윤정환

코드, 데이터셋 업로드

1 +#!/usr/bin/env python
2 +# coding: utf-8
3 +
4 +# In[ ]:
5 +
6 +
7 +import pandas as pd
8 +import numpy as np
9 +import tensorflow as tf
10 +from tensorflow import keras
11 +from tensorflow.keras import layers
12 +from pathlib import Path
13 +import matplotlib.pyplot as plt
14 +
15 +dataset_file = open("dataset.csv",'r')
16 +df = pd.read_csv(dataset_file)
17 +
18 +user_ids = df["userid"].unique().tolist()
19 +user2user_encoded = {x: i for i, x in enumerate(user_ids)}
20 +userencoded2user = {i: x for i, x in enumerate(user_ids)}
21 +contents_ids = df["contentsid"].unique().tolist()
22 +contents2contents_encoded = {x: i for i, x in enumerate(contents_ids)}
23 +contents_encoded2contents = {i: x for i, x in enumerate(contents_ids)}
24 +df["user"] = df["userid"].map(user2user_encoded)
25 +df["contents"] = df["contentsid"].map(contents2contents_encoded)
26 +
27 +num_users = len(user2user_encoded)
28 +num_contents = len(contents_encoded2contents)
29 +df["rating"] = df["rating"].values.astype(np.float32)
30 +# min and max ratings will be used to normalize the ratings later
31 +min_rating = 0.5
32 +max_rating = 5.0
33 +
34 +print(
35 + "Number of users: {}, Number of Contents: {}, Min rating: {}, Max rating: {}".format(
36 + num_users, num_contents, min_rating, max_rating
37 + )
38 +)
39 +
40 +df = df.sample(frac=1, random_state=42)
41 +x = df[["user", "contents"]].values
42 +# Normalize the targets between 0 and 1. Makes it easy to train.
43 +y = df["rating"].apply(lambda x: (x - min_rating) / (max_rating - min_rating)).values
44 +# Assuming training on 90% of the data and validating on 10%.
45 +train_indices = int(0.9 * df.shape[0])
46 +x_train, x_val, y_train, y_val = (
47 + x[:train_indices],
48 + x[train_indices:],
49 + y[:train_indices],
50 + y[train_indices:],
51 +)
52 +
53 +EMBEDDING_SIZE = 50
54 +
55 +
56 +class RecommenderNet(keras.Model):
57 + def __init__(self, num_users, num_contents, embedding_size, **kwargs):
58 + super(RecommenderNet, self).__init__(**kwargs)
59 + self.num_users = num_users
60 + self.num_contents = num_contents
61 + self.embedding_size = embedding_size
62 + self.user_embedding = layers.Embedding(
63 + num_users,
64 + embedding_size,
65 + embeddings_initializer="he_normal",
66 + embeddings_regularizer=keras.regularizers.l2(1e-6),
67 + )
68 + self.user_bias = layers.Embedding(num_users, 1)
69 + self.contents_embedding = layers.Embedding(
70 + num_contents,
71 + embedding_size,
72 + embeddings_initializer="he_normal",
73 + embeddings_regularizer=keras.regularizers.l2(1e-6),
74 + )
75 + self.contents_bias = layers.Embedding(num_contents, 1)
76 +
77 + def call(self, inputs):
78 + user_vector = self.user_embedding(inputs[:, 0])
79 + user_bias = self.user_bias(inputs[:, 0])
80 + contents_vector = self.contents_embedding(inputs[:, 1])
81 + contents_bias = self.contents_bias(inputs[:, 1])
82 + dot_user_contents = tf.tensordot(user_vector, contents_vector, 2)
83 + # Add all the components (including bias)
84 + x = dot_user_contents + user_bias + contents_bias
85 + # The sigmoid activation forces the rating to between 0 and 1
86 + return tf.nn.sigmoid(x)
87 +
88 +
89 +model = RecommenderNet(num_users, num_contents, EMBEDDING_SIZE)
90 +model.compile(
91 + optimizer='sgd',
92 + loss='mse',
93 + metrics=[tf.keras.metrics.MeanSquaredError()])
94 +
95 +history = model.fit(
96 + x=x_train,
97 + y=y_train,
98 + batch_size=2,
99 + epochs=20,
100 + verbose=1,
101 + validation_data=(x_val, y_val),
102 +)
103 +
104 +plt.plot(history.history["loss"])
105 +plt.plot(history.history["val_loss"])
106 +plt.title("model loss")
107 +plt.ylabel("loss")
108 +plt.xlabel("epoch")
109 +plt.legend(["train", "test"], loc="upper left")
110 +plt.show()
111 +
112 +test_file = open("dataset_test.csv",'r')
113 +tf = pd.read_csv(test_file)
114 +
115 +user_ids = tf["userid"].unique().tolist()
116 +user2user_encoded = {x: i for i, x in enumerate(user_ids)}
117 +userencoded2user = {i: x for i, x in enumerate(user_ids)}
118 +contents_ids = tf["contentsid"].unique().tolist()
119 +contents2contents_encoded = {x: i for i, x in enumerate(contents_ids)}
120 +contents_encoded2contents = {i: x for i, x in enumerate(contents_ids)}
121 +tf["user"] = tf["userid"].map(user2user_encoded)
122 +tf["contents"] = tf["contentsid"].map(contents2contents_encoded)
123 +tf["rating"] = tf["rating"].values.astype(np.float32)
124 +
125 +tf = tf.sample(frac=1, random_state=42)
126 +x = tf[["user", "contents"]].values
127 +y = tf["rating"].apply(lambda x: (x - min_rating) / (max_rating - min_rating)).values
128 +
129 +x_test, y_test = (x, y)
130 +result = model.evaluate(x_test, y_test)
131 +print(result)
132 +
1 +#!/usr/bin/env python
2 +# coding: utf-8
3 +
4 +# In[ ]:
5 +
6 +
7 +import pandas as pd
8 +import numpy as np
9 +import tensorflow as tf
10 +from tensorflow import keras
11 +from tensorflow.keras import layers
12 +from pathlib import Path
13 +import matplotlib.pyplot as plt
14 +
15 +df_x = pd.read_csv("x_train.csv")
16 +df_y = pd.read_csv("y_train.csv")
17 +df = pd.concat([df_x, df_y], axis=1)
18 +
19 +user_ids = df["userid"].unique().tolist()
20 +user2user_encoded = {x: i for i, x in enumerate(user_ids)}
21 +userencoded2user = {i: x for i, x in enumerate(user_ids)}
22 +task_ids = df["taskid"].unique().tolist()
23 +task2task_encoded = {x: i for i, x in enumerate(task_ids)}
24 +task_encoded2task = {i: x for i, x in enumerate(task_ids)}
25 +df["user"] = df["userid"].map(user2user_encoded)
26 +df["task"] = df["taskid"].map(task2task_encoded)
27 +
28 +num_users = len(user2user_encoded)
29 +num_task = len(task_encoded2task)
30 +df["rating"] = df["rating"].values.astype(np.float32)
31 +# min and max ratings will be used to normalize the ratings later
32 +MIN_RATING = 0.5
33 +MAX_RATING = 5.0
34 +
35 +print(
36 + "Number of users: {}, Number of task: {}, Min rating: {}, Max rating: {}".format(
37 + num_users, num_task, MIN_RATING, MAX_RATING
38 + )
39 +)
40 +
41 +df = df.sample(frac=1, random_state=42)
42 +x = df[["user", "task"]].values
43 +# Normalize the targets between 0 and 1. Makes it easy to train.
