sha512.js
16.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
/**
* Secure Hash Algorithm with a 1024-bit block size implementation.
*
* This includes: SHA-512, SHA-384, SHA-512/224, and SHA-512/256. For
* SHA-256 (block size 512 bits), see sha256.js.
*
* See FIPS 180-4 for details.
*
* @author Dave Longley
*
* Copyright (c) 2014-2015 Digital Bazaar, Inc.
*/
var forge = require('./forge');
require('./md');
require('./util');
var sha512 = module.exports = forge.sha512 = forge.sha512 || {};
// SHA-512
forge.md.sha512 = forge.md.algorithms.sha512 = sha512;
// SHA-384
var sha384 = forge.sha384 = forge.sha512.sha384 = forge.sha512.sha384 || {};
sha384.create = function() {
return sha512.create('SHA-384');
};
forge.md.sha384 = forge.md.algorithms.sha384 = sha384;
// SHA-512/256
forge.sha512.sha256 = forge.sha512.sha256 || {
create: function() {
return sha512.create('SHA-512/256');
}
};
forge.md['sha512/256'] = forge.md.algorithms['sha512/256'] =
forge.sha512.sha256;
// SHA-512/224
forge.sha512.sha224 = forge.sha512.sha224 || {
create: function() {
return sha512.create('SHA-512/224');
}
};
forge.md['sha512/224'] = forge.md.algorithms['sha512/224'] =
forge.sha512.sha224;
/**
* Creates a SHA-2 message digest object.
*
* @param algorithm the algorithm to use (SHA-512, SHA-384, SHA-512/224,
* SHA-512/256).
*
* @return a message digest object.
*/
sha512.create = function(algorithm) {
// do initialization as necessary
if(!_initialized) {
_init();
}
if(typeof algorithm === 'undefined') {
algorithm = 'SHA-512';
}
if(!(algorithm in _states)) {
throw new Error('Invalid SHA-512 algorithm: ' + algorithm);
}
// SHA-512 state contains eight 64-bit integers (each as two 32-bit ints)
var _state = _states[algorithm];
var _h = null;
// input buffer
var _input = forge.util.createBuffer();
// used for 64-bit word storage
var _w = new Array(80);
for(var wi = 0; wi < 80; ++wi) {
_w[wi] = new Array(2);
}
// determine digest length by algorithm name (default)
var digestLength = 64;
switch(algorithm) {
case 'SHA-384':
digestLength = 48;
break;
case 'SHA-512/256':
digestLength = 32;
break;
case 'SHA-512/224':
digestLength = 28;
break;
}
// message digest object
var md = {
// SHA-512 => sha512
algorithm: algorithm.replace('-', '').toLowerCase(),
blockLength: 128,
digestLength: digestLength,
// 56-bit length of message so far (does not including padding)
messageLength: 0,
// true message length
fullMessageLength: null,
// size of message length in bytes
messageLengthSize: 16
};
/**
* Starts the digest.
*
* @return this digest object.
*/
md.start = function() {
// up to 56-bit message length for convenience
md.messageLength = 0;
// full message length (set md.messageLength128 for backwards-compatibility)
md.fullMessageLength = md.messageLength128 = [];
var int32s = md.messageLengthSize / 4;
for(var i = 0; i < int32s; ++i) {
md.fullMessageLength.push(0);
}
_input = forge.util.createBuffer();
_h = new Array(_state.length);
for(var i = 0; i < _state.length; ++i) {
_h[i] = _state[i].slice(0);
}
return md;
};
// start digest automatically for first time
md.start();
/**
* Updates the digest with the given message input. The given input can
* treated as raw input (no encoding will be applied) or an encoding of
* 'utf8' maybe given to encode the input using UTF-8.
*
* @param msg the message input to update with.
* @param encoding the encoding to use (default: 'raw', other: 'utf8').
*
* @return this digest object.
*/
md.update = function(msg, encoding) {
if(encoding === 'utf8') {
msg = forge.util.encodeUtf8(msg);
}
// update message length
var len = msg.length;
md.messageLength += len;
len = [(len / 0x100000000) >>> 0, len >>> 0];
for(var i = md.fullMessageLength.length - 1; i >= 0; --i) {
md.fullMessageLength[i] += len[1];
len[1] = len[0] + ((md.fullMessageLength[i] / 0x100000000) >>> 0);
md.fullMessageLength[i] = md.fullMessageLength[i] >>> 0;
len[0] = ((len[1] / 0x100000000) >>> 0);
}
// add bytes to input buffer
_input.putBytes(msg);
// process bytes
_update(_h, _w, _input);
// compact input buffer every 2K or if empty
if(_input.read > 2048 || _input.length() === 0) {
_input.compact();
}
return md;
};
/**
* Produces the digest.
