timsort.js 22.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
/**
 * Default minimum size of a run.
 */
const DEFAULT_MIN_MERGE = 32;

/**
 * Minimum ordered subsequece required to do galloping.
 */
const DEFAULT_MIN_GALLOPING = 7;

/**
 * Default tmp storage length. Can increase depending on the size of the
 * smallest run to merge.
 */
const DEFAULT_TMP_STORAGE_LENGTH = 256;

/**
 * Pre-computed powers of 10 for efficient lexicographic comparison of
 * small integers.
 */
const POWERS_OF_TEN = [1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9]

/**
 * Estimate the logarithm base 10 of a small integer.
 *
 * @param {number} x - The integer to estimate the logarithm of.
 * @return {number} - The estimated logarithm of the integer.
 */
function log10(x) {
  if (x < 1e5) {
    if (x < 1e2) {
      return x < 1e1 ? 0 : 1;
    }

    if (x < 1e4) {
      return x < 1e3 ? 2 : 3;
    }

    return 4;
  }

  if (x < 1e7) {
    return x < 1e6 ? 5 : 6;
  }

  if (x < 1e9) {
    return x < 1e8 ? 7 : 8;
  }

  return 9;
}

/**
 * Default alphabetical comparison of items.
 *
 * @param {string|object|number} a - First element to compare.
 * @param {string|object|number} b - Second element to compare.
 * @return {number} - A positive number if a.toString() > b.toString(), a
 * negative number if .toString() < b.toString(), 0 otherwise.
 */
function alphabeticalCompare(a, b) {
  if (a === b) {
    return 0;
  }

  if (~~a === a && ~~b === b) {
    if (a === 0 || b === 0) {
      return a < b ? -1 : 1;
    }

    if (a < 0 || b < 0) {
      if (b >= 0) {
        return -1;
      }

      if (a >= 0) {
        return 1;
      }

      a = -a;
      b = -b;
    }

    const al = log10(a);
    const bl = log10(b);

    let t = 0;

    if (al < bl) {
      a *= POWERS_OF_TEN[bl - al - 1];
      b /= 10;
      t = -1;
    } else if (al > bl) {
      b *= POWERS_OF_TEN[al - bl - 1];
      a /= 10;
      t = 1;
    }

    if (a === b) {
      return t;
    }

    return a < b ? -1 : 1;
  }

  let aStr = String(a);
  let bStr = String(b);

  if (aStr === bStr) {
    return 0;
  }

  return aStr < bStr ? -1 : 1;
}

/**
 * Compute minimum run length for TimSort
 *
 * @param {number} n - The size of the array to sort.
 */
function minRunLength(n) {
  let r = 0;

  while (n >= DEFAULT_MIN_MERGE) {
    r |= (n & 1);
    n >>= 1;
  }

  return n + r;
}

/**
 * Counts the length of a monotonically ascending or strictly monotonically
 * descending sequence (run) starting at array[lo] in the range [lo, hi). If
 * the run is descending it is made ascending.
 *
 * @param {array} array - The array to reverse.
 * @param {number} lo - First element in the range (inclusive).
 * @param {number} hi - Last element in the range.
 * @param {function} compare - Item comparison function.
 * @return {number} - The length of the run.
 */
function makeAscendingRun(array, lo, hi, compare) {
  let runHi = lo + 1;

  if (runHi === hi) {
    return 1;
  }

  // Descending
  if (compare(array[runHi++], array[lo]) < 0) {
    while (runHi < hi && compare(array[runHi], array[runHi - 1]) < 0) {
      runHi++;
    }

    reverseRun(array, lo, runHi);
    // Ascending
  } else {
    while (runHi < hi && compare(array[runHi], array[runHi - 1]) >= 0) {
      runHi++;
    }
  }

  return runHi - lo;
}

/**
 * Reverse an array in the range [lo, hi).
 *
 * @param {array} array - The array to reverse.
 * @param {number} lo - First element in the range (inclusive).
 * @param {number} hi - Last element in the range.
 */
function reverseRun(array, lo, hi) {
  hi--;

  while (lo < hi) {
    let t = array[lo];
    array[lo++] = array[hi];
    array[hi--] = t;
  }
}

