sha512.js 16.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
/**
 * Secure Hash Algorithm with a 1024-bit block size implementation.
 *
 * This includes: SHA-512, SHA-384, SHA-512/224, and SHA-512/256. For
 * SHA-256 (block size 512 bits), see sha256.js.
 *
 * See FIPS 180-4 for details.
 *
 * @author Dave Longley
 *
 * Copyright (c) 2014-2015 Digital Bazaar, Inc.
 */
var forge = require('./forge');
require('./md');
require('./util');

var sha512 = module.exports = forge.sha512 = forge.sha512 || {};

// SHA-512
forge.md.sha512 = forge.md.algorithms.sha512 = sha512;

// SHA-384
var sha384 = forge.sha384 = forge.sha512.sha384 = forge.sha512.sha384 || {};
sha384.create = function() {
  return sha512.create('SHA-384');
};
forge.md.sha384 = forge.md.algorithms.sha384 = sha384;

// SHA-512/256
forge.sha512.sha256 = forge.sha512.sha256 || {
  create: function() {
    return sha512.create('SHA-512/256');
  }
};
forge.md['sha512/256'] = forge.md.algorithms['sha512/256'] =
  forge.sha512.sha256;

// SHA-512/224
forge.sha512.sha224 = forge.sha512.sha224 || {
  create: function() {
    return sha512.create('SHA-512/224');
  }
};
forge.md['sha512/224'] = forge.md.algorithms['sha512/224'] =
  forge.sha512.sha224;

/**
 * Creates a SHA-2 message digest object.
 *
 * @param algorithm the algorithm to use (SHA-512, SHA-384, SHA-512/224,
 *          SHA-512/256).
 *
 * @return a message digest object.
 */
sha512.create = function(algorithm) {
  // do initialization as necessary
  if(!_initialized) {
    _init();
  }

  if(typeof algorithm === 'undefined') {
    algorithm = 'SHA-512';
  }

  if(!(algorithm in _states)) {
    throw new Error('Invalid SHA-512 algorithm: ' + algorithm);
  }

  // SHA-512 state contains eight 64-bit integers (each as two 32-bit ints)
  var _state = _states[algorithm];
  var _h = null;

  // input buffer
  var _input = forge.util.createBuffer();

  // used for 64-bit word storage
  var _w = new Array(80);
  for(var wi = 0; wi < 80; ++wi) {
    _w[wi] = new Array(2);
  }

  // determine digest length by algorithm name (default)
  var digestLength = 64;
  switch(algorithm) {
    case 'SHA-384':
      digestLength = 48;
      break;
    case 'SHA-512/256':
      digestLength = 32;
      break;
    case 'SHA-512/224':
      digestLength = 28;
      break;
  }

  // message digest object
  var md = {
    // SHA-512 => sha512
    algorithm: algorithm.replace('-', '').toLowerCase(),
    blockLength: 128,
    digestLength: digestLength,
    // 56-bit length of message so far (does not including padding)
    messageLength: 0,
    // true message length
    fullMessageLength: null,
    // size of message length in bytes
    messageLengthSize: 16
  };

  /**
   * Starts the digest.
   *
   * @return this digest object.
   */
  md.start = function() {
    // up to 56-bit message length for convenience
    md.messageLength = 0;

    // full message length (set md.messageLength128 for backwards-compatibility)
    md.fullMessageLength = md.messageLength128 = [];
    var int32s = md.messageLengthSize / 4;
    for(var i = 0; i < int32s; ++i) {
      md.fullMessageLength.push(0);
    }
    _input = forge.util.createBuffer();
    _h = new Array(_state.length);
    for(var i = 0; i < _state.length; ++i) {
      _h[i] = _state[i].slice(0);
    }
    return md;
  };
  // start digest automatically for first time
  md.start();

  /**
   * Updates the digest with the given message input. The given input can
   * treated as raw input (no encoding will be applied) or an encoding of
   * 'utf8' maybe given to encode the input using UTF-8.
   *
   * @param msg the message input to update with.
   * @param encoding the encoding to use (default: 'raw', other: 'utf8').
   *
   * @return this digest object.
   */
  md.update = function(msg, encoding) {
    if(encoding === 'utf8') {
      msg = forge.util.encodeUtf8(msg);
    }

    // update message length
    var len = msg.length;
    md.messageLength += len;
    len = [(len / 0x100000000) >>> 0, len >>> 0];
    for(var i = md.fullMessageLength.length - 1; i >= 0; --i) {
      md.fullMessageLength[i] += len[1];
      len[1] = len[0] + ((md.fullMessageLength[i] / 0x100000000) >>> 0);
      md.fullMessageLength[i] = md.fullMessageLength[i] >>> 0;
      len[0] = ((len[1] / 0x100000000) >>> 0);
    }

    // add bytes to input buffer
    _input.putBytes(msg);

    // process bytes
    _update(_h, _w, _input);

    // compact input buffer every 2K or if empty
    if(_input.read > 2048 || _input.length() === 0) {
      _input.compact();
    }

    return md;
  };

  /**
   * Produces the digest.
   *
   * @return a byte buffer containing the digest value.
   */
  md.digest = function() {
    /* Note: Here we copy the remaining bytes in the input buffer and
    add the appropriate SHA-512 padding. Then we do the final update
    on a copy of the state so that if the user wants to get
    intermediate digests they can do so. */

    /* Determine the number of bytes that must be added to the message
    to ensure its length is congruent to 896 mod 1024. In other words,
    the data to be digested must be a multiple of 1024 bits (or 128 bytes).
    This data includes the message, some padding, and the length of the
    message. Since the length of the message will be encoded as 16 bytes (128
    bits), that means that the last segment of the data must have 112 bytes
    (896 bits) of message and padding. Therefore, the length of the message
    plus the padding must be congruent to 896 mod 1024 because
    1024 - 128 = 896.

    In order to fill up the message length it must be filled with
    padding that begins with 1 bit followed by all 0 bits. Padding
    must *always* be present, so if the message length is already
    congruent to 896 mod 1024, then 1024 padding bits must be added. */

    var finalBlock = forge.util.createBuffer();
    finalBlock.putBytes(_input.bytes());

    // compute remaining size to be digested (include message length size)
    var remaining = (
      md.fullMessageLength[md.fullMessageLength.length - 1] +
      md.messageLengthSize);

    // add padding for overflow blockSize - overflow
    // _padding starts with 1 byte with first bit is set (byte value 128), then
    // there may be up to (blockSize - 1) other pad bytes
    var overflow = remaining & (md.blockLength - 1);
    finalBlock.putBytes(_padding.substr(0, md.blockLength - overflow));

    // serialize message length in bits in big-endian order; since length
    // is stored in bytes we multiply by 8 and add carry from next int
    var next, carry;
    var bits = md.fullMessageLength[0] * 8;
    for(var i = 0; i < md.fullMessageLength.length - 1; ++i) {
      next = md.fullMessageLength[i + 1] * 8;
      carry = (next / 0x100000000) >>> 0;
      bits += carry;
      finalBlock.putInt32(bits >>> 0);
      bits = next >>> 0;
    }
    finalBlock.putInt32(bits);

    var h = new Array(_h.length);
    for(var i = 0; i < _h.length; ++i) {
      h[i] = _h[i].slice(0);
    }
    _update(h, _w, finalBlock);
    var rval = forge.util.createBuffer();
    var hlen;
    if(algorithm === 'SHA-512') {
      hlen = h.length;
    } else if(algorithm === 'SHA-384') {
      hlen = h.length - 2;
    } else {
      hlen = h.length - 4;
    }
    for(var i = 0; i < hlen; ++i) {
      rval.putInt32(h[i][0]);
      if(i !== hlen - 1 || algorithm !== 'SHA-512/224') {
        rval.putInt32(h[i][1]);
      }
    }
    return rval;
  };

  return md;
};

// sha-512 padding bytes not initialized yet
var _padding = null;
var _initialized = false;

// table of constants
var _k = null;

// initial hash states
var _states = null;

/**
 * Initializes the constant tables.
 */
function _init() {
  // create padding
  _padding = String.fromCharCode(128);
  _padding += forge.util.fillString(String.fromCharCode(0x00), 128);

  // create K table for SHA-512
  _k = [
    [0x428a2f98, 0xd728ae22], [0x71374491, 0x23ef65cd],
    [0xb5c0fbcf, 0xec4d3b2f], [0xe9b5dba5, 0x8189dbbc],
    [0x3956c25b, 0xf348b538], [0x59f111f1, 0xb605d019],
    [0x923f82a4, 0xaf194f9b], [0xab1c5ed5, 0xda6d8118],
    [0xd807aa98, 0xa3030242], [0x12835b01, 0x45706fbe],
    [0x243185be, 0x4ee4b28c], [0x550c7dc3, 0xd5ffb4e2],
    [0x72be5d74, 0xf27b896f], [0x80deb1fe, 0x3b1696b1],
    [0x9bdc06a7, 0x25c71235], [0xc19bf174, 0xcf692694],
    [0xe49b69c1, 0x9ef14ad2], [0xefbe4786, 0x384f25e3],
    [0x0fc19dc6, 0x8b8cd5b5], [0x240ca1cc, 0x77ac9c65],
    [0x2de92c6f, 0x592b0275], [0x4a7484aa, 0x6ea6e483],
    [0x5cb0a9dc, 0xbd41fbd4], [0x76f988da, 0x831153b5],
    [0x983e5152, 0xee66dfab], [0xa831c66d, 0x2db43210],
    [0xb00327c8, 0x98fb213f], [0xbf597fc7, 0xbeef0ee4],
    [0xc6e00bf3, 0x3da88fc2], [0xd5a79147, 0x930aa725],
    [0x06ca6351, 0xe003826f], [0x14292967, 0x0a0e6e70],
    [0x27b70a85, 0x46d22ffc], [0x2e1b2138, 0x5c26c926],
    [0x4d2c6dfc, 0x5ac42aed], [0x53380d13, 0x9d95b3df],
    [0x650a7354, 0x8baf63de], [0x766a0abb, 0x3c77b2a8],
    [0x81c2c92e, 0x47edaee6], [0x92722c85, 0x1482353b],
    [0xa2bfe8a1, 0x4cf10364], [0xa81a664b, 0xbc423001],
    [0xc24b8b70, 0xd0f89791], [0xc76c51a3, 0x0654be30],
    [0xd192e819, 0xd6ef5218], [0xd6990624, 0x5565a910],
    [0xf40e3585, 0x5771202a], [0x106aa070, 0x32bbd1b8],
    [0x19a4c116, 0xb8d2d0c8], [0x1e376c08, 0x5141ab53],
    [0x2748774c, 0xdf8eeb99], [0x34b0bcb5, 0xe19b48a8],
    [0x391c0cb3, 0xc5c95a63], [0x4ed8aa4a, 0xe3418acb],
    [0x5b9cca4f, 0x7763e373], [0x682e6ff3, 0xd6b2b8a3],
    [0x748f82ee, 0x5defb2fc], [0x78a5636f, 0x43172f60],
    [0x84c87814, 0xa1f0ab72], [0x8cc70208, 0x1a6439ec],
    [0x90befffa, 0x23631e28], [0xa4506ceb, 0xde82bde9],
    [0xbef9a3f7, 0xb2c67915], [0xc67178f2, 0xe372532b],
    [0xca273ece, 0xea26619c], [0xd186b8c7, 0x21c0c207],
    [0xeada7dd6, 0xcde0eb1e], [0xf57d4f7f, 0xee6ed178],
    [0x06f067aa, 0x72176fba], [0x0a637dc5, 0xa2c898a6],
    [0x113f9804, 0xbef90dae], [0x1b710b35, 0x131c471b],
    [0x28db77f5, 0x23047d84], [0x32caab7b, 0x40c72493],
    [0x3c9ebe0a, 0x15c9bebc], [0x431d67c4, 0x9c100d4c],
    [0x4cc5d4be, 0xcb3e42b6], [0x597f299c, 0xfc657e2a],
    [0x5fcb6fab, 0x3ad6faec], [0x6c44198c, 0x4a475817]
  ];

  // initial hash states
  _states = {};
  _states['SHA-512'] = [
    [0x6a09e667, 0xf3bcc908],
    [0xbb67ae85, 0x84caa73b],
    [0x3c6ef372, 0xfe94f82b],
    [0xa54ff53a, 0x5f1d36f1],
    [0x510e527f, 0xade682d1],
    [0x9b05688c, 0x2b3e6c1f],
    [0x1f83d9ab, 0xfb41bd6b],
    [0x5be0cd19, 0x137e2179]
  ];
  _states['SHA-384'] = [
    [0xcbbb9d5d, 0xc1059ed8],
    [0x629a292a, 0x367cd507],
    [0x9159015a, 0x3070dd17],
    [0x152fecd8, 0xf70e5939],
    [0x67332667, 0xffc00b31],
    [0x8eb44a87, 0x68581511],
    [0xdb0c2e0d, 0x64f98fa7],
    [0x47b5481d, 0xbefa4fa4]
  ];
  _states['SHA-512/256'] = [
    [0x22312194, 0xFC2BF72C],
    [0x9F555FA3, 0xC84C64C2],
    [0x2393B86B, 0x6F53B151],
    [0x96387719, 0x5940EABD],
    [0x96283EE2, 0xA88EFFE3],
    [0xBE5E1E25, 0x53863992],
    [0x2B0199FC, 0x2C85B8AA],
    [0x0EB72DDC, 0x81C52CA2]
  ];
  _states['SHA-512/224'] = [
    [0x8C3D37C8, 0x19544DA2],
    [0x73E19966, 0x89DCD4D6],
    [0x1DFAB7AE, 0x32FF9C82],
    [0x679DD514, 0x582F9FCF],
    [0x0F6D2B69, 0x7BD44DA8],
    [0x77E36F73, 0x04C48942],
    [0x3F9D85A8, 0x6A1D36C8],
    [0x1112E6AD, 0x91D692A1]
  ];

  // now initialized
  _initialized = true;
}

/**
 * Updates a SHA-512 state with the given byte buffer.
 *
 * @param s the SHA-512 state to update.
 * @param w the array to use to store words.
 * @param bytes the byte buffer to update with.
 */
function _update(s, w, bytes) {
  // consume 512 bit (128 byte) chunks
  var t1_hi, t1_lo;
  var t2_hi, t2_lo;
  var s0_hi, s0_lo;
  var s1_hi, s1_lo;
  var ch_hi, ch_lo;
  var maj_hi, maj_lo;
  var a_hi, a_lo;
  var b_hi, b_lo;
  var c_hi, c_lo;
  var d_hi, d_lo;
  var e_hi, e_lo;
  var f_hi, f_lo;
  var g_hi, g_lo;
  var h_hi, h_lo;
  var i, hi, lo, w2, w7, w15, w16;
  var len = bytes.length();
  while(len >= 128) {
    // the w array will be populated with sixteen 64-bit big-endian words
    // and then extended into 64 64-bit words according to SHA-512
    for(i = 0; i < 16; ++i) {
      w[i][0] = bytes.getInt32() >>> 0;
      w[i][1] = bytes.getInt32() >>> 0;
    }
    for(; i < 80; ++i) {
      // for word 2 words ago: ROTR 19(x) ^ ROTR 61(x) ^ SHR 6(x)
      w2 = w[i - 2];
      hi = w2[0];
      lo = w2[1];

      // high bits
      t1_hi = (
        ((hi >>> 19) | (lo << 13)) ^ // ROTR 19
        ((lo >>> 29) | (hi << 3)) ^ // ROTR 61/(swap + ROTR 29)
        (hi >>> 6)) >>> 0; // SHR 6
      // low bits
      t1_lo = (
        ((hi << 13) | (lo >>> 19)) ^ // ROTR 19
        ((lo << 3) | (hi >>> 29)) ^ // ROTR 61/(swap + ROTR 29)
        ((hi << 26) | (lo >>> 6))) >>> 0; // SHR 6

      // for word 15 words ago: ROTR 1(x) ^ ROTR 8(x) ^ SHR 7(x)
      w15 = w[i - 15];
      hi = w15[0];
      lo = w15[1];

      // high bits
      t2_hi = (
        ((hi >>> 1) | (lo << 31)) ^ // ROTR 1
        ((hi >>> 8) | (lo << 24)) ^ // ROTR 8
        (hi >>> 7)) >>> 0; // SHR 7
      // low bits
      t2_lo = (
        ((hi << 31) | (lo >>> 1)) ^ // ROTR 1
        ((hi << 24) | (lo >>> 8)) ^ // ROTR 8
        ((hi << 25) | (lo >>> 7))) >>> 0; // SHR 7

      // sum(t1, word 7 ago, t2, word 16 ago) modulo 2^64 (carry lo overflow)
      w7 = w[i - 7];
      w16 = w[i - 16];
      lo = (t1_lo + w7[1] + t2_lo + w16[1]);
      w[i][0] = (t1_hi + w7[0] + t2_hi + w16[0] +
        ((lo / 0x100000000) >>> 0)) >>> 0;
      w[i][1] = lo >>> 0;
    }

    // initialize hash value for this chunk
    a_hi = s[0][0];
    a_lo = s[0][1];
    b_hi = s[1][0];
    b_lo = s[1][1];
    c_hi = s[2][0];
    c_lo = s[2][1];
    d_hi = s[3][0];
    d_lo = s[3][1];
    e_hi = s[4][0];
    e_lo = s[4][1];
    f_hi = s[5][0];
    f_lo = s[5][1];
    g_hi = s[6][0];
    g_lo = s[6][1];
    h_hi = s[7][0];
    h_lo = s[7][1];

    // round function
    for(i = 0; i < 80; ++i) {
      // Sum1(e) = ROTR 14(e) ^ ROTR 18(e) ^ ROTR 41(e)
      s1_hi = (
        ((e_hi >>> 14) | (e_lo << 18)) ^ // ROTR 14
        ((e_hi >>> 18) | (e_lo << 14)) ^ // ROTR 18
        ((e_lo >>> 9) | (e_hi << 23))) >>> 0; // ROTR 41/(swap + ROTR 9)
      s1_lo = (
        ((e_hi << 18) | (e_lo >>> 14)) ^ // ROTR 14
        ((e_hi << 14) | (e_lo >>> 18)) ^ // ROTR 18
        ((e_lo << 23) | (e_hi >>> 9))) >>> 0; // ROTR 41/(swap + ROTR 9)

      // Ch(e, f, g) (optimized the same way as SHA-1)
      ch_hi = (g_hi ^ (e_hi & (f_hi ^ g_hi))) >>> 0;
      ch_lo = (g_lo ^ (e_lo & (f_lo ^ g_lo))) >>> 0;

      // Sum0(a) = ROTR 28(a) ^ ROTR 34(a) ^ ROTR 39(a)
      s0_hi = (
        ((a_hi >>> 28) | (a_lo << 4)) ^ // ROTR 28
        ((a_lo >>> 2) | (a_hi << 30)) ^ // ROTR 34/(swap + ROTR 2)
        ((a_lo >>> 7) | (a_hi << 25))) >>> 0; // ROTR 39/(swap + ROTR 7)
      s0_lo = (
        ((a_hi << 4) | (a_lo >>> 28)) ^ // ROTR 28
        ((a_lo << 30) | (a_hi >>> 2)) ^ // ROTR 34/(swap + ROTR 2)
        ((a_lo << 25) | (a_hi >>> 7))) >>> 0; // ROTR 39/(swap + ROTR 7)

      // