Merge branch 'master' of http://khuhub.khu.ac.kr/2021-1-capstone-design1/BSH_Project3 into master
Showing
18 changed files
with
130 additions
and
17 deletions
... | @@ -2,7 +2,7 @@ import os | ... | @@ -2,7 +2,7 @@ import os |
2 | import random | 2 | import random |
3 | import numpy as np | 3 | import numpy as np |
4 | import scipy.misc as misc | 4 | import scipy.misc as misc |
5 | -import skimage.measure as measure | 5 | +import skimage.metrics as metrics |
6 | from tensorboardX import SummaryWriter | 6 | from tensorboardX import SummaryWriter |
7 | import torch | 7 | import torch |
8 | import torch.nn as nn | 8 | import torch.nn as nn |
... | @@ -92,8 +92,9 @@ class Solver(): | ... | @@ -92,8 +92,9 @@ class Solver(): |
92 | self.step += 1 | 92 | self.step += 1 |
93 | if cfg.verbose and self.step % cfg.print_interval == 0: | 93 | if cfg.verbose and self.step % cfg.print_interval == 0: |
94 | if cfg.scale > 0: | 94 | if cfg.scale > 0: |
95 | - psnr = self.evaluate("dataset/Urban100", scale=cfg.scale, num_step=self.step) | 95 | + psnr, ssim = self.evaluate("dataset/Urban100", scale=cfg.scale, num_step=self.step) |
96 | - self.writer.add_scalar("Urban100", psnr, self.step) | 96 | + self.writer.add_scalar("PSNR", psnr, self.step) |
97 | + self.writer.add_scalar("SSIM", ssim, self.step) | ||
97 | else: | 98 | else: |
98 | psnr = [self.evaluate("dataset/Urban100", scale=i, num_step=self.step) for i in range(2, 5)] | 99 | psnr = [self.evaluate("dataset/Urban100", scale=i, num_step=self.step) for i in range(2, 5)] |
99 | self.writer.add_scalar("Urban100_2x", psnr[0], self.step) | 100 | self.writer.add_scalar("Urban100_2x", psnr[0], self.step) |
... | @@ -107,6 +108,7 @@ class Solver(): | ... | @@ -107,6 +108,7 @@ class Solver(): |
107 | def evaluate(self, test_data_dir, scale=2, num_step=0): | 108 | def evaluate(self, test_data_dir, scale=2, num_step=0): |
108 | cfg = self.cfg | 109 | cfg = self.cfg |
109 | mean_psnr = 0 | 110 | mean_psnr = 0 |
111 | + mean_ssim = 0 | ||
110 | self.refiner.eval() | 112 | self.refiner.eval() |
111 | 113 | ||
112 | test_data = TestDataset(test_data_dir, scale=scale) | 114 | test_data = TestDataset(test_data_dir, scale=scale) |
... | @@ -149,15 +151,16 @@ class Solver(): | ... | @@ -149,15 +151,16 @@ class Solver(): |
149 | hr = hr.cpu().mul(255).clamp(0, 255).byte().permute(1, 2, 0).numpy() | 151 | hr = hr.cpu().mul(255).clamp(0, 255).byte().permute(1, 2, 0).numpy() |
150 | sr = sr.cpu().mul(255).clamp(0, 255).byte().permute(1, 2, 0).numpy() | 152 | sr = sr.cpu().mul(255).clamp(0, 255).byte().permute(1, 2, 0).numpy() |
151 | 153 | ||
152 | - # evaluate PSNR | 154 | + # evaluate PSNR and SSIM |
153 | # this evaluation is different to MATLAB version | 155 | # this evaluation is different to MATLAB version |
154 | # we evaluate PSNR in RGB channel not Y in YCbCR | 156 | # we evaluate PSNR in RGB channel not Y in YCbCR |
155 | bnd = scale | 157 | bnd = scale |
156 | - im1 = hr[bnd:-bnd, bnd:-bnd] | 158 | + im1 = im2double(hr[bnd:-bnd, bnd:-bnd]) |
157 | - im2 = sr[bnd:-bnd, bnd:-bnd] | 159 | + im2 = im2double(sr[bnd:-bnd, bnd:-bnd]) |
158 | mean_psnr += psnr(im1, im2) / len(test_data) | 160 | mean_psnr += psnr(im1, im2) / len(test_data) |