44 +y = df["rating"].apply(lambda x: (x - MIN_RATING) / (MAX_RATING - MIN_RATING)).values
45 +# Assuming training on 90% of the data and validating on 10%.
46 +train_indices = int(0.9 * df.shape[0])
47 +x_train, x_val, y_train, y_val = (
48 + x[:train_indices],
49 + x[train_indices:],
50 + y[:train_indices],
51 + y[train_indices:],
52 +)
53 +
54 +EMBEDDING_SIZE = 128
55 +
56 +class RecommenderNet(keras.Model):
57 + def __init__(self, num_users, num_task, embedding_size, **kwargs):
58 + super(RecommenderNet, self).__init__(**kwargs)
59 + self.num_users = num_users
60 + self.num_task = num_task
61 + self.embedding_size = embedding_size
62 + self.user_embedding = layers.Embedding(
63 + num_users,
64 + embedding_size,
65 + embeddings_initializer="he_normal",
66 + embeddings_regularizer=keras.regularizers.l2(1e-6),
67 + )
68 + self.user_bias = layers.Embedding(num_users, 1)
69 + self.task_embedding = layers.Embedding(
70 + num_task,
71 + embedding_size,
72 + embeddings_initializer="he_normal",
73 + embeddings_regularizer=keras.regularizers.l2(1e-6),
74 + )
75 + self.task_bias = layers.Embedding(num_task, 1)
76 +
77 + def call(self, inputs):
78 + user_vector = self.user_embedding(inputs[:, 0])
79 + user_bias = self.user_bias(inputs[:, 0])
80 + task_vector = self.task_embedding(inputs[:, 1])
81 + task_bias = self.task_bias(inputs[:, 1])
82 + dot_user_task = tf.tensordot(user_vector, task_vector, 2)
83 + # Add all the components (including bias)
84 + x = dot_user_task + user_bias + task_bias
85 + # The sigmoid activation forces the rating to between 0 and 1
86 + return tf.nn.sigmoid(x)
87 +
88 +
89 +model = RecommenderNet(num_users, num_task, EMBEDDING_SIZE)
90 +model.compile(
91 + optimizer='adam',
92 + loss='mse',
93 + metrics=[tf.keras.metrics.MeanSquaredError()])
94 +
95 +history = model.fit(
96 + x=x_train,
97 + y=y_train,
98 + batch_size=8,
99 + epochs=300,
100 + verbose=1,
101 + validation_data=(x_val, y_val),
102 +)
103 +
104 +df_x_test = pd.read_csv('x_test.csv')
105 +
106 +df_x_test["user"] = df_x_test["userid"].map(user2user_encoded)
107 +df_x_test["task"] = df_x_test["taskid"].map(task2task_encoded)
108 +
109 +x_test = df_x_test[["user", "task"]].values
110 +
111 +y_pred = model.predict(x_test)
112 +
113 +df_y_pred = pd.DataFrame(y_pred, columns=['rating'])
114 +df_y_pred = df_y_pred["rating"].apply(lambda x: (x * (MAX_RATING - MIN_RATING) + MIN_RATING ))
115 +df_y_pred.to_csv('y_pred.csv', sep=',', columns = ['rating'], index = False)
116 +
117 +#evaluate
118 +import os
119 +import sys
120 +import pandas as pd
121 +from sklearn.metrics import mean_squared_error
122 +
123 +gt = pd.read_csv('y_test.csv', header=0)
124 +pr = pd.read_csv('y_pred.csv', header=0)
125 +
126 +gt = gt.to_numpy().astype(float).reshape(-1)
127 +pr = pr.to_numpy().astype(float).reshape(-1)
128 +
129 +score = mean_squared_error(gt, pr, squared = False)
130 +print("score:", score)
131 +
1 +userid,contentsid,rating
2 +1,T000036,5
3 +1,T000040,0.5
4 +1,T000041,0.5
5 +1,T000042,0.5
6 +1,T000044,5
7 +1,T000045,0.5
8 +1,T000046,0.5
9 +1,T000047,0.5
10 +1,T000048,5
11 +1,T000049,0.5
12 +1,T000050,0.5
13 +1,T000051,0.5
14 +1,T000052,0.5
15 +1,T000053,0.5
16 +1,T000054,0.5
17 +1,T000056,0.5
18 +1,T000057,5
19 +1,T000058,5
20 +1,T000059,0.5
21 +1,T000060,5
22 +1,T000061,0.5
23 +1,T000062,0.5
24 +1,T000078,0.5
25 +1,T000077,0.5
26 +1,T000076,0.5
27 +1,T000075,0.5
28 +1,T000074,0.5
29 +1,T000073,0.5
30 +1,T000071,0.5
31 +1,T000070,0.5
32 +1,T000069,0.5
33 +1,T000063,0.5
34 +1,T000065,5
35 +1,T000066,5
36 +1,T000067,0.5
37 +1,T000068,0.5
38 +1,T001631,0.5
39 +1,T001629,0.5
40 +1,T001628,0.5
41 +1,T000312,0.5
42 +1,T000311,0.5
43 +1,T000310,0.5
44 +1,T000309,0.5
45 +1,T000307,0.5
46 +1,T000306,0.5
47 +1,T000305,0.5
48 +1,T000304,0.5
49 +1,T000303,0.5
50 +1,T000302,0.5
51 +1,T000301,0.5
52 +1,T000299,0.5
53 +1,T000298,0.5
54 +1,T000297,0.5
55 +1,T000295,0.5
56 +1,T000294,0.5
57 +1,T000292,0.5