/**
 * Perform the binary sort of the array in the range [lo, hi) where start is
 * the first element possibly out of order.
 *
 * @param {array} array - The array to sort.
 * @param {number} lo - First element in the range (inclusive).
 * @param {number} hi - Last element in the range.
 * @param {number} start - First element possibly out of order.
 * @param {function} compare - Item comparison function.
 */
function binaryInsertionSort(array, lo, hi, start, compare) {
  if (start === lo) {
    start++;
  }

  for (; start < hi; start++) {
    let pivot = array[start];

    // Ranges of the array where pivot belongs
    let left = lo;
    let right = start;

    /*
     *   pivot >= array[i] for i in [lo, left)
     *   pivot <  array[i] for i in  in [right, start)
     */
    while (left < right) {
      let mid = (left + right) >>> 1;

      if (compare(pivot, array[mid]) < 0) {
        right = mid;
      } else {
        left = mid + 1;
      }
    }

    /*
     * Move elements right to make room for the pivot. If there are elements
     * equal to pivot, left points to the first slot after them: this is also
     * a reason for which TimSort is stable
     */
    let n = start - left;
    // Switch is just an optimization for small arrays
    switch (n) {
      case 3:
        array[left + 3] = array[left + 2];
      /* falls through */
      case 2:
        array[left + 2] = array[left + 1];
      /* falls through */
      case 1:
        array[left + 1] = array[left];
        break;
      default:
        while (n > 0) {
          array[left + n] = array[left + n - 1];
          n--;
        }
    }

    array[left] = pivot;
  }
}

/**
 * Find the position at which to insert a value in a sorted range. If the range
 * contains elements equal to the value the leftmost element index is returned
 * (for stability).
 *
 * @param {number} value - Value to insert.
 * @param {array} array - The array in which to insert value.
 * @param {number} start - First element in the range.
 * @param {number} length - Length of the range.
 * @param {number} hint - The index at which to begin the search.
 * @param {function} compare - Item comparison function.
 * @return {number} - The index where to insert value.
 */
function gallopLeft(value, array, start, length, hint, compare) {
  let lastOffset = 0;
  let maxOffset = 0;
  let offset = 1;

  if (compare(value, array[start + hint]) > 0) {
    maxOffset = length - hint;

    while (offset < maxOffset && compare(value, array[start + hint + offset]) > 0) {
      lastOffset = offset;
      offset = (offset << 1) + 1;

      if (offset <= 0) {
        offset = maxOffset;
      }
    }

    if (offset > maxOffset) {
      offset = maxOffset;
    }

    // Make offsets relative to start
    lastOffset += hint;
    offset += hint;

    // value <= array[start + hint]
  } else {
    maxOffset = hint + 1;
    while (offset < maxOffset && compare(value, array[start + hint - offset]) <= 0) {
      lastOffset = offset;
      offset = (offset << 1) + 1;

      if (offset <= 0) {
        offset = maxOffset;
      }
    }
    if (offset > maxOffset) {
      offset = maxOffset;
    }

    // Make offsets relative to start
    let tmp = lastOffset;
    lastOffset = hint - offset;
    offset = hint - tmp;
  }

  /*
   * Now array[start+lastOffset] < value <= array[start+offset], so value
   * belongs somewhere in the range (start + lastOffset, start + offset]. Do a
   * binary search, with invariant array[start + lastOffset - 1] < value <=
   * array[start + offset].
   */
  lastOffset++;
  while (lastOffset < offset) {
    let m = lastOffset + ((offset - lastOffset) >>> 1);

    if (compare(value, array[start + m]) > 0) {
      lastOffset = m + 1;

