: 224 layers, 7266973 parameters, 0 gradients, 17.0 GFLOPS
116 +image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.010s)
117 +image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, Done. (0.011s)
118 +Results saved to runs/detect/exp2
119 +Done. (0.103s)
120 +```
121 +<img width="500" src="https://user-images.githubusercontent.com/26833433/97107365-685a8d80-16c7-11eb-8c2e-83aac701d8b9.jpeg">
122 +
123 +### PyTorch Hub
124 +
125 +Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36):
126 +```python
127 +import torch
128 +
129 +# Model
130 +model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
131 +
132 +# Image
133 +img = 'https://ultralytics.com/images/zidane.jpg'
134 +
135 +# Inference
136 +results = model(img)
137 +results.print() # or .show(), .save()
138 +```
139 +
140 +
141 +## Training
142 +
143 +Run commands below to reproduce results on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
144 +```bash
145 +$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
146 + yolov5m 40
147 + yolov5l 24
148 + yolov5x 16
149 +```
150 +<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
151 +
152 +
153 +## Citation
154 +
155 +[![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686)
156 +
157 +
158 +## About Us
159 +
160 +Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including:
161 +- **Cloud-based AI** systems operating on **hundreds of HD video streams in realtime.**
162 +- **Edge AI** integrated into custom iOS and Android apps for realtime **30 FPS video inference.**
163 +- **Custom data training**, hyperparameter evolution, and model exportation to any destination.
164 +
165 +For business inquiries and professional support requests please visit us at https://ultralytics.com.
166 +
167 +
168 +## Contact
169 +
170 +**Issues should be raised directly in the repository.** For business inquiries or professional support requests please visit https://ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.
File mode changed
1 +import argparse
2 +import time
3 +from pathlib import Path
4 +
5 +import cv2
6 +import torch
7 +import torch.backends.cudnn as cudnn
8 +
9 +from models.experimental import attempt_load
10 +from utils.datasets import LoadStreams, LoadImages
11 +from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
12 + scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path, save_one_box
13 +from utils.plots import colors, plot_one_box
14 +from utils.torch_utils import select_device, load_classifier, time_synchronized
15 +
16 +
17 +@torch.no_grad()
18 +def detect(opt):
19 + # source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
20 + source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, True, opt.img_size
21 + save_img = not opt.nosave and not source.endswith('.txt') # save inference images
22 + webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
23 + ('rtsp://', 'rtmp://', 'http://', 'https://'))
24 +
25 + # Directories
26 + save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
27 + (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
28 +
29 + # Initialize
30 + set_logging()
31 + device = select_device(opt.device)
32 + half = device.type != 'cpu' # half precision only supported on CUDA
33 +
34 + # Load model
35 + model = attempt_load(weights, map_location=device) # load FP32 model
36 + stride = int(model.stride.max()) # model stride
37 + imgsz = check_img_size(imgsz, s=stride) # check img_size
38 + names = model.module.names if hasattr(model, 'module') else model.names # get class names
39 + if half:
40 + model.half() # to FP16
41 +
42 + # Second-stage classifier
43 + classify = False
44 + if classify:
45 + modelc = load_classifier(name='resnet101', n=2) # initialize
46 + modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
47 +
48 + # Set Dataloader
49 + vid_path, vid_writer = None, None
50 + if webcam:
51 + view_img = check_imshow()
52 + cudnn.benchmark = True # set True to speed up constant image size inference
53 + dataset = LoadStreams(source, img_size=imgsz, stride=stride)
54 + else:
55 + dataset = LoadImages(source, img_size=imgsz, stride=stride)
56 +
57 + # Run inference
58 + if device.type != 'cpu':
59 + model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
60 + t0 = time.time()
61 + for path, img, im0s, vid_cap in dataset:
62 + img = torch.from_numpy(img).to(device)
63 + img = img.half() if half else img.float() # uint8 to fp16/32
64 + img /= 255.0 # 0 - 255 to 0.0 - 1.0
65 + if img.ndimension() == 3:
66 + img = img.unsqueeze(0)
67 +
68 + # Inference
69 + t1 = time_synchronized()
70 + pred = model(img, augment=opt.augment)[0]
71 +
72 + # Apply NMS
73 + pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, opt.classes, opt.agnostic_nms,
74 + max_det=opt.max_det)
75 + t2 = time_synchronized()
76 +
77 + # Apply Classifier
78 + if classify:
79 + pred = apply_classifier(pred, modelc, img, im0s)
80 +
81 + # Process detections
82 + for i, det in enumerate(pred): # detections per image
83 + if webcam: # batch_size >= 1
84 + p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count
85 + else:
86 + p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)
87 +
88 + p = Path(p) # to Path
89 + save_path = str(save_dir / p.name) # img.jpg
90 + txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
91 + s += '%gx%g ' % img.shape[2:] # print string
92 + gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
93 + imc = im0.copy() if opt.save_crop else im0 # for opt.save_crop
94 + if len(det):
95 + # Rescale boxes from img_size to im0 size
96 + det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
97 +
98 + # Print results
99 + for c in det[:, -1].unique():
100 + n = (det[:, -1] == c).sum() # detections per class
101 + s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
102 +
103 + # Write results
104 + for *xyxy, conf, cls in reversed(det):
105 + if save_txt: # Write to file
106 +
107 + # print("+++++++++++++++++++++++++++++++++")
108 + # print(torch.tensor(xyxy))
109 + # print("+++++++++++++++++++++++++++++++++")
110 +
111 + xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
112 +
113 + # print("+++++++++++++++++++++++++++++++++")
114 + # print(xywh)
115 + # print("+++++++++++++++++++++++++++++++++")
116 +
117 + line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
118 + with open(txt_path + '.txt', 'a') as f:
119 + f.write(('%g ' * len(line)).rstrip() % line + '\n')
120 +
121 + if save_img or opt.save_crop or view_img: # Add bbox to image
122 + c = int(cls) # integer class
123 + label = None if opt.hide_labels else (names[c] if opt.hide_conf else f'{names[c]} {conf:.2f}')
124 + plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=opt.line_thickness)
125 + # if opt.save_crop:
126 + save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
127 +
128 + # Print time (inference + NMS)
129 + print(f'{s}Done. ({t2 - t1:.3f}s)')
130 +
131 + # Stream results
132 + if view_img:
133 + cv2.imshow(str(p), im0)
134 + cv2.waitKey(1) # 1 millisecond
135 +
136 + # Save results (image with detections)
137 + if save_img:
138 + if dataset.mode == 'image':
139 + cv2.imwrite(save_path, im0)
140 + else: # 'video' or 'stream'
141 + if vid_path != save_path: # new video
142 + vid_path = save_path
143 + if isinstance(vid_writer, cv2.VideoWriter):
144 + vid_writer.release() # release previous video writer
145 + if vid_cap: # video
146 + fps = vid_cap.get(cv2.CAP_PROP_FPS)
147 + w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
148 + h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
149 + else: # stream
150 + fps, w, h = 30, im0.shape[1], im0.shape[0]
151 + save_path += '.mp4'
152 + vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
153 + vid_writer.write(im0)
154 +
155 + if save_txt or save_img:
156 + s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
157 + print(f"Results saved to {save_dir}{s}")
158 +
159 + print(f'Done. ({time.time() - t0:.3f}s)')
160 +
161 +
162 +if __name__ == '__main__':
163 + parser = argparse.ArgumentParser()
164 + parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
165 + parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcam
166 + parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
167 + parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
168 + parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
169 + parser.add_argument('--max-det', type=int, default=1000, help='maximum number of detections per image')
170 + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
171 + parser.add_argument('--view-img', action='store_true', help='display results')
172 + parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
173 + parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
174 + parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
175 + parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
176 + parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
177 + parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
178 + parser.add_argument('--augment', action='store_true', help='augmented inference')
179 + parser.add_argument('--update', action='store_true', help='update all models')
180 + parser.add_argument('--project', default='runs/detect', help='save results to project/name')
181 + parser.add_argument('--name', default='exp', help='save results to project/name')
182 + parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
183 + parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
184 + parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
185 + parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
186 + opt = parser.parse_args()
187 + print(opt)
188 + check_requirements(exclude=('tensorboard', 'pycocotools', 'thop'))
189 +
190 + if opt.update: # update all models (to fix SourceChangeWarning)
191 + for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
192 + detect(opt=opt)
193 + strip_optimizer(opt.weights)
194 + else:
195 + detect(opt=opt)
1 +"""YOLOv5 PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/
2 +
3 +Usage:
4 + import torch
5 + model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
6 +"""
7 +
8 +import torch
9 +
10 +
11 +def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
12 + """Creates a specified YOLOv5 model
13 +
14 + Arguments:
15 + name (str): name of model, i.e. 'yolov5s'
16 + pretrained (bool): load pretrained weights into the model
17 + channels (int): number of input channels
18 + classes (int): number of model classes
19 + autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
20 + verbose (bool): print all information to screen
21 + device (str, torch.device, None): device to use for model parameters
22 +
23 + Returns:
24 + YOLOv5 pytorch model
25 + """
26 + from pathlib import Path
27 +
28 + from models.yolo import Model, attempt_load
29 + from utils.general import check_requirements, set_logging
30 + from utils.google_utils import attempt_download
31 + from utils.torch_utils import select_device
32 +
33 + check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('tensorboard', 'pycocotools', 'thop'))
34 + set_logging(verbose=verbose)
35 +
36 + fname = Path(name).with_suffix('.pt') # checkpoint filename
37 + try:
38 + if pretrained and channels == 3 and classes == 80:
39 + model = attempt_load(fname, map_location=torch.device('cpu')) # download/load FP32 model
40 + else:
41 + cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path
42 + model = Model(cfg, channels, classes) # create model
43 + if pretrained:
44 + ckpt = torch.load(attempt_download(fname), map_location=torch.device('cpu')) # load
45 + msd = model.state_dict() # model state_dict
46 + csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
47 + csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter
48 + model.load_state_dict(csd, strict=False) # load
49 + if len(ckpt['model'].names) == classes:
50 + model.names = ckpt['model'].names # set class names attribute
51 + if autoshape:
52 + model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
53 + device = select_device('0' if torch.cuda.is_available() else 'cpu') if device is None else torch.device(device)
54 + return model.to(device)
55 +
56 + except Exception as e:
57 + help_url = 'https://github.com/ultralytics/yolov5/issues/36'
58 + s = 'Cache may be out of date, try `force_reload=True`. See %s for help.' % help_url
59 + raise Exception(s) from e
60 +
61 +
62 +def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None):
63 + # YOLOv5 custom or local model
64 + return _create(path, autoshape=autoshape, verbose=verbose, device=device)
65 +
66 +
67 +def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
68 + # YOLOv5-small model https://github.com/ultralytics/yolov5
69 + return _create('yolov5s', pretrained, channels, classes, autoshape, verbose, device)
70 +
71 +
72 +def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
73 + # YOLOv5-medium model https://github.com/ultralytics/yolov5
74 + return _create('yolov5m', pretrained, channels, classes, autoshape, verbose, device)
75 +
76 +
77 +def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
78 + # YOLOv5-large model https://github.com/ultralytics/yolov5
79 + return _create('yolov5l', pretrained, channels, classes, autoshape, verbose, device)
80 +
81 +
82 +def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
83 + # YOLOv5-xlarge model https://github.com/ultralytics/yolov5
84 + return _create('yolov5x', pretrained, channels, classes, autoshape, verbose, device)
85 +
86 +
87 +def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
88 + # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
89 + return _create('yolov5s6', pretrained, channels, classes, autoshape, verbose, device)
90 +
91 +
92 +def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
93 + # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
94 + return _create('yolov5m6', pretrained, channels, classes, autoshape, verbose, device)
95 +
96 +
97 +def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
98 + # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
99 + return _create('yolov5l6', pretrained, channels, classes, autoshape, verbose, device)
100 +
101 +
102 +def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
103 + # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
104 + return _create('yolov5x6', pretrained, channels, classes, autoshape, verbose, device)
105 +
106 +
107 +if __name__ == '__main__':
108 + model = _create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
109 + # model = custom(path='path/to/model.pt') # custom
110 +
111 + # Verify inference
112 + import cv2
113 + import numpy as np
114 + from PIL import Image
115 +
116 + imgs = ['data/images/zidane.jpg', # filename
117 + 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg', # URI
118 + cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
119 + Image.open('data/images/bus.jpg'), # PIL
120 + np.zeros((320, 640, 3))] # numpy
121 +
122 + results = model(imgs) # batched inference
123 + results.print()
124 + results.save()
File mode changed
1 +# YOLOv5 common modules
2 +
3 +import math
4 +from copy import copy
5 +from pathlib import Path
6 +
7 +import numpy as np
8 +import pandas as pd
9 +import requests
10 +import torch
11 +import torch.nn as nn
12 +from PIL import Image
13 +from torch.cuda import amp
14 +
15 +from utils.datasets import letterbox
16 +from utils.general import non_max_suppression, make_divisible, scale_coords, increment_path, xyxy2xywh, save_one_box
17 +from utils.plots import colors, plot_one_box
18 +from utils.torch_utils import time_synchronized
19 +
20 +
21 +def autopad(k, p=None): # kernel, padding
22 + # Pad to 'same'
23 + if p is None:
24 + p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
25 + return p
26 +
27 +
28 +def DWConv(c1, c2, k=1, s=1, act=True):
29 + # Depthwise convolution
30 + return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
31 +
32 +
33 +class Conv(nn.Module):
34 + # Standard convolution
35 + def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
36 + super(Conv, self).__init__()
37 + self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
38 + self.bn = nn.BatchNorm2d(c2)
39 + self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
40 +
41 + def forward(self, x):
42 + return self.act(self.bn(self.conv(x)))
43 +
44 + def fuseforward(self, x):
45 + return self.act(self.conv(x))
46 +
47 +
48 +class TransformerLayer(nn.Module):
49 + # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
50 + def __init__(self, c, num_heads):
51 + super().__init__()
52 + self.q = nn.Linear(c, c, bias=False)
53 + self.k = nn.Linear(c, c, bias=False)
54 + self.v = nn.Linear(c, c, bias=False)
55 + self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
56 + self.fc1 = nn.Linear(c, c, bias=False)
57 + self.fc2 = nn.Linear(c, c, bias=False)
58 +
59 + def forward(self, x):
60 + x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
61 + x = self.fc2(self.fc1(x)) + x
62 + return x
63 +
64 +
65 +class TransformerBlock(nn.Module):
66 + # Vision Transformer https://arxiv.org/abs/2010.11929
67 + def __init__(self, c1, c2, num_heads, num_layers):
68 + super().__init__()
69 + self.conv = None
70 + if c1 != c2:
71 + self.conv = Conv(c1, c2)
72 + self.linear = nn.Linear(c2, c2) # learnable position embedding
73 + self.tr = nn.Sequential(*[TransformerLayer(c2, num_heads) for _ in range(num_layers)])
74 + self.c2 = c2
75 +
76 + def forward(self, x):
77 + if self.conv is not None:
78 + x = self.conv(x)
79 + b, _, w, h = x.shape
80 + p = x.flatten(2)
81 + p = p.unsqueeze(0)
82 + p = p.transpose(0, 3)
83 + p = p.squeeze(3)
84 + e = self.linear(p)
85 + x = p + e
86 +
87 + x = self.tr(x)
88 + x = x.unsqueeze(3)
89 + x = x.transpose(0, 3)
90 + x = x.reshape(b, self.c2, w, h)
91 + return x
92 +
93 +
94 +class Bottleneck(nn.Module):
95 + # Standard bottleneck
96 + def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
97 + super(Bottleneck, self).__init__()
98 + c_ = int(c2 * e) # hidden channels
99 + self.cv1 = Conv(c1, c_, 1, 1)
100 + self.cv2 = Conv(c_, c2, 3, 1, g=g)
101 + self.add = shortcut and c1 == c2
102 +
103 + def forward(self, x):
104 + return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
105 +
106 +
107 +class BottleneckCSP(nn.Module):
108 + # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
109 + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
110 + super(BottleneckCSP, self).__init__()
111 + c_ = int(c2 * e) # hidden channels
112 + self.cv1 = Conv(c1, c_, 1, 1)
113 + self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
114 + self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
115 + self.cv4 = Conv(2 * c_, c2, 1, 1)
116 + self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
117 + self.act = nn.LeakyReLU(0.1, inplace=True)
118 + self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
119 +
120 + def forward(self, x):
121 + y1 = self.cv3(self.m(self.cv1(x)))
122 + y2 = self.cv2(x)
123 + return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
124 +
125 +
126 +class C3(nn.Module):
127 + # CSP Bottleneck with 3 convolutions
128 + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
129 + super(C3, self).__init__()
130 + c_ = int(c2 * e) # hidden channels
131 + self.cv1 = Conv(c1, c_, 1, 1)
132 + self.cv2 = Conv(c1, c_, 1, 1)
133 + self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
134 + self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
135 + # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
136 +
137 + def forward(self, x):
138 + return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
139 +
140 +
141 +class C3TR(C3):
142 + # C3 module with TransformerBlock()
143 + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
144 + super().__init__(c1, c2, n, shortcut, g, e)
145 + c_ = int(c2 * e)
146 + self.m = TransformerBlock(c_, c_, 4, n)
147 +
148 +
149 +class SPP(nn.Module):
150 + # Spatial pyramid pooling layer used in YOLOv3-SPP
151 + def __init__(self, c1, c2, k=(5, 9, 13)):
152 + super(SPP, self).__init__()
153 + c_ = c1 // 2 # hidden channels
154 + self.cv1 = Conv(c1, c_, 1, 1)
155 + self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
156 + self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
157 +
158 + def forward(self, x):
159 + x = self.cv1(x)
160 + return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
161 +
162 +
163 +class Focus(nn.Module):
164 + # Focus wh information into c-space
165 + def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
166 + super(Focus, self).__init__()
167 + self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
168 + # self.contract = Contract(gain=2)
169 +
170 + def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
171 + return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
172 + # return self.conv(self.contract(x))
173 +
174 +
175 +class Contract(nn.Module):
176 + # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
177 + def __init__(self, gain=2):
178 + super().__init__()
179 + self.gain = gain
180 +
181 + def forward(self, x):
182 + N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain'
183 + s = self.gain
184 + x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2)
185 + x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
186 + return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40)
187 +
188 +
189 +class Expand(nn.Module):
190 + # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
191 + def __init__(self, gain=2):
192 + super().__init__()
193 + self.gain = gain
194 +
195 + def forward(self, x):
196 + N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
197 + s = self.gain
198 + x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80)
199 + x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
200 + return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160)
201 +
202 +
203 +class Concat(nn.Module):
204 + # Concatenate a list of tensors along dimension
205 + def __init__(self, dimension=1):
206 + super(Concat, self).__init__()
207 + self.d = dimension
208 +
209 + def forward(self, x):
210 + return torch.cat(x, self.d)
211 +
212 +
213 +class NMS(nn.Module):
214 + # Non-Maximum Suppression (NMS) module
215 + conf = 0.25 # confidence threshold
216 + iou = 0.45 # IoU threshold
217 + classes = None # (optional list) filter by class
218 + max_det = 1000 # maximum number of detections per image
219 +
220 + def __init__(self):
221 + super(NMS, self).__init__()
222 +
223 + def forward(self, x):
224 + return non_max_suppression(x[0], self.conf, iou_thres=self.iou, classes=self.classes, max_det=self.max_det)
225 +
226 +
227 +class AutoShape(nn.Module):
228 + # input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
229 + conf = 0.25 # NMS confidence threshold
230 + iou = 0.45 # NMS IoU threshold
231 + classes = None # (optional list) filter by class
232 + max_det = 1000 # maximum number of detections per image
233 +
234 + def __init__(self, model):
235 + super(AutoShape, self).__init__()
236 + self.model = model.eval()
237 +
238 + def autoshape(self):
239 + print('AutoShape already enabled, skipping... ') # model already converted to model.autoshape()
240 + return self
241 +
242 + @torch.no_grad()
243 + def forward(self, imgs, size=640, augment=False, profile=False):
244 + # Inference from various sources. For height=640, width=1280, RGB images example inputs are:
245 + # filename: imgs = 'data/images/zidane.jpg'
246 + # URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg'
247 + # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
248 + # PIL: = Image.open('image.jpg') # HWC x(640,1280,3)
249 + # numpy: = np.zeros((640,1280,3)) # HWC
250 + # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
251 + # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
252 +
253 + t = [time_synchronized()]
254 + p = next(self.model.parameters()) # for device and type
255 + if isinstance(imgs, torch.Tensor): # torch
256 + with amp.autocast(enabled=p.device.type != 'cpu'):
257 + return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
258 +
259 + # Pre-process
260 + n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
261 + shape0, shape1, files = [], [], [] # image and inference shapes, filenames
262 + for i, im in enumerate(imgs):
263 + f = f'image{i}' # filename
264 + if isinstance(im, str): # filename or uri
265 + im, f = np.asarray(Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im)), im
266 + elif isinstance(im, Image.Image): # PIL Image
267 + im, f = np.asarray(im), getattr(im, 'filename', f) or f
268 + files.append(Path(f).with_suffix('.jpg').name)
269 + if im.shape[0] < 5: # image in CHW
270 + im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
271 + im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
272 + s = im.shape[:2] # HWC
273 + shape0.append(s) # image shape
274 + g = (size / max(s)) # gain
275 + shape1.append([y * g for y in s])
276 + imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
277 + shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
278 + x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
279 + x = np.stack(x, 0) if n > 1 else x[0][None] # stack
280 + x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
281 + x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
282 + t.append(time_synchronized())
283 +
284 + with amp.autocast(enabled=p.device.type != 'cpu'):
285 + # Inference
286 + y = self.model(x, augment, profile)[0] # forward
287 + t.append(time_synchronized())
288 +
289 + # Post-process
290 + y = non_max_suppression(y, self.conf, iou_thres=self.iou, classes=self.classes, max_det=self.max_det) # NMS
291 + for i in range(n):
292 + scale_coords(shape1, y[i][:, :4], shape0[i])
293 +
294 + t.append(time_synchronized())
295 + return Detections(imgs, y, files, t, self.names, x.shape)
296 +
297 +
298 +class Detections:
299 + # detections class for YOLOv5 inference results
300 + def __init__(self, imgs, pred, files, times=None, names=None, shape=None):
301 + super(Detections, self).__init__()
302 + d = pred[0].device # device
303 + gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations
304 + self.imgs = imgs # list of images as numpy arrays
305 + self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
306 + self.names = names # class names
307 + self.files = files # image filenames
308 + self.xyxy = pred # xyxy pixels
309 + self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
310 + self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
311 + self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
312 + self.n = len(self.pred) # number of images (batch size)
313 + self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
314 + self.s = shape # inference BCHW shape
315 +
316 + def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')):
317 + for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
318 + str = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} '
319 + if pred is not None:
320 + for c in pred[:, -1].unique():
321 + n = (pred[:, -1] == c).sum() # detections per class
322 + str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
323 + if show or save or render or crop:
324 + for *box, conf, cls in pred: # xyxy, confidence, class
325 + label = f'{self.names[int(cls)]} {conf:.2f}'
326 + if crop:
327 + save_one_box(box, im, file=save_dir / 'crops' / self.names[int(cls)] / self.files[i])
328 + else: # all others
329 + plot_one_box(box, im, label=label, color=colors(cls))
330 +
331 + im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
332 + if pprint:
333 + print(str.rstrip(', '))
334 + if show:
335 + im.show(self.files[i]) # show
336 + if save:
337 + f = self.files[i]
338 + im.save(save_dir / f) # save
339 + print(f"{'Saved' * (i == 0)} {f}", end=',' if i < self.n - 1 else f' to {save_dir}\n')
340 + if render:
341 + self.imgs[i] = np.asarray(im)
342 +
343 + def print(self):
344 + self.display(pprint=True) # print results
345 + print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t)
346 +
347 + def show(self):
348 + self.display(show=True) # show results
349 +
350 + def save(self, save_dir='runs/hub/exp'):
351 + save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp', mkdir=True) # increment save_dir
352 + self.display(save=True, save_dir=save_dir) # save results
353 +
354 + def crop(self, save_dir='runs/hub/exp'):
355 + save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp', mkdir=True) # increment save_dir
356 + self.display(crop=True, save_dir=save_dir) # crop results
357 + print(f'Saved results to {save_dir}\n')
358 +
359 + def render(self):
360 + self.display(render=True) # render results
361 + return self.imgs
362 +
363 + def pandas(self):
364 + # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
365 + new = copy(self) # return copy
366 + ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
367 + cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
368 + for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
369 + a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
370 + setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
371 + return new
372 +
373 + def tolist(self):
374 + # return a list of Detections objects, i.e. 'for result in results.tolist():'
375 + x = [Detections([self.imgs[i]], [self.pred[i]], self.names, self.s) for i in range(self.n)]
376 + for d in x:
377 + for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
378 + setattr(d, k, getattr(d, k)[0]) # pop out of list
379 + return x
380 +
381 + def __len__(self):
382 + return self.n
383 +
384 +
385 +class Classify(nn.Module):
386 + # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
387 + def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
388 + super(Classify, self).__init__()
389 + self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
390 + self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
391 + self.flat = nn.Flatten()
392 +
393 + def forward(self, x):
394 + z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
395 + return self.flat(self.conv(z)) # flatten to x(b,c2)
1 +# YOLOv5 experimental modules
2 +
3 +import numpy as np
4 +import torch
5 +import torch.nn as nn
6 +
7 +from models.common import Conv, DWConv
8 +from utils.google_utils import attempt_download
9 +
10 +
11 +class CrossConv(nn.Module):
12 + # Cross Convolution Downsample
13 + def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
14 + # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
15 + super(CrossConv, self).__init__()
16 + c_ = int(c2 * e) # hidden channels
17 + self.cv1 = Conv(c1, c_, (1, k), (1, s))
18 + self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
19 + self.add = shortcut and c1 == c2
20 +
21 + def forward(self, x):
22 + return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
23 +
24 +
25 +class Sum(nn.Module):
26 + # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
27 + def __init__(self, n, weight=False): # n: number of inputs
28 + super(Sum, self).__init__()
29 + self.weight = weight # apply weights boolean
30 + self.iter = range(n - 1) # iter object
31 + if weight:
32 + self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
33 +
34 + def forward(self, x):
35 + y = x[0] # no weight
36 + if self.weight:
37 + w = torch.sigmoid(self.w) * 2
38 + for i in self.iter:
39 + y = y + x[i + 1] * w[i]
40 + else:
41 + for i in self.iter:
42 + y = y + x[i + 1]
43 + return y
44 +
45 +
46 +class GhostConv(nn.Module):
47 + # Ghost Convolution https://github.com/huawei-noah/ghostnet
48 + def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
49 + super(GhostConv, self).__init__()
50 + c_ = c2 // 2 # hidden channels
51 + self.cv1 = Conv(c1, c_, k, s, None, g, act)
52 + self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
53 +
54 + def forward(self, x):
55 + y = self.cv1(x)
56 + return torch.cat([y, self.cv2(y)], 1)
57 +
58 +
59 +class GhostBottleneck(nn.Module):
60 + # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
61 + def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
62 + super(GhostBottleneck, self).__init__()
63 + c_ = c2 // 2
64 + self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
65 + DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
66 + GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
67 + self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
68 + Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
69 +
70 + def forward(self, x):
71 + return self.conv(x) + self.shortcut(x)
72 +
73 +
74 +class MixConv2d(nn.Module):
75 + # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
76 + def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
77 + super(MixConv2d, self).__init__()
78 + groups = len(k)
79 + if equal_ch: # equal c_ per group
80 + i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
81 + c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
82 + else: # equal weight.numel() per group
83 + b = [c2] + [0] * groups
84 + a = np.eye(groups + 1, groups, k=-1)
85 + a -= np.roll(a, 1, axis=1)
86 + a *= np.array(k) ** 2
87 + a[0] = 1
88 + c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
89 +
90 + self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
91 + self.bn = nn.BatchNorm2d(c2)
92 + self.act = nn.LeakyReLU(0.1, inplace=True)
93 +
94 + def forward(self, x):
95 + return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
96 +
97 +
98 +class Ensemble(nn.ModuleList):
99 + # Ensemble of models
100 + def __init__(self):
101 + super(Ensemble, self).__init__()
102 +
103 + def forward(self, x, augment=False):
104 + y = []
105 + for module in self:
106 + y.append(module(x, augment)[0])
107 + # y = torch.stack(y).max(0)[0] # max ensemble
108 + # y = torch.stack(y).mean(0) # mean ensemble
109 + y = torch.cat(y, 1) # nms ensemble
110 + return y, None # inference, train output
111 +
112 +
113 +def attempt_load(weights, map_location=None, inplace=True):
114 + from models.yolo import Detect, Model
115 +
116 + # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
117 + model = Ensemble()
118 + for w in weights if isinstance(weights, list) else [weights]:
119 + ckpt = torch.load(attempt_download(w), map_location=map_location) # load
120 + model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
121 +
122 + # Compatibility updates
123 + for m in model.modules():
124 + if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model]:
125 + m.inplace = inplace # pytorch 1.7.0 compatibility
126 + elif type(m) is Conv:
127 + m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
128 +
129 + if len(model) == 1:
130 + return model[-1] # return model
131 + else:
132 + print(f'Ensemble created with {weights}\n')
133 + for k in ['names']:
134 + setattr(model, k, getattr(model[-1], k))
135 + model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
136 + return model # return ensemble
1 +"""Exports a YOLOv5 *.pt model to TorchScript, ONNX, CoreML formats
2 +
3 +Usage:
4 + $ python path/to/models/export.py --weights yolov5s.pt --img 640 --batch 1
5 +"""
6 +
7 +import argparse
8 +import sys
9 +import time
10 +from pathlib import Path
11 +
12 +sys.path.append(Path(__file__).parent.parent.absolute().__str__()) # to run '$ python *.py' files in subdirectories
13 +
14 +import torch
15 +import torch.nn as nn
16 +from torch.utils.mobile_optimizer import optimize_for_mobile
17 +
18 +import models
19 +from models.experimental import attempt_load
20 +from utils.activations import Hardswish, SiLU
21 +from utils.general import colorstr, check_img_size, check_requirements, file_size, set_logging
22 +from utils.torch_utils import select_device
23 +
24 +if __name__ == '__main__':
25 + parser = argparse.ArgumentParser()
26 + parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
27 + parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
28 + parser.add_argument('--batch-size', type=int, default=1, help='batch size')
29 + parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
30 + parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx', 'coreml'], help='include formats')
31 + parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
32 + parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
33 + parser.add_argument('--train', action='store_true', help='model.train() mode')
34 + parser.add_argument('--optimize', action='store_true', help='optimize TorchScript for mobile') # TorchScript-only
35 + parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes') # ONNX-only
36 + parser.add_argument('--simplify', action='store_true', help='simplify ONNX model') # ONNX-only
37 + parser.add_argument('--opset-version', type=int, default=12, help='ONNX opset version') # ONNX-only
38 + opt = parser.parse_args()
39 + opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
40 + opt.include = [x.lower() for x in opt.include]
41 + print(opt)
42 + set_logging()
43 + t = time.time()
44 +
45 + # Load PyTorch model
46 + device = select_device(opt.device)
47 + model = attempt_load(opt.weights, map_location=device) # load FP32 model
48 + labels = model.names
49 +
50 + # Checks
51 + gs = int(max(model.stride)) # grid size (max stride)
52 + opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
53 + assert not (opt.device.lower() == 'cpu' and opt.half), '--half only compatible with GPU export, i.e. use --device 0'
54 +
55 + # Input
56 + img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
57 +
58 + # Update model
59 + if opt.half:
60 + img, model = img.half(), model.half() # to FP16
61 + if opt.train:
62 + model.train() # training mode (no grid construction in Detect layer)
63 + for k, m in model.named_modules():
64 + m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
65 + if isinstance(m, models.common.Conv): # assign export-friendly activations
66 + if isinstance(m.act, nn.Hardswish):
67 + m.act = Hardswish()
68 + elif isinstance(m.act, nn.SiLU):
69 + m.act = SiLU()
70 + elif isinstance(m, models.yolo.Detect):
71 + m.inplace = opt.inplace
72 + m.onnx_dynamic = opt.dynamic
73 + # m.forward = m.forward_export # assign forward (optional)
74 +
75 + for _ in range(2):
76 + y = model(img) # dry runs
77 + print(f"\n{colorstr('PyTorch:')} starting from {opt.weights} ({file_size(opt.weights):.1f} MB)")
78 +
79 + # TorchScript export -----------------------------------------------------------------------------------------------
80 + if 'torchscript' in opt.include or 'coreml' in opt.include:
81 + prefix = colorstr('TorchScript:')
82 + try:
83 + print(f'\n{prefix} starting export with torch {torch.__version__}...')