161 | + mean_ssim += ssim(im1, im2) / len(test_data) | ||
159 | 162 | ||
160 | - return mean_psnr | 163 | + return mean_psnr, mean_ssim |
161 | 164 | ||
162 | def load(self, path): | 165 | def load(self, path): |
163 | self.refiner.load_state_dict(torch.load(path)) | 166 | self.refiner.load_state_dict(torch.load(path)) |
... | @@ -177,14 +180,15 @@ class Solver(): | ... | @@ -177,14 +180,15 @@ class Solver(): |
177 | lr = self.cfg.lr * (0.5 ** (self.step // self.cfg.decay)) | 180 | lr = self.cfg.lr * (0.5 ** (self.step // self.cfg.decay)) |
178 | return lr | 181 | return lr |
179 | 182 | ||
180 | - | 183 | +def im2double(im): |
181 | -def psnr(im1, im2): | ||
182 | - def im2double(im): | ||
183 | min_val, max_val = 0, 255 | 184 | min_val, max_val = 0, 255 |
184 | out = (im.astype(np.float64)-min_val) / (max_val-min_val) | 185 | out = (im.astype(np.float64)-min_val) / (max_val-min_val) |
185 | return out | 186 | return out |
186 | 187 | ||
187 | - im1 = im2double(im1) | 188 | +def psnr(im1, im2): |
188 | - im2 = im2double(im2) | 189 | + psnr = metrics.peak_signal_noise_ratio(im1, im2, data_range=1) |
189 | - psnr = measure.compare_psnr(im1, im2, data_range=1) | ||
190 | return psnr | 190 | return psnr |
191 | + | ||
192 | +def ssim(im1, im2): | ||
193 | + ssim = metrics.structural_similarity(im1, im2, data_range=1, multichannel=True) | ||
194 | + return ssim | ... | ... |
... | @@ -76,11 +76,13 @@ def sample(net, device, dataset, cfg): | ... | @@ -76,11 +76,13 @@ def sample(net, device, dataset, cfg): |
76 | 76 | ||
77 | def main(cfg): | 77 | def main(cfg): |
78 | module = importlib.import_module("model.{}".format(cfg.model)) | 78 | module = importlib.import_module("model.{}".format(cfg.model)) |
79 | - net = module.Net(multi_scale=True, | 79 | + net = module.Net(multi_scale=False, |
80 | + scale=cfg.scale, | ||
80 | group=cfg.group) | 81 | group=cfg.group) |
81 | print(json.dumps(vars(cfg), indent=4, sort_keys=True)) | 82 | print(json.dumps(vars(cfg), indent=4, sort_keys=True)) |
82 | 83 | ||
83 | state_dict = torch.load(cfg.ckpt_path) | 84 | state_dict = torch.load(cfg.ckpt_path) |
85 | + # print(state_dict.keys()) | ||
84 | new_state_dict = OrderedDict() | 86 | new_state_dict = OrderedDict() |
85 | for k, v in state_dict.items(): | 87 | for k, v in state_dict.items(): |
86 | name = k | 88 | name = k |
... | @@ -88,11 +90,13 @@ def main(cfg): | ... | @@ -88,11 +90,13 @@ def main(cfg): |
88 | new_state_dict[name] = v | 90 | new_state_dict[name] = v |
89 | 91 | ||
90 | net.load_state_dict(new_state_dict) | 92 | net.load_state_dict(new_state_dict) |
93 | + net.eval() | ||
91 | 94 | ||
92 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | 95 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
93 | net = net.to(device) | 96 | net = net.to(device) |
94 | 97 | ||
95 | dataset = TestDataset(cfg.test_data_dir, cfg.scale) | 98 | dataset = TestDataset(cfg.test_data_dir, cfg.scale) |
99 | + with torch.no_grad(): | ||
96 | sample(net, device, dataset, cfg) | 100 | sample(net, device, dataset, cfg) |
97 | 101 | ||
98 | 102 | ... | ... |
docs/주간보고서 3월 15일_2015104160_김재연.hwp