    } else {
      offset = m;
    }
  }
  return offset;
}

/**
 * Find the position at which to insert a value in a sorted range. If the range
 * contains elements equal to the value the rightmost element index is returned
 * (for stability).
 *
 * @param {number} value - Value to insert.
 * @param {array} array - The array in which to insert value.
 * @param {number} start - First element in the range.
 * @param {number} length - Length of the range.
 * @param {number} hint - The index at which to begin the search.
 * @param {function} compare - Item comparison function.
 * @return {number} - The index where to insert value.
 */
function gallopRight(value, array, start, length, hint, compare) {
  let lastOffset = 0;
  let maxOffset = 0;
  let offset = 1;

  if (compare(value, array[start + hint]) < 0) {
    maxOffset = hint + 1;

    while (offset < maxOffset && compare(value, array[start + hint - offset]) < 0) {
      lastOffset = offset;
      offset = (offset << 1) + 1;

      if (offset <= 0) {
        offset = maxOffset;
      }
    }

    if (offset > maxOffset) {
      offset = maxOffset;
    }

    // Make offsets relative to start
    let tmp = lastOffset;
    lastOffset = hint - offset;
    offset = hint - tmp;

    // value >= array[start + hint]
  } else {
    maxOffset = length - hint;

    while (offset < maxOffset && compare(value, array[start + hint + offset]) >= 0) {
      lastOffset = offset;
      offset = (offset << 1) + 1;

      if (offset <= 0) {
        offset = maxOffset;
      }
    }

    if (offset > maxOffset) {
      offset = maxOffset;
    }

    // Make offsets relative to start
    lastOffset += hint;
    offset += hint;
  }

  /*
   * Now array[start+lastOffset] < value <= array[start+offset], so value
   * belongs somewhere in the range (start + lastOffset, start + offset]. Do a
   * binary search, with invariant array[start + lastOffset - 1] < value <=
   * array[start + offset].
   */
  lastOffset++;

  while (lastOffset < offset) {
    let m = lastOffset + ((offset - lastOffset) >>> 1);

    if (compare(value, array[start + m]) < 0) {
      offset = m;

    } else {
      lastOffset = m + 1;
    }
  }

  return offset;
}

class TimSort {
  array = null;
  compare = null;
  minGallop = DEFAULT_MIN_GALLOPING;
  length = 0;
  tmpStorageLength = DEFAULT_TMP_STORAGE_LENGTH;
  stackLength = 0;
  runStart = null;
  runLength = null;
  stackSize = 0;

  constructor(array, compare) {
    this.array = array;
    this.compare = compare;

    this.length = array.length;

    if (this.length < 2 * DEFAULT_TMP_STORAGE_LENGTH) {
      this.tmpStorageLength = this.length >>> 1;
    }

    this.tmp = new Array(this.tmpStorageLength);

    this.stackLength =
      (this.length < 120 ? 5 :
        this.length < 1542 ? 10 :
          this.length < 119151 ? 19 : 40);

    this.runStart = new Array(this.stackLength);
    this.runLength = new Array(this.stackLength);
  }

  /**
   * Push a new run on TimSort's stack.
   *
   * @param {number} runStart - Start index of the run in the original array.
   * @param {number} runLength - Length of the run;
   */
  pushRun(runStart, runLength) {
    this.runStart[this.stackSize] = runStart;
    this.runLength[this.stackSize] = runLength;
    this.stackSize += 1;
  }

  /**
   * Merge runs on TimSort's stack so that the following holds for all i:
   * 1) runLength[i - 3] > runLength[i - 2] + runLength[i - 1]
   * 2) runLength[i - 2] > runLength[i - 1]
   */
  mergeRuns() {
    while (this.stackSize > 1) {
      let n = this.stackSize - 2;

      if ((n >= 1 &&
        this.runLength[n - 1] <= this.runLength[n] + this.runLength[n + 1]) ||
        (n >= 2 &&
        this.runLength[n - 2] <= this.runLength[n] + this.runLength[n - 1])) {

        if (this.runLength[n - 1] < this.runLength[n + 1]) {
          n--;
        }

      } else if (this.runLength[n] > this.runLength[n + 1]) {
        break;
      }
      this.mergeAt(n);
    }
  }