84 + f = opt.weights.replace('.pt', '.torchscript.pt') # filename
85 + ts = torch.jit.trace(model, img, strict=False)
86 + (optimize_for_mobile(ts) if opt.optimize else ts).save(f)
87 + print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
88 + except Exception as e:
89 + print(f'{prefix} export failure: {e}')
90 +
91 + # ONNX export ------------------------------------------------------------------------------------------------------
92 + if 'onnx' in opt.include:
93 + prefix = colorstr('ONNX:')
94 + try:
95 + import onnx
96 +
97 + print(f'{prefix} starting export with onnx {onnx.__version__}...')
98 + f = opt.weights.replace('.pt', '.onnx') # filename
99 + torch.onnx.export(model, img, f, verbose=False, opset_version=opt.opset_version, input_names=['images'],
100 + training=torch.onnx.TrainingMode.TRAINING if opt.train else torch.onnx.TrainingMode.EVAL,
101 + do_constant_folding=not opt.train,
102 + dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
103 + 'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None)
104 +
105 + # Checks
106 + model_onnx = onnx.load(f) # load onnx model
107 + onnx.checker.check_model(model_onnx) # check onnx model
108 + # print(onnx.helper.printable_graph(model_onnx.graph)) # print
109 +
110 + # Simplify
111 + if opt.simplify:
112 + try:
113 + check_requirements(['onnx-simplifier'])
114 + import onnxsim
115 +
116 + print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
117 + model_onnx, check = onnxsim.simplify(
118 + model_onnx,
119 + dynamic_input_shape=opt.dynamic,
120 + input_shapes={'images': list(img.shape)} if opt.dynamic else None)
121 + assert check, 'assert check failed'
122 + onnx.save(model_onnx, f)
123 + except Exception as e:
124 + print(f'{prefix} simplifier failure: {e}')
125 + print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
126 + except Exception as e:
127 + print(f'{prefix} export failure: {e}')
128 +
129 + # CoreML export ----------------------------------------------------------------------------------------------------
130 + if 'coreml' in opt.include:
131 + prefix = colorstr('CoreML:')
132 + try:
133 + import coremltools as ct
134 +
135 + print(f'{prefix} starting export with coremltools {ct.__version__}...')
136 + assert opt.train, 'CoreML exports should be placed in model.train() mode with `python export.py --train`'
137 + model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
138 + f = opt.weights.replace('.pt', '.mlmodel') # filename
139 + model.save(f)
140 + print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
141 + except Exception as e:
142 + print(f'{prefix} export failure: {e}')
143 +
144 + # Finish
145 + print(f'\nExport complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.')
1 +# Default YOLOv5 anchors for COCO data
2 +
3 +
4 +# P5 -------------------------------------------------------------------------------------------------------------------
5 +# P5-640:
6 +anchors_p5_640:
7 + - [ 10,13, 16,30, 33,23 ] # P3/8
8 + - [ 30,61, 62,45, 59,119 ] # P4/16
9 + - [ 116,90, 156,198, 373,326 ] # P5/32
10 +
11 +
12 +# P6 -------------------------------------------------------------------------------------------------------------------
13 +# P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
14 +anchors_p6_640:
15 + - [ 9,11, 21,19, 17,41 ] # P3/8
16 + - [ 43,32, 39,70, 86,64 ] # P4/16
17 + - [ 65,131, 134,130, 120,265 ] # P5/32
18 + - [ 282,180, 247,354, 512,387 ] # P6/64
19 +
20 +# P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
21 +anchors_p6_1280:
22 + - [ 19,27, 44,40, 38,94 ] # P3/8
23 + - [ 96,68, 86,152, 180,137 ] # P4/16
24 + - [ 140,301, 303,264, 238,542 ] # P5/32
25 + - [ 436,615, 739,380, 925,792 ] # P6/64
26 +
27 +# P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187
28 +anchors_p6_1920:
29 + - [ 28,41, 67,59, 57,141 ] # P3/8
30 + - [ 144,103, 129,227, 270,205 ] # P4/16
31 + - [ 209,452, 455,396, 358,812 ] # P5/32
32 + - [ 653,922, 1109,570, 1387,1187 ] # P6/64
33 +
34 +
35 +# P7 -------------------------------------------------------------------------------------------------------------------
36 +# P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372
37 +anchors_p7_640:
38 + - [ 11,11, 13,30, 29,20 ] # P3/8
39 + - [ 30,46, 61,38, 39,92 ] # P4/16
40 + - [ 78,80, 146,66, 79,163 ] # P5/32
41 + - [ 149,150, 321,143, 157,303 ] # P6/64
42 + - [ 257,402, 359,290, 524,372 ] # P7/128
43 +
44 +# P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818
45 +anchors_p7_1280:
46 + - [ 19,22, 54,36, 32,77 ] # P3/8
47 + - [ 70,83, 138,71, 75,173 ] # P4/16
48 + - [ 165,159, 148,334, 375,151 ] # P5/32
49 + - [ 334,317, 251,626, 499,474 ] # P6/64
50 + - [ 750,326, 534,814, 1079,818 ] # P7/128
51 +
52 +# P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227
53 +anchors_p7_1920:
54 + - [ 29,34, 81,55, 47,115 ] # P3/8
55 + - [ 105,124, 207,107, 113,259 ] # P4/16
56 + - [ 247,238, 222,500, 563,227 ] # P5/32
57 + - [ 501,476, 376,939, 749,711 ] # P6/64
58 + - [ 1126,489, 801,1222, 1618,1227 ] # P7/128
1 +# parameters
2 +nc: 80 # number of classes
3 +depth_multiple: 1.0 # model depth multiple
4 +width_multiple: 1.0 # layer channel multiple
5 +
6 +# anchors
7 +anchors:
8 + - [10,13, 16,30, 33,23] # P3/8
9 + - [30,61, 62,45, 59,119] # P4/16
10 + - [116,90, 156,198, 373,326] # P5/32
11 +
12 +# darknet53 backbone
13 +backbone:
14 + # [from, number, module, args]
15 + [[-1, 1, Conv, [32, 3, 1]], # 0
16 + [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17 + [-1, 1, Bottleneck, [64]],
18 + [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19 + [-1, 2, Bottleneck, [128]],
20 + [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21 + [-1, 8, Bottleneck, [256]],
22 + [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23 + [-1, 8, Bottleneck, [512]],
24 + [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25 + [-1, 4, Bottleneck, [1024]], # 10
26 + ]
27 +
28 +# YOLOv3-SPP head
29 +head:
30 + [[-1, 1, Bottleneck, [1024, False]],
31 + [-1, 1, SPP, [512, [5, 9, 13]]],
32 + [-1, 1, Conv, [1024, 3, 1]],
33 + [-1, 1, Conv, [512, 1, 1]],
34 + [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35 +
36 + [-2, 1, Conv, [256, 1, 1]],
37 + [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38 + [[-1, 8], 1, Concat, [1]], # cat backbone P4
39 + [-1, 1, Bottleneck, [512, False]],
40 + [-1, 1, Bottleneck, [512, False]],
41 + [-1, 1, Conv, [256, 1, 1]],
42 + [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43 +
44 + [-2, 1, Conv, [128, 1, 1]],
45 + [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46 + [[-1, 6], 1, Concat, [1]], # cat backbone P3
47 + [-1, 1, Bottleneck, [256, False]],
48 + [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49 +
50 + [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51 + ]
1 +# parameters
2 +nc: 80 # number of classes
3 +depth_multiple: 1.0 # model depth multiple
4 +width_multiple: 1.0 # layer channel multiple
5 +
6 +# anchors
7 +anchors:
8 + - [10,14, 23,27, 37,58] # P4/16
9 + - [81,82, 135,169, 344,319] # P5/32
10 +
11 +# YOLOv3-tiny backbone
12 +backbone:
13 + # [from, number, module, args]
14 + [[-1, 1, Conv, [16, 3, 1]], # 0
15 + [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
16 + [-1, 1, Conv, [32, 3, 1]],
17 + [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
18 + [-1, 1, Conv, [64, 3, 1]],
19 + [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
20 + [-1, 1, Conv, [128, 3, 1]],
21 + [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
22 + [-1, 1, Conv, [256, 3, 1]],
23 + [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
24 + [-1, 1, Conv, [512, 3, 1]],
25 + [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
26 + [-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
27 + ]
28 +
29 +# YOLOv3-tiny head
30 +head:
31 + [[-1, 1, Conv, [1024, 3, 1]],
32 + [-1, 1, Conv, [256, 1, 1]],
33 + [-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
34 +
35 + [-2, 1, Conv, [128, 1, 1]],
36 + [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37 + [[-1, 8], 1, Concat, [1]], # cat backbone P4
38 + [-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
39 +
40 + [[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
41 + ]
1 +# parameters
2 +nc: 80 # number of classes
3 +depth_multiple: 1.0 # model depth multiple
4 +width_multiple: 1.0 # layer channel multiple
5 +
6 +# anchors
7 +anchors:
8 + - [10,13, 16,30, 33,23] # P3/8
9 + - [30,61, 62,45, 59,119] # P4/16
10 + - [116,90, 156,198, 373,326] # P5/32
11 +
12 +# darknet53 backbone
13 +backbone:
14 + # [from, number, module, args]
15 + [[-1, 1, Conv, [32, 3, 1]], # 0
16 + [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17 + [-1, 1, Bottleneck, [64]],
18 + [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19 + [-1, 2, Bottleneck, [128]],
20 + [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21 + [-1, 8, Bottleneck, [256]],
22 + [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23 + [-1, 8, Bottleneck, [512]],
24 + [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25 + [-1, 4, Bottleneck, [1024]], # 10
26 + ]
27 +
28 +# YOLOv3 head
29 +head:
30 + [[-1, 1, Bottleneck, [1024, False]],
31 + [-1, 1, Conv, [512, [1, 1]]],
32 + [-1, 1, Conv, [1024, 3, 1]],
33 + [-1, 1, Conv, [512, 1, 1]],
34 + [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35 +
36 + [-2, 1, Conv, [256, 1, 1]],
37 + [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38 + [[-1, 8], 1, Concat, [1]], # cat backbone P4
39 + [-1, 1, Bottleneck, [512, False]],
40 + [-1, 1, Bottleneck, [512, False]],
41 + [-1, 1, Conv, [256, 1, 1]],
42 + [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43 +
44 + [-2, 1, Conv, [128, 1, 1]],
45 + [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46 + [[-1, 6], 1, Concat, [1]], # cat backbone P3
47 + [-1, 1, Bottleneck, [256, False]],
48 + [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49 +
50 + [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51 + ]
1 +# parameters
2 +nc: 80 # number of classes
3 +depth_multiple: 1.0 # model depth multiple
4 +width_multiple: 1.0 # layer channel multiple
5 +
6 +# anchors
7 +anchors:
8 + - [10,13, 16,30, 33,23] # P3/8
9 + - [30,61, 62,45, 59,119] # P4/16
10 + - [116,90, 156,198, 373,326] # P5/32
11 +
12 +# YOLOv5 backbone
13 +backbone:
14 + # [from, number, module, args]
15 + [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 + [-1, 3, Bottleneck, [128]],
18 + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 + [-1, 9, BottleneckCSP, [256]],
20 + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 + [-1, 9, BottleneckCSP, [512]],
22 + [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 + [-1, 1, SPP, [1024, [5, 9, 13]]],
24 + [-1, 6, BottleneckCSP, [1024]], # 9
25 + ]
26 +
27 +# YOLOv5 FPN head
28 +head:
29 + [[-1, 3, BottleneckCSP, [1024, False]], # 10 (P5/32-large)
30 +
31 + [-1, 1, nn.Upsample, [None, 2, 'nearest']],
32 + [[-1, 6], 1, Concat, [1]], # cat backbone P4
33 + [-1, 1, Conv, [512, 1, 1]],
34 + [-1, 3, BottleneckCSP, [512, False]], # 14 (P4/16-medium)
35 +
36 + [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37 + [[-1, 4], 1, Concat, [1]], # cat backbone P3
38 + [-1, 1, Conv, [256, 1, 1]],
39 + [-1, 3, BottleneckCSP, [256, False]], # 18 (P3/8-small)
40 +
41 + [[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
42 + ]
1 +# parameters
2 +nc: 80 # number of classes
3 +depth_multiple: 1.0 # model depth multiple
4 +width_multiple: 1.0 # layer channel multiple
5 +
6 +# anchors
7 +anchors: 3
8 +
9 +# YOLOv5 backbone
10 +backbone:
11 + # [from, number, module, args]
12 + [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
13 + [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
14 + [ -1, 3, C3, [ 128 ] ],
15 + [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
16 + [ -1, 9, C3, [ 256 ] ],
17 + [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
18 + [ -1, 9, C3, [ 512 ] ],
19 + [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32
20 + [ -1, 1, SPP, [ 1024, [ 5, 9, 13 ] ] ],
21 + [ -1, 3, C3, [ 1024, False ] ], # 9
22 + ]
23 +
24 +# YOLOv5 head
25 +head:
26 + [ [ -1, 1, Conv, [ 512, 1, 1 ] ],
27 + [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
28 + [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
29 + [ -1, 3, C3, [ 512, False ] ], # 13
30 +
31 + [ -1, 1, Conv, [ 256, 1, 1 ] ],
32 + [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
33 + [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
34 + [ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small)
35 +
36 + [ -1, 1, Conv, [ 128, 1, 1 ] ],
37 + [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
38 + [ [ -1, 2 ], 1, Concat, [ 1 ] ], # cat backbone P2
39 + [ -1, 1, C3, [ 128, False ] ], # 21 (P2/4-xsmall)
40 +
41 + [ -1, 1, Conv, [ 128, 3, 2 ] ],
42 + [ [ -1, 18 ], 1, Concat, [ 1 ] ], # cat head P3
43 + [ -1, 3, C3, [ 256, False ] ], # 24 (P3/8-small)
44 +
45 + [ -1, 1, Conv, [ 256, 3, 2 ] ],
46 + [ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4
47 + [ -1, 3, C3, [ 512, False ] ], # 27 (P4/16-medium)
48 +
49 + [ -1, 1, Conv, [ 512, 3, 2 ] ],
50 + [ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat head P5
51 + [ -1, 3, C3, [ 1024, False ] ], # 30 (P5/32-large)
52 +
53 + [ [ 24, 27, 30 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5)
54 + ]
1 +# parameters
2 +nc: 80 # number of classes
3 +depth_multiple: 1.0 # model depth multiple
4 +width_multiple: 1.0 # layer channel multiple
5 +
6 +# anchors
7 +anchors: 3
8 +
9 +# YOLOv5 backbone
10 +backbone:
11 + # [from, number, module, args]
12 + [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
13 + [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
14 + [ -1, 3, C3, [ 128 ] ],
15 + [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
16 + [ -1, 9, C3, [ 256 ] ],
17 + [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
18 + [ -1, 9, C3, [ 512 ] ],
19 + [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
20 + [ -1, 3, C3, [ 768 ] ],
21 + [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
22 + [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
23 + [ -1, 3, C3, [ 1024, False ] ], # 11
24 + ]
25 +
26 +# YOLOv5 head
27 +head:
28 + [ [ -1, 1, Conv, [ 768, 1, 1 ] ],
29 + [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
30 + [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
31 + [ -1, 3, C3, [ 768, False ] ], # 15
32 +
33 + [ -1, 1, Conv, [ 512, 1, 1 ] ],
34 + [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
35 + [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
36 + [ -1, 3, C3, [ 512, False ] ], # 19
37 +
38 + [ -1, 1, Conv, [ 256, 1, 1 ] ],
39 + [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
40 + [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
41 + [ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
42 +
43 + [ -1, 1, Conv, [ 256, 3, 2 ] ],
44 + [ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
45 + [ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
46 +
47 + [ -1, 1, Conv, [ 512, 3, 2 ] ],
48 + [ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
49 + [ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
50 +
51 + [ -1, 1, Conv, [ 768, 3, 2 ] ],
52 + [ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
53 + [ -1, 3, C3, [ 1024, False ] ], # 32 (P5/64-xlarge)
54 +
55 + [ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
56 + ]
1 +# parameters
2 +nc: 80 # number of classes
3 +depth_multiple: 1.0 # model depth multiple
4 +width_multiple: 1.0 # layer channel multiple
5 +
6 +# anchors
7 +anchors: 3
8 +
9 +# YOLOv5 backbone
10 +backbone:
11 + # [from, number, module, args]
12 + [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
13 + [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
14 + [ -1, 3, C3, [ 128 ] ],
15 + [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
16 + [ -1, 9, C3, [ 256 ] ],
17 + [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
18 + [ -1, 9, C3, [ 512 ] ],
19 + [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
20 + [ -1, 3, C3, [ 768 ] ],
21 + [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
22 + [ -1, 3, C3, [ 1024 ] ],
23 + [ -1, 1, Conv, [ 1280, 3, 2 ] ], # 11-P7/128
24 + [ -1, 1, SPP, [ 1280, [ 3, 5 ] ] ],
25 + [ -1, 3, C3, [ 1280, False ] ], # 13
26 + ]
27 +
28 +# YOLOv5 head
29 +head:
30 + [ [ -1, 1, Conv, [ 1024, 1, 1 ] ],
31 + [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
32 + [ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat backbone P6
33 + [ -1, 3, C3, [ 1024, False ] ], # 17
34 +
35 + [ -1, 1, Conv, [ 768, 1, 1 ] ],
36 + [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
37 + [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
38 + [ -1, 3, C3, [ 768, False ] ], # 21
39 +
40 + [ -1, 1, Conv, [ 512, 1, 1 ] ],
41 + [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
42 + [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
43 + [ -1, 3, C3, [ 512, False ] ], # 25
44 +
45 + [ -1, 1, Conv, [ 256, 1, 1 ] ],
46 + [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
47 + [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
48 + [ -1, 3, C3, [ 256, False ] ], # 29 (P3/8-small)
49 +
50 + [ -1, 1, Conv, [ 256, 3, 2 ] ],
51 + [ [ -1, 26 ], 1, Concat, [ 1 ] ], # cat head P4
52 + [ -1, 3, C3, [ 512, False ] ], # 32 (P4/16-medium)
53 +
54 + [ -1, 1, Conv, [ 512, 3, 2 ] ],
55 + [ [ -1, 22 ], 1, Concat, [ 1 ] ], # cat head P5
56 + [ -1, 3, C3, [ 768, False ] ], # 35 (P5/32-large)
57 +
58 + [ -1, 1, Conv, [ 768, 3, 2 ] ],
59 + [ [ -1, 18 ], 1, Concat, [ 1 ] ], # cat head P6
60 + [ -1, 3, C3, [ 1024, False ] ], # 38 (P6/64-xlarge)
61 +
62 + [ -1, 1, Conv, [ 1024, 3, 2 ] ],
63 + [ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P7
64 + [ -1, 3, C3, [ 1280, False ] ], # 41 (P7/128-xxlarge)
65 +
66 + [ [ 29, 32, 35, 38, 41 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6, P7)
67 + ]
1 +# parameters
2 +nc: 80 # number of classes
3 +depth_multiple: 1.0 # model depth multiple
4 +width_multiple: 1.0 # layer channel multiple
5 +
6 +# anchors
7 +anchors:
8 + - [10,13, 16,30, 33,23] # P3/8
9 + - [30,61, 62,45, 59,119] # P4/16
10 + - [116,90, 156,198, 373,326] # P5/32
11 +
12 +# YOLOv5 backbone
13 +backbone:
14 + # [from, number, module, args]
15 + [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 + [-1, 3, BottleneckCSP, [128]],
18 + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 + [-1, 9, BottleneckCSP, [256]],
20 + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 + [-1, 9, BottleneckCSP, [512]],
22 + [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 + [-1, 1, SPP, [1024, [5, 9, 13]]],
24 + [-1, 3, BottleneckCSP, [1024, False]], # 9
25 + ]
26 +
27 +# YOLOv5 PANet head
28 +head:
29 + [[-1, 1, Conv, [512, 1, 1]],
30 + [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 + [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 + [-1, 3, BottleneckCSP, [512, False]], # 13
33 +
34 + [-1, 1, Conv, [256, 1, 1]],
35 + [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 + [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 + [-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
38 +
39 + [-1, 1, Conv, [256, 3, 2]],
40 + [[-1, 14], 1, Concat, [1]], # cat head P4
41 + [-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
42 +
43 + [-1, 1, Conv, [512, 3, 2]],
44 + [[-1, 10], 1, Concat, [1]], # cat head P5
45 + [-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
46 +
47 + [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 + ]
1 +# parameters
2 +nc: 80 # number of classes
3 +depth_multiple: 1.0 # model depth multiple
4 +width_multiple: 1.0 # layer channel multiple
5 +
6 +# anchors
7 +anchors:
8 + - [ 19,27, 44,40, 38,94 ] # P3/8
9 + - [ 96,68, 86,152, 180,137 ] # P4/16
10 + - [ 140,301, 303,264, 238,542 ] # P5/32
11 + - [ 436,615, 739,380, 925,792 ] # P6/64
12 +
13 +# YOLOv5 backbone
14 +backbone:
15 + # [from, number, module, args]
16 + [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
17 + [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
18 + [ -1, 3, C3, [ 128 ] ],
19 + [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
20 + [ -1, 9, C3, [ 256 ] ],
21 + [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
22 + [ -1, 9, C3, [ 512 ] ],
23 + [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
24 + [ -1, 3, C3, [ 768 ] ],
25 + [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
26 + [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
27 + [ -1, 3, C3, [ 1024, False ] ], # 11
28 + ]
29 +
30 +# YOLOv5 head
31 +head:
32 + [ [ -1, 1, Conv, [ 768, 1, 1 ] ],
33 + [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
34 + [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
35 + [ -1, 3, C3, [ 768, False ] ], # 15
36 +
37 + [ -1, 1, Conv, [ 512, 1, 1 ] ],
38 + [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
39 + [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
40 + [ -1, 3, C3, [ 512, False ] ], # 19
41 +
42 + [ -1, 1, Conv, [ 256, 1, 1 ] ],
43 + [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
44 + [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
45 + [ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
46 +
47 + [ -1, 1, Conv, [ 256, 3, 2 ] ],
48 + [ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
49 + [ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
50 +
51 + [ -1, 1, Conv, [ 512, 3, 2 ] ],
52 + [ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
53 + [ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
54 +
55 + [ -1, 1, Conv, [ 768, 3, 2 ] ],
56 + [ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
57 + [ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge)
58 +
59 + [ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
60 + ]
1 +# parameters
2 +nc: 80 # number of classes
3 +depth_multiple: 0.67 # model depth multiple
4 +width_multiple: 0.75 # layer channel multiple
5 +
6 +# anchors
7 +anchors:
8 + - [ 19,27, 44,40, 38,94 ] # P3/8
9 + - [ 96,68, 86,152, 180,137 ] # P4/16
10 + - [ 140,301, 303,264, 238,542 ] # P5/32
11 + - [ 436,615, 739,380, 925,792 ] # P6/64
12 +
13 +# YOLOv5 backbone
14 +backbone:
15 + # [from, number, module, args]
16 + [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
17 + [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
18 + [ -1, 3, C3, [ 128 ] ],
19 + [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
20 + [ -1, 9, C3, [ 256 ] ],
21 + [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
22 + [ -1, 9, C3, [ 512 ] ],
23 + [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
24 + [ -1, 3, C3, [ 768 ] ],
25 + [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
26 + [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
27 + [ -1, 3, C3, [ 1024, False ] ], # 11
28 + ]
29 +
30 +# YOLOv5 head
31 +head:
32 + [ [ -1, 1, Conv, [ 768, 1, 1 ] ],
33 + [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
34 + [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
35 + [ -1, 3, C3, [ 768, False ] ], # 15
36 +
37 + [ -1, 1, Conv, [ 512, 1, 1 ] ],
38 + [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
39 + [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
40 + [ -1, 3, C3, [ 512, False ] ], # 19
41 +
42 + [ -1, 1, Conv, [ 256, 1, 1 ] ],
43 + [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
44 + [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
45 + [ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
46 +
47 + [ -1, 1, Conv, [ 256, 3, 2 ] ],
48 + [ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
49 + [ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
50 +
51 + [ -1, 1, Conv, [ 512, 3, 2 ] ],
52 + [ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
53 + [ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
54 +
55 + [ -1, 1, Conv, [ 768, 3, 2 ] ],
56 + [ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
57 + [ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge)
58 +
59 + [ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
60 + ]
1 +# parameters
2 +nc: 80 # number of classes
3 +depth_multiple: 0.33 # model depth multiple
4 +width_multiple: 0.50 # layer channel multiple
5 +
6 +# anchors
7 +anchors:
8 + - [10,13, 16,30, 33,23] # P3/8
9 + - [30,61, 62,45, 59,119] # P4/16
10 + - [116,90, 156,198, 373,326] # P5/32
11 +
12 +# YOLOv5 backbone
13 +backbone:
14 + # [from, number, module, args]
15 + [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 + [-1, 3, C3, [128]],
18 + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 + [-1, 9, C3, [256]],
20 + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 + [-1, 9, C3, [512]],
22 + [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 + [-1, 1, SPP, [1024, [5, 9, 13]]],
24 + [-1, 3, C3TR, [1024, False]], # 9 <-------- C3TR() Transformer module
25 + ]
26 +
27 +# YOLOv5 head
28 +head:
29 + [[-1, 1, Conv, [512, 1, 1]],
30 + [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 + [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 + [-1, 3, C3, [512, False]], # 13
33 +
34 + [-1, 1, Conv, [256, 1, 1]],
35 + [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 + [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 + [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 +
39 + [-1, 1, Conv, [256, 3, 2]],
40 + [[-1, 14], 1, Concat, [1]], # cat head P4
41 + [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 +
43 + [-1, 1, Conv, [512, 3, 2]],
44 + [[-1, 10], 1, Concat, [1]], # cat head P5
45 + [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 +
47 + [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 + ]
1 +# parameters
2 +nc: 80 # number of classes
3 +depth_multiple: 0.33 # model depth multiple
4 +width_multiple: 0.50 # layer channel multiple
5 +
6 +# anchors
7 +anchors:
8 + - [ 19,27, 44,40, 38,94 ] # P3/8
9 + - [ 96,68, 86,152, 180,137 ] # P4/16
10 + - [ 140,301, 303,264, 238,542 ] # P5/32
11 + - [ 436,615, 739,380, 925,792 ] # P6/64
12 +
13 +# YOLOv5 backbone
14 +backbone:
15 + # [from, number, module, args]
16 + [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
17 + [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
18 + [ -1, 3, C3, [ 128 ] ],
19 + [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
20 + [ -1, 9, C3, [ 256 ] ],
21 + [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
22 + [ -1, 9, C3, [ 512 ] ],
23 + [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
24 + [ -1, 3, C3, [ 768 ] ],
25 + [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
26 + [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
27 + [ -1, 3, C3, [ 1024, False ] ], # 11
28 + ]
29 +
30 +# YOLOv5 head
31 +head:
32 + [ [ -1, 1, Conv, [ 768, 1, 1 ] ],
33 + [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
34 + [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
35 + [ -1, 3, C3, [ 768, False ] ], # 15
36 +
37 + [ -1, 1, Conv, [ 512, 1, 1 ] ],
38 + [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
39 + [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
40 + [ -1, 3, C3, [ 512, False ] ], # 19
41 +
42 + [ -1, 1, Conv, [ 256, 1, 1 ] ],
43 + [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
44 + [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
45 + [ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
46 +
47 + [ -1, 1, Conv, [ 256, 3, 2 ] ],
48 + [ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
49 + [ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
50 +
51 + [ -1, 1, Conv, [ 512, 3, 2 ] ],
52 + [ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
53 + [ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
54 +
55 + [ -1, 1, Conv, [ 768, 3, 2 ] ],
56 + [ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
57 + [ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge)
58 +
59 + [ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
60 + ]
1 +# parameters
2 +nc: 80 # number of classes
3 +depth_multiple: 1.33 # model depth multiple
4 +width_multiple: 1.25 # layer channel multiple
5 +
6 +# anchors
7 +anchors:
8 + - [ 19,27, 44,40, 38,94 ] # P3/8
9 + - [ 96,68, 86,152, 180,137 ] # P4/16
10 + - [ 140,301, 303,264, 238,542 ] # P5/32
11 + - [ 436,615, 739,380, 925,792 ] # P6/64
12 +
13 +# YOLOv5 backbone
14 +backbone:
15 + # [from, number, module, args]
16 + [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
17 + [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
18 + [ -1, 3, C3, [ 128 ] ],
19 + [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
20 + [ -1, 9, C3, [ 256 ] ],
21 + [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
22 + [ -1, 9, C3, [ 512 ] ],
23 + [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
24 + [ -1, 3, C3, [ 768 ] ],
25 + [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
26 + [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
27 + [ -1, 3, C3, [ 1024, False ] ], # 11
28 + ]
29 +
30 +# YOLOv5 head
31 +head:
32 + [ [ -1, 1, Conv, [ 768, 1, 1 ] ],
33 + [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
34 + [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
35 + [ -1, 3, C3, [ 768, False ] ], # 15
36 +
37 + [ -1, 1, Conv, [ 512, 1, 1 ] ],
38 + [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
39 + [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
40 + [ -1, 3, C3, [ 512, False ] ], # 19
41 +
42 + [ -1, 1, Conv, [ 256, 1, 1 ] ],
43 + [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
44 + [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
45 + [ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
46 +
47 + [ -1, 1, Conv, [ 256, 3, 2 ] ],
48 + [ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
49 + [ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
50 +
51 + [ -1, 1, Conv, [ 512, 3, 2 ] ],
52 + [ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
53 + [ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
54 +
55 + [ -1, 1, Conv, [ 768, 3, 2 ] ],
56 + [ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
57 + [ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge)
58 +
59 + [ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
60 + ]
1 +"""YOLOv5-specific modules
2 +
3 +Usage:
4 + $ python path/to/models/yolo.py --cfg yolov5s.yaml
5 +"""
6 +
7 +import argparse
8 +import logging
9 +import sys
10 +from copy import deepcopy
11 +from pathlib import Path
12 +
13 +sys.path.append(Path(__file__).parent.parent.absolute().__str__()) # to run '$ python *.py' files in subdirectories
14 +logger = logging.getLogger(__name__)
15 +
16 +from models.common import *
17 +from models.experimental import *
18 +from utils.autoanchor import check_anchor_order
19 +from utils.general import make_divisible, check_file, set_logging
20 +from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \
21 + select_device, copy_attr
22 +
23 +try:
24 + import thop # for FLOPS computation
25 +except ImportError:
26 + thop = None
27 +
28 +
29 +class Detect(nn.Module):
30 + stride = None # strides computed during build
31 + onnx_dynamic = False # ONNX export parameter
32 +
33 + def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
34 + super(Detect, self).__init__()
35 + self.nc = nc # number of classes
36 + self.no = nc + 5 # number of outputs per anchor
37 + self.nl = len(anchors) # number of detection layers
38 + self.na = len(anchors[0]) // 2 # number of anchors
39 + self.grid = [torch.zeros(1)] * self.nl # init grid