0 → 100644
No preview for this file type
docs/주간보고서 3월 21일_2015104160_김재연.hwp
0 → 100644
No preview for this file type
docs/주간보고서 4월 11일_김재연.hwp
0 → 100644
No preview for this file type
docs/주간보고서 4월 18일_김재연.hwp
0 → 100644
No preview for this file type
docs/주간보고서 5월 17일_김재연.hwp
0 → 100644
No preview for this file type
docs/주간보고서 5월 24일_김재연.hwp
0 → 100644
No preview for this file type
docs/주간보고서 5월 31일_김재연.hwp
0 → 100644
No preview for this file type
docs/주간보고서 5월 3일_김재연.hwp
0 → 100644
No preview for this file type
... | @@ -2,10 +2,22 @@ | ... | @@ -2,10 +2,22 @@ |
2 | "cells": [ | 2 | "cells": [ |
3 | { | 3 | { |
4 | "cell_type": "code", | 4 | "cell_type": "code", |
5 | - "execution_count": 15, | 5 | + "execution_count": 1, |
6 | "id": "automotive-circus", | 6 | "id": "automotive-circus", |
7 | "metadata": {}, | 7 | "metadata": {}, |
8 | - "outputs": [], | 8 | + "outputs": [ |
9 | + { | ||
10 | + "output_type": "error", | ||
11 | + "ename": "ModuleNotFoundError", | ||
12 | + "evalue": "No module named 'cv2'", | ||
13 | + "traceback": [ | ||
14 | + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", | ||
15 | + "\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", | ||
16 | + "\u001b[1;32m<ipython-input-1-03d1a01a87c6>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mglob\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mglob\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[1;32mimport\u001b[0m \u001b[0mcv2\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mtqdm\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mgt_list\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msorted\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mglob\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"../bbb_sunflower_1080p/*.png\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", | ||
17 | + "\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'cv2'" | ||
18 | + ] | ||
19 | + } | ||
20 | + ], | ||
9 | "source": [ | 21 | "source": [ |
10 | "from glob import glob\n", | 22 | "from glob import glob\n", |
11 | "import cv2\n", | 23 | "import cv2\n", | ... | ... |
... | @@ -5,7 +5,19 @@ | ... | @@ -5,7 +5,19 @@ |
5 | "execution_count": 1, | 5 | "execution_count": 1, |
6 | "id": "ahead-paste", | 6 | "id": "ahead-paste", |
7 | "metadata": {}, | 7 | "metadata": {}, |
8 | - "outputs": [], | 8 | + "outputs": [ |
9 | + { | ||
10 | + "output_type": "error", | ||
11 | + "ename": "ModuleNotFoundError", | ||
12 | + "evalue": "No module named 'cv2'", | ||
13 | + "traceback": [ | ||
14 | + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", | ||
15 | + "\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", | ||
16 | + "\u001b[1;32m<ipython-input-1-ff55b1ddb4f1>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mglob\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mglob\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[1;32mimport\u001b[0m \u001b[0mcv2\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[0mimages\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msorted\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mglob\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"../bbb_sunflower_540p/*.png\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", | ||