  /**
   * Merge all runs on TimSort's stack until only one remains.
   */
  forceMergeRuns() {
    while (this.stackSize > 1) {
      let n = this.stackSize - 2;

      if (n > 0 && this.runLength[n - 1] < this.runLength[n + 1]) {
        n--;
      }

      this.mergeAt(n);
    }
  }

  /**
   * Merge the runs on the stack at positions i and i+1. Must be always be called
   * with i=stackSize-2 or i=stackSize-3 (that is, we merge on top of the stack).
   *
   * @param {number} i - Index of the run to merge in TimSort's stack.
   */
  mergeAt(i) {
    let compare = this.compare;
    let array = this.array;

    let start1 = this.runStart[i];
    let length1 = this.runLength[i];
    let start2 = this.runStart[i + 1];
    let length2 = this.runLength[i + 1];

    this.runLength[i] = length1 + length2;

    if (i === this.stackSize - 3) {
      this.runStart[i + 1] = this.runStart[i + 2];
      this.runLength[i + 1] = this.runLength[i + 2];
    }

    this.stackSize--;

    /*
     * Find where the first element in the second run goes in run1. Previous
     * elements in run1 are already in place
     */
    let k = gallopRight(array[start2], array, start1, length1, 0, compare);
    start1 += k;
    length1 -= k;

    if (length1 === 0) {
      return;
    }

    /*
     * Find where the last element in the first run goes in run2. Next elements
     * in run2 are already in place
     */
    length2 = gallopLeft(array[start1 + length1 - 1], array, start2, length2, length2 - 1, compare);

    if (length2 === 0) {
      return;
    }

    /*
     * Merge remaining runs. A tmp array with length = min(length1, length2) is
     * used
     */
    if (length1 <= length2) {
      this.mergeLow(start1, length1, start2, length2);

    } else {
      this.mergeHigh(start1, length1, start2, length2);
    }
  }

  /**
   * Merge two adjacent runs in a stable way. The runs must be such that the
   * first element of run1 is bigger than the first element in run2 and the
   * last element of run1 is greater than all the elements in run2.
   * The method should be called when run1.length <= run2.length as it uses
   * TimSort temporary array to store run1. Use mergeHigh if run1.length >
   * run2.length.
   *
   * @param {number} start1 - First element in run1.
   * @param {number} length1 - Length of run1.
   * @param {number} start2 - First element in run2.
   * @param {number} length2 - Length of run2.
   */
  mergeLow(start1, length1, start2, length2) {

    let compare = this.compare;
    let array = this.array;
    let tmp = this.tmp;
    let i = 0;

    for (i = 0; i < length1; i++) {
      tmp[i] = array[start1 + i];
    }

    let cursor1 = 0;
    let cursor2 = start2;
    let dest = start1;

    array[dest++] = array[cursor2++];

    if (--length2 === 0) {
      for (i = 0; i < length1; i++) {
        array[dest + i] = tmp[cursor1 + i];
      }
      return;
    }

    if (length1 === 1) {
      for (i = 0; i < length2; i++) {
        array[dest + i] = array[cursor2 + i];
      }
      array[dest + length2] = tmp[cursor1];
      return;
    }

    let minGallop = this.minGallop;

    while (true) {
      let count1 = 0;
      let count2 = 0;
      let exit = false;

      do {
        if (compare(array[cursor2], tmp[cursor1]) < 0) {
          array[dest++] = array[cursor2++];
          count2++;
          count1 = 0;

          if (--length2 === 0) {
            exit = true;
            break;
          }

        } else {
          array[dest++] = tmp[cursor1++];
          count1++;
          count2 = 0;
          if (--length1 === 1) {
            exit = true;
            break;
          }
        }
      } while ((count1 | count2) < minGallop);

      if (exit) {
        break;
      }

      do {
        count1 = gallopRight(array[cursor2], tmp, cursor1, length1, 0, compare);

        if (count1 !== 0) {
          for (i = 0; i < count1; i++) {
            array[dest + i] = tmp[cursor1 + i];
          }

          dest += count1;
          cursor1 += count1;
          length1 -= count1;
          if (length1 <= 1) {
            exit = true;
            break;
          }
        }

        array[dest++] = array[cursor2++];

        if (--length2 === 0) {
          exit = true;
          break;
        }

        count2 = gallopLeft(tmp[cursor1], array, cursor2, length2, 0, compare);

        if (count2 !== 0) {
          for (i = 0; i < count2; i++) {
            array[dest + i] = array[cursor2 + i];
          }

          dest += count2;
          cursor2 += count2;
          length2 -= count2;

          if (length2 === 0) {
            exit = true;
            break;
          }
        }
        array[dest++] = tmp[cursor1++];

        if (--length1 === 1) {
          exit = true;
          break;
        }

        minGallop--;

      } while (count1 >= DEFAULT_MIN_GALLOPING || count2 >= DEFAULT_MIN_GALLOPING);

      if (exit) {
        break;
      }

      if (minGallop < 0) {
        minGallop = 0;
      }

      minGallop += 2;
    }

    this.minGallop = minGallop;

    if (minGallop < 1) {
      this.minGallop = 1;
    }

    if (length1 === 1) {
      for (i = 0; i < length2; i++) {
        array[dest + i] = array[cursor2 + i];
      }
      array[dest + length2] = tmp[cursor1];

    } else if (length1 === 0) {
      throw new Error('mergeLow preconditions were not respected');

    } else {
      for (i = 0; i < length1; i++) {
        array[dest + i] = tmp[cursor1 + i];
      }
    }
  }

  /**
   * Merge two adjacent runs in a stable way. The runs must be such that the
   * first element of run1 is bigger than the first element in run2 and the
   * last element of run1 is greater than all the elements in run2.
   * The method should be called when run1.length > run2.length as it uses
   * TimSort temporary array to store run2. Use mergeLow if run1.length <=
   * run2.length.
   *
   * @param {number} start1 - First element in run1.
   * @param {number} length1 - Length of run1.
   * @param {number} start2 - First element in run2.
   * @param {number} length2 - Length of run2.
   */
  mergeHigh(start1, length1, start2, length2) {
    let compare = this.compare;
    let array = this.array;
    let tmp = this.tmp;
    let i = 0;

    for (i = 0; i < length2; i++) {
      tmp[i] = array[start2 + i];
    }

    let cursor1 = start1 + length1 - 1;
    let cursor2 = length2 - 1;
    let dest = start2 + length2 - 1;
    let customCursor = 0;
    let customDest = 0;

    array[dest--] = array[cursor1--];

    if (--length1 === 0) {
      customCursor = dest - (length2 - 1);

      for (i = 0; i < length2; i++) {
        array[customCursor + i] = tmp[i];
      }

      return;
    }

    if (length2 === 1) {
      dest -= length1;
      cursor1 -= length1;
      customDest = dest + 1;
      customCursor = cursor1 + 1;

      for (i = length1 - 1; i >= 0; i--) {
        array[customDest + i] = array[customCursor + i];
      }

      array[dest] = tmp[cursor2];
      return;
    }

    let minGallop = this.minGallop;

    while (true) {
      let count1 = 0;
      let count2 = 0;
      let exit = false;

      do {
        if (compare(tmp[cursor2], array[cursor1]) < 0) {
          array[dest--] = array[cursor1--];
          count1++;
          count2 = 0;
          if (--length1 === 0) {
            exit = true;
            break;
          }

        } else {
          array[dest--] = tmp[cursor2--];
          count2++;
          count1 = 0;
          if (--length2 === 1) {
            exit = true;
            break;
          }
        }