40 + a = torch.tensor(anchors).float().view(self.nl, -1, 2)
41 + self.register_buffer('anchors', a) # shape(nl,na,2)
42 + self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
43 + self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
44 + self.inplace = inplace # use in-place ops (e.g. slice assignment)
45 +
46 + def forward(self, x):
47 + # x = x.copy() # for profiling
48 + z = [] # inference output
49 + for i in range(self.nl):
50 + x[i] = self.m[i](x[i]) # conv
51 + bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
52 + x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
53 +
54 + if not self.training: # inference
55 + if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
56 + self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
57 +
58 + y = x[i].sigmoid()
59 + if self.inplace:
60 + y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
61 + y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
62 + else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
63 + xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
64 + wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].view(1, self.na, 1, 1, 2) # wh
65 + y = torch.cat((xy, wh, y[..., 4:]), -1)
66 + z.append(y.view(bs, -1, self.no))
67 +
68 + return x if self.training else (torch.cat(z, 1), x)
69 +
70 + @staticmethod
71 + def _make_grid(nx=20, ny=20):
72 + yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
73 + return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
74 +
75 +
76 +class Model(nn.Module):
77 + def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
78 + super(Model, self).__init__()
79 + if isinstance(cfg, dict):
80 + self.yaml = cfg # model dict
81 + else: # is *.yaml
82 + import yaml # for torch hub
83 + self.yaml_file = Path(cfg).name
84 + with open(cfg) as f:
85 + self.yaml = yaml.safe_load(f) # model dict
86 +
87 + # Define model
88 + ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
89 + if nc and nc != self.yaml['nc']:
90 + logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
91 + self.yaml['nc'] = nc # override yaml value
92 + if anchors:
93 + logger.info(f'Overriding model.yaml anchors with anchors={anchors}')
94 + self.yaml['anchors'] = round(anchors) # override yaml value
95 + self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
96 + self.names = [str(i) for i in range(self.yaml['nc'])] # default names
97 + self.inplace = self.yaml.get('inplace', True)
98 + # logger.info([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
99 +
100 + # Build strides, anchors
101 + m = self.model[-1] # Detect()
102 + if isinstance(m, Detect):
103 + s = 256 # 2x min stride
104 + m.inplace = self.inplace
105 + m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
106 + m.anchors /= m.stride.view(-1, 1, 1)
107 + check_anchor_order(m)
108 + self.stride = m.stride
109 + self._initialize_biases() # only run once
110 + # logger.info('Strides: %s' % m.stride.tolist())
111 +
112 + # Init weights, biases
113 + initialize_weights(self)
114 + self.info()
115 + logger.info('')
116 +
117 + def forward(self, x, augment=False, profile=False):
118 + if augment:
119 + return self.forward_augment(x) # augmented inference, None
120 + else:
121 + return self.forward_once(x, profile) # single-scale inference, train
122 +
123 + def forward_augment(self, x):
124 + img_size = x.shape[-2:] # height, width
125 + s = [1, 0.83, 0.67] # scales
126 + f = [None, 3, None] # flips (2-ud, 3-lr)
127 + y = [] # outputs
128 + for si, fi in zip(s, f):
129 + xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
130 + yi = self.forward_once(xi)[0] # forward
131 + # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
132 + yi = self._descale_pred(yi, fi, si, img_size)
133 + y.append(yi)
134 + return torch.cat(y, 1), None # augmented inference, train
135 +
136 + def forward_once(self, x, profile=False):
137 + y, dt = [], [] # outputs
138 + for m in self.model:
139 + if m.f != -1: # if not from previous layer
140 + x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
141 +
142 + if profile:
143 + o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS
144 + t = time_synchronized()
145 + for _ in range(10):
146 + _ = m(x)
147 + dt.append((time_synchronized() - t) * 100)
148 + if m == self.model[0]:
149 + logger.info(f"{'time (ms)':>10s} {'GFLOPS':>10s} {'params':>10s} {'module'}")
150 + logger.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
151 +
152 + x = m(x) # run
153 + y.append(x if m.i in self.save else None) # save output
154 +
155 + if profile:
156 + logger.info('%.1fms total' % sum(dt))
157 + return x
158 +
159 + def _descale_pred(self, p, flips, scale, img_size):
160 + # de-scale predictions following augmented inference (inverse operation)
161 + if self.inplace:
162 + p[..., :4] /= scale # de-scale
163 + if flips == 2:
164 + p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
165 + elif flips == 3:
166 + p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
167 + else:
168 + x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
169 + if flips == 2:
170 + y = img_size[0] - y # de-flip ud
171 + elif flips == 3:
172 + x = img_size[1] - x # de-flip lr
173 + p = torch.cat((x, y, wh, p[..., 4:]), -1)
174 + return p
175 +
176 + def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
177 + # https://arxiv.org/abs/1708.02002 section 3.3
178 + # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
179 + m = self.model[-1] # Detect() module
180 + for mi, s in zip(m.m, m.stride): # from
181 + b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
182 + b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
183 + b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
184 + mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
185 +
186 + def _print_biases(self):
187 + m = self.model[-1] # Detect() module
188 + for mi in m.m: # from
189 + b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
190 + logger.info(
191 + ('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
192 +
193 + # def _print_weights(self):
194 + # for m in self.model.modules():
195 + # if type(m) is Bottleneck:
196 + # logger.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
197 +
198 + def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
199 + logger.info('Fusing layers... ')
200 + for m in self.model.modules():
201 + if type(m) is Conv and hasattr(m, 'bn'):
202 + m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
203 + delattr(m, 'bn') # remove batchnorm
204 + m.forward = m.fuseforward # update forward
205 + self.info()
206 + return self
207 +
208 + def nms(self, mode=True): # add or remove NMS module
209 + present = type(self.model[-1]) is NMS # last layer is NMS
210 + if mode and not present:
211 + logger.info('Adding NMS... ')
212 + m = NMS() # module
213 + m.f = -1 # from
214 + m.i = self.model[-1].i + 1 # index
215 + self.model.add_module(name='%s' % m.i, module=m) # add
216 + self.eval()
217 + elif not mode and present:
218 + logger.info('Removing NMS... ')
219 + self.model = self.model[:-1] # remove
220 + return self
221 +
222 + def autoshape(self): # add AutoShape module
223 + logger.info('Adding AutoShape... ')
224 + m = AutoShape(self) # wrap model
225 + copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
226 + return m
227 +
228 + def info(self, verbose=False, img_size=640): # print model information
229 + model_info(self, verbose, img_size)
230 +
231 +
232 +def parse_model(d, ch): # model_dict, input_channels(3)
233 + logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
234 + anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
235 + na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
236 + no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
237 +
238 + layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
239 + for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
240 + m = eval(m) if isinstance(m, str) else m # eval strings
241 + for j, a in enumerate(args):
242 + try:
243 + args[j] = eval(a) if isinstance(a, str) else a # eval strings
244 + except:
245 + pass
246 +
247 + n = max(round(n * gd), 1) if n > 1 else n # depth gain
248 + if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP,
249 + C3, C3TR]:
250 + c1, c2 = ch[f], args[0]
251 + if c2 != no: # if not output
252 + c2 = make_divisible(c2 * gw, 8)
253 +
254 + args = [c1, c2, *args[1:]]
255 + if m in [BottleneckCSP, C3, C3TR]:
256 + args.insert(2, n) # number of repeats
257 + n = 1
258 + elif m is nn.BatchNorm2d:
259 + args = [ch[f]]
260 + elif m is Concat:
261 + c2 = sum([ch[x] for x in f])
262 + elif m is Detect:
263 + args.append([ch[x] for x in f])
264 + if isinstance(args[1], int): # number of anchors
265 + args[1] = [list(range(args[1] * 2))] * len(f)
266 + elif m is Contract:
267 + c2 = ch[f] * args[0] ** 2
268 + elif m is Expand:
269 + c2 = ch[f] // args[0] ** 2
270 + else:
271 + c2 = ch[f]
272 +
273 + m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
274 + t = str(m)[8:-2].replace('__main__.', '') # module type
275 + np = sum([x.numel() for x in m_.parameters()]) # number params
276 + m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
277 + logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
278 + save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
279 + layers.append(m_)
280 + if i == 0:
281 + ch = []
282 + ch.append(c2)
283 + return nn.Sequential(*layers), sorted(save)
284 +
285 +
286 +if __name__ == '__main__':
287 + parser = argparse.ArgumentParser()
288 + parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
289 + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
290 + opt = parser.parse_args()
291 + opt.cfg = check_file(opt.cfg) # check file
292 + set_logging()
293 + device = select_device(opt.device)
294 +
295 + # Create model
296 + model = Model(opt.cfg).to(device)
297 + model.train()
298 +
299 + # Profile
300 + # img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 320, 320).to(device)
301 + # y = model(img, profile=True)
302 +
303 + # Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898)
304 + # from torch.utils.tensorboard import SummaryWriter
305 + # tb_writer = SummaryWriter('.')
306 + # logger.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/")
307 + # tb_writer.add_graph(torch.jit.trace(model, img, strict=False), []) # add model graph
308 + # tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard
1 +# parameters
2 +nc: 80 # number of classes
3 +depth_multiple: 1.0 # model depth multiple
4 +width_multiple: 1.0 # layer channel multiple
5 +
6 +# anchors
7 +anchors:
8 + - [10,13, 16,30, 33,23] # P3/8
9 + - [30,61, 62,45, 59,119] # P4/16
10 + - [116,90, 156,198, 373,326] # P5/32
11 +
12 +# YOLOv5 backbone
13 +backbone:
14 + # [from, number, module, args]
15 + [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 + [-1, 3, C3, [128]],
18 + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 + [-1, 9, C3, [256]],
20 + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 + [-1, 9, C3, [512]],
22 + [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 + [-1, 1, SPP, [1024, [5, 9, 13]]],
24 + [-1, 3, C3, [1024, False]], # 9
25 + ]
26 +
27 +# YOLOv5 head
28 +head:
29 + [[-1, 1, Conv, [512, 1, 1]],
30 + [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 + [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 + [-1, 3, C3, [512, False]], # 13
33 +
34 + [-1, 1, Conv, [256, 1, 1]],
35 + [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 + [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 + [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 +
39 + [-1, 1, Conv, [256, 3, 2]],
40 + [[-1, 14], 1, Concat, [1]], # cat head P4
41 + [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 +
43 + [-1, 1, Conv, [512, 3, 2]],
44 + [[-1, 10], 1, Concat, [1]], # cat head P5
45 + [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 +
47 + [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 + ]
1 +# parameters
2 +nc: 80 # number of classes
3 +depth_multiple: 0.67 # model depth multiple
4 +width_multiple: 0.75 # layer channel multiple
5 +
6 +# anchors
7 +anchors:
8 + - [10,13, 16,30, 33,23] # P3/8
9 + - [30,61, 62,45, 59,119] # P4/16
10 + - [116,90, 156,198, 373,326] # P5/32
11 +
12 +# YOLOv5 backbone
13 +backbone:
14 + # [from, number, module, args]
15 + [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 + [-1, 3, C3, [128]],
18 + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 + [-1, 9, C3, [256]],
20 + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 + [-1, 9, C3, [512]],
22 + [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 + [-1, 1, SPP, [1024, [5, 9, 13]]],
24 + [-1, 3, C3, [1024, False]], # 9
25 + ]
26 +
27 +# YOLOv5 head
28 +head:
29 + [[-1, 1, Conv, [512, 1, 1]],
30 + [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 + [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 + [-1, 3, C3, [512, False]], # 13
33 +
34 + [-1, 1, Conv, [256, 1, 1]],
35 + [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 + [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 + [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 +
39 + [-1, 1, Conv, [256, 3, 2]],
40 + [[-1, 14], 1, Concat, [1]], # cat head P4
41 + [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 +
43 + [-1, 1, Conv, [512, 3, 2]],
44 + [[-1, 10], 1, Concat, [1]], # cat head P5
45 + [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 +
47 + [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 + ]
1 +# parameters
2 +nc: 1 # number of classes
3 +depth_multiple: 0.33 # model depth multiple
4 +width_multiple: 0.50 # layer channel multiple
5 +
6 +# anchors
7 +anchors:
8 + - [10,13, 16,30, 33,23] # P3/8
9 + - [30,61, 62,45, 59,119] # P4/16
10 + - [116,90, 156,198, 373,326] # P5/32
11 +
12 +# YOLOv5 backbone
13 +backbone:
14 + # [from, number, module, args]
15 + [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 + [-1, 3, C3, [128]],
18 + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 + [-1, 9, C3, [256]],
20 + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 + [-1, 9, C3, [512]],
22 + [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 + [-1, 1, SPP, [1024, [5, 9, 13]]],
24 + [-1, 3, C3, [1024, False]], # 9
25 + ]
26 +
27 +# YOLOv5 head
28 +head:
29 + [[-1, 1, Conv, [512, 1, 1]],
30 + [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 + [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 + [-1, 3, C3, [512, False]], # 13
33 +
34 + [-1, 1, Conv, [256, 1, 1]],
35 + [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 + [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 + [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 +
39 + [-1, 1, Conv, [256, 3, 2]],
40 + [[-1, 14], 1, Concat, [1]], # cat head P4
41 + [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 +
43 + [-1, 1, Conv, [512, 3, 2]],
44 + [[-1, 10], 1, Concat, [1]], # cat head P5
45 + [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 +
47 + [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 + ]
1 +# parameters
2 +nc: 80 # number of classes
3 +depth_multiple: 1.33 # model depth multiple
4 +width_multiple: 1.25 # layer channel multiple
5 +
6 +# anchors
7 +anchors:
8 + - [10,13, 16,30, 33,23] # P3/8
9 + - [30,61, 62,45, 59,119] # P4/16
10 + - [116,90, 156,198, 373,326] # P5/32
11 +
12 +# YOLOv5 backbone
13 +backbone:
14 + # [from, number, module, args]
15 + [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 + [-1, 3, C3, [128]],
18 + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 + [-1, 9, C3, [256]],
20 + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 + [-1, 9, C3, [512]],
22 + [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 + [-1, 1, SPP, [1024, [5, 9, 13]]],
24 + [-1, 3, C3, [1024, False]], # 9
25 + ]
26 +
27 +# YOLOv5 head
28 +head:
29 + [[-1, 1, Conv, [512, 1, 1]],
30 + [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 + [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 + [-1, 3, C3, [512, False]], # 13
33 +
34 + [-1, 1, Conv, [256, 1, 1]],
35 + [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 + [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 + [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 +
39 + [-1, 1, Conv, [256, 3, 2]],
40 + [[-1, 14], 1, Concat, [1]], # cat head P4
41 + [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 +
43 + [-1, 1, Conv, [512, 3, 2]],
44 + [[-1, 10], 1, Concat, [1]], # cat head P5
45 + [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 +
47 + [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 + ]
1 +# pip install -r requirements.txt
2 +
3 +# base ----------------------------------------
4 +matplotlib>=3.2.2
5 +numpy>=1.18.5
6 +opencv-python>=4.1.2
7 +Pillow
8 +PyYAML>=5.3.1
9 +scipy>=1.4.1
10 +torch>=1.7.0
11 +torchvision>=0.8.1
12 +tqdm>=4.41.0
13 +
14 +# logging -------------------------------------
15 +tensorboard>=2.4.1
16 +# wandb
17 +
18 +# plotting ------------------------------------
19 +seaborn>=0.11.0
20 +pandas
21 +
22 +# export --------------------------------------
23 +# coremltools>=4.1
24 +# onnx>=1.9.0
25 +# scikit-learn==0.19.2 # for coreml quantization
26 +
27 +# extras --------------------------------------
28 +# Cython # for pycocotools https://github.com/cocodataset/cocoapi/issues/172
29 +pycocotools>=2.0 # COCO mAP
30 +thop # FLOPS computation
1 +import argparse
2 +import json
3 +import os
4 +from pathlib import Path
5 +from threading import Thread
6 +
7 +import numpy as np
8 +import torch
9 +import yaml
10 +from tqdm import tqdm
11 +
12 +from models.experimental import attempt_load
13 +from utils.datasets import create_dataloader
14 +from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
15 + box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
16 +from utils.metrics import ap_per_class, ConfusionMatrix
17 +from utils.plots import plot_images, output_to_target, plot_study_txt
18 +from utils.torch_utils import select_device, time_synchronized
19 +
20 +
21 +@torch.no_grad()
22 +def test(data,
23 + weights=None,
24 + batch_size=32,
25 + imgsz=1920, # default 640
26 + conf_thres=0.1, ########## CHANGE HIGH # default 0.001
27 + iou_thres=0.05, # for NMS ########### CHANGE REDUCE # defaul 0.6
28 + save_json=False,
29 + single_cls=False,
30 + augment=False, # CHANGE TRUE # default False
31 + verbose=False,
32 + model=None,
33 + dataloader=None,
34 + save_dir=Path(''), # for saving images
35 + save_txt=False, # for auto-labelling
36 + save_hybrid=False, # for hybrid auto-labelling
37 + save_conf=False, # save auto-label confidences
38 + plots=True,
39 + wandb_logger=None,
40 + compute_loss=None,
41 + half_precision=True,
42 + is_coco=False,
43 + opt=None):
44 + # Initialize/load model and set device
45 + training = model is not None
46 + if training: # called by train.py
47 + device = next(model.parameters()).device # get model device
48 +
49 + else: # called directly
50 + set_logging()
51 + device = select_device(opt.device, batch_size=batch_size)
52 +
53 + # Directories
54 + save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
55 + (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
56 +
57 + # Load model
58 + model = attempt_load(weights, map_location=device) # load FP32 model
59 + gs = max(int(model.stride.max()), 32) # grid size (max stride)
60 + imgsz = check_img_size(imgsz, s=gs) # check img_size
61 +
62 + # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
63 + # if device.type != 'cpu' and torch.cuda.device_count() > 1:
64 + # model = nn.DataParallel(model)
65 +
66 + # Half
67 + half = device.type != 'cpu' and half_precision # half precision only supported on CUDA
68 + if half:
69 + model.half()
70 +
71 + # Configure
72 + model.eval()
73 + if isinstance(data, str):
74 + is_coco = data.endswith('coco.yaml')
75 + with open(data) as f:
76 + data = yaml.safe_load(f)
77 + check_dataset(data) # check
78 + nc = 1 if single_cls else int(data['nc']) # number of classes
79 + iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
80 + niou = iouv.numel()
81 +
82 + # Logging
83 + log_imgs = 0
84 + if wandb_logger and wandb_logger.wandb:
85 + log_imgs = min(wandb_logger.log_imgs, 100)
86 + # Dataloader
87 + if not training:
88 + if device.type != 'cpu':
89 + model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
90 + task = opt.task if opt.task in ('train', 'val', 'test') else 'val' # path to train/val/test images
91 + dataloader = create_dataloader(data[task], imgsz, batch_size, gs, opt, pad=0.5, rect=True,
92 + prefix=colorstr(f'{task}: '))[0]
93 +
94 + seen = 0
95 + confusion_matrix = ConfusionMatrix(nc=nc)
96 + names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
97 + coco91class = coco80_to_coco91_class()
98 + s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
99 + p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
100 + loss = torch.zeros(3, device=device)
101 + jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
102 + for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
103 + img = img.to(device, non_blocking=True)
104 + img = img.half() if half else img.float() # uint8 to fp16/32
105 + img /= 255.0 # 0 - 255 to 0.0 - 1.0
106 + targets = targets.to(device)
107 + nb, _, height, width = img.shape # batch size, channels, height, width
108 +
109 + # Run model
110 + t = time_synchronized()
111 + out, train_out = model(img, augment=augment) # inference and training outputs
112 + t0 += time_synchronized() - t
113 +
114 + # Compute loss
115 + if compute_loss:
116 + loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
117 +
118 + # Run NMS
119 + targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
120 + lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
121 + t = time_synchronized()
122 + out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
123 + t1 += time_synchronized() - t
124 +
125 + # Statistics per image
126 + for si, pred in enumerate(out):
127 + labels = targets[targets[:, 0] == si, 1:]
128 + nl = len(labels)
129 + tcls = labels[:, 0].tolist() if nl else [] # target class
130 + path = Path(paths[si])
131 + seen += 1
132 +
133 + if len(pred) == 0:
134 + if nl:
135 + stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
136 + continue
137 +
138 + # Predictions
139 + if single_cls:
140 + pred[:, 5] = 0
141 + predn = pred.clone()
142 + scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
143 +
144 + # Append to text file
145 + if save_txt:
146 + gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
147 + for *xyxy, conf, cls in predn.tolist():
148 + xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
149 + line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
150 + with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
151 + f.write(('%g ' * len(line)).rstrip() % line + '\n')
152 +
153 + # W&B logging - Media Panel Plots
154 + if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation
155 + if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
156 + box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
157 + "class_id": int(cls),
158 + "box_caption": "%s %.3f" % (names[cls], conf),
159 + "scores": {"class_score": conf},
160 + "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
161 + boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
162 + wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name))
163 + wandb_logger.log_training_progress(predn, path, names) if wandb_logger and wandb_logger.wandb_run else None
164 +
165 + # Append to pycocotools JSON dictionary
166 + if save_json:
167 + # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
168 + image_id = int(path.stem) if path.stem.isnumeric() else path.stem
169 + box = xyxy2xywh(predn[:, :4]) # xywh
170 +
171 +
172 + print("+++++++++++++++++++++++++++++++++++")
173 + print(box)
174 + print("+++++++++++++++++++++++++++++++++++")
175 +
176 +
177 + box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
178 + for p, b in zip(pred.tolist(), box.tolist()):
179 + jdict.append({'image_id': image_id,
180 + 'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
181 + 'bbox': [round(x, 3) for x in b],
182 + 'score': round(p[4], 5)})
183 +
184 + print("++++++++++++++++++++++++++++++++++++++")
185 + print(jdict)
186 + print("++++++++++++++++++++++++++++++++++++++")
187 +
188 + # Assign all predictions as incorrect
189 + correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
190 + if nl:
191 + detected = [] # target indices
192 + tcls_tensor = labels[:, 0]
193 +
194 + # target boxes
195 + tbox = xywh2xyxy(labels[:, 1:5])
196 + scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
197 + if plots:
198 + confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1))
199 +
200 + # Per target class
201 + for cls in torch.unique(tcls_tensor):
202 + ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # target indices
203 + pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # prediction indices
204 +
205 + # Search for detections
206 + if pi.shape[0]:
207 + # Prediction to target ious
208 + ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
209 +
210 + # Append detections
211 + detected_set = set()
212 + for j in (ious > iouv[0]).nonzero(as_tuple=False):
213 + d = ti[i[j]] # detected target
214 + if d.item() not in detected_set:
215 + detected_set.add(d.item())
216 + detected.append(d)
217 + correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
218 + if len(detected) == nl: # all targets already located in image
219 + break
220 +
221 +
222 + print("++++++++++++++++++++++++++++++++++++++++++++++++++++++")
223 + print(detected_set)
224 + print("++++++++++++++++++++++++++++++++++++++++++++++++++++++")
225 +
226 +
227 + # Append statistics (correct, conf, pcls, tcls)
228 + stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
229 +
230 + # Plot images
231 + if plots and batch_i < 3:
232 + f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
233 + Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
234 + f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
235 + Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
236 +
237 + # Compute statistics
238 + stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
239 + if len(stats) and stats[0].any():
240 + p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
241 + ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
242 + mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
243 + nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
244 + else:
245 + nt = torch.zeros(1)
246 +
247 + # Print results
248 + pf = '%20s' + '%12i' * 2 + '%12.3g' * 4 # print format
249 + print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
250 +
251 + # Print results per class
252 + if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
253 + for i, c in enumerate(ap_class):
254 + print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
255 +
256 + # Print speeds
257 + t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
258 + if not training:
259 + print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
260 +
261 + # Plots
262 + if plots:
263 + confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
264 + if wandb_logger and wandb_logger.wandb:
265 + val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]
266 + wandb_logger.log({"Validation": val_batches})
267 + if wandb_images:
268 + wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})
269 +
270 + # Save JSON
271 + if save_json and len(jdict):
272 + w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
273 + anno_json = '../coco/annotations/instances_val2017.json' # annotations json
274 + pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
275 + print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
276 + with open(pred_json, 'w') as f:
277 + json.dump(jdict, f)
278 +
279 + try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
280 + from pycocotools.coco import COCO
281 + from pycocotools.cocoeval import COCOeval
282 +
283 + anno = COCO(anno_json) # init annotations api
284 + pred = anno.loadRes(pred_json) # init predictions api
285 + eval = COCOeval(anno, pred, 'bbox')
286 + if is_coco:
287 + eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
288 + eval.evaluate()
289 + eval.accumulate()
290 + eval.summarize()
291 + map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
292 + except Exception as e:
293 + print(f'pycocotools unable to run: {e}')
294 +
295 + # Return results
296 + model.float() # for training
297 + if not training:
298 + s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
299 + print(f"Results saved to {save_dir}{s}")
300 + maps = np.zeros(nc) + map
301 + for i, c in enumerate(ap_class):
302 + maps[c] = ap[i]
303 + return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
304 +
305 +
306 +if __name__ == '__main__':
307 + parser = argparse.ArgumentParser(prog='test.py')
308 + parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
309 + parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
310 + parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
311 + parser.add_argument('--img-size', type=int, default=1920, help='inference size (pixels)') #default 640
312 + parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
313 + parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS')
314 + parser.add_argument('--task', default='val', help='train, val, test, speed or study')
315 + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
316 + parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
317 + parser.add_argument('--augment', action='store_true', help='augmented inference')
318 + parser.add_argument('--verbose', action='store_true', help='report mAP by class')
319 + parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
320 + parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
321 + parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
322 + parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
323 + parser.add_argument('--project', default='runs/test', help='save to project/name')
324 + parser.add_argument('--name', default='exp', help='save to project/name')
325 + parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
326 + opt = parser.parse_args()
327 + opt.save_json |= opt.data.endswith('coco.yaml')
328 + opt.data = check_file(opt.data) # check file
329 + print(opt)
330 + check_requirements(exclude=('tensorboard', 'pycocotools', 'thop'))
331 +
332 + if opt.task in ('train', 'val', 'test'): # run normally
333 + test(opt.data,
334 + opt.weights,
335 + opt.batch_size,
336 + opt.img_size,
337 + opt.conf_thres,
338 + opt.iou_thres,
339 + opt.save_json,
340 + opt.single_cls,
341 + opt.augment,
342 + opt.verbose,
343 + save_txt=opt.save_txt | opt.save_hybrid,
344 + save_hybrid=opt.save_hybrid,
345 + save_conf=opt.save_conf,
346 + opt=opt
347 + )
348 +
349 + elif opt.task == 'speed': # speed benchmarks
350 + for w in opt.weights:
351 + test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False, opt=opt)
352 +
353 + elif opt.task == 'study': # run over a range of settings and save/plot
354 + # python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt
355 + x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
356 + for w in opt.weights:
357 + f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
358 + y = [] # y axis
359 + for i in x: # img-size
360 + print(f'\nRunning {f} point {i}...')