*
* @return a byte buffer containing the digest value.
*/
md.digest = function() {
/* Note: Here we copy the remaining bytes in the input buffer and
add the appropriate SHA-512 padding. Then we do the final update
on a copy of the state so that if the user wants to get
intermediate digests they can do so. */
/* Determine the number of bytes that must be added to the message
to ensure its length is congruent to 896 mod 1024. In other words,
the data to be digested must be a multiple of 1024 bits (or 128 bytes).
This data includes the message, some padding, and the length of the
message. Since the length of the message will be encoded as 16 bytes (128
bits), that means that the last segment of the data must have 112 bytes
(896 bits) of message and padding. Therefore, the length of the message
plus the padding must be congruent to 896 mod 1024 because
1024 - 128 = 896.
In order to fill up the message length it must be filled with
padding that begins with 1 bit followed by all 0 bits. Padding
must *always* be present, so if the message length is already
congruent to 896 mod 1024, then 1024 padding bits must be added. */
var finalBlock = forge.util.createBuffer();
finalBlock.putBytes(_input.bytes());
// compute remaining size to be digested (include message length size)
var remaining = (
md.fullMessageLength[md.fullMessageLength.length - 1] +
md.messageLengthSize);
// add padding for overflow blockSize - overflow
// _padding starts with 1 byte with first bit is set (byte value 128), then
// there may be up to (blockSize - 1) other pad bytes
var overflow = remaining & (md.blockLength - 1);
finalBlock.putBytes(_padding.substr(0, md.blockLength - overflow));
// serialize message length in bits in big-endian order; since length
// is stored in bytes we multiply by 8 and add carry from next int
var next, carry;
var bits = md.fullMessageLength[0] * 8;
for(var i = 0; i < md.fullMessageLength.length - 1; ++i) {
next = md.fullMessageLength[i + 1] * 8;
carry = (next / 0x100000000) >>> 0;
bits += carry;
finalBlock.putInt32(bits >>> 0);
bits = next >>> 0;
}
finalBlock.putInt32(bits);
var h = new Array(_h.length);
for(var i = 0; i < _h.length; ++i) {
h[i] = _h[i].slice(0);
}
_update(h, _w, finalBlock);
var rval = forge.util.createBuffer();
var hlen;
if(algorithm === 'SHA-512') {
hlen = h.length;
} else if(algorithm === 'SHA-384') {
hlen = h.length - 2;
} else {
hlen = h.length - 4;
}
for(var i = 0; i < hlen; ++i) {
rval.putInt32(h[i][0]);
if(i !== hlen - 1 || algorithm !== 'SHA-512/224') {
rval.putInt32(h[i][1]);
}
}
return rval;
};
return md;
};
// sha-512 padding bytes not initialized yet
var _padding = null;
var _initialized = false;
// table of constants
var _k = null;
// initial hash states
var _states = null;
/**
* Initializes the constant tables.