      } while ((count1 | count2) < minGallop);

      if (exit) {
        break;
      }

      do {
        count1 = length1 - gallopRight(tmp[cursor2], array, start1, length1, length1 - 1, compare);

        if (count1 !== 0) {
          dest -= count1;
          cursor1 -= count1;
          length1 -= count1;
          customDest = dest + 1;
          customCursor = cursor1 + 1;

          for (i = count1 - 1; i >= 0; i--) {
            array[customDest + i] = array[customCursor + i];
          }

          if (length1 === 0) {
            exit = true;
            break;
          }
        }

        array[dest--] = tmp[cursor2--];

        if (--length2 === 1) {
          exit = true;
          break;
        }

        count2 = length2 - gallopLeft(array[cursor1], tmp, 0, length2, length2 - 1, compare);

        if (count2 !== 0) {
          dest -= count2;
          cursor2 -= count2;
          length2 -= count2;
          customDest = dest + 1;
          customCursor = cursor2 + 1;

          for (i = 0; i < count2; i++) {
            array[customDest + i] = tmp[customCursor + i];
          }

          if (length2 <= 1) {
            exit = true;
            break;
          }
        }

        array[dest--] = array[cursor1--];

        if (--length1 === 0) {
          exit = true;
          break;
        }

        minGallop--;

      } while (count1 >= DEFAULT_MIN_GALLOPING || count2 >= DEFAULT_MIN_GALLOPING);

      if (exit) {
        break;
      }

      if (minGallop < 0) {
        minGallop = 0;
      }

      minGallop += 2;
    }

    this.minGallop = minGallop;

    if (minGallop < 1) {
      this.minGallop = 1;
    }

    if (length2 === 1) {
      dest -= length1;
      cursor1 -= length1;
      customDest = dest + 1;
      customCursor = cursor1 + 1;

      for (i = length1 - 1; i >= 0; i--) {
        array[customDest + i] = array[customCursor + i];
      }

      array[dest] = tmp[cursor2];

    } else if (length2 === 0) {
      throw new Error('mergeHigh preconditions were not respected');

    } else {
      customCursor = dest - (length2 - 1);
      for (i = 0; i < length2; i++) {
        array[customCursor + i] = tmp[i];
      }
    }
  }
}

/**
 * Sort an array in the range [lo, hi) using TimSort.
 *
 * @param {array} array - The array to sort.
 * @param {function=} compare - Item comparison function. Default is
 *     alphabetical
 * @param {number} lo - First element in the range (inclusive).
 * @param {number} hi - Last element in the range.
 *     comparator.
 */
export function sort(array, compare, lo, hi) {
  if (!Array.isArray(array)) {
    throw new TypeError('Can only sort arrays');
  }

  /*
   * Handle the case where a comparison function is not provided. We do
   * lexicographic sorting
   */
  if (!compare) {
    compare = alphabeticalCompare;

  } else if (typeof compare !== 'function') {
    hi = lo;
    lo = compare;
    compare = alphabeticalCompare;
  }

  if (!lo) {
    lo = 0;
  }
  if (!hi) {
    hi = array.length;
  }

  let remaining = hi - lo;

  // The array is already sorted
  if (remaining < 2) {
    return;
  }

  let runLength = 0;
  // On small arrays binary sort can be used directly
  if (remaining < DEFAULT_MIN_MERGE) {
    runLength = makeAscendingRun(array, lo, hi, compare);
    binaryInsertionSort(array, lo, hi, lo + runLength, compare);
    return;
  }

  let ts = new TimSort(array, compare);

  let minRun = minRunLength(remaining);

  do {
    runLength = makeAscendingRun(array, lo, hi, compare);
    if (runLength < minRun) {
      let force = remaining;
      if (force > minRun) {
        force = minRun;
      }

      binaryInsertionSort(array, lo, lo + force, lo + runLength, compare);
      runLength = force;
    }
    // Push new run and merge if necessary
    ts.pushRun(lo, runLength);
    ts.mergeRuns();

    // Go find next run
    remaining -= runLength;
    lo += runLength;

  } while (remaining !== 0);

  // Force merging of remaining runs
  ts.forceMergeRuns();
}