361 + r, _, t = test(opt.data, w, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json,
362 + plots=False, opt=opt)
363 + y.append(r + t) # results and times
364 + np.savetxt(f, y, fmt='%10.4g') # save
365 + os.system('zip -r study.zip study_*.txt')
366 + plot_study_txt(x=x) # plot
1 +import argparse
2 +import logging
3 +import math
4 +import os
5 +import random
6 +import time
7 +from copy import deepcopy
8 +from pathlib import Path
9 +from threading import Thread
10 +
11 +import numpy as np
12 +import torch.distributed as dist
13 +import torch.nn as nn
14 +import torch.nn.functional as F
15 +import torch.optim as optim
16 +import torch.optim.lr_scheduler as lr_scheduler
17 +import torch.utils.data
18 +import yaml
19 +from torch.cuda import amp
20 +from torch.nn.parallel import DistributedDataParallel as DDP
21 +from torch.utils.tensorboard import SummaryWriter
22 +from tqdm import tqdm
23 +
24 +import test # import test.py to get mAP after each epoch
25 +from models.experimental import attempt_load
26 +from models.yolo import Model
27 +from utils.autoanchor import check_anchors
28 +from utils.datasets import create_dataloader
29 +from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
30 + fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
31 + check_requirements, print_mutation, set_logging, one_cycle, colorstr
32 +from utils.google_utils import attempt_download
33 +from utils.loss import ComputeLoss
34 +from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
35 +from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel
36 +from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
37 +
38 +logger = logging.getLogger(__name__)
39 +
40 +
41 +def train(hyp, opt, device, tb_writer=None):
42 + logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
43 + save_dir, epochs, batch_size, total_batch_size, weights, rank = \
44 + Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
45 +
46 + # Directories
47 + wdir = save_dir / 'weights'
48 + wdir.mkdir(parents=True, exist_ok=True) # make dir
49 + last = wdir / 'last.pt'
50 + best = wdir / 'best.pt'
51 + results_file = save_dir / 'results.txt'
52 +
53 + # Save run settings
54 + with open(save_dir / 'hyp.yaml', 'w') as f:
55 + yaml.safe_dump(hyp, f, sort_keys=False)
56 + with open(save_dir / 'opt.yaml', 'w') as f:
57 + yaml.safe_dump(vars(opt), f, sort_keys=False)
58 +
59 + # Configure
60 + plots = not opt.evolve # create plots
61 + cuda = device.type != 'cpu'
62 + init_seeds(2 + rank)
63 + with open(opt.data) as f:
64 + data_dict = yaml.safe_load(f) # data dict
65 +
66 + # Logging- Doing this before checking the dataset. Might update data_dict
67 + loggers = {'wandb': None} # loggers dict
68 + if rank in [-1, 0]:
69 + opt.hyp = hyp # add hyperparameters
70 + run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
71 + wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict)
72 + loggers['wandb'] = wandb_logger.wandb
73 + data_dict = wandb_logger.data_dict
74 + if wandb_logger.wandb:
75 + weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # WandbLogger might update weights, epochs if resuming
76 +
77 + nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
78 + names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
79 + assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
80 + is_coco = opt.data.endswith('coco.yaml') and nc == 80 # COCO dataset
81 +
82 + # Model
83 + pretrained = weights.endswith('.pt')
84 + if pretrained:
85 + with torch_distributed_zero_first(rank):
86 + weights = attempt_download(weights) # download if not found locally
87 + ckpt = torch.load(weights, map_location=device) # load checkpoint
88 + model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
89 + exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [] # exclude keys
90 + state_dict = ckpt['model'].float().state_dict() # to FP32
91 + state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
92 + model.load_state_dict(state_dict, strict=False) # load
93 + logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
94 + else:
95 + model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
96 + with torch_distributed_zero_first(rank):
97 + check_dataset(data_dict) # check
98 + train_path = data_dict['train']
99 + test_path = data_dict['val']
100 +
101 + # Freeze
102 + freeze = [] # parameter names to freeze (full or partial)
103 + for k, v in model.named_parameters():
104 + v.requires_grad = True # train all layers
105 + if any(x in k for x in freeze):
106 + print('freezing %s' % k)
107 + v.requires_grad = False
108 +
109 + # Optimizer
110 + nbs = 64 # nominal batch size
111 + accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
112 + hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
113 + logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
114 +
115 + pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
116 + for k, v in model.named_modules():
117 + if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
118 + pg2.append(v.bias) # biases
119 + if isinstance(v, nn.BatchNorm2d):
120 + pg0.append(v.weight) # no decay
121 + elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
122 + pg1.append(v.weight) # apply decay
123 +
124 + if opt.adam:
125 + optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
126 + else:
127 + optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
128 +
129 + optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
130 + optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
131 + logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
132 + del pg0, pg1, pg2
133 +
134 + # Scheduler https://arxiv.org/pdf/1812.01187.pdf
135 + # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
136 + if opt.linear_lr:
137 + lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
138 + else:
139 + lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
140 + scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
141 + # plot_lr_scheduler(optimizer, scheduler, epochs)
142 +
143 + # EMA
144 + ema = ModelEMA(model) if rank in [-1, 0] else None
145 +
146 + # Resume
147 + start_epoch, best_fitness = 0, 0.0
148 + if pretrained:
149 + # Optimizer
150 + if ckpt['optimizer'] is not None:
151 + optimizer.load_state_dict(ckpt['optimizer'])
152 + best_fitness = ckpt['best_fitness']
153 +
154 + # EMA
155 + if ema and ckpt.get('ema'):
156 + ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
157 + ema.updates = ckpt['updates']
158 +
159 + # Results
160 + if ckpt.get('training_results') is not None:
161 + results_file.write_text(ckpt['training_results']) # write results.txt
162 +
163 + # Epochs
164 + start_epoch = ckpt['epoch'] + 1
165 + if opt.resume:
166 + assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
167 + if epochs < start_epoch:
168 + logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
169 + (weights, ckpt['epoch'], epochs))
170 + epochs += ckpt['epoch'] # finetune additional epochs
171 +
172 + del ckpt, state_dict
173 +
174 + # Image sizes
175 + gs = max(int(model.stride.max()), 32) # grid size (max stride)
176 + nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
177 + imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
178 +
179 + # DP mode
180 + if cuda and rank == -1 and torch.cuda.device_count() > 1:
181 + model = torch.nn.DataParallel(model)
182 +
183 + # SyncBatchNorm
184 + if opt.sync_bn and cuda and rank != -1:
185 + model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
186 + logger.info('Using SyncBatchNorm()')
187 +
188 + # Trainloader
189 + dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
190 + hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
191 + world_size=opt.world_size, workers=opt.workers,
192 + image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
193 + mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
194 + nb = len(dataloader) # number of batches
195 + assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
196 +
197 + # Process 0
198 + if rank in [-1, 0]:
199 + testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt, # testloader
200 + hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
201 + world_size=opt.world_size, workers=opt.workers,
202 + pad=0.5, prefix=colorstr('val: '))[0]
203 +
204 + if not opt.resume:
205 + labels = np.concatenate(dataset.labels, 0)
206 + c = torch.tensor(labels[:, 0]) # classes
207 + # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
208 + # model._initialize_biases(cf.to(device))
209 + if plots:
210 + plot_labels(labels, names, save_dir, loggers)
211 + if tb_writer:
212 + tb_writer.add_histogram('classes', c, 0)
213 +
214 + # Anchors
215 + if not opt.noautoanchor:
216 + check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
217 + model.half().float() # pre-reduce anchor precision
218 +
219 + # DDP mode
220 + if cuda and rank != -1:
221 + model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank,
222 + # nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
223 + find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules()))
224 +
225 + # Model parameters
226 + hyp['box'] *= 3. / nl # scale to layers
227 + hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
228 + hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
229 + hyp['label_smoothing'] = opt.label_smoothing
230 + model.nc = nc # attach number of classes to model
231 + model.hyp = hyp # attach hyperparameters to model
232 + model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
233 + model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
234 + model.names = names
235 +
236 + # Start training
237 + t0 = time.time()
238 + nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
239 + # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
240 + maps = np.zeros(nc) # mAP per class
241 + results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
242 + scheduler.last_epoch = start_epoch - 1 # do not move
243 + scaler = amp.GradScaler(enabled=cuda)
244 + compute_loss = ComputeLoss(model) # init loss class
245 + logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
246 + f'Using {dataloader.num_workers} dataloader workers\n'
247 + f'Logging results to {save_dir}\n'
248 + f'Starting training for {epochs} epochs...')
249 + for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
250 + model.train()
251 +
252 + # Update image weights (optional)
253 + if opt.image_weights:
254 + # Generate indices
255 + if rank in [-1, 0]:
256 + cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
257 + iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
258 + dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
259 + # Broadcast if DDP
260 + if rank != -1:
261 + indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
262 + dist.broadcast(indices, 0)
263 + if rank != 0:
264 + dataset.indices = indices.cpu().numpy()
265 +
266 + # Update mosaic border
267 + # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
268 + # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
269 +
270 + mloss = torch.zeros(4, device=device) # mean losses
271 + if rank != -1:
272 + dataloader.sampler.set_epoch(epoch)
273 + pbar = enumerate(dataloader)
274 + logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
275 + if rank in [-1, 0]:
276 + pbar = tqdm(pbar, total=nb) # progress bar
277 + optimizer.zero_grad()
278 + for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
279 + ni = i + nb * epoch # number integrated batches (since train start)
280 + imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
281 +
282 + # Warmup
283 + if ni <= nw:
284 + xi = [0, nw] # x interp
285 + # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
286 + accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
287 + for j, x in enumerate(optimizer.param_groups):
288 + # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
289 + x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
290 + if 'momentum' in x:
291 + x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
292 +
293 + # Multi-scale
294 + if opt.multi_scale:
295 + sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
296 + sf = sz / max(imgs.shape[2:]) # scale factor
297 + if sf != 1:
298 + ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
299 + imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
300 +
301 + # Forward
302 + with amp.autocast(enabled=cuda):
303 + pred = model(imgs) # forward
304 + loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
305 + if rank != -1:
306 + loss *= opt.world_size # gradient averaged between devices in DDP mode
307 + if opt.quad:
308 + loss *= 4.
309 +
310 + # Backward
311 + scaler.scale(loss).backward()
312 +
313 + # Optimize
314 + if ni % accumulate == 0:
315 + scaler.step(optimizer) # optimizer.step
316 + scaler.update()
317 + optimizer.zero_grad()
318 + if ema:
319 + ema.update(model)
320 +
321 + # Print
322 + if rank in [-1, 0]:
323 + mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
324 + mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
325 + s = ('%10s' * 2 + '%10.4g' * 6) % (
326 + '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
327 + pbar.set_description(s)
328 +
329 + # Plot
330 + if plots and ni < 3:
331 + f = save_dir / f'train_batch{ni}.jpg' # filename
332 + Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
333 + if tb_writer:
334 + tb_writer.add_graph(torch.jit.trace(de_parallel(model), imgs, strict=False), []) # model graph
335 + # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
336 + elif plots and ni == 10 and wandb_logger.wandb:
337 + wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
338 + save_dir.glob('train*.jpg') if x.exists()]})
339 +
340 + # end batch ------------------------------------------------------------------------------------------------
341 + # end epoch ----------------------------------------------------------------------------------------------------
342 +
343 + # Scheduler
344 + lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
345 + scheduler.step()
346 +
347 + # DDP process 0 or single-GPU
348 + if rank in [-1, 0]:
349 + # mAP
350 + ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
351 + final_epoch = epoch + 1 == epochs
352 + if not opt.notest or final_epoch: # Calculate mAP
353 + wandb_logger.current_epoch = epoch + 1
354 + results, maps, times = test.test(data_dict,
355 + batch_size=batch_size * 2,
356 + imgsz=imgsz_test,
357 + model=ema.ema,
358 + single_cls=opt.single_cls,
359 + dataloader=testloader,
360 + save_dir=save_dir,
361 + save_json=is_coco and final_epoch,
362 + verbose=nc < 50 and final_epoch,
363 + plots=plots and final_epoch,
364 + wandb_logger=wandb_logger,
365 + compute_loss=compute_loss,
366 + is_coco=is_coco)
367 +
368 + # Write
369 + with open(results_file, 'a') as f:
370 + f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss
371 +
372 + # Log
373 + tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
374 + 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
375 + 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
376 + 'x/lr0', 'x/lr1', 'x/lr2'] # params
377 + for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
378 + if tb_writer:
379 + tb_writer.add_scalar(tag, x, epoch) # tensorboard
380 + if wandb_logger.wandb:
381 + wandb_logger.log({tag: x}) # W&B
382 +
383 + # Update best mAP
384 + fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
385 + if fi > best_fitness:
386 + best_fitness = fi
387 + wandb_logger.end_epoch(best_result=best_fitness == fi)
388 +
389 + # Save model
390 + if (not opt.nosave) or (final_epoch and not opt.evolve): # if save
391 + ckpt = {'epoch': epoch,
392 + 'best_fitness': best_fitness,
393 + 'training_results': results_file.read_text(),
394 + 'model': deepcopy(de_parallel(model)).half(),
395 + 'ema': deepcopy(ema.ema).half(),
396 + 'updates': ema.updates,
397 + 'optimizer': optimizer.state_dict(),
398 + 'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None}
399 +
400 + # Save last, best and delete
401 + torch.save(ckpt, last)
402 + if best_fitness == fi:
403 + torch.save(ckpt, best)
404 + if wandb_logger.wandb:
405 + if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
406 + wandb_logger.log_model(
407 + last.parent, opt, epoch, fi, best_model=best_fitness == fi)
408 + del ckpt
409 +
410 + # end epoch ----------------------------------------------------------------------------------------------------
411 + # end training
412 + if rank in [-1, 0]:
413 + logger.info(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n')
414 + if plots:
415 + plot_results(save_dir=save_dir) # save as results.png
416 + if wandb_logger.wandb:
417 + files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
418 + wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files
419 + if (save_dir / f).exists()]})
420 +
421 + if not opt.evolve:
422 + if is_coco: # COCO dataset
423 + for m in [last, best] if best.exists() else [last]: # speed, mAP tests
424 + results, _, _ = test.test(opt.data,
425 + batch_size=batch_size * 2,
426 + imgsz=imgsz_test,
427 + conf_thres=0.001,
428 + iou_thres=0.7,
429 + model=attempt_load(m, device).half(),
430 + single_cls=opt.single_cls,
431 + dataloader=testloader,
432 + save_dir=save_dir,
433 + save_json=True,
434 + plots=False,
435 + is_coco=is_coco)
436 +
437 + # Strip optimizers
438 + for f in last, best:
439 + if f.exists():
440 + strip_optimizer(f) # strip optimizers
441 + if wandb_logger.wandb: # Log the stripped model
442 + wandb_logger.wandb.log_artifact(str(best if best.exists() else last), type='model',
443 + name='run_' + wandb_logger.wandb_run.id + '_model',
444 + aliases=['latest', 'best', 'stripped'])
445 + wandb_logger.finish_run()
446 + else:
447 + dist.destroy_process_group()
448 + torch.cuda.empty_cache()
449 + return results
450 +
451 +
452 +if __name__ == '__main__':
453 + parser = argparse.ArgumentParser()
454 + parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
455 + parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
456 + parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
457 + parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
458 + parser.add_argument('--epochs', type=int, default=300)
459 + parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
460 + parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
461 + parser.add_argument('--rect', action='store_true', help='rectangular training')
462 + parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
463 + parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
464 + parser.add_argument('--notest', action='store_true', help='only test final epoch')
465 + parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
466 + parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
467 + parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
468 + parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
469 + parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
470 + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
471 + parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
472 + parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
473 + parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
474 + parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
475 + parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
476 + parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
477 + parser.add_argument('--project', default='runs/train', help='save to project/name')
478 + parser.add_argument('--entity', default=None, help='W&B entity')
479 + parser.add_argument('--name', default='exp', help='save to project/name')
480 + parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
481 + parser.add_argument('--quad', action='store_true', help='quad dataloader')
482 + parser.add_argument('--linear-lr', action='store_true', help='linear LR')
483 + parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
484 + parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
485 + parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
486 + parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
487 + parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
488 + opt = parser.parse_args()
489 +
490 + # Set DDP variables
491 + opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
492 + opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
493 + set_logging(opt.global_rank)
494 + if opt.global_rank in [-1, 0]:
495 + check_git_status()
496 + check_requirements(exclude=('pycocotools', 'thop'))
497 +
498 + # Resume
499 + wandb_run = check_wandb_resume(opt)
500 + if opt.resume and not wandb_run: # resume an interrupted run
501 + ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
502 + assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
503 + apriori = opt.global_rank, opt.local_rank
504 + with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
505 + opt = argparse.Namespace(**yaml.safe_load(f)) # replace
506 + opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = \
507 + '', ckpt, True, opt.total_batch_size, *apriori # reinstate
508 + logger.info('Resuming training from %s' % ckpt)
509 + else:
510 + # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
511 + opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
512 + assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
513 + opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
514 + opt.name = 'evolve' if opt.evolve else opt.name
515 + opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve))
516 +
517 + # DDP mode
518 + opt.total_batch_size = opt.batch_size
519 + device = select_device(opt.device, batch_size=opt.batch_size)
520 + if opt.local_rank != -1:
521 + assert torch.cuda.device_count() > opt.local_rank
522 + torch.cuda.set_device(opt.local_rank)
523 + device = torch.device('cuda', opt.local_rank)
524 + dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
525 + assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
526 + assert not opt.image_weights, '--image-weights argument is not compatible with DDP training'
527 + opt.batch_size = opt.total_batch_size // opt.world_size
528 +
529 + # Hyperparameters
530 + with open(opt.hyp) as f:
531 + hyp = yaml.safe_load(f) # load hyps
532 +
533 + # Train
534 + logger.info(opt)
535 + if not opt.evolve:
536 + tb_writer = None # init loggers
537 + if opt.global_rank in [-1, 0]:
538 + prefix = colorstr('tensorboard: ')
539 + logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
540 + tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
541 + train(hyp, opt, device, tb_writer)
542 +
543 + # Evolve hyperparameters (optional)
544 + else:
545 + # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
546 + meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
547 + 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
548 + 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
549 + 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
550 + 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
551 + 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
552 + 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
553 + 'box': (1, 0.02, 0.2), # box loss gain
554 + 'cls': (1, 0.2, 4.0), # cls loss gain
555 + 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
556 + 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
557 + 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
558 + 'iou_t': (0, 0.1, 0.7), # IoU training threshold
559 + 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
560 + 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
561 + 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
562 + 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
563 + 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
564 + 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
565 + 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
566 + 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
567 + 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
568 + 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
569 + 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
570 + 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
571 + 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
572 + 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
573 + 'mixup': (1, 0.0, 1.0)} # image mixup (probability)
574 +
575 + assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
576 + opt.notest, opt.nosave = True, True # only test/save final epoch
577 + # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
578 + yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
579 + if opt.bucket:
580 + os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
581 +
582 + for _ in range(300): # generations to evolve
583 + if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
584 + # Select parent(s)
585 + parent = 'single' # parent selection method: 'single' or 'weighted'
586 + x = np.loadtxt('evolve.txt', ndmin=2)
587 + n = min(5, len(x)) # number of previous results to consider
588 + x = x[np.argsort(-fitness(x))][:n] # top n mutations
589 + w = fitness(x) - fitness(x).min() # weights
590 + if parent == 'single' or len(x) == 1:
591 + # x = x[random.randint(0, n - 1)] # random selection
592 + x = x[random.choices(range(n), weights=w)[0]] # weighted selection
593 + elif parent == 'weighted':
594 + x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
595 +
596 + # Mutate
597 + mp, s = 0.8, 0.2 # mutation probability, sigma
598 + npr = np.random
599 + npr.seed(int(time.time()))
600 + g = np.array([x[0] for x in meta.values()]) # gains 0-1
601 + ng = len(meta)
602 + v = np.ones(ng)
603 + while all(v == 1): # mutate until a change occurs (prevent duplicates)
604 + v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
605 + for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
606 + hyp[k] = float(x[i + 7] * v[i]) # mutate
607 +
608 + # Constrain to limits
609 + for k, v in meta.items():
610 + hyp[k] = max(hyp[k], v[1]) # lower limit
611 + hyp[k] = min(hyp[k], v[2]) # upper limit
612 + hyp[k] = round(hyp[k], 5) # significant digits
613 +
614 + # Train mutation
615 + results = train(hyp.copy(), opt, device)
616 +
617 + # Write mutation results
618 + print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
619 +
620 + # Plot results
621 + plot_evolution(yaml_file)
622 + print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
623 + f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
This diff could not be displayed because it is too large.
File mode changed
1 +# Activation functions
2 +
3 +import torch
4 +import torch.nn as nn
5 +import torch.nn.functional as F
6 +
7 +
8 +# SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
9 +class SiLU(nn.Module): # export-friendly version of nn.SiLU()
10 + @staticmethod
11 + def forward(x):
12 + return x * torch.sigmoid(x)
13 +
14 +
15 +class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
16 + @staticmethod
17 + def forward(x):
18 + # return x * F.hardsigmoid(x) # for torchscript and CoreML
19 + return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
20 +
21 +
22 +# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
23 +class Mish(nn.Module):
24 + @staticmethod
25 + def forward(x):
26 + return x * F.softplus(x).tanh()
27 +
28 +
29 +class MemoryEfficientMish(nn.Module):
30 + class F(torch.autograd.Function):
31 + @staticmethod
32 + def forward(ctx, x):
33 + ctx.save_for_backward(x)
34 + return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
35 +
36 + @staticmethod
37 + def backward(ctx, grad_output):
38 + x = ctx.saved_tensors[0]
39 + sx = torch.sigmoid(x)
40 + fx = F.softplus(x).tanh()
41 + return grad_output * (fx + x * sx * (1 - fx * fx))
42 +
43 + def forward(self, x):
44 + return self.F.apply(x)
45 +
46 +
47 +# FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
48 +class FReLU(nn.Module):
49 + def __init__(self, c1, k=3): # ch_in, kernel
50 + super().__init__()
51 + self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
52 + self.bn = nn.BatchNorm2d(c1)
53 +
54 + def forward(self, x):
55 + return torch.max(x, self.bn(self.conv(x)))
56 +
57 +
58 +# ACON https://arxiv.org/pdf/2009.04759.pdf ----------------------------------------------------------------------------
59 +class AconC(nn.Module):
60 + r""" ACON activation (activate or not).
61 + AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
62 + according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
63 + """
64 +
65 + def __init__(self, c1):
66 + super().__init__()
67 + self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
68 + self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
69 + self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
70 +
71 + def forward(self, x):
72 + dpx = (self.p1 - self.p2) * x
73 + return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x
74 +
75 +
76 +class MetaAconC(nn.Module):
77 + r""" ACON activation (activate or not).
78 + MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
79 + according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
80 + """
81 +
82 + def __init__(self, c1, k=1, s=1, r=16): # ch_in, kernel, stride, r
83 + super().__init__()
84 + c2 = max(r, c1 // r)
85 + self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
86 + self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
87 + self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
88 + self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
89 + # self.bn1 = nn.BatchNorm2d(c2)
90 + # self.bn2 = nn.BatchNorm2d(c1)
91 +
92 + def forward(self, x):
93 + y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
94 + # batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
95 + # beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable
96 + beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed
97 + dpx = (self.p1 - self.p2) * x
98 + return dpx * torch.sigmoid(beta * dpx) + self.p2 * x
1 +# Auto-anchor utils
2 +
3 +import numpy as np
4 +import torch
5 +import yaml
6 +from tqdm import tqdm
7 +
8 +from utils.general import colorstr
9 +
10 +
11 +def check_anchor_order(m):
12 + # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
13 + a = m.anchor_grid.prod(-1).view(-1) # anchor area
14 + da = a[-1] - a[0] # delta a
15 + ds = m.stride[-1] - m.stride[0] # delta s
16 + if da.sign() != ds.sign(): # same order
17 + print('Reversing anchor order')
18 + m.anchors[:] = m.anchors.flip(0)
19 + m.anchor_grid[:] = m.anchor_grid.flip(0)
20 +
21 +
22 +def check_anchors(dataset, model, thr=4.0, imgsz=640):
23 + # Check anchor fit to data, recompute if necessary
24 + prefix = colorstr('autoanchor: ')
25 + print(f'\n{prefix}Analyzing anchors... ', end='')
26 + m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
27 + shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
28 + scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
29 + wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
30 +
31 + def metric(k): # compute metric
32 + r = wh[:, None] / k[None]
33 + x = torch.min(r, 1. / r).min(2)[0] # ratio metric
34 + best = x.max(1)[0] # best_x
35 + aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
36 + bpr = (best > 1. / thr).float().mean() # best possible recall
37 + return bpr, aat
38 +
39 + anchors = m.anchor_grid.clone().cpu().view(-1, 2) # current anchors
40 + bpr, aat = metric(anchors)
41 + print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
42 + if bpr < 0.98: # threshold to recompute
43 + print('. Attempting to improve anchors, please wait...')
44 + na = m.anchor_grid.numel() // 2 # number of anchors
45 + try:
46 + anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
47 + except Exception as e:
48 + print(f'{prefix}ERROR: {e}')
49 + new_bpr = metric(anchors)[0]
50 + if new_bpr > bpr: # replace anchors
51 + anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
52 + m.anchor_grid[:] = anchors.clone().view_as(m.anchor_grid) # for inference
53 + m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
54 + check_anchor_order(m)
55 + print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
56 + else:
57 + print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
58 + print('') # newline
59 +
60 +
61 +def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
62 + """ Creates kmeans-evolved anchors from training dataset
63 +
64 + Arguments:
65 + path: path to dataset *.yaml, or a loaded dataset
66 + n: number of anchors
67 + img_size: image size used for training
68 + thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
69 + gen: generations to evolve anchors using genetic algorithm
70 + verbose: print all results
71 +
72 + Return:
73 + k: kmeans evolved anchors
74 +
75 + Usage:
76 + from utils.autoanchor import *; _ = kmean_anchors()
77 + """
78 + from scipy.cluster.vq import kmeans
79 +
80 + thr = 1. / thr
81 + prefix = colorstr('autoanchor: ')
82 +
83 + def metric(k, wh): # compute metrics
84 + r = wh[:, None] / k[None]
85 + x = torch.min(r, 1. / r).min(2)[0] # ratio metric
86 + # x = wh_iou(wh, torch.tensor(k)) # iou metric
87 + return x, x.max(1)[0] # x, best_x
88 +
89 + def anchor_fitness(k): # mutation fitness
90 + _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
91 + return (best * (best > thr).float()).mean() # fitness
92 +
93 + def print_results(k):
94 + k = k[np.argsort(k.prod(1))] # sort small to large
95 + x, best = metric(k, wh0)
96 + bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
97 + print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
98 + print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
99 + f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
100 + for i, x in enumerate(k):
101 + print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
102 + return k
103 +
104 + if isinstance(path, str): # *.yaml file
105 + with open(path) as f:
106 + data_dict = yaml.safe_load(f) # model dict
107 + from utils.datasets import LoadImagesAndLabels
108 + dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
109 + else:
110 + dataset = path # dataset
111 +
112 + # Get label wh
113 + shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
114 + wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
115 +
116 + # Filter
117 + i = (wh0 < 3.0).any(1).sum()
118 + if i:
119 + print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
120 + wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
121 + # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
122 +
123 + # Kmeans calculation
124 + print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
125 + s = wh.std(0) # sigmas for whitening
126 + k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
127 + assert len(k) == n, print(f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}')
128 + k *= s
129 + wh = torch.tensor(wh, dtype=torch.float32) # filtered
130 + wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
131 + k = print_results(k)
132 +
133 + # Plot
134 + # k, d = [None] * 20, [None] * 20
135 + # for i in tqdm(range(1, 21)):
136 + # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
137 + # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
138 + # ax = ax.ravel()
139 + # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
140 + # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
141 + # ax[0].hist(wh[wh[:, 0]<100, 0],400)
142 + # ax[1].hist(wh[wh[:, 1]<100, 1],400)
143 + # fig.savefig('wh.png', dpi=200)
144 +
145 + # Evolve
146 + npr = np.random
147 + f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
148 + pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
149 + for _ in pbar:
150 + v = np.ones(sh)
151 + while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
152 + v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
153 + kg = (k.copy() * v).clip(min=2.0)
154 + fg = anchor_fitness(kg)
155 + if fg > f:
156 + f, k = fg, kg.copy()
157 + pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
158 + if verbose:
159 + print_results(k)
160 +
161 + return print_results(k)
1 +# AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/
2 +# This script will run on every instance restart, not only on first start
3 +# --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA ---
4 +
5 +Content-Type: multipart/mixed; boundary="//"
6 +MIME-Version: 1.0
7 +
8 +--//
9 +Content-Type: text/cloud-config; charset="us-ascii"
10 +MIME-Version: 1.0
11 +Content-Transfer-Encoding: 7bit
12 +Content-Disposition: attachment; filename="cloud-config.txt"
13 +
14 +#cloud-config
15 +cloud_final_modules:
16 +- [scripts-user, always]
17 +
18 +--//
19 +Content-Type: text/x-shellscript; charset="us-ascii"
20 +MIME-Version: 1.0
21 +Content-Transfer-Encoding: 7bit
22 +Content-Disposition: attachment; filename="userdata.txt"
23 +
24 +#!/bin/bash
25 +# --- paste contents of userdata.sh here ---
26 +--//
1 +# Resume all interrupted trainings in yolov5/ dir including DDP trainings
2 +# Usage: $ python utils/aws/resume.py
3 +
4 +import os
5 +import sys
6 +from pathlib import Path
7 +
8 +import torch
9 +import yaml
10 +
11 +sys.path.append('./') # to run '$ python *.py' files in subdirectories
12 +
13 +port = 0 # --master_port
14 +path = Path('').resolve()
15 +for last in path.rglob('*/**/last.pt'):
16 + ckpt = torch.load(last)
17 + if ckpt['optimizer'] is None:
18 + continue
19 +
20 + # Load opt.yaml
21 + with open(last.parent.parent / 'opt.yaml') as f:
22 + opt = yaml.safe_load(f)
23 +
24 + # Get device count
25 + d = opt['device'].split(',') # devices
26 + nd = len(d) # number of devices
27 + ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel
28 +
29 + if ddp: # multi-GPU
30 + port += 1
31 + cmd = f'python -m torch.distributed.launch --nproc_per_node {nd} --master_port {port} train.py --resume {last}'
32 + else: # single-GPU
33 + cmd = f'python train.py --resume {last}'
34 +
35 + cmd += ' > /dev/null 2>&1 &' # redirect output to dev/null and run in daemon thread
36 + print(cmd)
37 + os.system(cmd)
1 +#!/bin/bash
2 +# AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
3 +# This script will run only once on first instance start (for a re-start script see mime.sh)
4 +# /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir
5 +# Use >300 GB SSD
6 +
7 +cd home/ubuntu
8 +if [ ! -d yolov5 ]; then
9 + echo "Running first-time script." # install dependencies, download COCO, pull Docker
10 + git clone https://github.com/ultralytics/yolov5 -b master && sudo chmod -R 777 yolov5
11 + cd yolov5
12 + bash data/scripts/get_coco.sh && echo "Data done." &
13 + sudo docker pull ultralytics/yolov5:latest && echo "Docker done." &
14 + python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." &
15 + wait && echo "All tasks done." # finish background tasks
16 +else
17 + echo "Running re-start script." # resume interrupted runs
18 + i=0
19 + list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour'
20 + while IFS= read -r id; do
21 + ((i++))
22 + echo "restarting container $i: $id"
23 + sudo docker start $id
24 + # sudo docker exec -it $id python train.py --resume # single-GPU
25 + sudo docker exec -d $id python utils/aws/resume.py # multi-scenario
26 + done <<<"$list"
27 +fi
1 +# Dataset utils and dataloaders
2 +
3 +import glob
4 +import hashlib
5 +import logging
6 +import math
7 +import os
8 +import random
9 +import shutil
10 +import time
11 +from itertools import repeat
12 +from multiprocessing.pool import ThreadPool
13 +from pathlib import Path
14 +from threading import Thread
15 +
16 +import cv2
17 +import numpy as np
18 +import torch
19 +import torch.nn.functional as F
20 +from PIL import Image, ExifTags
21 +from torch.utils.data import Dataset
22 +from tqdm import tqdm
23 +
24 +from utils.general import check_requirements, xyxy2xywh, xywh2xyxy, xywhn2xyxy, xyn2xy, segment2box, segments2boxes, \
25 + resample_segments, clean_str
26 +from utils.torch_utils import torch_distributed_zero_first
27 +
28 +# Parameters
29 +help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
30 +img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes
31 +vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
32 +logger = logging.getLogger(__name__)
33 +
34 +# Get orientation exif tag
35 +for orientation in ExifTags.TAGS.keys():
36 + if ExifTags.TAGS[orientation] == 'Orientation':
37 + break
38 +
39 +
40 +def get_hash(paths):
41 + # Returns a single hash value of a list of paths (files or dirs)
42 + size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes
43 + h = hashlib.md5(str(size).encode()) # hash sizes
44 + h.update(''.join(paths).encode()) # hash paths
45 + return h.hexdigest() # return hash
46 +
47 +
48 +def exif_size(img):
49 + # Returns exif-corrected PIL size
50 + s = img.size # (width, height)
51 + try:
52 + rotation = dict(img._getexif().items())[orientation]
53 + if rotation == 6: # rotation 270
54 + s = (s[1], s[0])
55 + elif rotation == 8: # rotation 90
56 + s = (s[1], s[0])
57 + except:
58 + pass
59 +
60 + return s
61 +
62 +
63 +def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
64 + rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''):
65 + # Make sure only the first process in DDP process the dataset first, and the following others can use the cache
66 + with torch_distributed_zero_first(rank):
67 + dataset = LoadImagesAndLabels(path, imgsz, batch_size,
68 + augment=augment, # augment images
69 + hyp=hyp, # augmentation hyperparameters
70 + rect=rect, # rectangular training
71 + cache_images=cache,
72 + single_cls=opt.single_cls,
73 + stride=int(stride),
74 + pad=pad,
75 + image_weights=image_weights,
76 + prefix=prefix)
77 +
78 + batch_size = min(batch_size, len(dataset))
79 + nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
80 + sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
81 + loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
82 + # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
83 + dataloader = loader(dataset,
84 + batch_size=batch_size,
85 + num_workers=nw,
86 + sampler=sampler,
87 + pin_memory=True,
88 + collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn)
89 + return dataloader, dataset
90 +
91 +
92 +class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
93 + """ Dataloader that reuses workers
94 +
95 + Uses same syntax as vanilla DataLoader
96 + """
97 +
98 + def __init__(self, *args, **kwargs):
99 + super().__init__(*args, **kwargs)
100 + object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
101 + self.iterator = super().__iter__()
102 +
103 + def __len__(self):
104 + return len(self.batch_sampler.sampler)
105 +
106 + def __iter__(self):
107 + for i in range(len(self)):
108 + yield next(self.iterator)
109 +
110 +
111 +class _RepeatSampler(object):
112 + """ Sampler that repeats forever
113 +
114 + Args:
115 + sampler (Sampler)
116 + """
117 +
118 + def __init__(self, sampler):
119 + self.sampler = sampler
120 +
121 + def __iter__(self):
122 + while True:
123 + yield from iter(self.sampler)
124 +
125 +
126 +class LoadImages: # for inference
127 + def __init__(self, path, img_size=640, stride=32):
128 + p = str(Path(path).absolute()) # os-agnostic absolute path
129 + if '*' in p:
130 + files = sorted(glob.glob(p, recursive=True)) # glob
131 + elif os.path.isdir(p):
132 + files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
133 + elif os.path.isfile(p):
134 + files = [p] # files
135 + else:
136 + raise Exception(f'ERROR: {p} does not exist')
137 +
138 + images = [x for x in files if x.split('.')[-1].lower() in img_formats]
139 + videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
140 + ni, nv = len(images), len(videos)
141 +
142 + self.img_size = img_size
143 + self.stride = stride
144 + self.files = images + videos
145 + self.nf = ni + nv # number of files
146 + self.video_flag = [False] * ni + [True] * nv
147 + self.mode = 'image'
148 + if any(videos):
149 + self.new_video(videos[0]) # new video
150 + else:
151 + self.cap = None
152 + assert self.nf > 0, f'No images or videos found in {p}. ' \
153 + f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}'
154 +
155 + def __iter__(self):
156 + self.count = 0
157 + return self
158 +
159 + def __next__(self):
160 + if self.count == self.nf:
161 + raise StopIteration
162 + path = self.files[self.count]
163 +
164 + if self.video_flag[self.count]:
165 + # Read video
166 + self.mode = 'video'
167 + ret_val, img0 = self.cap.read()
168 + if not ret_val:
169 + self.count += 1
170 + self.cap.release()
171 + if self.count == self.nf: # last video
172 + raise StopIteration
173 + else:
174 + path = self.files[self.count]
175 + self.new_video(path)
176 + ret_val, img0 = self.cap.read()
177 +
178 + self.frame += 1
179 + print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: ', end='')
180 +
181 + else:
182 + # Read image
183 + self.count += 1
184 + img0 = cv2.imread(path) # BGR
185 + assert img0 is not None, 'Image Not Found ' + path
186 + print(f'image {self.count}/{self.nf} {path}: ', end='')
187 +
188 + # Padded resize
189 + img = letterbox(img0, self.img_size, stride=self.stride)[0]
190 +
191 + # Convert
192 + img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
193 + img = np.ascontiguousarray(img)
194 +
195 + return path, img, img0, self.cap
196 +
197 + def new_video(self, path):
198 + self.frame = 0
199 + self.cap = cv2.VideoCapture(path)
200 + self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
201 +
202 + def __len__(self):
203 + return self.nf # number of files
204 +
205 +
206 +class LoadWebcam: # for inference
207 + def __init__(self, pipe='0', img_size=640, stride=32):
208 + self.img_size = img_size
209 + self.stride = stride
210 +
211 + if pipe.isnumeric():
212 + pipe = eval(pipe) # local camera
213 + # pipe = 'rtsp://192.168.1.64/1' # IP camera
214 + # pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login
215 + # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
216 +
217 + self.pipe = pipe
218 + self.cap = cv2.VideoCapture(pipe) # video capture object
219 + self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
220 +
221 + def __iter__(self):
222 + self.count = -1
223 + return self
224 +
225 + def __next__(self):
226 + self.count += 1
227 + if cv2.waitKey(1) == ord('q'): # q to quit
228 + self.cap.release()
229 + cv2.destroyAllWindows()
230 + raise StopIteration
231 +
232 + # Read frame
233 + if self.pipe == 0: # local camera
234 + ret_val, img0 = self.cap.read()
235 + img0 = cv2.flip(img0, 1) # flip left-right
236 + else: # IP camera
237 + n = 0
238 + while True:
239 + n += 1
240 + self.cap.grab()
241 + if n % 30 == 0: # skip frames
242 + ret_val, img0 = self.cap.retrieve()
243 + if ret_val:
244 + break
245 +
246 + # Print
247 + assert ret_val, f'Camera Error {self.pipe}'
248 + img_path = 'webcam.jpg'
249 + print(f'webcam {self.count}: ', end='')
250 +
251 + # Padded resize
252 + img = letterbox(img0, self.img_size, stride=self.stride)[0]
253 +
254 + # Convert
255 + img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
256 + img = np.ascontiguousarray(img)
257 +
258 + return img_path, img, img0, None
259 +
260 + def __len__(self):
261 + return 0
262 +
263 +
264 +class LoadStreams: # multiple IP or RTSP cameras
265 + def __init__(self, sources='streams.txt', img_size=640, stride=32):
266 + self.mode = 'stream'
267 + self.img_size = img_size
268 + self.stride = stride
269 +
270 + if os.path.isfile(sources):
271 + with open(sources, 'r') as f:
272 + sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
273 + else:
274 + sources = [sources]
275 +
276 + n = len(sources)
277 + self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
278 + self.sources = [clean_str(x) for x in sources] # clean source names for later
279 + for i, s in enumerate(sources): # index, source
280 + # Start thread to read frames from video stream
281 + print(f'{i + 1}/{n}: {s}... ', end='')
282 + if 'youtube.com/' in s or 'youtu.be/' in s: # if source is YouTube video
283 + check_requirements(('pafy', 'youtube_dl'))
284 + import pafy
285 + s = pafy.new(s).getbest(preftype="mp4").url # YouTube URL
286 + s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
287 + cap = cv2.VideoCapture(s)
288 + assert cap.isOpened(), f'Failed to open {s}'
289 + w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
290 + h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
291 + self.fps[i] = max(cap.get(cv2.CAP_PROP_FPS) % 100, 0) or 30.0 # 30 FPS fallback
292 + self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') # infinite stream fallback
293 +
294 + _, self.imgs[i] = cap.read() # guarantee first frame
295 + self.threads[i] = Thread(target=self.update, args=([i, cap]), daemon=True)
296 + print(f" success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
297 + self.threads[i].start()
298 + print('') # newline
299 +
300 + # check for common shapes
301 + s = np.stack([letterbox(x, self.img_size, stride=self.stride)[0].shape for x in self.imgs], 0) # shapes
302 + self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
303 + if not self.rect:
304 + print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
305 +
306 + def update(self, i, cap):
307 + # Read stream `i` frames in daemon thread
308 + n, f = 0, self.frames[i]
309 + while cap.isOpened() and n < f:
310 + n += 1
311 + # _, self.imgs[index] = cap.read()
312 + cap.grab()
313 + if n % 4: # read every 4th frame
314 + success, im = cap.retrieve()
315 + self.imgs[i] = im if success else self.imgs[i] * 0
316 + time.sleep(1 / self.fps[i]) # wait time
317 +
318 + def __iter__(self):
319 + self.count = -1
320 + return self
321 +
322 + def __next__(self):
323 + self.count += 1
324 + if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit
325 + cv2.destroyAllWindows()
326 + raise StopIteration
327 +
328 + # Letterbox
329 + img0 = self.imgs.copy()
330 + img = [letterbox(x, self.img_size, auto=self.rect, stride=self.stride)[0] for x in img0]
331 +
332 + # Stack
333 + img = np.stack(img, 0)
334 +
335 + # Convert
336 + img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
337 + img = np.ascontiguousarray(img)
338 +
339 + return self.sources, img, img0, None
340 +
341 + def __len__(self):
342 + return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
343 +
344 +
345 +def img2label_paths(img_paths):
346 + # Define label paths as a function of image paths
347 + sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
348 + return ['txt'.join(x.replace(sa, sb, 1).rsplit(x.split('.')[-1], 1)) for x in img_paths]
349 +
350 +
351 +class LoadImagesAndLabels(Dataset): # for training/testing
352 + def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
353 + cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
354 + self.img_size = img_size
355 + self.augment = augment
356 + self.hyp = hyp
357 + self.image_weights = image_weights
358 + self.rect = False if image_weights else rect
359 + self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
360 + self.mosaic_border = [-img_size // 2, -img_size // 2]
361 + self.stride = stride
362 + self.path = path
363 +
364 + try:
365 + f = [] # image files
366 + for p in path if isinstance(path, list) else [path]:
367 + p = Path(p) # os-agnostic
368 + if p.is_dir(): # dir
369 + f += glob.glob(str(p / '**' / '*.*'), recursive=True)
370 + # f = list(p.rglob('**/*.*')) # pathlib
371 + elif p.is_file(): # file
372 + with open(p, 'r') as t:
373 + t = t.read().strip().splitlines()
374 + parent = str(p.parent) + os.sep
375 + f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
376 + # f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
377 + else:
378 + raise Exception(f'{prefix}{p} does not exist')
379 + self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
380 + # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in img_formats]) # pathlib
381 + assert self.img_files, f'{prefix}No images found'
382 + except Exception as e:
383 + raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}')
384 +
385 + # Check cache
386 + self.label_files = img2label_paths(self.img_files) # labels
387 + cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache') # cached labels
388 + if cache_path.is_file():
389 + cache, exists = torch.load(cache_path), True # load
390 + if cache['hash'] != get_hash(self.label_files + self.img_files): # changed
391 + cache, exists = self.cache_labels(cache_path, prefix), False # re-cache
392 + else:
393 + cache, exists = self.cache_labels(cache_path, prefix), False # cache
394 +
395 + # Display cache
396 + nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupted, total
397 + if exists:
398 + d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
399 + tqdm(None, desc=prefix + d, total=n, initial=n) # display cache results
400 + assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}'
401 +
402 + # Read cache
403 + cache.pop('hash') # remove hash
404 + cache.pop('version') # remove version
405 + labels, shapes, self.segments = zip(*cache.values())
406 + self.labels = list(labels)
407 + self.shapes = np.array(shapes, dtype=np.float64)
408 + self.img_files = list(cache.keys()) # update
409 + self.label_files = img2label_paths(cache.keys()) # update
410 + if single_cls:
411 + for x in self.labels:
412 + x[:, 0] = 0
413 +
414 + n = len(shapes) # number of images
415 + bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
416 + nb = bi[-1] + 1 # number of batches
417 + self.batch = bi # batch index of image
418 + self.n = n
419 + self.indices = range(n)
420 +
421 + # Rectangular Training
422 + if self.rect:
423 + # Sort by aspect ratio
424 + s = self.shapes # wh
425 + ar = s[:, 1] / s[:, 0] # aspect ratio
426 + irect = ar.argsort()
427 + self.img_files = [self.img_files[i] for i in irect]
428 + self.label_files = [self.label_files[i] for i in irect]
429 + self.labels = [self.labels[i] for i in irect]
430 + self.shapes = s[irect] # wh
431 + ar = ar[irect]
432 +
433 + # Set training image shapes
434 + shapes = [[1, 1]] * nb
435 + for i in range(nb):
436 + ari = ar[bi == i]
437 + mini, maxi = ari.min(), ari.max()
438 + if maxi < 1:
439 + shapes[i] = [maxi, 1]
440 + elif mini > 1:
441 + shapes[i] = [1, 1 / mini]
442 +
443 + self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
444 +
445 + # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
446 + self.imgs = [None] * n
447 + if cache_images:
448 + gb = 0 # Gigabytes of cached images
449 + self.img_hw0, self.img_hw = [None] * n, [None] * n
450 + results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) # 8 threads
451 + pbar = tqdm(enumerate(results), total=n)
452 + for i, x in pbar:
453 + self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # img, hw_original, hw_resized = load_image(self, i)
454 + gb += self.imgs[i].nbytes
455 + pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB)'
456 + pbar.close()
457 +
458 + def cache_labels(self, path=Path('./labels.cache'), prefix=''):
459 + # Cache dataset labels, check images and read shapes
460 + x = {} # dict
461 + nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate
462 + pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
463 + for i, (im_file, lb_file) in enumerate(pbar):
464 + try:
465 + # verify images
466 + im = Image.open(im_file)
467 + im.verify() # PIL verify
468 + shape = exif_size(im) # image size
469 + segments = [] # instance segments
470 + assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
471 + assert im.format.lower() in img_formats, f'invalid image format {im.format}'
472 +
473 + # verify labels
474 + if os.path.isfile(lb_file):
475 + nf += 1 # label found
476 + with open(lb_file, 'r') as f:
477 + l = [x.split() for x in f.read().strip().splitlines() if len(x)]
478 + if any([len(x) > 8 for x in l]): # is segment
479 + classes = np.array([x[0] for x in l], dtype=np.float32)
480 + segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l] # (cls, xy1...)
481 + l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
482 + l = np.array(l, dtype=np.float32)
483 + if len(l):
484 + assert l.shape[1] == 5, 'labels require 5 columns each'
485 + assert (l >= 0).all(), 'negative labels'
486 + assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
487 + assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
488 + else:
489 + ne += 1 # label empty
490 + l = np.zeros((0, 5), dtype=np.float32)
491 + else:
492 + nm += 1 # label missing
493 + l = np.zeros((0, 5), dtype=np.float32)
494 + x[im_file] = [l, shape, segments]
495 + except Exception as e:
496 + nc += 1
497 + logging.info(f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}')
498 +
499 + pbar.desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels... " \
500 + f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
501 + pbar.close()
502 +
503 + if nf == 0:
504 + logging.info(f'{prefix}WARNING: No labels found in {path}. See {help_url}')
505 +
506 + x['hash'] = get_hash(self.label_files + self.img_files)
507 + x['results'] = nf, nm, ne, nc, i + 1
508 + x['version'] = 0.2 # cache version
509 + try:
510 + torch.save(x, path) # save cache for next time
511 + logging.info(f'{prefix}New cache created: {path}')
512 + except Exception as e:
513 + logging.info(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}') # path not writeable
514 + return x
515 +
516 + def __len__(self):
517 + return len(self.img_files)
518 +
519 + # def __iter__(self):
520 + # self.count = -1
521 + # print('ran dataset iter')
522 + # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
523 + # return self
524 +
525 + def __getitem__(self, index):
526 + index = self.indices[index] # linear, shuffled, or image_weights
527 +
528 + hyp = self.hyp
529 + mosaic = self.mosaic and random.random() < hyp['mosaic']
530 + if mosaic:
531 + # Load mosaic
532 + img, labels = load_mosaic(self, index)
533 + shapes = None
534 +
535 + # MixUp https://arxiv.org/pdf/1710.09412.pdf
536 + if random.random() < hyp['mixup']:
537 + img2, labels2 = load_mosaic(self, random.randint(0, self.n - 1))
538 + r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
539 + img = (img * r + img2 * (1 - r)).astype(np.uint8)
540 + labels = np.concatenate((labels, labels2), 0)
541 +
542 + else:
543 + # Load image
544 + img, (h0, w0), (h, w) = load_image(self, index)
545 +
546 + # Letterbox
547 + shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
548 + img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
549 + shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
550 +
551 + labels = self.labels[index].copy()
552 + if labels.size: # normalized xywh to pixel xyxy format
553 + labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
554 +
555 + if self.augment:
556 + # Augment imagespace
557 + if not mosaic:
558 + img, labels = random_perspective(img, labels,
559 + degrees=hyp['degrees'],
560 + translate=hyp['translate'],
561 + scale=hyp['scale'],
562 + shear=hyp['shear'],
563 + perspective=hyp['perspective'])
564 +
565 + # Augment colorspace
566 + augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
567 +
568 + # Apply cutouts
569 + # if random.random() < 0.9:
570 + # labels = cutout(img, labels)
571 +
572 + nL = len(labels) # number of labels
573 + if nL:
574 + labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
575 + labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
576 + labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
577 +
578 + if self.augment:
579 + # flip up-down
580 + if random.random() < hyp['flipud']:
581 + img = np.flipud(img)
582 + if nL:
583 + labels[:, 2] = 1 - labels[:, 2]
584 +
585 + # flip left-right
586 + if random.random() < hyp['fliplr']:
587 + img = np.fliplr(img)
588 + if nL:
589 + labels[:, 1] = 1 - labels[:, 1]
590 +
591 + labels_out = torch.zeros((nL, 6))
592 + if nL:
593 + labels_out[:, 1:] = torch.from_numpy(labels)
594 +
595 + # Convert
596 + img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
597 + img = np.ascontiguousarray(img)
598 +
599 + return torch.from_numpy(img), labels_out, self.img_files[index], shapes
600 +
601 + @staticmethod
602 + def collate_fn(batch):
603 + img, label, path, shapes = zip(*batch) # transposed
604 + for i, l in enumerate(label):
605 + l[:, 0] = i # add target image index for build_targets()
606 + return torch.stack(img, 0), torch.cat(label, 0), path, shapes
607 +
608 + @staticmethod
609 + def collate_fn4(batch):
610 + img, label, path, shapes = zip(*batch) # transposed
611 + n = len(shapes) // 4
612 + img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
613 +
614 + ho = torch.tensor([[0., 0, 0, 1, 0, 0]])
615 + wo = torch.tensor([[0., 0, 1, 0, 0, 0]])
616 + s = torch.tensor([[1, 1, .5, .5, .5, .5]]) # scale
617 + for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
618 + i *= 4
619 + if random.random() < 0.5:
620 + im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[
621 + 0].type(img[i].type())
622 + l = label[i]
623 + else:
624 + im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
625 + l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
626 + img4.append(im)
627 + label4.append(l)
628 +
629 + for i, l in enumerate(label4):
630 + l[:, 0] = i # add target image index for build_targets()
631 +
632 + return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4
633 +
634 +
635 +# Ancillary functions --------------------------------------------------------------------------------------------------
636 +def load_image(self, index):
637 + # loads 1 image from dataset, returns img, original hw, resized hw
638 + img = self.imgs[index]
639 + if img is None: # not cached
640 + path = self.img_files[index]
641 + img = cv2.imread(path) # BGR
642 + assert img is not None, 'Image Not Found ' + path
643 + h0, w0 = img.shape[:2] # orig hw
644 + r = self.img_size / max(h0, w0) # ratio
645 + if r != 1: # if sizes are not equal
646 + img = cv2.resize(img, (int(w0 * r), int(h0 * r)),
647 + interpolation=cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR)
648 + return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
649 + else:
650 + return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
651 +
652 +
653 +def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
654 + r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
655 + hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
656 + dtype = img.dtype # uint8
657 +
658 + x = np.arange(0, 256, dtype=np.int16)
659 + lut_hue = ((x * r[0]) % 180).astype(dtype)
660 + lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
661 + lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
662 +
663 + img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
664 + cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
665 +
666 +
667 +def hist_equalize(img, clahe=True, bgr=False):
668 + # Equalize histogram on BGR image 'img' with img.shape(n,m,3) and range 0-255
669 + yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
670 + if clahe:
671 + c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
672 + yuv[:, :, 0] = c.apply(yuv[:, :, 0])
673 + else:
674 + yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
675 + return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
676 +
677 +
678 +def load_mosaic(self, index):
679 + # loads images in a 4-mosaic
680 +
681 + labels4, segments4 = [], []
682 + s = self.img_size
683 + yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
684 + indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
685 + for i, index in enumerate(indices):
686 + # Load image
687 + img, _, (h, w) = load_image(self, index)
688 +
689 + # place img in img4
690 + if i == 0: # top left
691 + img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
692 + x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
693 + x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
694 + elif i == 1: # top right
695 + x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
696 + x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
697 + elif i == 2: # bottom left
698 + x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
699 + x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
700 + elif i == 3: # bottom right
701 + x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
702 + x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
703 +
704 + img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
705 + padw = x1a - x1b
706 + padh = y1a - y1b
707 +
708 + # Labels
709 + labels, segments = self.labels[index].copy(), self.segments[index].copy()
710 + if labels.size:
711 + labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
712 + segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
713 + labels4.append(labels)
714 + segments4.extend(segments)
715 +
716 + # Concat/clip labels
717 + labels4 = np.concatenate(labels4, 0)
718 + for x in (labels4[:, 1:], *segments4):
719 + np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
720 + # img4, labels4 = replicate(img4, labels4) # replicate
721 +
722 + # Augment
723 + img4, labels4 = random_perspective(img4, labels4, segments4,
724 + degrees=self.hyp['degrees'],
725 + translate=self.hyp['translate'],
726 + scale=self.hyp['scale'],
727 + shear=self.hyp['shear'],
728 + perspective=self.hyp['perspective'],
729 + border=self.mosaic_border) # border to remove
730 +
731 + return img4, labels4
732 +
733 +
734 +def load_mosaic9(self, index):
735 + # loads images in a 9-mosaic
736 +
737 + labels9, segments9 = [], []
738 + s = self.img_size
739 + indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices
740 + for i, index in enumerate(indices):
741 + # Load image
742 + img, _, (h, w) = load_image(self, index)
743 +
744 + # place img in img9
745 + if i == 0: # center
746 + img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
747 + h0, w0 = h, w
748 + c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
749 + elif i == 1: # top
750 + c = s, s - h, s + w, s
751 + elif i == 2: # top right
752 + c = s + wp, s - h, s + wp + w, s
753 + elif i == 3: # right
754 + c = s + w0, s, s + w0 + w, s + h
755 + elif i == 4: # bottom right
756 + c = s + w0, s + hp, s + w0 + w, s + hp + h
757 + elif i == 5: # bottom
758 + c = s + w0 - w, s + h0, s + w0, s + h0 + h
759 + elif i == 6: # bottom left
760 + c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
761 + elif i == 7: # left
762 + c = s - w, s + h0 - h, s, s + h0
763 + elif i == 8: # top left
764 + c = s - w, s + h0 - hp - h, s, s + h0 - hp
765 +
766 + padx, pady = c[:2]
767 + x1, y1, x2, y2 = [max(x, 0) for x in c] # allocate coords
768 +
769 + # Labels
770 + labels, segments = self.labels[index].copy(), self.segments[index].copy()
771 + if labels.size:
772 + labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
773 + segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
774 + labels9.append(labels)
775 + segments9.extend(segments)
776 +
777 + # Image
778 + img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
779 + hp, wp = h, w # height, width previous
780 +
781 + # Offset
782 + yc, xc = [int(random.uniform(0, s)) for _ in self.mosaic_border] # mosaic center x, y
783 + img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
784 +
785 + # Concat/clip labels
786 + labels9 = np.concatenate(labels9, 0)
787 + labels9[:, [1, 3]] -= xc
788 + labels9[:, [2, 4]] -= yc
789 + c = np.array([xc, yc]) # centers
790 + segments9 = [x - c for x in segments9]
791 +
792 + for x in (labels9[:, 1:], *segments9):
793 + np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
794 + # img9, labels9 = replicate(img9, labels9) # replicate
795 +
796 + # Augment
797 + img9, labels9 = random_perspective(img9, labels9, segments9,
798 + degrees=self.hyp['degrees'],
799 + translate=self.hyp['translate'],
800 + scale=self.hyp['scale'],
801 + shear=self.hyp['shear'],
802 + perspective=self.hyp['perspective'],
803 + border=self.mosaic_border) # border to remove
804 +
805 + return img9, labels9
806 +
807 +
808 +def replicate(img, labels):
809 + # Replicate labels
810 + h, w = img.shape[:2]
811 + boxes = labels[:, 1:].astype(int)
812 + x1, y1, x2, y2 = boxes.T
813 + s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
814 + for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
815 + x1b, y1b, x2b, y2b = boxes[i]
816 + bh, bw = y2b - y1b, x2b - x1b
817 + yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
818 + x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
819 + img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
820 + labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
821 +
822 + return img, labels
823 +
824 +
825 +def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
826 + # Resize and pad image while meeting stride-multiple constraints
827 + shape = img.shape[:2] # current shape [height, width]
828 + if isinstance(new_shape, int):
829 + new_shape = (new_shape, new_shape)
830 +
831 + # Scale ratio (new / old)
832 + r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
833 + if not scaleup: # only scale down, do not scale up (for better test mAP)
834 + r = min(r, 1.0)
835 +
836 + # Compute padding
837 + ratio = r, r # width, height ratios
838 + new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
839 + dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
840 + if auto: # minimum rectangle
841 + dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
842 + elif scaleFill: # stretch
843 + dw, dh = 0.0, 0.0
844 + new_unpad = (new_shape[1], new_shape[0])
845 + ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
846 +
847 + dw /= 2 # divide padding into 2 sides
848 + dh /= 2
849 +
850 + if shape[::-1] != new_unpad: # resize
851 + img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
852 + top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
853 + left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
854 + img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
855 + return img, ratio, (dw, dh)
856 +
857 +
858 +def random_perspective(img, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
859 + border=(0, 0)):
860 + # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
861 + # targets = [cls, xyxy]
862 +
863 + height = img.shape[0] + border[0] * 2 # shape(h,w,c)
864 + width = img.shape[1] + border[1] * 2
865 +
866 + # Center
867 + C = np.eye(3)
868 + C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
869 + C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
870 +
871 + # Perspective
872 + P = np.eye(3)
873 + P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
874 + P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
875 +
876 + # Rotation and Scale
877 + R = np.eye(3)
878 + a = random.uniform(-degrees, degrees)
879 + # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
880 + s = random.uniform(1 - scale, 1 + scale)
881 + # s = 2 ** random.uniform(-scale, scale)
882 + R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
883 +
884 + # Shear
885 + S = np.eye(3)
886 + S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
887 + S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
888 +
889 + # Translation
890 + T = np.eye(3)
891 + T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
892 + T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
893 +
894 + # Combined rotation matrix
895 + M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
896 + if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
897 + if perspective:
898 + img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
899 + else: # affine
900 + img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
901 +
902 + # Visualize
903 + # import matplotlib.pyplot as plt
904 + # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
905 + # ax[0].imshow(img[:, :, ::-1]) # base
906 + # ax[1].imshow(img2[:, :, ::-1]) # warped
907 +
908 + # Transform label coordinates
909 + n = len(targets)
910 + if n:
911 + use_segments = any(x.any() for x in segments)
912 + new = np.zeros((n, 4))
913 + if use_segments: # warp segments
914 + segments = resample_segments(segments) # upsample
915 + for i, segment in enumerate(segments):
916 + xy = np.ones((len(segment), 3))
917 + xy[:, :2] = segment
918 + xy = xy @ M.T # transform
919 + xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
920 +
921 + # clip
922 + new[i] = segment2box(xy, width, height)
923 +
924 + else: # warp boxes
925 + xy = np.ones((n * 4, 3))
926 + xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
927 + xy = xy @ M.T # transform
928 + xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
929 +
930 + # create new boxes
931 + x = xy[:, [0, 2, 4, 6]]
932 + y = xy[:, [1, 3, 5, 7]]
933 + new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
934 +
935 + # clip
936 + new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
937 + new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
938 +
939 + # filter candidates
940 + i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
941 + targets = targets[i]
942 + targets[:, 1:5] = new[i]
943 +
944 + return img, targets
945 +
946 +
947 +def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
948 + # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
949 + w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
950 + w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
951 + ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
952 + return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
953 +
954 +
955 +def cutout(image, labels):
956 + # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
957 + h, w = image.shape[:2]
958 +
959 + def bbox_ioa(box1, box2):
960 + # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
961 + box2 = box2.transpose()
962 +
963 + # Get the coordinates of bounding boxes
964 + b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
965 + b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
966 +
967 + # Intersection area
968 + inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
969 + (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
970 +
971 + # box2 area
972 + box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
973 +
974 + # Intersection over box2 area
975 + return inter_area / box2_area
976 +
977 + # create random masks
978 + scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
979 + for s in scales:
980 + mask_h = random.randint(1, int(h * s))
981 + mask_w = random.randint(1, int(w * s))
982 +
983 + # box
984 + xmin = max(0, random.randint(0, w) - mask_w // 2)
985 + ymin = max(0, random.randint(0, h) - mask_h // 2)
986 + xmax = min(w, xmin + mask_w)
987 + ymax = min(h, ymin + mask_h)
988 +
989 + # apply random color mask
990 + image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
991 +
992 + # return unobscured labels
993 + if len(labels) and s > 0.03:
994 + box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
995 + ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
996 + labels = labels[ioa < 0.60] # remove >60% obscured labels
997 +
998 + return labels
999 +
1000 +
1001 +def create_folder(path='./new'):
1002 + # Create folder
1003 + if os.path.exists(path):
1004 + shutil.rmtree(path) # delete output folder
1005 + os.makedirs(path) # make new output folder
1006 +
1007 +
1008 +def flatten_recursive(path='../coco128'):
1009 + # Flatten a recursive directory by bringing all files to top level
1010 + new_path = Path(path + '_flat')
1011 + create_folder(new_path)
1012 + for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
1013 + shutil.copyfile(file, new_path / Path(file).name)
1014 +
1015 +
1016 +def extract_boxes(path='../coco128/'): # from utils.datasets import *; extract_boxes('../coco128')
1017 + # Convert detection dataset into classification dataset, with one directory per class
1018 +
1019 + path = Path(path) # images dir
1020 + shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
1021 + files = list(path.rglob('*.*'))
1022 + n = len(files) # number of files
1023 + for im_file in tqdm(files, total=n):
1024 + if im_file.suffix[1:] in img_formats:
1025 + # image
1026 + im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
1027 + h, w = im.shape[:2]
1028 +
1029 + # labels
1030 + lb_file = Path(img2label_paths([str(im_file)])[0])
1031 + if Path(lb_file).exists():
1032 + with open(lb_file, 'r') as f:
1033 + lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
1034 +
1035 + for j, x in enumerate(lb):
1036 + c = int(x[0]) # class
1037 + f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
1038 + if not f.parent.is_dir():
1039 + f.parent.mkdir(parents=True)
1040 +
1041 + b = x[1:] * [w, h, w, h] # box
1042 + # b[2:] = b[2:].max() # rectangle to square
1043 + b[2:] = b[2:] * 1.2 + 3 # pad
1044 + b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
1045 +
1046 + b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
1047 + b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
1048 + assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
1049 +
1050 +
1051 +def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0), annotated_only=False):
1052 + """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
1053 + Usage: from utils.datasets import *; autosplit('../coco128')
1054 + Arguments
1055 + path: Path to images directory
1056 + weights: Train, val, test weights (list)
1057 + annotated_only: Only use images with an annotated txt file
1058 + """
1059 + path = Path(path) # images dir
1060 + files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in img_formats], []) # image files only
1061 + n = len(files) # number of files
1062 + indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
1063 +
1064 + txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
1065 + [(path / x).unlink() for x in txt if (path / x).exists()] # remove existing
1066 +
1067 + print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
1068 + for i, img in tqdm(zip(indices, files), total=n):
1069 + if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label
1070 + with open(path / txt[i], 'a') as f:
1071 + f.write(str(img) + '\n') # add image to txt file
1 +# Flask REST API
2 +[REST](https://en.wikipedia.org/wiki/Representational_state_transfer) [API](https://en.wikipedia.org/wiki/API)s are commonly used to expose Machine Learning (ML) models to other services. This folder contains an example REST API created using Flask to expose the YOLOv5s model from [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/).
3 +
4 +## Requirements
5 +
6 +[Flask](https://palletsprojects.com/p/flask/) is required. Install with:
7 +```shell
8 +$ pip install Flask
9 +```
10 +
11 +## Run
12 +
13 +After Flask installation run:
14 +
15 +```shell
16 +$ python3 restapi.py --port 5000
17 +```
18 +
19 +Then use [curl](https://curl.se/) to perform a request:
20 +
21 +```shell
22 +$ curl -X POST -F image=@zidane.jpg 'http://localhost:5000/v1/object-detection/yolov5s'`
23 +```
24 +
25 +The model inference results are returned as a JSON response:
26 +
27 +```json
28 +[
29 + {
30 + "class": 0,
31 + "confidence": 0.8900438547,
32 + "height": 0.9318675399,
33 + "name": "person",
34 + "width": 0.3264600933,
35 + "xcenter": 0.7438579798,
36 + "ycenter": 0.5207948685
37 + },
38 + {
39 + "class": 0,
40 + "confidence": 0.8440024257,
41 + "height": 0.7155083418,
42 + "name": "person",
43 + "width": 0.6546785235,
44 + "xcenter": 0.427829951,
45 + "ycenter": 0.6334488392
46 + },
47 + {
48 + "class": 27,
49 + "confidence": 0.3771208823,
50 + "height": 0.3902671337,
51 + "name": "tie",
52 + "width": 0.0696444362,
53 + "xcenter": 0.3675483763,
54 + "ycenter": 0.7991207838
55 + },
56 + {
57 + "class": 27,
58 + "confidence": 0.3527112305,
59 + "height": 0.1540903747,
60 + "name": "tie",
61 + "width": 0.0336618312,
62 + "xcenter": 0.7814827561,
63 + "ycenter": 0.5065554976
64 + }
65 +]
66 +```
67 +
68 +An example python script to perform inference using [requests](https://docs.python-requests.org/en/master/) is given in `example_request.py`
1 +"""Perform test request"""
2 +import pprint
3 +
4 +import requests
5 +
6 +DETECTION_URL = "http://localhost:5000/v1/object-detection/yolov5s"
7 +TEST_IMAGE = "zidane.jpg"
8 +
9 +image_data = open(TEST_IMAGE, "rb").read()
10 +
11 +response = requests.post(DETECTION_URL, files={"image": image_data}).json()
12 +
13 +pprint.pprint(response)
1 +"""
2 +Run a rest API exposing the yolov5s object detection model
3 +"""
4 +import argparse
5 +import io
6 +
7 +import torch
8 +from PIL import Image
9 +from flask import Flask, request
10 +
11 +app = Flask(__name__)
12 +
13 +DETECTION_URL = "/v1/object-detection/yolov5s"
14 +
15 +
16 +@app.route(DETECTION_URL, methods=["POST"])
17 +def predict():
18 + if not request.method == "POST":
19 + return
20 +
21 + if request.files.get("image"):
22 + image_file = request.files["image"]
23 + image_bytes = image_file.read()
24 +
25 + img = Image.open(io.BytesIO(image_bytes))
26 +
27 + results = model(img, size=640) # reduce size=320 for faster inference
28 + return results.pandas().xyxy[0].to_json(orient="records")
29 +
30 +
31 +if __name__ == "__main__":
32 + parser = argparse.ArgumentParser(description="Flask API exposing YOLOv5 model")
33 + parser.add_argument("--port", default=5000, type=int, help="port number")
34 + args = parser.parse_args()
35 +
36 + model = torch.hub.load("ultralytics/yolov5", "yolov5s", force_reload=True) # force_reload to recache
37 + app.run(host="0.0.0.0", port=args.port) # debug=True causes Restarting with stat
1 +# YOLOv5 general utils
2 +
3 +import glob
4 +import logging
5 +import math
6 +import os
7 +import platform
8 +import random
9 +import re
10 +import subprocess
11 +import time
12 +from itertools import repeat
13 +from multiprocessing.pool import ThreadPool
14 +from pathlib import Path
15 +
16 +import cv2
17 +import numpy as np
18 +import pandas as pd
19 +import pkg_resources as pkg
20 +import torch
21 +import torchvision
22 +import yaml
23 +
24 +from utils.google_utils import gsutil_getsize
25 +from utils.metrics import fitness
26 +from utils.torch_utils import init_torch_seeds
27 +
28 +# Settings
29 +torch.set_printoptions(linewidth=320, precision=5, profile='long')
30 +np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
31 +pd.options.display.max_columns = 10
32 +cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
33 +os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads
34 +
35 +
36 +def set_logging(rank=-1, verbose=True):
37 + logging.basicConfig(
38 + format="%(message)s",
39 + level=logging.INFO if (verbose and rank in [-1, 0]) else logging.WARN)
40 +
41 +
42 +def init_seeds(seed=0):
43 + # Initialize random number generator (RNG) seeds
44 + random.seed(seed)
45 + np.random.seed(seed)
46 + init_torch_seeds(seed)
47 +
48 +
49 +def get_latest_run(search_dir='.'):
50 + # Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
51 + last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
52 + return max(last_list, key=os.path.getctime) if last_list else ''
53 +
54 +
55 +def is_docker():
56 + # Is environment a Docker container?
57 + return Path('/workspace').exists() # or Path('/.dockerenv').exists()
58 +
59 +
60 +def is_colab():
61 + # Is environment a Google Colab instance?
62 + try:
63 + import google.colab
64 + return True
65 + except Exception as e:
66 + return False
67 +
68 +
69 +def is_pip():
70 + # Is file in a pip package?
71 + return 'site-packages' in Path(__file__).absolute().parts
72 +
73 +
74 +def emojis(str=''):
75 + # Return platform-dependent emoji-safe version of string
76 + return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
77 +
78 +
79 +def file_size(file):
80 + # Return file size in MB
81 + return Path(file).stat().st_size / 1e6
82 +
83 +
84 +def check_online():
85 + # Check internet connectivity
86 + import socket
87 + try:
88 + socket.create_connection(("1.1.1.1", 443), 5) # check host accesability
89 + return True
90 + except OSError:
91 + return False
92 +
93 +
94 +def check_git_status():
95 + # Recommend 'git pull' if code is out of date
96 + print(colorstr('github: '), end='')
97 + try:
98 + assert Path('.git').exists(), 'skipping check (not a git repository)'
99 + assert not is_docker(), 'skipping check (Docker image)'
100 + assert check_online(), 'skipping check (offline)'
101 +
102 + cmd = 'git fetch && git config --get remote.origin.url'
103 + url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git') # github repo url
104 + branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
105 + n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind
106 + if n > 0:
107 + s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \
108 + f"Use 'git pull' to update or 'git clone {url}' to download latest."
109 + else:
110 + s = f'up to date with {url} ✅'
111 + print(emojis(s)) # emoji-safe
112 + except Exception as e:
113 + print(e)
114 +
115 +
116 +def check_python(minimum='3.7.0', required=True):
117 + # Check current python version vs. required python version
118 + current = platform.python_version()
119 + result = pkg.parse_version(current) >= pkg.parse_version(minimum)
120 + if required:
121 + assert result, f'Python {minimum} required by YOLOv5, but Python {current} is currently installed'
122 + return result
123 +
124 +
125 +def check_requirements(requirements='requirements.txt', exclude=()):
126 + # Check installed dependencies meet requirements (pass *.txt file or list of packages)
127 + prefix = colorstr('red', 'bold', 'requirements:')
128 + check_python() # check python version
129 + if isinstance(requirements, (str, Path)): # requirements.txt file
130 + file = Path(requirements)
131 + if not file.exists():
132 + print(f"{prefix} {file.resolve()} not found, check failed.")
133 + return
134 + requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(file.open()) if x.name not in exclude]
135 + else: # list or tuple of packages
136 + requirements = [x for x in requirements if x not in exclude]
137 +
138 + n = 0 # number of packages updates
139 + for r in requirements:
140 + try:
141 + pkg.require(r)
142 + except Exception as e: # DistributionNotFound or VersionConflict if requirements not met
143 + n += 1
144 + print(f"{prefix} {r} not found and is required by YOLOv5, attempting auto-update...")
145 + try:
146 + print(subprocess.check_output(f"pip install '{r}'", shell=True).decode())
147 + except Exception as e:
148 + print(f'{prefix} {e}')
149 +
150 + if n: # if packages updated
151 + source = file.resolve() if 'file' in locals() else requirements
152 + s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
153 + f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
154 + print(emojis(s)) # emoji-safe
155 +
156 +
157 +def check_img_size(img_size, s=32):
158 + # Verify img_size is a multiple of stride s
159 + new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
160 + if new_size != img_size:
161 + print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
162 + return new_size
163 +
164 +
165 +def check_imshow():
166 + # Check if environment supports image displays
167 + try:
168 + assert not is_docker(), 'cv2.imshow() is disabled in Docker environments'
169 + assert not is_colab(), 'cv2.imshow() is disabled in Google Colab environments'
170 + cv2.imshow('test', np.zeros((1, 1, 3)))
171 + cv2.waitKey(1)
172 + cv2.destroyAllWindows()
173 + cv2.waitKey(1)
174 + return True
175 + except Exception as e:
176 + print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
177 + return False
178 +
179 +
180 +def check_file(file):
181 + # Search/download file (if necessary) and return path
182 + file = str(file) # convert to str()
183 + if Path(file).is_file() or file == '': # exists
184 + return file
185 + elif file.startswith(('http://', 'https://')): # download
186 + url, file = file, Path(file).name
187 + print(f'Downloading {url} to {file}...')
188 + torch.hub.download_url_to_file(url, file)
189 + assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}' # check
190 + return file
191 + else: # search
192 + files = glob.glob('./**/' + file, recursive=True) # find file
193 + assert len(files), f'File not found: {file}' # assert file was found
194 + assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique
195 + return files[0] # return file
196 +
197 +
198 +def check_dataset(dict):
199 + # Download dataset if not found locally
200 + val, s = dict.get('val'), dict.get('download')
201 + if val and len(val):
202 + val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
203 + if not all(x.exists() for x in val):
204 + print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
205 + if s and len(s): # download script
206 + if s.startswith('http') and s.endswith('.zip'): # URL
207 + f = Path(s).name # filename
208 + print(f'Downloading {s} ...')
209 + torch.hub.download_url_to_file(s, f)
210 + r = os.system(f'unzip -q {f} -d ../ && rm {f}') # unzip
211 + elif s.startswith('bash '): # bash script
212 + print(f'Running {s} ...')
213 + r = os.system(s)
214 + else: # python script
215 + r = exec(s) # return None
216 + print('Dataset autodownload %s\n' % ('success' if r in (0, None) else 'failure')) # print result
217 + else:
218 + raise Exception('Dataset not found.')
219 +
220 +
221 +def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1):
222 + # Multi-threaded file download and unzip function
223 + def download_one(url, dir):
224 + # Download 1 file
225 + f = dir / Path(url).name # filename
226 + if not f.exists():
227 + print(f'Downloading {url} to {f}...')
228 + if curl:
229 + os.system(f"curl -L '{url}' -o '{f}' --retry 9 -C -") # curl download, retry and resume on fail
230 + else:
231 + torch.hub.download_url_to_file(url, f, progress=True) # torch download
232 + if unzip and f.suffix in ('.zip', '.gz'):
233 + print(f'Unzipping {f}...')
234 + if f.suffix == '.zip':
235 + s = f'unzip -qo {f} -d {dir} && rm {f}' # unzip -quiet -overwrite
236 + elif f.suffix == '.gz':
237 + s = f'tar xfz {f} --directory {f.parent}' # unzip
238 + if delete: # delete zip file after unzip
239 + s += f' && rm {f}'
240 + os.system(s)
241 +
242 + dir = Path(dir)
243 + dir.mkdir(parents=True, exist_ok=True) # make directory
244 + if threads > 1:
245 + pool = ThreadPool(threads)
246 + pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multi-threaded
247 + pool.close()
248 + pool.join()
249 + else:
250 + for u in tuple(url) if isinstance(url, str) else url:
251 + download_one(u, dir)
252 +
253 +
254 +def make_divisible(x, divisor):
255 + # Returns x evenly divisible by divisor
256 + return math.ceil(x / divisor) * divisor
257 +
258 +
259 +def clean_str(s):
260 + # Cleans a string by replacing special characters with underscore _
261 + return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
262 +
263 +
264 +def one_cycle(y1=0.0, y2=1.0, steps=100):
265 + # lambda function for sinusoidal ramp from y1 to y2
266 + return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
267 +
268 +
269 +def colorstr(*input):
270 + # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
271 + *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
272 + colors = {'black': '\033[30m', # basic colors
273 + 'red': '\033[31m',
274 + 'green': '\033[32m',
275 + 'yellow': '\033[33m',
276 + 'blue': '\033[34m',
277 + 'magenta': '\033[35m',
278 + 'cyan': '\033[36m',
279 + 'white': '\033[37m',
280 + 'bright_black': '\033[90m', # bright colors
281 + 'bright_red': '\033[91m',
282 + 'bright_green': '\033[92m',
283 + 'bright_yellow': '\033[93m',
284 + 'bright_blue': '\033[94m',
285 + 'bright_magenta': '\033[95m',
286 + 'bright_cyan': '\033[96m',
287 + 'bright_white': '\033[97m',
288 + 'end': '\033[0m', # misc
289 + 'bold': '\033[1m',
290 + 'underline': '\033[4m'}
291 + return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
292 +
293 +
294 +def labels_to_class_weights(labels, nc=80):
295 + # Get class weights (inverse frequency) from training labels
296 + if labels[0] is None: # no labels loaded
297 + return torch.Tensor()
298 +
299 + labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
300 + classes = labels[:, 0].astype(np.int) # labels = [class xywh]
301 + weights = np.bincount(classes, minlength=nc) # occurrences per class
302 +
303 + # Prepend gridpoint count (for uCE training)
304 + # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
305 + # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
306 +
307 + weights[weights == 0] = 1 # replace empty bins with 1
308 + weights = 1 / weights # number of targets per class
309 + weights /= weights.sum() # normalize
310 + return torch.from_numpy(weights)
311 +
312 +
313 +def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
314 + # Produces image weights based on class_weights and image contents
315 + class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels])
316 + image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
317 + # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
318 + return image_weights
319 +
320 +
321 +def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
322 + # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
323 + # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
324 + # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
325 + # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
326 + # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
327 + x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
328 + 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
329 + 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
330 + return x
331 +
332 +
333 +def xyxy2xywh(x):
334 + # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
335 + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
336 + y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
337 + y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
338 + y[:, 2] = x[:, 2] - x[:, 0] # width
339 + y[:, 3] = x[:, 3] - x[:, 1] # height
340 + return y
341 +
342 +
343 +def xywh2xyxy(x):
344 + # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
345 + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
346 + y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
347 + y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
348 + y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
349 + y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
350 + return y
351 +
352 +
353 +def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
354 + # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
355 + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
356 + y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
357 + y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
358 + y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
359 + y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
360 + return y
361 +
362 +
363 +def xyn2xy(x, w=640, h=640, padw=0, padh=0):
364 + # Convert normalized segments into pixel segments, shape (n,2)
365 + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
366 + y[:, 0] = w * x[:, 0] + padw # top left x
367 + y[:, 1] = h * x[:, 1] + padh # top left y
368 + return y
369 +
370 +
371 +def segment2box(segment, width=640, height=640):
372 + # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
373 + x, y = segment.T # segment xy
374 + inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
375 + x, y, = x[inside], y[inside]
376 + return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy
377 +
378 +
379 +def segments2boxes(segments):
380 + # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
381 + boxes = []
382 + for s in segments:
383 + x, y = s.T # segment xy
384 + boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
385 + return xyxy2xywh(np.array(boxes)) # cls, xywh
386 +
387 +
388 +def resample_segments(segments, n=1000):
389 + # Up-sample an (n,2) segment
390 + for i, s in enumerate(segments):
391 + x = np.linspace(0, len(s) - 1, n)
392 + xp = np.arange(len(s))
393 + segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
394 + return segments
395 +
396 +
397 +def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
398 + # Rescale coords (xyxy) from img1_shape to img0_shape
399 + if ratio_pad is None: # calculate from img0_shape
400 + gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
401 + pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
402 + else:
403 + gain = ratio_pad[0][0]
404 + pad = ratio_pad[1]
405 +
406 + coords[:, [0, 2]] -= pad[0] # x padding
407 + coords[:, [1, 3]] -= pad[1] # y padding
408 + coords[:, :4] /= gain
409 + clip_coords(coords, img0_shape)
410 + return coords
411 +
412 +
413 +def clip_coords(boxes, img_shape):
414 + # Clip bounding xyxy bounding boxes to image shape (height, width)
415 + boxes[:, 0].clamp_(0, img_shape[1]) # x1
416 + boxes[:, 1].clamp_(0, img_shape[0]) # y1
417 + boxes[:, 2].clamp_(0, img_shape[1]) # x2
418 + boxes[:, 3].clamp_(0, img_shape[0]) # y2
419 +
420 +
421 +def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
422 + # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
423 + box2 = box2.T
424 +
425 + # Get the coordinates of bounding boxes
426 + if x1y1x2y2: # x1, y1, x2, y2 = box1
427 + b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
428 + b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
429 + else: # transform from xywh to xyxy
430 + b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
431 + b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
432 + b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
433 + b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
434 +
435 + # Intersection area
436 + inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
437 + (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
438 +
439 + # Union Area
440 + w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
441 + w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
442 + union = w1 * h1 + w2 * h2 - inter + eps
443 +
444 + iou = inter / union
445 + if GIoU or DIoU or CIoU:
446 + cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
447 + ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
448 + if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
449 + c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
450 + rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
451 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
452 + if DIoU:
453 + return iou - rho2 / c2 # DIoU
454 + elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
455 + v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
456 + with torch.no_grad():
457 + alpha = v / (v - iou + (1 + eps))
458 + return iou - (rho2 / c2 + v * alpha) # CIoU
459 + else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
460 + c_area = cw * ch + eps # convex area
461 + return iou - (c_area - union) / c_area # GIoU
462 + else:
463 + return iou # IoU
464 +
465 +
466 +def box_iou(box1, box2):
467 + # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
468 + """
469 + Return intersection-over-union (Jaccard index) of boxes.
470 + Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
471 + Arguments:
472 + box1 (Tensor[N, 4])
473 + box2 (Tensor[M, 4])
474 + Returns:
475 + iou (Tensor[N, M]): the NxM matrix containing the pairwise
476 + IoU values for every element in boxes1 and boxes2
477 + """
478 +
479 + def box_area(box):
480 + # box = 4xn
481 + return (box[2] - box[0]) * (box[3] - box[1])
482 +
483 + area1 = box_area(box1.T)
484 + area2 = box_area(box2.T)
485 +
486 + # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
487 + inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
488 + return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
489 +
490 +
491 +def wh_iou(wh1, wh2):
492 + # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
493 + wh1 = wh1[:, None] # [N,1,2]
494 + wh2 = wh2[None] # [1,M,2]
495 + inter = torch.min(wh1, wh2).prod(2) # [N,M]
496 + return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
497 +
498 +
499 +def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
500 + labels=(), max_det=300):
501 + """Runs Non-Maximum Suppression (NMS) on inference results
502 +
503 + Returns:
504 + list of detections, on (n,6) tensor per image [xyxy, conf, cls]
505 + """
506 +
507 + nc = prediction.shape[2] - 5 # number of classes
508 + xc = prediction[..., 4] > conf_thres # candidates
509 +
510 + # Checks
511 + assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
512 + assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
513 +
514 + # Settings
515 + min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
516 + max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
517 + time_limit = 10.0 # seconds to quit after
518 + redundant = True # require redundant detections
519 + multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
520 + merge = False # use merge-NMS
521 +
522 + t = time.time()
523 + output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
524 + for xi, x in enumerate(prediction): # image index, image inference
525 + # Apply constraints
526 + # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
527 + x = x[xc[xi]] # confidence
528 +
529 + # Cat apriori labels if autolabelling
530 + if labels and len(labels[xi]):
531 + l = labels[xi]
532 + v = torch.zeros((len(l), nc + 5), device=x.device)
533 + v[:, :4] = l[:, 1:5] # box
534 + v[:, 4] = 1.0 # conf
535 + v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
536 + x = torch.cat((x, v), 0)
537 +
538 + # If none remain process next image
539 + if not x.shape[0]:
540 + continue
541 +
542 + # Compute conf
543 + x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
544 +
545 + # Box (center x, center y, width, height) to (x1, y1, x2, y2)
546 + box = xywh2xyxy(x[:, :4])
547 +
548 + # Detections matrix nx6 (xyxy, conf, cls)
549 + if multi_label:
550 + i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
551 + x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
552 + else: # best class only
553 + conf, j = x[:, 5:].max(1, keepdim=True)
554 + x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
555 +
556 + # Filter by class
557 + if classes is not None:
558 + x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
559 +
560 + # Apply finite constraint
561 + # if not torch.isfinite(x).all():
562 + # x = x[torch.isfinite(x).all(1)]
563 +
564 + # Check shape
565 + n = x.shape[0] # number of boxes
566 + if not n: # no boxes
567 + continue
568 + elif n > max_nms: # excess boxes
569 + x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
570 +
571 + # Batched NMS
572 + c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
573 + boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
574 + i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
575 + if i.shape[0] > max_det: # limit detections
576 + i = i[:max_det]
577 + if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
578 + # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
579 + iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
580 + weights = iou * scores[None] # box weights
581 + x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
582 + if redundant:
583 + i = i[iou.sum(1) > 1] # require redundancy
584 +
585 + output[xi] = x[i]
586 + if (time.time() - t) > time_limit:
587 + print(f'WARNING: NMS time limit {time_limit}s exceeded')
588 + break # time limit exceeded
589 +
590 + return output
591 +
592 +
593 +def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
594 + # Strip optimizer from 'f' to finalize training, optionally save as 's'
595 + x = torch.load(f, map_location=torch.device('cpu'))
596 + if x.get('ema'):
597 + x['model'] = x['ema'] # replace model with ema
598 + for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates': # keys
599 + x[k] = None
600 + x['epoch'] = -1
601 + x['model'].half() # to FP16
602 + for p in x['model'].parameters():
603 + p.requires_grad = False
604 + torch.save(x, s or f)
605 + mb = os.path.getsize(s or f) / 1E6 # filesize
606 + print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")
607 +
608 +
609 +def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
610 + # Print mutation results to evolve.txt (for use with train.py --evolve)
611 + a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
612 + b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
613 + c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
614 + print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
615 +
616 + if bucket:
617 + url = 'gs://%s/evolve.txt' % bucket
618 + if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
619 + os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local
620 +
621 + with open('evolve.txt', 'a') as f: # append result
622 + f.write(c + b + '\n')
623 + x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
624 + x = x[np.argsort(-fitness(x))] # sort
625 + np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
626 +
627 + # Save yaml
628 + for i, k in enumerate(hyp.keys()):
629 + hyp[k] = float(x[0, i + 7])
630 + with open(yaml_file, 'w') as f:
631 + results = tuple(x[0, :7])
632 + c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
633 + f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
634 + yaml.safe_dump(hyp, f, sort_keys=False)
635 +
636 + if bucket:
637 + os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload
638 +
639 +
640 +def apply_classifier(x, model, img, im0):
641 + # Apply a second stage classifier to yolo outputs
642 + im0 = [im0] if isinstance(im0, np.ndarray) else im0
643 + for i, d in enumerate(x): # per image
644 + if d is not None and len(d):
645 + d = d.clone()
646 +
647 + # Reshape and pad cutouts
648 + b = xyxy2xywh(d[:, :4]) # boxes
649 + b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
650 + b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
651 + d[:, :4] = xywh2xyxy(b).long()
652 +
653 + # Rescale boxes from img_size to im0 size
654 + scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
655 +
656 + # Classes
657 + pred_cls1 = d[:, 5].long()
658 + ims = []
659 + for j, a in enumerate(d): # per item
660 + cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
661 + im = cv2.resize(cutout, (224, 224)) # BGR
662 + # cv2.imwrite('test%i.jpg' % j, cutout)
663 +
664 + im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
665 + im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
666 + im /= 255.0 # 0 - 255 to 0.0 - 1.0
667 + ims.append(im)
668 +
669 + pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
670 + x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
671 +
672 + return x
673 +
674 +
675 +def save_one_box(xyxy, im, file='image.jpg', gain=1.02, pad=10, square=False, BGR=False, save=True):
676 + # Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop
677 + xyxy = torch.tensor(xyxy).view(-1, 4)
678 + b = xyxy2xywh(xyxy) # boxes
679 + if square:
680 + b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
681 + b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
682 + xyxy = xywh2xyxy(b).long()
683 + clip_coords(xyxy, im.shape)
684 + crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
685 + if save:
686 + cv2.imwrite(str(increment_path(file, mkdir=True).with_suffix('.jpg')), crop)
687 + return crop
688 +
689 +
690 +def increment_path(path, exist_ok=False, sep='', mkdir=False):
691 + # Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
692 + path = Path(path) # os-agnostic
693 + if path.exists() and not exist_ok:
694 + suffix = path.suffix
695 + path = path.with_suffix('')
696 + dirs = glob.glob(f"{path}{sep}*") # similar paths
697 + matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
698 + i = [int(m.groups()[0]) for m in matches if m] # indices
699 + n = max(i) + 1 if i else 2 # increment number
700 + path = Path(f"{path}{sep}{n}{suffix}") # update path
701 + dir = path if path.suffix == '' else path.parent # directory
702 + if not dir.exists() and mkdir:
703 + dir.mkdir(parents=True, exist_ok=True) # make directory
704 + return path
1 +FROM gcr.io/google-appengine/python
2 +
3 +# Create a virtualenv for dependencies. This isolates these packages from
4 +# system-level packages.
5 +# Use -p python3 or -p python3.7 to select python version. Default is version 2.
6 +RUN virtualenv /env -p python3
7 +
8 +# Setting these environment variables are the same as running
9 +# source /env/bin/activate.
10 +ENV VIRTUAL_ENV /env
11 +ENV PATH /env/bin:$PATH
12 +
13 +RUN apt-get update && apt-get install -y python-opencv
14 +
15 +# Copy the application's requirements.txt and run pip to install all
16 +# dependencies into the virtualenv.
17 +ADD requirements.txt /app/requirements.txt
18 +RUN pip install -r /app/requirements.txt
19 +
20 +# Add the application source code.
21 +ADD . /app
22 +
23 +# Run a WSGI server to serve the application. gunicorn must be declared as
24 +# a dependency in requirements.txt.
25 +CMD gunicorn -b :$PORT main:app
1 +# add these requirements in your app on top of the existing ones
2 +pip==18.1
3 +Flask==1.0.2
4 +gunicorn==19.9.0
1 +runtime: custom
2 +env: flex
3 +
4 +service: yolov5app
5 +
6 +liveness_check:
7 + initial_delay_sec: 600
8 +
9 +manual_scaling:
10 + instances: 1
11 +resources:
12 + cpu: 1
13 + memory_gb: 4
14 + disk_size_gb: 20
...\ No newline at end of file ...\ No newline at end of file
1 +# Google utils: https://cloud.google.com/storage/docs/reference/libraries
2 +
3 +import os
4 +import platform
5 +import subprocess
6 +import time
7 +from pathlib import Path
8 +
9 +import requests
10 +import torch
11 +
12 +
13 +def gsutil_getsize(url=''):
14 + # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
15 + s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
16 + return eval(s.split(' ')[0]) if len(s) else 0 # bytes
17 +
18 +
19 +def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''):
20 + # Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes
21 + file = Path(file)
22 + try: # GitHub
23 + print(f'Downloading {url} to {file}...')
24 + torch.hub.download_url_to_file(url, str(file))
25 + assert file.exists() and file.stat().st_size > min_bytes # check
26 + except Exception as e: # GCP
27 + file.unlink(missing_ok=True) # remove partial downloads
28 + print(f'Download error: {e}\nRe-attempting {url2 or url} to {file}...')
29 + os.system(f"curl -L '{url2 or url}' -o '{file}' --retry 3 -C -") # curl download, retry and resume on fail
30 + finally:
31 + if not file.exists() or file.stat().st_size < min_bytes: # check
32 + file.unlink(missing_ok=True) # remove partial downloads
33 + print(f'ERROR: Download failure: {error_msg or url}')
34 + print('')
35 +
36 +
37 +def attempt_download(file, repo='ultralytics/yolov5'):
38 + # Attempt file download if does not exist
39 + file = Path(str(file).strip().replace("'", ''))
40 +
41 + if not file.exists():
42 + # URL specified
43 + name = file.name
44 + if str(file).startswith(('http:/', 'https:/')): # download
45 + url = str(file).replace(':/', '://') # Pathlib turns :// -> :/
46 + safe_download(file=name, url=url, min_bytes=1E5)
47 + return name
48 +
49 + # GitHub assets
50 + file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required)
51 + try:
52 + response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api
53 + assets = [x['name'] for x in response['assets']] # release assets, i.e. ['yolov5s.pt', 'yolov5m.pt', ...]
54 + tag = response['tag_name'] # i.e. 'v1.0'
55 + except: # fallback plan
56 + assets = ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt',
57 + 'yolov5s6.pt', 'yolov5m6.pt', 'yolov5l6.pt', 'yolov5x6.pt']
58 + try:
59 + tag = subprocess.check_output('git tag', shell=True, stderr=subprocess.STDOUT).decode().split()[-1]
60 + except:
61 + tag = 'v5.0' # current release
62 +
63 + if name in assets:
64 + safe_download(file,
65 + url=f'https://github.com/{repo}/releases/download/{tag}/{name}',
66 + # url2=f'https://storage.googleapis.com/{repo}/ckpt/{name}', # backup url (optional)
67 + min_bytes=1E5,
68 + error_msg=f'{file} missing, try downloading from https://github.com/{repo}/releases/')
69 +
70 + return str(file)
71 +
72 +
73 +def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'):
74 + # Downloads a file from Google Drive. from yolov5.utils.google_utils import *; gdrive_download()
75 + t = time.time()
76 + file = Path(file)
77 + cookie = Path('cookie') # gdrive cookie
78 + print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
79 + file.unlink(missing_ok=True) # remove existing file
80 + cookie.unlink(missing_ok=True) # remove existing cookie
81 +
82 + # Attempt file download
83 + out = "NUL" if platform.system() == "Windows" else "/dev/null"
84 + os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
85 + if os.path.exists('cookie'): # large file
86 + s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
87 + else: # small file
88 + s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
89 + r = os.system(s) # execute, capture return
90 + cookie.unlink(missing_ok=True) # remove existing cookie
91 +
92 + # Error check
93 + if r != 0:
94 + file.unlink(missing_ok=True) # remove partial
95 + print('Download error ') # raise Exception('Download error')
96 + return r
97 +
98 + # Unzip if archive
99 + if file.suffix == '.zip':
100 + print('unzipping... ', end='')
101 + os.system(f'unzip -q {file}') # unzip
102 + file.unlink() # remove zip to free space
103 +
104 + print(f'Done ({time.time() - t:.1f}s)')
105 + return r
106 +
107 +
108 +def get_token(cookie="./cookie"):
109 + with open(cookie) as f:
110 + for line in f:
111 + if "download" in line:
112 + return line.split()[-1]
113 + return ""
114 +
115 +# def upload_blob(bucket_name, source_file_name, destination_blob_name):
116 +# # Uploads a file to a bucket
117 +# # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
118 +#
119 +# storage_client = storage.Client()
120 +# bucket = storage_client.get_bucket(bucket_name)
121 +# blob = bucket.blob(destination_blob_name)
122 +#
123 +# blob.upload_from_filename(source_file_name)
124 +#
125 +# print('File {} uploaded to {}.'.format(
126 +# source_file_name,
127 +# destination_blob_name))
128 +#
129 +#
130 +# def download_blob(bucket_name, source_blob_name, destination_file_name):
131 +# # Uploads a blob from a bucket
132 +# storage_client = storage.Client()
133 +# bucket = storage_client.get_bucket(bucket_name)
134 +# blob = bucket.blob(source_blob_name)
135 +#
136 +# blob.download_to_filename(destination_file_name)
137 +#
138 +# print('Blob {} downloaded to {}.'.format(
139 +# source_blob_name,
140 +# destination_file_name))
1 +# Loss functions
2 +
3 +import torch
4 +import torch.nn as nn
5 +
6 +from utils.general import bbox_iou
7 +from utils.torch_utils import is_parallel
8 +
9 +
10 +def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
11 + # return positive, negative label smoothing BCE targets
12 + return 1.0 - 0.5 * eps, 0.5 * eps
13 +
14 +
15 +class BCEBlurWithLogitsLoss(nn.Module):
16 + # BCEwithLogitLoss() with reduced missing label effects.
17 + def __init__(self, alpha=0.05):
18 + super(BCEBlurWithLogitsLoss, self).__init__()
19 + self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
20 + self.alpha = alpha
21 +
22 + def forward(self, pred, true):
23 + loss = self.loss_fcn(pred, true)
24 + pred = torch.sigmoid(pred) # prob from logits
25 + dx = pred - true # reduce only missing label effects
26 + # dx = (pred - true).abs() # reduce missing label and false label effects
27 + alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
28 + loss *= alpha_factor
29 + return loss.mean()
30 +
31 +
32 +class FocalLoss(nn.Module):
33 + # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
34 + def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
35 + super(FocalLoss, self).__init__()
36 + self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
37 + self.gamma = gamma
38 + self.alpha = alpha
39 + self.reduction = loss_fcn.reduction
40 + self.loss_fcn.reduction = 'none' # required to apply FL to each element
41 +
42 + def forward(self, pred, true):
43 + loss = self.loss_fcn(pred, true)
44 + # p_t = torch.exp(-loss)
45 + # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
46 +
47 + # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
48 + pred_prob = torch.sigmoid(pred) # prob from logits
49 + p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
50 + alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
51 + modulating_factor = (1.0 - p_t) ** self.gamma
52 + loss *= alpha_factor * modulating_factor
53 +
54 + if self.reduction == 'mean':
55 + return loss.mean()
56 + elif self.reduction == 'sum':
57 + return loss.sum()
58 + else: # 'none'
59 + return loss
60 +
61 +
62 +class QFocalLoss(nn.Module):
63 + # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
64 + def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
65 + super(QFocalLoss, self).__init__()
66 + self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
67 + self.gamma = gamma
68 + self.alpha = alpha
69 + self.reduction = loss_fcn.reduction
70 + self.loss_fcn.reduction = 'none' # required to apply FL to each element
71 +
72 + def forward(self, pred, true):
73 + loss = self.loss_fcn(pred, true)
74 +
75 + pred_prob = torch.sigmoid(pred) # prob from logits
76 + alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
77 + modulating_factor = torch.abs(true - pred_prob) ** self.gamma
78 + loss *= alpha_factor * modulating_factor
79 +
80 + if self.reduction == 'mean':
81 + return loss.mean()
82 + elif self.reduction == 'sum':
83 + return loss.sum()
84 + else: # 'none'
85 + return loss
86 +
87 +
88 +class ComputeLoss:
89 + # Compute losses
90 + def __init__(self, model, autobalance=False):
91 + super(ComputeLoss, self).__init__()
92 + device = next(model.parameters()).device # get model device
93 + h = model.hyp # hyperparameters
94 +
95 + # Define criteria
96 + BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
97 + BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
98 +
99 + # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
100 + self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
101 +
102 + # Focal loss
103 + g = h['fl_gamma'] # focal loss gamma
104 + if g > 0:
105 + BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
106 +
107 + det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
108 + self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
109 + self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
110 + self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
111 + for k in 'na', 'nc', 'nl', 'anchors':
112 + setattr(self, k, getattr(det, k))
113 +
114 + def __call__(self, p, targets): # predictions, targets, model
115 + device = targets.device
116 + lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
117 + tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets
118 +
119 + # Losses
120 + for i, pi in enumerate(p): # layer index, layer predictions
121 + b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
122 + tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
123 +
124 + n = b.shape[0] # number of targets
125 + if n:
126 + ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
127 +
128 + # Regression
129 + pxy = ps[:, :2].sigmoid() * 2. - 0.5
130 + pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
131 + pbox = torch.cat((pxy, pwh), 1) # predicted box
132 + iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
133 + lbox += (1.0 - iou).mean() # iou loss
134 +
135 + # Objectness
136 + tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
137 +
138 + # Classification
139 + if self.nc > 1: # cls loss (only if multiple classes)
140 + t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets
141 + t[range(n), tcls[i]] = self.cp
142 + lcls += self.BCEcls(ps[:, 5:], t) # BCE
143 +
144 + # Append targets to text file
145 + # with open('targets.txt', 'a') as file:
146 + # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
147 +
148 + obji = self.BCEobj(pi[..., 4], tobj)
149 + lobj += obji * self.balance[i] # obj loss
150 + if self.autobalance:
151 + self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
152 +
153 + if self.autobalance:
154 + self.balance = [x / self.balance[self.ssi] for x in self.balance]
155 + lbox *= self.hyp['box']
156 + lobj *= self.hyp['obj']
157 + lcls *= self.hyp['cls']
158 + bs = tobj.shape[0] # batch size
159 +
160 + loss = lbox + lobj + lcls
161 + return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
162 +
163 + def build_targets(self, p, targets):
164 + # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
165 + na, nt = self.na, targets.shape[0] # number of anchors, targets
166 + tcls, tbox, indices, anch = [], [], [], []
167 + gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
168 + ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
169 + targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
170 +
171 + g = 0.5 # bias
172 + off = torch.tensor([[0, 0],
173 + [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
174 + # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
175 + ], device=targets.device).float() * g # offsets
176 +
177 + for i in range(self.nl):
178 + anchors = self.anchors[i]
179 + gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
180 +
181 + # Match targets to anchors
182 + t = targets * gain
183 + if nt:
184 + # Matches
185 + r = t[:, :, 4:6] / anchors[:, None] # wh ratio
186 + j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
187 + # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
188 + t = t[j] # filter
189 +
190 + # Offsets
191 + gxy = t[:, 2:4] # grid xy
192 + gxi = gain[[2, 3]] - gxy # inverse
193 + j, k = ((gxy % 1. < g) & (gxy > 1.)).T
194 + l, m = ((gxi % 1. < g) & (gxi > 1.)).T
195 + j = torch.stack((torch.ones_like(j), j, k, l, m))
196 + t = t.repeat((5, 1, 1))[j]
197 + offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
198 + else:
199 + t = targets[0]
200 + offsets = 0
201 +
202 + # Define
203 + b, c = t[:, :2].long().T # image, class
204 + gxy = t[:, 2:4] # grid xy
205 + gwh = t[:, 4:6] # grid wh
206 + gij = (gxy - offsets).long()
207 + gi, gj = gij.T # grid xy indices
208 +
209 + # Append
210 + a = t[:, 6].long() # anchor indices
211 + indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
212 + tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
213 + anch.append(anchors[a]) # anchors
214 + tcls.append(c) # class
215 +
216 + return tcls, tbox, indices, anch
1 +# Model validation metrics
2 +
3 +from pathlib import Path
4 +
5 +import matplotlib.pyplot as plt
6 +import numpy as np
7 +import torch
8 +
9 +from . import general
10 +
11 +
12 +def fitness(x):
13 + # Model fitness as a weighted combination of metrics
14 + w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
15 + return (x[:, :4] * w).sum(1)
16 +
17 +
18 +def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=()):
19 + """ Compute the average precision, given the recall and precision curves.
20 + Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
21 + # Arguments
22 + tp: True positives (nparray, nx1 or nx10).
23 + conf: Objectness value from 0-1 (nparray).
24 + pred_cls: Predicted object classes (nparray).
25 + target_cls: True object classes (nparray).
26 + plot: Plot precision-recall curve at mAP@0.5
27 + save_dir: Plot save directory
28 + # Returns
29 + The average precision as computed in py-faster-rcnn.
30 + """
31 +
32 + # Sort by objectness
33 + i = np.argsort(-conf)
34 + tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
35 +
36 + # Find unique classes
37 + unique_classes = np.unique(target_cls)
38 + nc = unique_classes.shape[0] # number of classes, number of detections
39 +
40 + # Create Precision-Recall curve and compute AP for each class
41 + px, py = np.linspace(0, 1, 1000), [] # for plotting
42 + ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
43 + for ci, c in enumerate(unique_classes):
44 + i = pred_cls == c
45 + n_l = (target_cls == c).sum() # number of labels
46 + n_p = i.sum() # number of predictions
47 +
48 + if n_p == 0 or n_l == 0:
49 + continue
50 + else:
51 + # Accumulate FPs and TPs
52 + fpc = (1 - tp[i]).cumsum(0)
53 + tpc = tp[i].cumsum(0)
54 +
55 + # Recall
56 + recall = tpc / (n_l + 1e-16) # recall curve
57 + r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
58 +
59 + # Precision
60 + precision = tpc / (tpc + fpc) # precision curve
61 + p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
62 +
63 + # AP from recall-precision curve
64 + for j in range(tp.shape[1]):
65 + ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
66 + if plot and j == 0:
67 + py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
68 +
69 + # Compute F1 (harmonic mean of precision and recall)
70 + f1 = 2 * p * r / (p + r + 1e-16)
71 + if plot:
72 + plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
73 + plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
74 + plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
75 + plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
76 +
77 + i = f1.mean(0).argmax() # max F1 index
78 + return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32')
79 +
80 +
81 +def compute_ap(recall, precision):
82 + """ Compute the average precision, given the recall and precision curves
83 + # Arguments
84 + recall: The recall curve (list)
85 + precision: The precision curve (list)
86 + # Returns
87 + Average precision, precision curve, recall curve
88 + """
89 +
90 + # Append sentinel values to beginning and end
91 + mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01]))
92 + mpre = np.concatenate(([1.], precision, [0.]))
93 +
94 + # Compute the precision envelope
95 + mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
96 +
97 + # Integrate area under curve
98 + method = 'interp' # methods: 'continuous', 'interp'
99 + if method == 'interp':
100 + x = np.linspace(0, 1, 101) # 101-point interp (COCO)
101 + ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
102 + else: # 'continuous'
103 + i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
104 + ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
105 +
106 + return ap, mpre, mrec
107 +
108 +
109 +class ConfusionMatrix:
110 + # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
111 + def __init__(self, nc, conf=0.25, iou_thres=0.45):
112 + self.matrix = np.zeros((nc + 1, nc + 1))
113 + self.nc = nc # number of classes
114 + self.conf = conf
115 + self.iou_thres = iou_thres
116 +
117 + def process_batch(self, detections, labels):
118 + """
119 + Return intersection-over-union (Jaccard index) of boxes.
120 + Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
121 + Arguments:
122 + detections (Array[N, 6]), x1, y1, x2, y2, conf, class
123 + labels (Array[M, 5]), class, x1, y1, x2, y2
124 + Returns:
125 + None, updates confusion matrix accordingly
126 + """
127 + detections = detections[detections[:, 4] > self.conf]
128 + gt_classes = labels[:, 0].int()
129 + detection_classes = detections[:, 5].int()
130 + iou = general.box_iou(labels[:, 1:], detections[:, :4])
131 +
132 + x = torch.where(iou > self.iou_thres)
133 + if x[0].shape[0]:
134 + matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
135 + if x[0].shape[0] > 1:
136 + matches = matches[matches[:, 2].argsort()[::-1]]
137 + matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
138 + matches = matches[matches[:, 2].argsort()[::-1]]
139 + matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
140 + else:
141 + matches = np.zeros((0, 3))
142 +
143 + n = matches.shape[0] > 0
144 + m0, m1, _ = matches.transpose().astype(np.int16)
145 + for i, gc in enumerate(gt_classes):
146 + j = m0 == i
147 + if n and sum(j) == 1:
148 + self.matrix[detection_classes[m1[j]], gc] += 1 # correct
149 + else:
150 + self.matrix[self.nc, gc] += 1 # background FP
151 +
152 + if n:
153 + for i, dc in enumerate(detection_classes):
154 + if not any(m1 == i):
155 + self.matrix[dc, self.nc] += 1 # background FN
156 +
157 + def matrix(self):
158 + return self.matrix
159 +
160 + def plot(self, save_dir='', names=()):
161 + try:
162 + import seaborn as sn
163 +
164 + array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize
165 + array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
166 +
167 + fig = plt.figure(figsize=(12, 9), tight_layout=True)
168 + sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
169 + labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
170 + sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
171 + xticklabels=names + ['background FP'] if labels else "auto",
172 + yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
173 + fig.axes[0].set_xlabel('True')
174 + fig.axes[0].set_ylabel('Predicted')
175 + fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
176 + except Exception as e:
177 + pass
178 +
179 + def print(self):
180 + for i in range(self.nc + 1):
181 + print(' '.join(map(str, self.matrix[i])))
182 +
183 +
184 +# Plots ----------------------------------------------------------------------------------------------------------------
185 +
186 +def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
187 + # Precision-recall curve
188 + fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
189 + py = np.stack(py, axis=1)
190 +
191 + if 0 < len(names) < 21: # display per-class legend if < 21 classes
192 + for i, y in enumerate(py.T):
193 + ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
194 + else:
195 + ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
196 +
197 + ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
198 + ax.set_xlabel('Recall')
199 + ax.set_ylabel('Precision')
200 + ax.set_xlim(0, 1)
201 + ax.set_ylim(0, 1)
202 + plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
203 + fig.savefig(Path(save_dir), dpi=250)
204 +
205 +
206 +def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
207 + # Metric-confidence curve
208 + fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
209 +
210 + if 0 < len(names) < 21: # display per-class legend if < 21 classes
211 + for i, y in enumerate(py):
212 + ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
213 + else:
214 + ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
215 +
216 + y = py.mean(0)
217 + ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
218 + ax.set_xlabel(xlabel)
219 + ax.set_ylabel(ylabel)
220 + ax.set_xlim(0, 1)
221 + ax.set_ylim(0, 1)
222 + plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
223 + fig.savefig(Path(save_dir), dpi=250)
1 +# Plotting utils
2 +
3 +import glob
4 +import math
5 +import os
6 +import random
7 +from copy import copy
8 +from pathlib import Path
9 +
10 +import cv2
11 +import matplotlib
12 +import matplotlib.pyplot as plt
13 +import numpy as np
14 +import pandas as pd
15 +import seaborn as sns
16 +import torch
17 +import yaml
18 +from PIL import Image, ImageDraw, ImageFont
19 +
20 +from utils.general import xywh2xyxy, xyxy2xywh
21 +from utils.metrics import fitness
22 +
23 +# Settings
24 +matplotlib.rc('font', **{'size': 11})
25 +matplotlib.use('Agg') # for writing to files only
26 +
27 +
28 +class Colors:
29 + # Ultralytics color palette https://ultralytics.com/
30 + def __init__(self):
31 + # hex = matplotlib.colors.TABLEAU_COLORS.values()
32 + hex = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
33 + '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
34 + self.palette = [self.hex2rgb('#' + c) for c in hex]
35 + self.n = len(self.palette)
36 +
37 + def __call__(self, i, bgr=False):
38 + c = self.palette[int(i) % self.n]
39 + return (c[2], c[1], c[0]) if bgr else c
40 +
41 + @staticmethod
42 + def hex2rgb(h): # rgb order (PIL)
43 + return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
44 +
45 +
46 +colors = Colors() # create instance for 'from utils.plots import colors'
47 +
48 +
49 +def hist2d(x, y, n=100):
50 + # 2d histogram used in labels.png and evolve.png
51 + xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
52 + hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
53 + xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
54 + yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
55 + return np.log(hist[xidx, yidx])
56 +
57 +
58 +def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
59 + from scipy.signal import butter, filtfilt
60 +
61 + # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
62 + def butter_lowpass(cutoff, fs, order):
63 + nyq = 0.5 * fs
64 + normal_cutoff = cutoff / nyq
65 + return butter(order, normal_cutoff, btype='low', analog=False)
66 +
67 + b, a = butter_lowpass(cutoff, fs, order=order)
68 + return filtfilt(b, a, data) # forward-backward filter
69 +
70 +
71 +def plot_one_box(x, im, color=(128, 128, 128), label=None, line_thickness=3):
72 + # Plots one bounding box on image 'im' using OpenCV
73 + assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to plot_on_box() input image.'
74 + tl = line_thickness or round(0.002 * (im.shape[0] + im.shape[1]) / 2) + 1 # line/font thickness
75 + c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
76 + cv2.rectangle(im, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
77 + if label:
78 + tf = max(tl - 1, 1) # font thickness
79 + t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
80 + c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
81 + cv2.rectangle(im, c1, c2, color, -1, cv2.LINE_AA) # filled
82 + cv2.putText(im, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
83 +
84 +
85 +def plot_one_box_PIL(box, im, color=(128, 128, 128), label=None, line_thickness=None):
86 + # Plots one bounding box on image 'im' using PIL
87 + im = Image.fromarray(im)
88 + draw = ImageDraw.Draw(im)
89 + line_thickness = line_thickness or max(int(min(im.size) / 200), 2)
90 + draw.rectangle(box, width=line_thickness, outline=color) # plot
91 + if label:
92 + font = ImageFont.truetype("Arial.ttf", size=max(round(max(im.size) / 40), 12))
93 + txt_width, txt_height = font.getsize(label)
94 + draw.rectangle([box[0], box[1] - txt_height + 4, box[0] + txt_width, box[1]], fill=color)
95 + draw.text((box[0], box[1] - txt_height + 1), label, fill=(255, 255, 255), font=font)
96 + return np.asarray(im)
97 +
98 +
99 +def plot_wh_methods(): # from utils.plots import *; plot_wh_methods()
100 + # Compares the two methods for width-height anchor multiplication
101 + # https://github.com/ultralytics/yolov3/issues/168
102 + x = np.arange(-4.0, 4.0, .1)
103 + ya = np.exp(x)
104 + yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
105 +
106 + fig = plt.figure(figsize=(6, 3), tight_layout=True)
107 + plt.plot(x, ya, '.-', label='YOLOv3')
108 + plt.plot(x, yb ** 2, '.-', label='YOLOv5 ^2')
109 + plt.plot(x, yb ** 1.6, '.-', label='YOLOv5 ^1.6')
110 + plt.xlim(left=-4, right=4)
111 + plt.ylim(bottom=0, top=6)
112 + plt.xlabel('input')
113 + plt.ylabel('output')
114 + plt.grid()
115 + plt.legend()
116 + fig.savefig('comparison.png', dpi=200)
117 +
118 +
119 +def output_to_target(output):
120 + # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
121 + targets = []
122 + for i, o in enumerate(output):
123 + for *box, conf, cls in o.cpu().numpy():
124 + targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
125 + return np.array(targets)
126 +
127 +
128 +def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
129 + # Plot image grid with labels
130 +
131 + if isinstance(images, torch.Tensor):
132 + images = images.cpu().float().numpy()
133 + if isinstance(targets, torch.Tensor):
134 + targets = targets.cpu().numpy()
135 +
136 + # un-normalise
137 + if np.max(images[0]) <= 1:
138 + images *= 255
139 +
140 + tl = 3 # line thickness
141 + tf = max(tl - 1, 1) # font thickness
142 + bs, _, h, w = images.shape # batch size, _, height, width
143 + bs = min(bs, max_subplots) # limit plot images
144 + ns = np.ceil(bs ** 0.5) # number of subplots (square)
145 +
146 + # Check if we should resize
147 + scale_factor = max_size / max(h, w)
148 + if scale_factor < 1:
149 + h = math.ceil(scale_factor * h)
150 + w = math.ceil(scale_factor * w)
151 +
152 + mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
153 + for i, img in enumerate(images):
154 + if i == max_subplots: # if last batch has fewer images than we expect
155 + break
156 +
157 + block_x = int(w * (i // ns))
158 + block_y = int(h * (i % ns))
159 +
160 + img = img.transpose(1, 2, 0)
161 + if scale_factor < 1:
162 + img = cv2.resize(img, (w, h))
163 +
164 + mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
165 + if len(targets) > 0:
166 + image_targets = targets[targets[:, 0] == i]
167 + boxes = xywh2xyxy(image_targets[:, 2:6]).T
168 + classes = image_targets[:, 1].astype('int')
169 + labels = image_targets.shape[1] == 6 # labels if no conf column
170 + conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred)
171 +
172 + if boxes.shape[1]:
173 + if boxes.max() <= 1.01: # if normalized with tolerance 0.01
174 + boxes[[0, 2]] *= w # scale to pixels
175 + boxes[[1, 3]] *= h
176 + elif scale_factor < 1: # absolute coords need scale if image scales
177 + boxes *= scale_factor
178 + boxes[[0, 2]] += block_x
179 + boxes[[1, 3]] += block_y
180 + for j, box in enumerate(boxes.T):
181 + cls = int(classes[j])
182 + color = colors(cls)
183 + cls = names[cls] if names else cls
184 + if labels or conf[j] > 0.25: # 0.25 conf thresh
185 + label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
186 + plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)
187 +
188 + # Draw image filename labels
189 + if paths:
190 + label = Path(paths[i]).name[:40] # trim to 40 char
191 + t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
192 + cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
193 + lineType=cv2.LINE_AA)
194 +
195 + # Image border
196 + cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
197 +
198 + if fname:
199 + r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
200 + mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
201 + # cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
202 + Image.fromarray(mosaic).save(fname) # PIL save
203 + return mosaic
204 +
205 +
206 +def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
207 + # Plot LR simulating training for full epochs
208 + optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
209 + y = []
210 + for _ in range(epochs):
211 + scheduler.step()
212 + y.append(optimizer.param_groups[0]['lr'])
213 + plt.plot(y, '.-', label='LR')
214 + plt.xlabel('epoch')
215 + plt.ylabel('LR')
216 + plt.grid()
217 + plt.xlim(0, epochs)
218 + plt.ylim(0)
219 + plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
220 + plt.close()
221 +
222 +
223 +def plot_test_txt(): # from utils.plots import *; plot_test()
224 + # Plot test.txt histograms
225 + x = np.loadtxt('test.txt', dtype=np.float32)
226 + box = xyxy2xywh(x[:, :4])
227 + cx, cy = box[:, 0], box[:, 1]
228 +
229 + fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
230 + ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
231 + ax.set_aspect('equal')
232 + plt.savefig('hist2d.png', dpi=300)
233 +
234 + fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
235 + ax[0].hist(cx, bins=600)
236 + ax[1].hist(cy, bins=600)
237 + plt.savefig('hist1d.png', dpi=200)
238 +
239 +
240 +def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
241 + # Plot targets.txt histograms
242 + x = np.loadtxt('targets.txt', dtype=np.float32).T
243 + s = ['x targets', 'y targets', 'width targets', 'height targets']
244 + fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
245 + ax = ax.ravel()
246 + for i in range(4):
247 + ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
248 + ax[i].legend()
249 + ax[i].set_title(s[i])
250 + plt.savefig('targets.jpg', dpi=200)
251 +
252 +
253 +def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_txt()
254 + # Plot study.txt generated by test.py
255 + fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
256 + # ax = ax.ravel()
257 +
258 + fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
259 + # for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]:
260 + for f in sorted(Path(path).glob('study*.txt')):
261 + y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
262 + x = np.arange(y.shape[1]) if x is None else np.array(x)
263 + s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
264 + # for i in range(7):
265 + # ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
266 + # ax[i].set_title(s[i])
267 +
268 + j = y[3].argmax() + 1
269 + ax2.plot(y[6, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8,
270 + label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
271 +
272 + ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
273 + 'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
274 +
275 + ax2.grid(alpha=0.2)
276 + ax2.set_yticks(np.arange(20, 60, 5))
277 + ax2.set_xlim(0, 57)
278 + ax2.set_ylim(30, 55)
279 + ax2.set_xlabel('GPU Speed (ms/img)')
280 + ax2.set_ylabel('COCO AP val')
281 + ax2.legend(loc='lower right')
282 + plt.savefig(str(Path(path).name) + '.png', dpi=300)
283 +
284 +
285 +def plot_labels(labels, names=(), save_dir=Path(''), loggers=None):
286 + # plot dataset labels
287 + print('Plotting labels... ')
288 + c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
289 + nc = int(c.max() + 1) # number of classes
290 + x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
291 +
292 + # seaborn correlogram
293 + sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
294 + plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
295 + plt.close()
296 +
297 + # matplotlib labels
298 + matplotlib.use('svg') # faster
299 + ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
300 + y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
301 + # [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # update colors bug #3195
302 + ax[0].set_ylabel('instances')
303 + if 0 < len(names) < 30:
304 + ax[0].set_xticks(range(len(names)))
305 + ax[0].set_xticklabels(names, rotation=90, fontsize=10)
306 + else:
307 + ax[0].set_xlabel('classes')
308 + sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
309 + sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
310 +
311 + # rectangles
312 + labels[:, 1:3] = 0.5 # center
313 + labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
314 + img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
315 + for cls, *box in labels[:1000]:
316 + ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot
317 + ax[1].imshow(img)
318 + ax[1].axis('off')
319 +
320 + for a in [0, 1, 2, 3]:
321 + for s in ['top', 'right', 'left', 'bottom']:
322 + ax[a].spines[s].set_visible(False)
323 +
324 + plt.savefig(save_dir / 'labels.jpg', dpi=200)
325 + matplotlib.use('Agg')
326 + plt.close()
327 +
328 + # loggers
329 + for k, v in loggers.items() or {}:
330 + if k == 'wandb' and v:
331 + v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]}, commit=False)
332 +
333 +
334 +def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution()
335 + # Plot hyperparameter evolution results in evolve.txt
336 + with open(yaml_file) as f:
337 + hyp = yaml.safe_load(f)
338 + x = np.loadtxt('evolve.txt', ndmin=2)
339 + f = fitness(x)
340 + # weights = (f - f.min()) ** 2 # for weighted results
341 + plt.figure(figsize=(10, 12), tight_layout=True)
342 + matplotlib.rc('font', **{'size': 8})
343 + for i, (k, v) in enumerate(hyp.items()):
344 + y = x[:, i + 7]
345 + # mu = (y * weights).sum() / weights.sum() # best weighted result
346 + mu = y[f.argmax()] # best single result
347 + plt.subplot(6, 5, i + 1)
348 + plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
349 + plt.plot(mu, f.max(), 'k+', markersize=15)
350 + plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
351 + if i % 5 != 0:
352 + plt.yticks([])
353 + print('%15s: %.3g' % (k, mu))
354 + plt.savefig('evolve.png', dpi=200)
355 + print('\nPlot saved as evolve.png')
356 +
357 +
358 +def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
359 + # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
360 + ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
361 + s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
362 + files = list(Path(save_dir).glob('frames*.txt'))
363 + for fi, f in enumerate(files):
364 + try:
365 + results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
366 + n = results.shape[1] # number of rows
367 + x = np.arange(start, min(stop, n) if stop else n)
368 + results = results[:, x]
369 + t = (results[0] - results[0].min()) # set t0=0s
370 + results[0] = x
371 + for i, a in enumerate(ax):
372 + if i < len(results):
373 + label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
374 + a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
375 + a.set_title(s[i])
376 + a.set_xlabel('time (s)')
377 + # if fi == len(files) - 1:
378 + # a.set_ylim(bottom=0)
379 + for side in ['top', 'right']:
380 + a.spines[side].set_visible(False)
381 + else:
382 + a.remove()
383 + except Exception as e:
384 + print('Warning: Plotting error for %s; %s' % (f, e))
385 +
386 + ax[1].legend()
387 + plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
388 +
389 +
390 +def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay()
391 + # Plot training 'results*.txt', overlaying train and val losses
392 + s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
393 + t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
394 + for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
395 + results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
396 + n = results.shape[1] # number of rows
397 + x = range(start, min(stop, n) if stop else n)
398 + fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
399 + ax = ax.ravel()
400 + for i in range(5):
401 + for j in [i, i + 5]:
402 + y = results[j, x]
403 + ax[i].plot(x, y, marker='.', label=s[j])
404 + # y_smooth = butter_lowpass_filtfilt(y)
405 + # ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
406 +
407 + ax[i].set_title(t[i])
408 + ax[i].legend()
409 + ax[i].set_ylabel(f) if i == 0 else None # add filename
410 + fig.savefig(f.replace('.txt', '.png'), dpi=200)
411 +
412 +
413 +def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
414 + # Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp')
415 + fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
416 + ax = ax.ravel()
417 + s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
418 + 'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
419 + if bucket:
420 + # files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
421 + files = ['results%g.txt' % x for x in id]
422 + c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id)
423 + os.system(c)
424 + else:
425 + files = list(Path(save_dir).glob('results*.txt'))
426 + assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
427 + for fi, f in enumerate(files):
428 + try:
429 + results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
430 + n = results.shape[1] # number of rows
431 + x = range(start, min(stop, n) if stop else n)
432 + for i in range(10):
433 + y = results[i, x]
434 + if i in [0, 1, 2, 5, 6, 7]:
435 + y[y == 0] = np.nan # don't show zero loss values
436 + # y /= y[0] # normalize
437 + label = labels[fi] if len(labels) else f.stem
438 + ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
439 + ax[i].set_title(s[i])
440 + # if i in [5, 6, 7]: # share train and val loss y axes
441 + # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
442 + except Exception as e:
443 + print('Warning: Plotting error for %s; %s' % (f, e))
444 +
445 + ax[1].legend()
446 + fig.savefig(Path(save_dir) / 'results.png', dpi=200)
1 +# YOLOv5 PyTorch utils
2 +
3 +import datetime
4 +import logging
5 +import math
6 +import os
7 +import platform
8 +import subprocess
9 +import time
10 +from contextlib import contextmanager
11 +from copy import deepcopy
12 +from pathlib import Path
13 +
14 +import torch
15 +import torch.backends.cudnn as cudnn
16 +import torch.nn as nn
17 +import torch.nn.functional as F
18 +import torchvision
19 +
20 +try:
21 + import thop # for FLOPS computation
22 +except ImportError:
23 + thop = None
24 +logger = logging.getLogger(__name__)
25 +
26 +
27 +@contextmanager
28 +def torch_distributed_zero_first(local_rank: int):
29 + """
30 + Decorator to make all processes in distributed training wait for each local_master to do something.
31 + """
32 + if local_rank not in [-1, 0]:
33 + torch.distributed.barrier()
34 + yield
35 + if local_rank == 0:
36 + torch.distributed.barrier()
37 +
38 +
39 +def init_torch_seeds(seed=0):
40 + # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
41 + torch.manual_seed(seed)
42 + if seed == 0: # slower, more reproducible
43 + cudnn.benchmark, cudnn.deterministic = False, True
44 + else: # faster, less reproducible
45 + cudnn.benchmark, cudnn.deterministic = True, False
46 +
47 +
48 +def date_modified(path=__file__):
49 + # return human-readable file modification date, i.e. '2021-3-26'
50 + t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime)
51 + return f'{t.year}-{t.month}-{t.day}'
52 +
53 +
54 +def git_describe(path=Path(__file__).parent): # path must be a directory
55 + # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
56 + s = f'git -C {path} describe --tags --long --always'
57 + try:
58 + return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
59 + except subprocess.CalledProcessError as e:
60 + return '' # not a git repository
61 +
62 +
63 +def select_device(device='', batch_size=None):
64 + # device = 'cpu' or '0' or '0,1,2,3'
65 + s = f'YOLOv5 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string
66 + cpu = device.lower() == 'cpu'
67 + if cpu:
68 + os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
69 + elif device: # non-cpu device requested
70 + os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
71 + assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
72 +
73 + cuda = not cpu and torch.cuda.is_available()
74 + if cuda:
75 + devices = device.split(',') if device else range(torch.cuda.device_count()) # i.e. 0,1,6,7
76 + n = len(devices) # device count
77 + if n > 1 and batch_size: # check batch_size is divisible by device_count
78 + assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
79 + space = ' ' * len(s)
80 + for i, d in enumerate(devices):
81 + p = torch.cuda.get_device_properties(i)
82 + s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
83 + else:
84 + s += 'CPU\n'
85 +
86 + logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
87 + return torch.device('cuda:0' if cuda else 'cpu')
88 +
89 +
90 +def time_synchronized():
91 + # pytorch-accurate time
92 + if torch.cuda.is_available():
93 + torch.cuda.synchronize()
94 + return time.time()
95 +
96 +
97 +def profile(x, ops, n=100, device=None):
98 + # profile a pytorch module or list of modules. Example usage:
99 + # x = torch.randn(16, 3, 640, 640) # input
100 + # m1 = lambda x: x * torch.sigmoid(x)
101 + # m2 = nn.SiLU()
102 + # profile(x, [m1, m2], n=100) # profile speed over 100 iterations
103 +
104 + device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
105 + x = x.to(device)
106 + x.requires_grad = True
107 + print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '')
108 + print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}")
109 + for m in ops if isinstance(ops, list) else [ops]:
110 + m = m.to(device) if hasattr(m, 'to') else m # device
111 + m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type
112 + dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward
113 + try:
114 + flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS
115 + except:
116 + flops = 0
117 +
118 + for _ in range(n):
119 + t[0] = time_synchronized()
120 + y = m(x)
121 + t[1] = time_synchronized()
122 + try:
123 + _ = y.sum().backward()
124 + t[2] = time_synchronized()
125 + except: # no backward method
126 + t[2] = float('nan')
127 + dtf += (t[1] - t[0]) * 1000 / n # ms per op forward
128 + dtb += (t[2] - t[1]) * 1000 / n # ms per op backward
129 +
130 + s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
131 + s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
132 + p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
133 + print(f'{p:12}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}')
134 +
135 +
136 +def is_parallel(model):
137 + # Returns True if model is of type DP or DDP
138 + return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
139 +
140 +
141 +def de_parallel(model):
142 + # De-parallelize a model: returns single-GPU model if model is of type DP or DDP
143 + return model.module if is_parallel(model) else model
144 +
145 +
146 +def intersect_dicts(da, db, exclude=()):
147 + # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
148 + return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
149 +
150 +
151 +def initialize_weights(model):
152 + for m in model.modules():
153 + t = type(m)
154 + if t is nn.Conv2d:
155 + pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
156 + elif t is nn.BatchNorm2d:
157 + m.eps = 1e-3
158 + m.momentum = 0.03
159 + elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
160 + m.inplace = True
161 +
162 +
163 +def find_modules(model, mclass=nn.Conv2d):
164 + # Finds layer indices matching module class 'mclass'
165 + return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
166 +
167 +
168 +def sparsity(model):
169 + # Return global model sparsity
170 + a, b = 0., 0.
171 + for p in model.parameters():
172 + a += p.numel()
173 + b += (p == 0).sum()
174 + return b / a
175 +
176 +
177 +def prune(model, amount=0.3):
178 + # Prune model to requested global sparsity
179 + import torch.nn.utils.prune as prune
180 + print('Pruning model... ', end='')
181 + for name, m in model.named_modules():
182 + if isinstance(m, nn.Conv2d):
183 + prune.l1_unstructured(m, name='weight', amount=amount) # prune
184 + prune.remove(m, 'weight') # make permanent
185 + print(' %.3g global sparsity' % sparsity(model))
186 +
187 +
188 +def fuse_conv_and_bn(conv, bn):
189 + # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
190 + fusedconv = nn.Conv2d(conv.in_channels,
191 + conv.out_channels,
192 + kernel_size=conv.kernel_size,
193 + stride=conv.stride,
194 + padding=conv.padding,
195 + groups=conv.groups,
196 + bias=True).requires_grad_(False).to(conv.weight.device)
197 +
198 + # prepare filters
199 + w_conv = conv.weight.clone().view(conv.out_channels, -1)
200 + w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
201 + fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
202 +
203 + # prepare spatial bias
204 + b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
205 + b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
206 + fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
207 +
208 + return fusedconv
209 +
210 +
211 +def model_info(model, verbose=False, img_size=640):
212 + # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
213 + n_p = sum(x.numel() for x in model.parameters()) # number parameters
214 + n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
215 + if verbose:
216 + print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
217 + for i, (name, p) in enumerate(model.named_parameters()):
218 + name = name.replace('module_list.', '')
219 + print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
220 + (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
221 +
222 + try: # FLOPS
223 + from thop import profile
224 + stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
225 + img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
226 + flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS
227 + img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
228 + fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS
229 + except (ImportError, Exception):
230 + fs = ''
231 +
232 + logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
233 +
234 +
235 +def load_classifier(name='resnet101', n=2):
236 + # Loads a pretrained model reshaped to n-class output
237 + model = torchvision.models.__dict__[name](pretrained=True)
238 +
239 + # ResNet model properties
240 + # input_size = [3, 224, 224]
241 + # input_space = 'RGB'
242 + # input_range = [0, 1]
243 + # mean = [0.485, 0.456, 0.406]
244 + # std = [0.229, 0.224, 0.225]
245 +
246 + # Reshape output to n classes
247 + filters = model.fc.weight.shape[1]
248 + model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
249 + model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
250 + model.fc.out_features = n
251 + return model
252 +
253 +
254 +def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
255 + # scales img(bs,3,y,x) by ratio constrained to gs-multiple
256 + if ratio == 1.0:
257 + return img
258 + else:
259 + h, w = img.shape[2:]
260 + s = (int(h * ratio), int(w * ratio)) # new size
261 + img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
262 + if not same_shape: # pad/crop img
263 + h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
264 + return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
265 +
266 +
267 +def copy_attr(a, b, include=(), exclude=()):
268 + # Copy attributes from b to a, options to only include [...] and to exclude [...]
269 + for k, v in b.__dict__.items():
270 + if (len(include) and k not in include) or k.startswith('_') or k in exclude:
271 + continue
272 + else:
273 + setattr(a, k, v)
274 +
275 +
276 +class ModelEMA:
277 + """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
278 + Keep a moving average of everything in the model state_dict (parameters and buffers).
279 + This is intended to allow functionality like
280 + https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
281 + A smoothed version of the weights is necessary for some training schemes to perform well.
282 + This class is sensitive where it is initialized in the sequence of model init,
283 + GPU assignment and distributed training wrappers.
284 + """
285 +
286 + def __init__(self, model, decay=0.9999, updates=0):
287 + # Create EMA
288 + self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
289 + # if next(model.parameters()).device.type != 'cpu':
290 + # self.ema.half() # FP16 EMA
291 + self.updates = updates # number of EMA updates
292 + self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
293 + for p in self.ema.parameters():
294 + p.requires_grad_(False)
295 +
296 + def update(self, model):
297 + # Update EMA parameters
298 + with torch.no_grad():
299 + self.updates += 1
300 + d = self.decay(self.updates)
301 +
302 + msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
303 + for k, v in self.ema.state_dict().items():
304 + if v.dtype.is_floating_point:
305 + v *= d
306 + v += (1. - d) * msd[k].detach()
307 +
308 + def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
309 + # Update EMA attributes
310 + copy_attr(self.ema, model, include, exclude)
1 +import argparse
2 +
3 +import yaml
4 +
5 +from wandb_utils import WandbLogger
6 +
7 +WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
8 +
9 +
10 +def create_dataset_artifact(opt):
11 + with open(opt.data) as f:
12 + data = yaml.safe_load(f) # data dict
13 + logger = WandbLogger(opt, '', None, data, job_type='Dataset Creation')
14 +
15 +
16 +if __name__ == '__main__':
17 + parser = argparse.ArgumentParser()
18 + parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
19 + parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
20 + parser.add_argument('--project', type=str, default='YOLOv5', help='name of W&B Project')
21 + opt = parser.parse_args()
22 + opt.resume = False # Explicitly disallow resume check for dataset upload job
23 +
24 + create_dataset_artifact(opt)
1 +"""Utilities and tools for tracking runs with Weights & Biases."""
2 +import json
3 +import sys
4 +from pathlib import Path
5 +
6 +import torch
7 +import yaml
8 +from tqdm import tqdm
9 +
10 +sys.path.append(str(Path(__file__).parent.parent.parent)) # add utils/ to path
11 +from utils.datasets import LoadImagesAndLabels
12 +from utils.datasets import img2label_paths
13 +from utils.general import colorstr, xywh2xyxy, check_dataset, check_file
14 +
15 +try:
16 + import wandb
17 + from wandb import init, finish
18 +except ImportError:
19 + wandb = None
20 +
21 +WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
22 +
23 +
24 +def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX):
25 + return from_string[len(prefix):]
26 +
27 +
28 +def check_wandb_config_file(data_config_file):
29 + wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1)) # updated data.yaml path
30 + if Path(wandb_config).is_file():
31 + return wandb_config
32 + return data_config_file
33 +
34 +
35 +def get_run_info(run_path):
36 + run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
37 + run_id = run_path.stem
38 + project = run_path.parent.stem
39 + entity = run_path.parent.parent.stem
40 + model_artifact_name = 'run_' + run_id + '_model'
41 + return entity, project, run_id, model_artifact_name
42 +
43 +
44 +def check_wandb_resume(opt):
45 + process_wandb_config_ddp_mode(opt) if opt.global_rank not in [-1, 0] else None
46 + if isinstance(opt.resume, str):
47 + if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
48 + if opt.global_rank not in [-1, 0]: # For resuming DDP runs
49 + entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
50 + api = wandb.Api()
51 + artifact = api.artifact(entity + '/' + project + '/' + model_artifact_name + ':latest')
52 + modeldir = artifact.download()
53 + opt.weights = str(Path(modeldir) / "last.pt")
54 + return True
55 + return None
56 +
57 +
58 +def process_wandb_config_ddp_mode(opt):
59 + with open(check_file(opt.data)) as f:
60 + data_dict = yaml.safe_load(f) # data dict
61 + train_dir, val_dir = None, None
62 + if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX):
63 + api = wandb.Api()
64 + train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias)
65 + train_dir = train_artifact.download()
66 + train_path = Path(train_dir) / 'data/images/'
67 + data_dict['train'] = str(train_path)
68 +
69 + if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX):
70 + api = wandb.Api()
71 + val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias)
72 + val_dir = val_artifact.download()
73 + val_path = Path(val_dir) / 'data/images/'
74 + data_dict['val'] = str(val_path)
75 + if train_dir or val_dir:
76 + ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml')
77 + with open(ddp_data_path, 'w') as f:
78 + yaml.safe_dump(data_dict, f)
79 + opt.data = ddp_data_path
80 +
81 +
82 +class WandbLogger():
83 + """Log training runs, datasets, models, and predictions to Weights & Biases.
84 +
85 + This logger sends information to W&B at wandb.ai. By default, this information
86 + includes hyperparameters, system configuration and metrics, model metrics,
87 + and basic data metrics and analyses.
88 +
89 + By providing additional command line arguments to train.py, datasets,
90 + models and predictions can also be logged.
91 +
92 + For more on how this logger is used, see the Weights & Biases documentation:
93 + https://docs.wandb.com/guides/integrations/yolov5
94 + """
95 + def __init__(self, opt, name, run_id, data_dict, job_type='Training'):
96 + # Pre-training routine --
97 + self.job_type = job_type
98 + self.wandb, self.wandb_run, self.data_dict = wandb, None if not wandb else wandb.run, data_dict
99 + # It's more elegant to stick to 1 wandb.init call, but useful config data is overwritten in the WandbLogger's wandb.init call
100 + if isinstance(opt.resume, str): # checks resume from artifact
101 + if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
102 + entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
103 + model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name
104 + assert wandb, 'install wandb to resume wandb runs'
105 + # Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config
106 + self.wandb_run = wandb.init(id=run_id, project=project, entity=entity, resume='allow')
107 + opt.resume = model_artifact_name
108 + elif self.wandb:
109 + self.wandb_run = wandb.init(config=opt,
110 + resume="allow",
111 + project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
112 + entity=opt.entity,
113 + name=name,
114 + job_type=job_type,
115 + id=run_id) if not wandb.run else wandb.run
116 + if self.wandb_run:
117 + if self.job_type == 'Training':
118 + if not opt.resume:
119 + wandb_data_dict = self.check_and_upload_dataset(opt) if opt.upload_dataset else data_dict
120 + # Info useful for resuming from artifacts
121 + self.wandb_run.config.opt = vars(opt)
122 + self.wandb_run.config.data_dict = wandb_data_dict
123 + self.data_dict = self.setup_training(opt, data_dict)
124 + if self.job_type == 'Dataset Creation':
125 + self.data_dict = self.check_and_upload_dataset(opt)
126 + else:
127 + prefix = colorstr('wandb: ')
128 + print(f"{prefix}Install Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)")
129 +
130 + def check_and_upload_dataset(self, opt):
131 + assert wandb, 'Install wandb to upload dataset'
132 + check_dataset(self.data_dict)
133 + config_path = self.log_dataset_artifact(check_file(opt.data),
134 + opt.single_cls,
135 + 'YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem)
136 + print("Created dataset config file ", config_path)
137 + with open(config_path) as f:
138 + wandb_data_dict = yaml.safe_load(f)
139 + return wandb_data_dict
140 +
141 + def setup_training(self, opt, data_dict):
142 + self.log_dict, self.current_epoch, self.log_imgs = {}, 0, 16 # Logging Constants
143 + self.bbox_interval = opt.bbox_interval
144 + if isinstance(opt.resume, str):
145 + modeldir, _ = self.download_model_artifact(opt)
146 + if modeldir:
147 + self.weights = Path(modeldir) / "last.pt"
148 + config = self.wandb_run.config
149 + opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp = str(
150 + self.weights), config.save_period, config.total_batch_size, config.bbox_interval, config.epochs, \
151 + config.opt['hyp']
152 + data_dict = dict(self.wandb_run.config.data_dict) # eliminates the need for config file to resume
153 + if 'val_artifact' not in self.__dict__: # If --upload_dataset is set, use the existing artifact, don't download
154 + self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(data_dict.get('train'),
155 + opt.artifact_alias)
156 + self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(data_dict.get('val'),
157 + opt.artifact_alias)
158 + self.result_artifact, self.result_table, self.val_table, self.weights = None, None, None, None
159 + if self.train_artifact_path is not None:
160 + train_path = Path(self.train_artifact_path) / 'data/images/'
161 + data_dict['train'] = str(train_path)
162 + if self.val_artifact_path is not None:
163 + val_path = Path(self.val_artifact_path) / 'data/images/'
164 + data_dict['val'] = str(val_path)
165 + self.val_table = self.val_artifact.get("val")
166 + self.map_val_table_path()
167 + if self.val_artifact is not None:
168 + self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
169 + self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"])
170 + if opt.bbox_interval == -1:
171 + self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
172 + return data_dict
173 +
174 + def download_dataset_artifact(self, path, alias):
175 + if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
176 + artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
177 + dataset_artifact = wandb.use_artifact(artifact_path.as_posix())
178 + assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'"
179 + datadir = dataset_artifact.download()
180 + return datadir, dataset_artifact
181 + return None, None
182 +
183 + def download_model_artifact(self, opt):
184 + if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
185 + model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
186 + assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
187 + modeldir = model_artifact.download()
188 + epochs_trained = model_artifact.metadata.get('epochs_trained')
189 + total_epochs = model_artifact.metadata.get('total_epochs')
190 + is_finished = total_epochs is None
191 + assert not is_finished, 'training is finished, can only resume incomplete runs.'
192 + return modeldir, model_artifact
193 + return None, None
194 +
195 + def log_model(self, path, opt, epoch, fitness_score, best_model=False):
196 + model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={
197 + 'original_url': str(path),
198 + 'epochs_trained': epoch + 1,
199 + 'save period': opt.save_period,
200 + 'project': opt.project,
201 + 'total_epochs': opt.epochs,
202 + 'fitness_score': fitness_score
203 + })
204 + model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
205 + wandb.log_artifact(model_artifact,
206 + aliases=['latest', 'last', 'epoch ' + str(self.current_epoch), 'best' if best_model else ''])
207 + print("Saving model artifact on epoch ", epoch + 1)
208 +
209 + def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
210 + with open(data_file) as f:
211 + data = yaml.safe_load(f) # data dict
212 + nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
213 + names = {k: v for k, v in enumerate(names)} # to index dictionary
214 + self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(
215 + data['train'], rect=True, batch_size=1), names, name='train') if data.get('train') else None
216 + self.val_artifact = self.create_dataset_table(LoadImagesAndLabels(
217 + data['val'], rect=True, batch_size=1), names, name='val') if data.get('val') else None
218 + if data.get('train'):
219 + data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train')
220 + if data.get('val'):
221 + data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val')
222 + path = data_file if overwrite_config else '_wandb.'.join(data_file.rsplit('.', 1)) # updated data.yaml path
223 + data.pop('download', None)
224 + with open(path, 'w') as f:
225 + yaml.safe_dump(data, f)
226 +
227 + if self.job_type == 'Training': # builds correct artifact pipeline graph
228 + self.wandb_run.use_artifact(self.val_artifact)
229 + self.wandb_run.use_artifact(self.train_artifact)
230 + self.val_artifact.wait()
231 + self.val_table = self.val_artifact.get('val')
232 + self.map_val_table_path()
233 + else:
234 + self.wandb_run.log_artifact(self.train_artifact)
235 + self.wandb_run.log_artifact(self.val_artifact)
236 + return path
237 +
238 + def map_val_table_path(self):
239 + self.val_table_map = {}
240 + print("Mapping dataset")
241 + for i, data in enumerate(tqdm(self.val_table.data)):
242 + self.val_table_map[data[3]] = data[0]
243 +
244 + def create_dataset_table(self, dataset, class_to_id, name='dataset'):
245 + # TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
246 + artifact = wandb.Artifact(name=name, type="dataset")
247 + img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
248 + img_files = tqdm(dataset.img_files) if not img_files else img_files
249 + for img_file in img_files:
250 + if Path(img_file).is_dir():
251 + artifact.add_dir(img_file, name='data/images')
252 + labels_path = 'labels'.join(dataset.path.rsplit('images', 1))
253 + artifact.add_dir(labels_path, name='data/labels')
254 + else:
255 + artifact.add_file(img_file, name='data/images/' + Path(img_file).name)
256 + label_file = Path(img2label_paths([img_file])[0])
257 + artifact.add_file(str(label_file),
258 + name='data/labels/' + label_file.name) if label_file.exists() else None
259 + table = wandb.Table(columns=["id", "train_image", "Classes", "name"])
260 + class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()])
261 + for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)):
262 + box_data, img_classes = [], {}
263 + for cls, *xywh in labels[:, 1:].tolist():
264 + cls = int(cls)
265 + box_data.append({"position": {"middle": [xywh[0], xywh[1]], "width": xywh[2], "height": xywh[3]},
266 + "class_id": cls,
267 + "box_caption": "%s" % (class_to_id[cls])})
268 + img_classes[cls] = class_to_id[cls]
269 + boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space
270 + table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), json.dumps(img_classes),
271 + Path(paths).name)
272 + artifact.add(table, name)
273 + return artifact
274 +
275 + def log_training_progress(self, predn, path, names):
276 + if self.val_table and self.result_table:
277 + class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
278 + box_data = []
279 + total_conf = 0
280 + for *xyxy, conf, cls in predn.tolist():
281 + if conf >= 0.25:
282 + box_data.append(
283 + {"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
284 + "class_id": int(cls),
285 + "box_caption": "%s %.3f" % (names[cls], conf),
286 + "scores": {"class_score": conf},
287 + "domain": "pixel"})
288 + total_conf = total_conf + conf
289 + boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
290 + id = self.val_table_map[Path(path).name]
291 + self.result_table.add_data(self.current_epoch,
292 + id,
293 + wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set),
294 + total_conf / max(1, len(box_data))
295 + )
296 +
297 + def log(self, log_dict):
298 + if self.wandb_run:
299 + for key, value in log_dict.items():
300 + self.log_dict[key] = value
301 +
302 + def end_epoch(self, best_result=False):
303 + if self.wandb_run:
304 + wandb.log(self.log_dict)
305 + self.log_dict = {}
306 + if self.result_artifact:
307 + train_results = wandb.JoinedTable(self.val_table, self.result_table, "id")
308 + self.result_artifact.add(train_results, 'result')
309 + wandb.log_artifact(self.result_artifact, aliases=['latest', 'last', 'epoch ' + str(self.current_epoch),
310 + ('best' if best_result else '')])
311 + self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"])
312 + self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
313 +
314 + def finish_run(self):
315 + if self.wandb_run:
316 + if self.log_dict:
317 + wandb.log(self.log_dict)
318 + wandb.run.finish()
1 +#!/bin/bash
2 +# Download latest models from https://github.com/ultralytics/yolov5/releases
3 +# Usage:
4 +# $ bash weights/download_weights.sh
5 +
6 +python - <<EOF
7 +from utils.google_utils import attempt_download
8 +
9 +for x in ['s', 'm', 'l', 'x']:
10 + attempt_download(f'yolov5{x}.pt')
11 +
12 +EOF