17 | + "\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'cv2'" | ||
18 | + ] | ||
19 | + } | ||
20 | + ], | ||
9 | "source": [ | 21 | "source": [ |
10 | "from glob import glob\n", | 22 | "from glob import glob\n", |
11 | "import cv2\n", | 23 | "import cv2\n", | ... | ... |
notebooks/resize_eval.ipynb
0 → 100644
1 | +{ | ||
2 | + "cells": [ | ||
3 | + { | ||
4 | + "cell_type": "code", | ||
5 | + "execution_count": 1, | ||
6 | + "id": "ahead-paste", | ||
7 | + "metadata": {}, | ||
8 | + "outputs": [], | ||
9 | + "source": [ | ||
10 | + "from glob import glob\n", | ||
11 | + "import cv2\n", | ||
12 | + "\n", | ||
13 | + "images = sorted(glob(\"./tennis_test_1080p/*.png\"))" | ||
14 | + ] | ||
15 | + }, | ||
16 | + { | ||
17 | + "cell_type": "code", | ||
18 | + "execution_count": 2, | ||
19 | + "id": "rapid-tension", | ||
20 | + "metadata": {}, | ||
21 | + "outputs": [], | ||
22 | + "source": [ | ||
23 | + "from pathlib import Path\n", | ||
24 | + "Path(\"./dataset/Urban100/x2\").mkdir(parents=True, exist_ok=True)" | ||
25 | + ] | ||
26 | + }, | ||
27 | + { | ||
28 | + "cell_type": "code", | ||
29 | + "execution_count": 3, | ||
30 | + "id": "visible-texas", | ||
31 | + "metadata": {}, | ||
32 | + "outputs": [ | ||
33 | + { | ||
34 | + "name": "stderr", | ||
35 | + "output_type": "stream", | ||
36 | + "text": [ | ||
37 | + "100%|██████████| 125/125 [00:18<00:00, 6.61it/s]\n" | ||
38 | + ] | ||
39 | + } | ||
40 | + ], | ||
41 | + "source": [ | ||
42 | + "from tqdm import tqdm\n", | ||
43 | + "for image in tqdm(images):\n", | ||
44 | + " hr = cv2.imread(image, cv2.IMREAD_COLOR)\n", | ||
45 | + " lr = cv2.resize(hr, dsize=(960, 540), interpolation=cv2.INTER_CUBIC)\n", | ||
46 | + "\n", | ||
47 | + " cv2.imwrite(\"./dataset/Urban100/x2/\" + Path(image).stem + \"_HR.png\", hr)\n", | ||
48 | + " cv2.imwrite(\"./dataset/Urban100/x2/\" + Path(image).stem + \"_LR.png\", lr)" | ||
49 | + ] | ||
50 | + }, | ||
51 | + { | ||
52 | + "cell_type": "code", | ||
53 | + "execution_count": null, | ||
54 | + "id": "fallen-religion", | ||
55 | + "metadata": {}, | ||
56 | + "outputs": [], | ||
57 | + "source": [] | ||
58 | + } | ||
59 | + ], | ||
60 | + "metadata": { | ||
61 | + "kernelspec": { | ||
62 | + "display_name": "Python 3", | ||
63 | + "language": "python", | ||
64 | + "name": "python3" | ||
65 | + }, | ||
66 | + "language_info": { | ||
67 | + "codemirror_mode": { | ||
68 | + "name": "ipython", | ||
69 | + "version": 3 | ||
70 | + }, | ||
71 | + "file_extension": ".py", | ||
72 | + "mimetype": "text/x-python", | ||
73 | + "name": "python", | ||
74 | + "nbconvert_exporter": "python", | ||
75 | + "pygments_lexer": "ipython3", | ||
76 | + "version": "3.7.7" | ||
77 | + } | ||
78 | + }, | ||
79 | + "nbformat": 4, | ||
80 | + "nbformat_minor": 5 | ||
81 | +} |
results/basketball/psnr.png
0 → 100644
221 KB
results/basketball/ssim.png
0 → 100644
251 KB
results/carn_002_basketball.xlsx
0 → 100644
No preview for this file type
results/tennis/psnr.png
0 → 100644
261 KB
results/tennis/ssim.png
0 → 100644
325 KB
-
Please register or login to post a comment