58 +1,T000291,0.5
59 +1,T000289,0.5
60 +1,T000288,0.5
61 +1,T000286,0.5
62 +1,T000212,0.5
63 +1,T001617,0.5
64 +1,T001615,0.5
65 +1,T001614,0.5
66 +1,T001612,0.5
67 +1,T001611,0.5
68 +1,T001610,0.5
69 +1,T001609,0.5
70 +1,T001608,0.5
71 +1,T001607,0.5
72 +1,T001606,0.5
73 +1,T001604,0.5
74 +1,T001603,0.5
75 +1,T001602,0.5
76 +1,T001600,0.5
77 +1,T000287,0.5
78 +1,T001921,0.5
79 +1,T001920,5
80 +1,T001918,0.5
81 +1,T001917,0.5
82 +1,T001916,0.5
83 +1,T001915,0.5
84 +1,T001914,5
85 +1,T001911,0.5
86 +1,T001942,0.5
87 +1,T001947,0.5
88 +1,T001943,0.5
89 +1,T001944,0.5
90 +1,T001945,0.5
91 +1,T001956,0.5
92 +2,T000036,5
93 +2,T000040,0.5
94 +2,T000041,0.5
95 +2,T000042,0.5
96 +2,T000043,0.5
97 +2,T000044,5
98 +2,T000045,5
99 +2,T000047,0.5
100 +2,T000048,0.5
101 +2,T000049,0.5
102 +2,T000050,0.5
103 +2,T000052,0.5
104 +2,T000053,5
105 +2,T000054,0.5
106 +2,T000055,0.5
107 +2,T000056,5
108 +2,T000057,0.5
109 +2,T000058,0.5
110 +2,T000059,0.5
111 +2,T000060,0.5
112 +2,T000061,0.5
113 +2,T000062,0.5
114 +2,T000078,0.5
115 +2,T000077,0.5
116 +2,T000076,0.5
117 +2,T000075,0.5
118 +2,T000073,0.5
119 +2,T000072,0.5
120 +2,T000071,0.5
121 +2,T000070,0.5
122 +2,T000069,0.5
123 +2,T000063,5
124 +2,T000064,5
125 +2,T000065,0.5
126 +2,T000066,0.5
127 +2,T000067,0.5
128 +2,T000068,0.5
129 +2,T001631,0.5
130 +2,T001630,0.5
131 +2,T001629,0.5
132 +2,T001628,0.5
133 +2,T000312,0.5
134 +2,T000311,0.5
135 +2,T000310,0.5
136 +2,T000309,0.5
137 +2,T000306,0.5
138 +2,T000305,0.5
139 +2,T000304,0.5
140 +2,T000303,5
141 +2,T000302,0.5
142 +2,T000301,0.5
143 +2,T000298,0.5
144 +2,T000297,0.5
145 +2,T000295,5
146 +2,T000294,0.5
147 +2,T000293,0.5
148 +2,T000292,0.5
149 +2,T000289,0.5
150 +2,T000288,0.5
151 +2,T000286,0.5
152 +2,T000212,5
153 +2,T001617,0.5
154 +2,T001616,0.5
155 +2,T001615,0.5
156 +2,T001614,0.5
157 +2,T001612,0.5
158 +2,T001611,0.5
159 +2,T001610,0.5
160 +2,T001609,0.5
161 +2,T001608,0.5
162 +2,T001606,0.5
163 +2,T001604,0.5
164 +2,T001603,0.5
165 +2,T001602,5
166 +2,T001601,0.5
167 +2,T001600,5
168 +2,T000287,0.5
169 +2,T001921,0.5
170 +2,T001919,0.5
171 +2,T001918,0.5
172 +2,T001917,0.5
173 +2,T001915,0.5
174 +2,T001914,0.5
175 +2,T001911,5
176 +2,T001942,0.5
177 +2,T001947,0.5
178 +2,T001944,5
179 +2,T001945,0.5
180 +2,T001946,5
181 +2,T001956,0.5
182 +3,T000040,0.5
183 +3,T000041,5
184 +3,T000042,0.5
185 +3,T000043,5
186 +3,T000044,0.5
187 +3,T000045,0.5
188 +3,T000046,5
189 +3,T000047,0.5
190 +3,T000048,5
191 +3,T000050,5
192 +3,T000051,0.5
193 +3,T000052,0.5
194 +3,T000054,5
195 +3,T000055,0.5
196 +3,T000056,0.5
197 +3,T000057,0.5
198 +3,T000058,0.5
199 +3,T000059,5
200 +3,T000060,0.5
201 +3,T000062,0.5
202 +3,T000078,0.5
203 +3,T000077,0.5
204 +3,T000076,0.5
205 +3,T000075,0.5
206 +3,T000074,0.5
207 +3,T000072,0.5
208 +3,T000071,0.5
209 +3,T000070,0.5
210 +3,T000069,0.5
211 +3,T000063,0.5
212 +3,T000064,0.5
213 +3,T000065,0.5
214 +3,T000066,0.5
215 +3,T000067,5
216 +3,T000068,0.5
217 +3,T001631,5
218 +3,T001630,5
219 +3,T001629,5
220 +3,T000312,5
221 +3,T000311,0.5
222 +3,T000310,0.5
223 +3,T000309,5
224 +3,T000308,0.5
225 +3,T000307,0.5
226 +3,T000306,0.5
227 +3,T000305,0.5
228 +3,T000304,0.5
229 +3,T000303,0.5
230 +3,T000301,0.5
231 +3,T000299,0.5
232 +3,T000298,0.5
233 +3,T000297,0.5
234 +3,T000295,0.5
235 +3,T000294,0.5
236 +3,T000293,0.5
237 +3,T000292,0.5
238 +3,T000291,0.5
239 +3,T000289,0.5
240 +3,T000288,0.5
241 +3,T000286,5
242 +3,T001617,0.5
243 +3,T001615,0.5
244 +3,T001614,0.5
245 +3,T001613,0.5
246 +3,T001612,5
247 +3,T001611,0.5
248 +3,T001610,5
249 +3,T001609,5
250 +3,T001608,0.5
251 +3,T001607,0.5
252 +3,T001604,5
253 +3,T001603,0.5
254 +3,T001602,0.5
255 +3,T001601,5
256 +3,T001600,0.5
257 +3,T000287,0.5
258 +3,T001921,0.5
259 +3,T001919,0.5
260 +3,T001918,5
261 +3,T001917,0.5
262 +3,T001916,5
263 +3,T001914,0.5
264 +3,T001911,0.5
265 +3,T001942,0.5
266 +3,T001947,0.5
267 +3,T001943,0.5
268 +3,T001944,5
269 +3,T001945,0.5
270 +3,T001946,5
271 +3,T001956,0.5
272 +4,T001942,0.5
273 +4,T001943,0.5
274 +4,T001944,0.5
275 +4,T001945,0.5
276 +4,T001946,0.5
277 +4,T001956,0.5
278 +4,T001920,5
279 +4,T001919,5
280 +4,T001918,5
281 +4,T001917,0.5
282 +4,T001916,0.5
283 +4,T001915,0.5
284 +4,T001914,0.5
285 +4,T001911,0.5
286 +4,T001616,0.5
287 +4,T001615,0.5
288 +4,T001614,0.5
289 +4,T001613,0.5
290 +4,T001612,0.5
291 +4,T001611,0.5
292 +4,T001610,0.5
293 +4,T001609,0.5
294 +4,T001608,0.5
295 +4,T001607,0.5
296 +4,T001604,0.5
297 +4,T001603,0.5
298 +4,T001602,0.5
299 +4,T001601,0.5
300 +4,T001600,0.5
301 +4,T000287,0.5
302 +4,T000036,0.5
303 +4,T000041,0.5
304 +4,T000042,0.5
305 +4,T000043,0.5
306 +4,T000044,0.5
307 +4,T000046,0.5
308 +4,T000047,0.5
309 +4,T000048,0.5
310 +4,T000049,5
311 +4,T000050,0.5
312 +4,T000051,0.5
313 +4,T000052,0.5
314 +4,T000053,0.5
315 +4,T000054,0.5
316 +4,T000055,0.5
317 +4,T000056,0.5
318 +4,T000057,0.5
319 +4,T000058,0.5
320 +4,T000059,0.5
321 +4,T000061,5
322 +4,T000062,5
323 +4,T000078,0.5
324 +4,T000076,0.5
325 +4,T000075,0.5
326 +4,T000074,0.5
327 +4,T000073,0.5
328 +4,T000072,0.5
329 +4,T000071,0.5
330 +4,T000070,0.5
331 +4,T000069,0.5
332 +4,T000063,0.5
333 +4,T000064,0.5
334 +4,T000065,0.5
335 +4,T000066,0.5
336 +4,T000067,0.5
337 +4,T001631,0.5
338 +4,T001630,0.5
339 +4,T001629,0.5
340 +4,T001628,0.5
341 +4,T000312,0.5
342 +4,T000311,0.5
343 +4,T000310,0.5
344 +4,T000309,0.5
345 +4,T000308,0.5
346 +4,T000307,0.5
347 +4,T000306,0.5
348 +4,T000305,0.5
349 +4,T000304,0.5
350 +4,T000303,0.5
351 +4,T000301,0.5
352 +4,T000299,0.5
353 +4,T000298,0.5
354 +4,T000297,0.5
355 +4,T000295,0.5
356 +4,T000294,0.5
357 +4,T000292,0.5
358 +4,T000291,0.5
359 +4,T000286,0.5
360 +4,T000212,0.5
361 +5,T001942,0.5
362 +5,T001947,5
363 +5,T001943,5
364 +5,T001944,0.5
365 +5,T001945,5
366 +5,T001946,5
367 +5,T001921,0.5
368 +5,T001920,5
369 +5,T001919,5
370 +5,T001918,5
371 +5,T001917,0.5
372 +5,T001916,0.5
373 +5,T001914,5
374 +5,T001911,5
375 +5,T001617,5
376 +5,T001616,0.5
377 +5,T001615,5
378 +5,T001614,0.5
379 +5,T001613,5
380 +5,T001612,5
381 +5,T001610,5
382 +5,T001609,0.5
383 +5,T001608,0.5
384 +5,T001607,0.5
385 +5,T001606,0.5
386 +5,T001603,0.5
387 +5,T001602,0.5
388 +5,T001601,0.5
389 +5,T001600,0.5
390 +5,T000287,0.5
391 +5,T000036,0.5
392 +5,T000040,5
393 +5,T000041,0.5
394 +5,T000042,0.5
395 +5,T000043,5
396 +5,T000044,0.5
397 +5,T000045,5
398 +5,T000047,0.5
399 +5,T000048,0.5
400 +5,T000049,5
401 +5,T000050,5
402 +5,T000051,0.5
403 +5,T000052,0.5
404 +5,T000053,5
405 +5,T000054,5
406 +5,T000055,0.5
407 +5,T000057,0.5
408 +5,T000058,0.5
409 +5,T000059,5
410 +5,T000060,0.5
411 +5,T000061,0.5
412 +5,T000062,5
413 +5,T000078,0.5
414 +5,T000077,0.5
415 +5,T000076,0.5
416 +5,T000075,5
417 +5,T000074,5
418 +5,T000072,0.5
419 +5,T000071,0.5
420 +5,T000070,0.5
421 +5,T000069,0.5
422 +5,T000063,0.5
423 +5,T000064,0.5
424 +5,T000066,0.5
425 +5,T000067,0.5
426 +5,T000068,0.5
427 +5,T001631,5
428 +5,T001629,0.5
429 +5,T001628,0.5
430 +5,T000312,0.5
431 +5,T000311,0.5
432 +5,T000310,0.5
433 +5,T000308,0.5
434 +5,T000307,0.5
435 +5,T000306,0.5
436 +5,T000305,0.5
437 +5,T000304,0.5
438 +5,T000303,5
439 +5,T000302,0.5
440 +5,T000301,0.5
441 +5,T000298,0.5
442 +5,T000297,0.5
443 +5,T000295,0.5
444 +5,T000293,0.5
445 +5,T000292,0.5
446 +5,T000291,0.5
447 +5,T000288,5
448 +5,T000286,0.5
449 +5,T000212,0.5
450 +6,T001942,5
451 +6,T001947,0.5
452 +6,T001944,5
453 +6,T001945,5
454 +6,T001946,5
455 +6,T001956,0.5
456 +6,T001921,5
457 +6,T001920,5
458 +6,T001919,0.5
459 +6,T001918,0.5
460 +6,T001917,5
461 +6,T001916,5
462 +6,T001915,0.5
463 +6,T001914,5
464 +6,T001617,5
465 +6,T001616,5
466 +6,T001615,5
467 +6,T001614,0.5
468 +6,T001613,5
469 +6,T001612,5
470 +6,T001611,5
471 +6,T001610,5
472 +6,T001609,5
473 +6,T001608,5
474 +6,T001607,0.5
475 +6,T001606,0.5
476 +6,T001604,5
477 +6,T001603,0.5
478 +6,T001602,0.5
479 +6,T001601,5
480 +6,T001600,5
481 +6,T000287,0.5
482 +6,T000040,5
483 +6,T000041,5
484 +6,T000042,0.5
485 +6,T000043,5
486 +6,T000044,5
487 +6,T000045,5
488 +6,T000046,0.5
489 +6,T000047,5
490 +6,T000048,5
491 +6,T000049,5
492 +6,T000051,0.5
493 +6,T000052,5
494 +6,T000053,5
495 +6,T000054,5
496 +6,T000055,5
497 +6,T000057,0.5
498 +6,T000058,5
499 +6,T000060,5
500 +6,T000061,5
501 +6,T000062,5
502 +6,T000078,0.5
503 +6,T000077,0.5
504 +6,T000076,0.5
505 +6,T000075,5
506 +6,T000073,0.5
507 +6,T000070,0.5
508 +6,T000069,0.5
509 +6,T000063,5
510 +6,T000064,5
511 +6,T000065,5
512 +6,T000066,0.5
513 +6,T000067,0.5
514 +6,T000068,0.5
515 +6,T001631,5
516 +6,T001630,0.5
517 +6,T001629,5
518 +6,T001628,5
519 +6,T000312,5
520 +6,T000311,0.5
521 +6,T000310,0.5
522 +6,T000309,5
523 +6,T000308,5
524 +6,T000307,5
525 +6,T000306,0.5
526 +6,T000305,5
527 +6,T000304,5
528 +6,T000303,0.5
529 +6,T000302,5
530 +6,T000301,0.5
531 +6,T000299,0.5
532 +6,T000298,5
533 +6,T000297,5
534 +6,T000295,5
535 +6,T000294,0.5
536 +6,T000291,0.5
537 +6,T000288,5
538 +6,T000286,5
539 +7,T000036,5
540 +7,T000040,0.5
541 +7,T000041,5
542 +7,T000042,5
543 +7,T000043,5
544 +7,T000044,0.5
545 +7,T000045,5
546 +7,T000046,5
547 +7,T000047,5
548 +7,T000048,0.5
549 +7,T000049,5
550 +7,T000050,5
551 +7,T000051,0.5
552 +7,T000052,5
553 +7,T000055,0.5
554 +7,T000056,5
555 +7,T000057,0.5
556 +7,T000058,0.5
557 +7,T000059,5
558 +7,T000061,5
559 +7,T000062,0.5
560 +7,T000077,5
561 +7,T000076,5
562 +7,T000075,0.5
563 +7,T000074,5
564 +7,T000073,0.5
565 +7,T000072,5
566 +7,T000070,5
567 +7,T000069,5
568 +7,T000063,5
569 +7,T000064,5
570 +7,T000065,5
571 +7,T000066,0.5
572 +7,T000067,5
573 +7,T000068,0.5
574 +7,T001631,5
575 +7,T001630,0.5
576 +7,T001629,5
577 +7,T001628,5
578 +7,T000312,0.5
579 +7,T000311,5
580 +7,T000310,0.5
581 +7,T000309,0.5
582 +7,T000308,0.5
583 +7,T000307,5
584 +7,T000306,5
585 +7,T000305,5
586 +7,T000304,5
587 +7,T000303,5
588 +7,T000302,5
589 +7,T000301,5
590 +7,T000299,0.5
591 +7,T000297,0.5
592 +7,T000295,0.5
593 +7,T000294,0.5
594 +7,T000293,0.5
595 +7,T000292,5
596 +7,T000291,0.5
597 +7,T000289,5
598 +7,T000286,0.5
599 +7,T000212,0.5
600 +7,T001617,0.5
601 +7,T001616,5
602 +7,T001615,0.5
603 +7,T001614,5
604 +7,T001613,5
605 +7,T001612,0.5
606 +7,T001611,0.5
607 +7,T001610,0.5
608 +7,T001609,5
609 +7,T001607,0.5
610 +7,T001604,5
611 +7,T001603,0.5
612 +7,T001602,0.5
613 +7,T001601,0.5
614 +7,T001600,5
615 +7,T000287,5
616 +7,T001921,5
617 +7,T001920,5
618 +7,T001919,5
619 +7,T001918,0.5
620 +7,T001916,0.5
621 +7,T001911,5
622 +7,T001942,5
623 +7,T001947,0.5
624 +7,T001943,0.5
625 +7,T001944,0.5
626 +7,T001945,5
627 +7,T001946,5
628 +7,T001956,0.5
629 +8,T000036,5
630 +8,T000041,0.5
631 +8,T000042,5
632 +8,T000043,0.5
633 +8,T000045,0.5
634 +8,T000046,0.5
635 +8,T000047,0.5
636 +8,T000048,5
637 +8,T000049,5
638 +8,T000050,0.5
639 +8,T000051,5
640 +8,T000052,5
641 +8,T000054,5
642 +8,T000055,0.5
643 +8,T000056,5
644 +8,T000057,5
645 +8,T000058,5
646 +8,T000060,5
647 +8,T000062,0.5
648 +8,T000078,0.5
649 +8,T000077,0.5
650 +8,T000076,0.5
651 +8,T000075,0.5
652 +8,T000074,0.5
653 +8,T000073,0.5
654 +8,T000071,0.5
655 +8,T000070,0.5
656 +8,T000069,0.5
657 +8,T000063,0.5
658 +8,T000064,5
659 +8,T000065,5
660 +8,T000066,0.5
661 +8,T000067,5
662 +8,T000068,0.5
663 +8,T001630,0.5
664 +8,T001629,0.5
665 +8,T001628,5
666 +8,T000312,0.5
667 +8,T000311,0.5
668 +8,T000310,5
669 +8,T000309,0.5
670 +8,T000308,0.5
671 +8,T000307,0.5
672 +8,T000306,5
673 +8,T000305,5
674 +8,T000304,0.5
675 +8,T000303,0.5
676 +8,T000302,0.5
677 +8,T000299,0.5
678 +8,T000298,0.5
679 +8,T000297,5
680 +8,T000293,0.5
681 +8,T000292,5
682 +8,T000291,5
683 +8,T000289,0.5
684 +8,T000288,5
685 +8,T000286,0.5
686 +8,T000212,0.5
687 +8,T001617,5
688 +8,T001615,5
689 +8,T001614,0.5
690 +8,T001613,0.5
691 +8,T001612,0.5
692 +8,T001611,0.5
693 +8,T001610,5
694 +8,T001609,0.5
695 +8,T001608,0.5
696 +8,T001607,0.5
697 +8,T001606,0.5
698 +8,T001604,0.5
699 +8,T001603,5
700 +8,T001602,5
701 +8,T001601,0.5
702 +8,T001600,0.5
703 +8,T000287,0.5
704 +8,T001921,0.5
705 +8,T001920,5
706 +8,T001919,0.5
707 +8,T001918,0.5
708 +8,T001917,5
709 +8,T001916,5
710 +8,T001915,0.5
711 +8,T001914,0.5
712 +8,T001911,5
713 +8,T001942,0.5
714 +8,T001947,0.5
715 +8,T001943,5
716 +8,T001945,0.5
717 +8,T001946,5
718 +8,T001956,5
719 +9,T000036,5
720 +9,T000040,5
721 +9,T000041,5
722 +9,T000042,0.5
723 +9,T000043,0.5
724 +9,T000044,0.5
725 +9,T000045,5
726 +9,T000046,0.5
727 +9,T000047,5
728 +9,T000048,5
729 +9,T000050,5
730 +9,T000052,0.5
731 +9,T000053,5
732 +9,T000057,0.5
733 +9,T000058,0.5
734 +9,T000059,5
735 +9,T000060,0.5
736 +9,T000061,5
737 +9,T000062,5
738 +9,T000078,0.5
739 +9,T000077,5
740 +9,T000076,5
741 +9,T000075,5
742 +9,T000074,0.5
743 +9,T000073,0.5
744 +9,T000072,0.5
745 +9,T000071,5
746 +9,T000070,0.5
747 +9,T000069,0.5
748 +9,T000063,5
749 +9,T000064,5
750 +9,T000065,0.5
751 +9,T000066,0.5
752 +9,T000067,0.5
753 +9,T000068,5
754 +9,T001631,5
755 +9,T001630,5
756 +9,T001629,5
757 +9,T001628,5
758 +9,T000312,0.5
759 +9,T000310,0.5
760 +9,T000308,0.5
761 +9,T000307,0.5
762 +9,T000306,0.5
763 +9,T000305,0.5
764 +9,T000304,0.5
765 +9,T000303,0.5
766 +9,T000302,0.5
767 +9,T000301,5
768 +9,T000299,5
769 +9,T000298,5
770 +9,T000295,0.5
771 +9,T000294,5
772 +9,T000293,5
773 +9,T000292,0.5
774 +9,T000291,0.5
775 +9,T000288,5
776 +9,T000286,5
777 +9,T000212,0.5
778 +9,T001617,0.5
779 +9,T001616,5
780 +9,T001615,5
781 +9,T001613,5
782 +9,T001611,0.5
783 +9,T001610,0.5
784 +9,T001609,5
785 +9,T001608,0.5
786 +9,T001607,5
787 +9,T001606,5
788 +9,T001604,5
789 +9,T001603,5
790 +9,T001602,0.5
791 +9,T001601,0.5
792 +9,T001600,0.5
793 +9,T000287,5
794 +9,T001921,0.5
795 +9,T001920,5
796 +9,T001919,0.5
797 +9,T001918,5
798 +9,T001917,5
799 +9,T001916,5
800 +9,T001915,0.5
801 +9,T001914,0.5
802 +9,T001911,5
803 +9,T001942,0.5
804 +9,T001947,0.5
805 +9,T001943,0.5
806 +9,T001944,5
807 +9,T001945,5
808 +9,T001946,5
809 +10,T000036,0.5
810 +10,T000040,5
811 +10,T000041,0.5
812 +10,T000042,0.5
813 +10,T000043,5
814 +10,T000044,5
815 +10,T000046,5
816 +10,T000047,5
817 +10,T000048,0.5
818 +10,T000049,0.5
819 +10,T000050,5
820 +10,T000051,5
821 +10,T000052,0.5
822 +10,T000054,5
823 +10,T000055,5
824 +10,T000056,5
825 +10,T000057,0.5
826 +10,T000058,0.5
827 +10,T000059,0.5
828 +10,T000060,0.5
829 +10,T000062,0.5
830 +10,T000078,0.5
831 +10,T000077,0.5
832 +10,T000076,0.5
833 +10,T000075,5
834 +10,T000074,0.5
835 +10,T000073,5
836 +10,T000072,5
837 +10,T000071,0.5
838 +10,T000070,5
839 +10,T000063,5
840 +10,T000064,0.5
841 +10,T000065,0.5
842 +10,T000066,5
843 +10,T000067,0.5
844 +10,T001631,0.5
845 +10,T001630,0.5
846 +10,T001629,0.5
847 +10,T001628,0.5
848 +10,T000311,0.5
849 +10,T000310,0.5
850 +10,T000309,0.5
851 +10,T000308,0.5
852 +10,T000307,0.5
853 +10,T000306,0.5
854 +10,T000305,0.5
855 +10,T000304,0.5
856 +10,T000302,0.5
857 +10,T000301,0.5
858 +10,T000299,0.5
859 +10,T000298,0.5
860 +10,T000295,0.5
861 +10,T000294,0.5
862 +10,T000293,0.5
863 +10,T000292,0.5
864 +10,T000291,0.5
865 +10,T000289,0.5
866 +10,T000288,0.5
867 +10,T000286,0.5
868 +10,T000212,0.5
869 +10,T001617,0.5
870 +10,T001616,5
871 +10,T001614,5
872 +10,T001613,0.5
873 +10,T001612,0.5
874 +10,T001611,0.5
875 +10,T001610,0.5
876 +10,T001608,0.5
877 +10,T001607,0.5
878 +10,T001606,5
879 +10,T001604,0.5
880 +10,T001603,0.5
881 +10,T001602,0.5
882 +10,T001601,5
883 +10,T001600,0.5
884 +10,T001921,5
885 +10,T001920,5
886 +10,T001919,5
887 +10,T001918,0.5
888 +10,T001917,0.5
889 +10,T001916,5
890 +10,T001914,0.5
891 +10,T001911,0.5
892 +10,T001942,0.5
893 +10,T001947,0.5
894 +10,T001943,5
895 +10,T001944,0.5
896 +10,T001945,5
897 +10,T001946,0.5
898 +10,T001956,0.5
899 +11,T000040,0.5
900 +11,T000041,0.5
901 +11,T000042,0.5
902 +11,T000043,0.5
903 +11,T000044,5
904 +11,T000045,5
905 +11,T000047,0.5
906 +11,T000048,0.5
907 +11,T000049,5
908 +11,T000050,5
909 +11,T000051,5
910 +11,T000052,0.5
911 +11,T000053,0.5
912 +11,T000055,0.5
913 +11,T000056,5
914 +11,T000057,0.5
915 +11,T000058,0.5
916 +11,T000059,0.5
917 +11,T000060,0.5
918 +11,T000061,5
919 +11,T000062,5
920 +11,T000078,0.5
921 +11,T000076,0.5
922 +11,T000075,5
923 +11,T000074,5
924 +11,T000073,0.5
925 +11,T000072,0.5
926 +11,T000071,0.5
927 +11,T000070,5
928 +11,T000063,0.5
929 +11,T000064,5
930 +11,T000065,5
931 +11,T000066,0.5
932 +11,T000067,5
933 +11,T000068,0.5
934 +11,T001631,0.5
935 +11,T001630,0.5
936 +11,T001629,0.5
937 +11,T000312,5
938 +11,T000311,5
939 +11,T000310,0.5
940 +11,T000309,0.5
941 +11,T000307,0.5
942 +11,T000306,0.5
943 +11,T000305,0.5
944 +11,T000304,0.5
945 +11,T000303,0.5
946 +11,T000302,0.5
947 +11,T000299,5
948 +11,T000298,5
949 +11,T000297,5
950 +11,T000295,0.5
951 +11,T000294,0.5
952 +11,T000293,0.5
953 +11,T000292,0.5
954 +11,T000291,5
955 +11,T000289,5
956 +11,T000286,5
957 +11,T000212,0.5
958 +11,T001617,0.5
959 +11,T001616,5
960 +11,T001615,5
961 +11,T001614,5
962 +11,T001613,0.5
963 +11,T001612,0.5
964 +11,T001611,0.5
965 +11,T001609,5
966 +11,T001608,5
967 +11,T001607,0.5
968 +11,T001606,0.5
969 +11,T001604,5
970 +11,T001603,0.5
971 +11,T001602,0.5
972 +11,T001601,0.5
973 +11,T000287,0.5
974 +11,T001921,5
975 +11,T001920,5
976 +11,T001919,5
977 +11,T001918,0.5
978 +11,T001917,0.5
979 +11,T001916,0.5
980 +11,T001915,0.5
981 +11,T001911,0.5
982 +11,T001942,0.5
983 +11,T001947,0.5
984 +11,T001943,0.5
985 +11,T001944,5
986 +11,T001945,0.5
987 +11,T001946,0.5
988 +11,T001956,0.5
989 +12,T000036,5
990 +12,T000040,0.5
991 +12,T000041,0.5
992 +12,T000042,0.5
993 +12,T000043,5
994 +12,T000044,0.5
995 +12,T000046,0.5
996 +12,T000047,5
997 +12,T000049,5
998 +12,T000050,5
999 +12,T000051,0.5
1000 +12,T000052,5
1001 +12,T000053,5
1002 +12,T000054,5
1003 +12,T000055,0.5
1004 +12,T000057,0.5
1005 +12,T000058,0.5
1006 +12,T000059,0.5
1007 +12,T000060,5
1008 +12,T000061,5
1009 +12,T000062,5
1010 +12,T000078,0.5
1011 +12,T000077,0.5
1012 +12,T000076,5
1013 +12,T000074,0.5
1014 +12,T000073,5
1015 +12,T000072,0.5
1016 +12,T000071,5
1017 +12,T000070,0.5
1018 +12,T000069,5
1019 +12,T000064,5
1020 +12,T000065,0.5
1021 +12,T000066,0.5
1022 +12,T000067,5
1023 +12,T000068,0.5
1024 +12,T001630,0.5
1025 +12,T001629,0.5
1026 +12,T001628,0.5
1027 +12,T000312,0.5
1028 +12,T000311,0.5
1029 +12,T000310,5
1030 +12,T000308,0.5
1031 +12,T000307,0.5
1032 +12,T000306,0.5
1033 +12,T000305,0.5
1034 +12,T000304,0.5
1035 +12,T000303,5
1036 +12,T000301,0.5
1037 +12,T000299,5
1038 +12,T000298,0.5
1039 +12,T000297,0.5
1040 +12,T000295,0.5
1041 +12,T000294,5
1042 +12,T000293,5
1043 +12,T000292,0.5
1044 +12,T000289,0.5
1045 +12,T000288,5
1046 +12,T000286,5
1047 +12,T000212,0.5
1048 +12,T001617,0.5
1049 +12,T001615,5
1050 +12,T001614,0.5
1051 +12,T001613,5
1052 +12,T001612,5
1053 +12,T001611,5
1054 +12,T001610,5
1055 +12,T001609,0.5
1056 +12,T001608,0.5
1057 +12,T001607,0.5
1058 +12,T001606,0.5
1059 +12,T001604,0.5
1060 +12,T001603,0.5
1061 +12,T001602,0.5
1062 +12,T001601,5
1063 +12,T001600,0.5
1064 +12,T000287,0.5
1065 +12,T001921,5
1066 +12,T001920,5
1067 +12,T001919,0.5
1068 +12,T001917,5
1069 +12,T001916,0.5
1070 +12,T001915,5
1071 +12,T001914,0.5
1072 +12,T001911,0.5
1073 +12,T001942,0.5
1074 +12,T001943,0.5
1075 +12,T001944,0.5
1076 +12,T001945,5
1077 +12,T001946,0.5
1078 +12,T001956,5
1079 +13,T000036,0.5
1080 +13,T000040,0.5
1081 +13,T000041,0.5
1082 +13,T000042,0.5
1083 +13,T000044,5
1084 +13,T000045,5
1085 +13,T000046,0.5
1086 +13,T000047,5
1087 +13,T000048,5
1088 +13,T000049,5
1089 +13,T000050,5
1090 +13,T000051,0.5
1091 +13,T000053,0.5
1092 +13,T000054,0.5
1093 +13,T000055,0.5
1094 +13,T000056,5
1095 +13,T000057,5
1096 +13,T000058,5
1097 +13,T000060,5
1098 +13,T000061,5
1099 +13,T000062,5
1100 +13,T000078,5
1101 +13,T000077,5
1102 +13,T000076,5
1103 +13,T000075,5
1104 +13,T000074,5
1105 +13,T000073,5
1106 +13,T000072,5
1107 +13,T000070,5
1108 +13,T000069,5
1109 +13,T000063,5
1110 +13,T000064,5
1111 +13,T000065,5
1112 +13,T000066,5
1113 +13,T000067,5
1114 +13,T000068,0.5
1115 +13,T001631,5
1116 +13,T001630,5
1117 +13,T001629,0.5
1118 +13,T000312,5
1119 +13,T000311,5
1120 +13,T000310,5
1121 +13,T000309,5
1122 +13,T000308,5
1123 +13,T000306,0.5
1124 +13,T000305,5
1125 +13,T000304,5
1126 +13,T000303,5
1127 +13,T000302,5
1128 +13,T000301,5
1129 +13,T000298,0.5
1130 +13,T000297,0.5
1131 +13,T000295,0.5
1132 +13,T000294,5
1133 +13,T000293,5
1134 +13,T000292,5
1135 +13,T000289,5
1136 +13,T000288,5
1137 +13,T000286,5
1138 +13,T000212,0.5
1139 +13,T001617,5
1140 +13,T001616,5
1141 +13,T001615,5
1142 +13,T001613,5
1143 +13,T001612,0.5
1144 +13,T001611,0.5
1145 +13,T001610,5
1146 +13,T001609,0.5
1147 +13,T001608,0.5
1148 +13,T001607,5
1149 +13,T001606,0.5
1150 +13,T001603,5
1151 +13,T001602,0.5
1152 +13,T001601,0.5
1153 +13,T001600,0.5
1154 +13,T000287,0.5
1155 +13,T001920,0.5
1156 +13,T001919,0.5
1157 +13,T001918,0.5
1158 +13,T001917,0.5
1159 +13,T001916,0.5
1160 +13,T001915,0.5
1161 +13,T001914,0.5
1162 +13,T001942,0.5
1163 +13,T001947,0.5
1164 +13,T001943,5
1165 +13,T001944,0.5
1166 +13,T001945,5
1167 +13,T001946,5
1168 +13,T001956,0.5
1 +userid,contentsid,rating
2 +1,T000043,5
3 +1,T000055,0.5
4 +1,T000072,0.5
5 +1,T000064,5
6 +1,T001630,0.5
7 +1,T000308,0.5
8 +1,T000293,0.5
9 +1,T001616,0.5
10 +1,T001613,5
11 +1,T001601,0.5
12 +1,T001919,0.5
13 +1,T001946,5
14 +2,T000046,5
15 +2,T000051,0.5
16 +2,T000074,0.5
17 +2,T000308,0.5
18 +2,T000307,5
19 +2,T000299,0.5
20 +2,T000291,0.5
21 +2,T001613,5
22 +2,T001607,0.5
23 +2,T001920,5
24 +2,T001916,0.5
25 +2,T001943,0.5
26 +3,T000036,5
27 +3,T000049,0.5
28 +3,T000053,0.5
29 +3,T000061,5
30 +3,T000073,0.5
31 +3,T001628,5
32 +3,T000302,5
33 +3,T000212,0.5
34 +3,T001616,0.5
35 +3,T001606,0.5
36 +3,T001920,0.5
37 +3,T001915,0.5
38 +4,T001947,0.5
39 +4,T001921,0.5
40 +4,T001617,0.5
41 +4,T001606,0.5
42 +4,T000040,0.5
43 +4,T000045,0.5
44 +4,T000060,5
45 +4,T000077,0.5
46 +4,T000068,0.5
47 +4,T000302,0.5
48 +4,T000293,0.5
49 +4,T000288,0.5
50 +5,T001956,5
51 +5,T001915,0.5
52 +5,T001611,5
53 +5,T001604,5
54 +5,T000046,0.5
55 +5,T000056,5
56 +5,T000073,0.5
57 +5,T000065,0.5
58 +5,T001630,0.5
59 +5,T000309,0.5
60 +5,T000299,5
61 +5,T000294,0.5
62 +6,T001943,5
63 +6,T001911,0.5
64 +6,T000036,0.5
65 +6,T000050,5
66 +6,T000056,0.5
67 +6,T000059,5
68 +6,T000074,5
69 +6,T000072,0.5
70 +6,T000071,0.5
71 +6,T000293,0.5
72 +6,T000292,5
73 +6,T000212,0.5
74 +7,T000053,5
75 +7,T000054,5
76 +7,T000060,0.5
77 +7,T000078,0.5
78 +7,T000071,0.5
79 +7,T000298,0.5
80 +7,T000288,0.5
81 +7,T001608,0.5
82 +7,T001606,5
83 +7,T001917,0.5
84 +7,T001915,0.5
85 +7,T001914,5
86 +8,T000040,0.5
87 +8,T000044,0.5
88 +8,T000053,0.5
89 +8,T000059,5
90 +8,T000061,5
91 +8,T000072,0.5
92 +8,T001631,0.5
93 +8,T000301,0.5
94 +8,T000295,5
95 +8,T000294,5
96 +8,T001616,5
97 +8,T001944,5
98 +9,T000049,5
99 +9,T000051,0.5
100 +9,T000054,5
101 +9,T000055,5
102 +9,T000056,5
103 +9,T000311,5
104 +9,T000309,5
105 +9,T000297,5
106 +9,T000289,5
107 +9,T001614,0.5
108 +9,T001612,0.5
109 +9,T001956,0.5
110 +10,T000045,0.5
111 +10,T000053,0.5
112 +10,T000061,5
113 +10,T000069,0.5
114 +10,T000068,0.5
115 +10,T000312,0.5
116 +10,T000303,0.5
117 +10,T000297,0.5
118 +10,T000287,5
119 +10,T001615,5
120 +10,T001609,5
121 +10,T001915,5
122 +11,T000036,5
123 +11,T000046,0.5
124 +11,T000054,5
125 +11,T000077,0.5
126 +11,T000069,0.5
127 +11,T001628,5
128 +11,T000308,5
129 +11,T000301,0.5
130 +11,T000288,5
131 +11,T001610,0.5
132 +11,T001600,5
133 +11,T001914,5
134 +12,T000045,0.5
135 +12,T000048,0.5
136 +12,T000056,5
137 +12,T000075,5
138 +12,T000063,0.5
139 +12,T001631,5
140 +12,T000309,0.5
141 +12,T000302,0.5
142 +12,T000291,5
143 +12,T001616,0.5
144 +12,T001918,5
145 +12,T001947,5
146 +13,T000043,5
147 +13,T000052,5
148 +13,T000059,5
149 +13,T000071,5
150 +13,T001628,0.5
151 +13,T000307,5
152 +13,T000299,0.5
153 +13,T000291,5
154 +13,T001614,0.5
155 +13,T001604,5
156 +13,T001921,0.5
157 +13,T001911,0.5