*/
function _init() {
// create padding
_padding = String.fromCharCode(128);
_padding += forge.util.fillString(String.fromCharCode(0x00), 128);
// create K table for SHA-512
_k = [
[0x428a2f98, 0xd728ae22], [0x71374491, 0x23ef65cd],
[0xb5c0fbcf, 0xec4d3b2f], [0xe9b5dba5, 0x8189dbbc],
[0x3956c25b, 0xf348b538], [0x59f111f1, 0xb605d019],
[0x923f82a4, 0xaf194f9b], [0xab1c5ed5, 0xda6d8118],
[0xd807aa98, 0xa3030242], [0x12835b01, 0x45706fbe],
[0x243185be, 0x4ee4b28c], [0x550c7dc3, 0xd5ffb4e2],
[0x72be5d74, 0xf27b896f], [0x80deb1fe, 0x3b1696b1],
[0x9bdc06a7, 0x25c71235], [0xc19bf174, 0xcf692694],
[0xe49b69c1, 0x9ef14ad2], [0xefbe4786, 0x384f25e3],
[0x0fc19dc6, 0x8b8cd5b5], [0x240ca1cc, 0x77ac9c65],
[0x2de92c6f, 0x592b0275], [0x4a7484aa, 0x6ea6e483],
[0x5cb0a9dc, 0xbd41fbd4], [0x76f988da, 0x831153b5],
[0x983e5152, 0xee66dfab], [0xa831c66d, 0x2db43210],
[0xb00327c8, 0x98fb213f], [0xbf597fc7, 0xbeef0ee4],
[0xc6e00bf3, 0x3da88fc2], [0xd5a79147, 0x930aa725],
[0x06ca6351, 0xe003826f], [0x14292967, 0x0a0e6e70],
[0x27b70a85, 0x46d22ffc], [0x2e1b2138, 0x5c26c926],
[0x4d2c6dfc, 0x5ac42aed], [0x53380d13, 0x9d95b3df],
[0x650a7354, 0x8baf63de], [0x766a0abb, 0x3c77b2a8],
[0x81c2c92e, 0x47edaee6], [0x92722c85, 0x1482353b],
[0xa2bfe8a1, 0x4cf10364], [0xa81a664b, 0xbc423001],
[0xc24b8b70, 0xd0f89791], [0xc76c51a3, 0x0654be30],
[0xd192e819, 0xd6ef5218], [0xd6990624, 0x5565a910],
[0xf40e3585, 0x5771202a], [0x106aa070, 0x32bbd1b8],
[0x19a4c116, 0xb8d2d0c8], [0x1e376c08, 0x5141ab53],
[0x2748774c, 0xdf8eeb99], [0x34b0bcb5, 0xe19b48a8],
[0x391c0cb3, 0xc5c95a63], [0x4ed8aa4a, 0xe3418acb],
[0x5b9cca4f, 0x7763e373], [0x682e6ff3, 0xd6b2b8a3],
[0x748f82ee, 0x5defb2fc], [0x78a5636f, 0x43172f60],
[0x84c87814, 0xa1f0ab72], [0x8cc70208, 0x1a6439ec],
[0x90befffa, 0x23631e28], [0xa4506ceb, 0xde82bde9],
[0xbef9a3f7, 0xb2c67915], [0xc67178f2, 0xe372532b],
[0xca273ece, 0xea26619c], [0xd186b8c7, 0x21c0c207],
[0xeada7dd6, 0xcde0eb1e], [0xf57d4f7f, 0xee6ed178],
[0x06f067aa, 0x72176fba], [0x0a637dc5, 0xa2c898a6],
[0x113f9804, 0xbef90dae], [0x1b710b35, 0x131c471b],
[0x28db77f5, 0x23047d84], [0x32caab7b, 0x40c72493],
[0x3c9ebe0a, 0x15c9bebc], [0x431d67c4, 0x9c100d4c],
[0x4cc5d4be, 0xcb3e42b6], [0x597f299c, 0xfc657e2a],
[0x5fcb6fab, 0x3ad6faec], [0x6c44198c, 0x4a475817]
];
// initial hash states
_states = {};
_states['SHA-512'] = [
[0x6a09e667, 0xf3bcc908],
[0xbb67ae85, 0x84caa73b],
[0x3c6ef372, 0xfe94f82b],
[0xa54ff53a, 0x5f1d36f1],
[0x510e527f, 0xade682d1],
[0x9b05688c, 0x2b3e6c1f],
[0x1f83d9ab, 0xfb41bd6b],
[0x5be0cd19, 0x137e2179]
];
_states['SHA-384'] = [
[0xcbbb9d5d, 0xc1059ed8],
[0x629a292a, 0x367cd507],
[0x9159015a, 0x3070dd17],
[0x152fecd8, 0xf70e5939],
[0x67332667, 0xffc00b31],
[0x8eb44a87, 0x68581511],
[0xdb0c2e0d, 0x64f98fa7],
[0x47b5481d, 0xbefa4fa4]
];
_states['SHA-512/256'] = [
[0x22312194, 0xFC2BF72C],
[0x9F555FA3, 0xC84C64C2],
[0x2393B86B, 0x6F53B151],
[0x96387719, 0x5940EABD],
[0x96283EE2, 0xA88EFFE3],
[0xBE5E1E25, 0x53863992],
[0x2B0199FC, 0x2C85B8AA],
[0x0EB72DDC, 0x81C52CA2]
];
_states['SHA-512/224'] = [
[0x8C3D37C8, 0x19544DA2],
[0x73E19966, 0x89DCD4D6],
[0x1DFAB7AE, 0x32FF9C82],
[0x679DD514, 0x582F9FCF],
[0x0F6D2B69, 0x7BD44DA8],
[0x77E36F73, 0x04C48942],
[0x3F9D85A8, 0x6A1D36C8],
[0x1112E6AD, 0x91D692A1]
];
// now initialized
_initialized = true;
}
/**
* Updates a SHA-512 state with the given byte buffer.
*
* @param s the SHA-512 state to update.
* @param w the array to use to store words.
* @param bytes the byte buffer to update with.
*/
function _update(s, w, bytes) {
// consume 512 bit (128 byte) chunks
var t1_hi, t1_lo;
var t2_hi, t2_lo;
var s0_hi, s0_lo;
var s1_hi, s1_lo;
var ch_hi, ch_lo;
var maj_hi, maj_lo;
var a_hi, a_lo;
var b_hi, b_lo;
var c_hi, c_lo;
var d_hi, d_lo;
var e_hi, e_lo;
var f_hi, f_lo;
var g_hi, g_lo;
var h_hi, h_lo;
var i, hi, lo, w2, w7, w15, w16;
var len = bytes.length();
while(len >= 128) {
// the w array will be populated with sixteen 64-bit big-endian words
// and then extended into 64 64-bit words according to SHA-512
for(i = 0; i < 16; ++i) {
w[i][0] = bytes.getInt32() >>> 0;
w[i][1] = bytes.getInt32() >>> 0;
}
for(; i < 80; ++i) {
// for word 2 words ago: ROTR 19(x) ^ ROTR 61(x) ^ SHR 6(x)
w2 = w[i - 2];
hi = w2[0];
lo = w2[1];
// high bits
t1_hi = (
((hi >>> 19) | (lo << 13)) ^ // ROTR 19
((lo >>> 29) | (hi << 3)) ^ // ROTR 61/(swap + ROTR 29)
(hi >>> 6)) >>> 0; // SHR 6
// low bits
t1_lo = (
((hi << 13) | (lo >>> 19)) ^ // ROTR 19
((lo << 3) | (hi >>> 29)) ^ // ROTR 61/(swap + ROTR 29)
((hi << 26) | (lo >>> 6))) >>> 0; // SHR 6
// for word 15 words ago: ROTR 1(x) ^ ROTR 8(x) ^ SHR 7(x)
w15 = w[i - 15];
hi = w15[0];
lo = w15[1];
// high bits
t2_hi = (
((hi >>> 1) | (lo << 31)) ^ // ROTR 1
((hi >>> 8) | (lo << 24)) ^ // ROTR 8
(hi >>> 7)) >>> 0; // SHR 7
// low bits
t2_lo = (
((hi << 31) | (lo >>> 1)) ^ // ROTR 1
((hi << 24) | (lo >>> 8)) ^ // ROTR 8
((hi << 25) | (lo >>> 7))) >>> 0; // SHR 7
// sum(t1, word 7 ago, t2, word 16 ago) modulo 2^64 (carry lo overflow)
w7 = w[i - 7];
w16 = w[i - 16];
lo = (t1_lo + w7[1] + t2_lo + w16[1]);
w[i][0] = (t1_hi + w7[0] + t2_hi + w16[0] +
((lo / 0x100000000) >>> 0)) >>> 0;
w[i][1] = lo >>> 0;
}
// initialize hash value for this chunk
a_hi = s[0][0];
a_lo = s[0][1];
b_hi = s[1][0];
b_lo = s[1][1];
c_hi = s[2][0];
c_lo = s[2][1];
d_hi = s[3][0];
d_lo = s[3][1];
e_hi = s[4][0];
e_lo = s[4][1];
f_hi = s[5][0];
f_lo = s[5][1];
g_hi = s[6][0];
g_lo = s[6][1];
h_hi = s[7][0];
h_lo = s[7][1];
// round function
for(i = 0; i < 80; ++i) {
// Sum1(e) = ROTR 14(e) ^ ROTR 18(e) ^ ROTR 41(e)
s1_hi = (
((e_hi >>> 14) | (e_lo << 18)) ^ // ROTR 14
((e_hi >>> 18) | (e_lo << 14)) ^ // ROTR 18
((e_lo >>> 9) | (e_hi << 23))) >>> 0; // ROTR 41/(swap + ROTR 9)
s1_lo = (
((e_hi << 18) | (e_lo >>> 14)) ^ // ROTR 14
((e_hi << 14) | (e_lo >>> 18)) ^ // ROTR 18
((e_lo << 23) | (e_hi >>> 9))) >>> 0; // ROTR 41/(swap + ROTR 9)
// Ch(e, f, g) (optimized the same way as SHA-1)
ch_hi = (g_hi ^ (e_hi & (f_hi ^ g_hi))) >>> 0;
ch_lo = (g_lo ^ (e_lo & (f_lo ^ g_lo))) >>> 0;
// Sum0(a) = ROTR 28(a) ^ ROTR 34(a) ^ ROTR 39(a)
s0_hi = (
((a_hi >>> 28) | (a_lo << 4)) ^ // ROTR 28
((a_lo >>> 2) | (a_hi << 30)) ^ // ROTR 34/(swap + ROTR 2)
((a_lo >>> 7) | (a_hi << 25))) >>> 0; // ROTR 39/(swap + ROTR 7)
s0_lo = (
((a_hi << 4) | (a_lo >>> 28)) ^ // ROTR 28
((a_lo << 30) | (a_hi >>> 2)) ^ // ROTR 34/(swap + ROTR 2)
((a_lo << 25) | (a_hi >>> 7))) >>> 0; // ROTR 39/(swap + ROTR 7)
// Maj(a, b, c) (optimized the same way as SHA-1)
maj_hi = ((a_hi & b_hi) | (c_hi & (a_hi ^ b_hi))) >>> 0;
maj_lo = ((a_lo & b_lo) | (c_lo & (a_lo ^ b_lo))) >>> 0;
// main algorithm
// t1 = (h + s1 + ch + _k[i] + _w[i]) modulo 2^64 (carry lo overflow)
lo = (h_lo + s1_lo + ch_lo + _k[i][1] + w[i][1]);
t1_hi = (h_hi + s1_hi + ch_hi + _k[i][0] + w[i][0] +
((lo / 0x100000000) >>> 0)) >>> 0;
t1_lo = lo >>> 0;
// t2 = s0 + maj modulo 2^64 (carry lo overflow)
lo = s0_lo + maj_lo;
t2_hi = (s0_hi + maj_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
t2_lo = lo >>> 0;
h_hi = g_hi;
h_lo = g_lo;
g_hi = f_hi;
g_lo = f_lo;
f_hi = e_hi;
f_lo = e_lo;
// e = (d + t1) modulo 2^64 (carry lo overflow)
lo = d_lo + t1_lo;
e_hi = (d_hi + t1_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
e_lo = lo >>> 0;
d_hi = c_hi;
d_lo = c_lo;
c_hi = b_hi;
c_lo = b_lo;
b_hi = a_hi;
b_lo = a_lo;
// a = (t1 + t2) modulo 2^64 (carry lo overflow)
lo = t1_lo + t2_lo;
a_hi = (t1_hi + t2_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
a_lo = lo >>> 0;
}
// update hash state (additional modulo 2^64)
lo = s[0][1] + a_lo;
s[0][0] = (s[0][0] + a_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
s[0][1] = lo >>> 0;
lo = s[1][1] + b_lo;
s[1][0] = (s[1][0] + b_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
s[1][1] = lo >>> 0;
lo = s[2][1] + c_lo;
s[2][0] = (s[2][0] + c_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
s[2][1] = lo >>> 0;
lo = s[3][1] + d_lo;
s[3][0] = (s[3][0] + d_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
s[3][1] = lo >>> 0;
lo = s[4][1] + e_lo;
s[4][0] = (s[4][0] + e_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
s[4][1] = lo >>> 0;
lo = s[5][1] + f_lo;
s[5][0] = (s[5][0] + f_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
s[5][1] = lo >>> 0;
lo = s[6][1] + g_lo;
s[6][0] = (s[6][0] + g_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
s[6][1] = lo >>> 0;
lo = s[7][1] + h_lo;
s[7][0] = (s[7][0] + h_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
s[7][1] = lo >>> 0;
len -= 128;
}
}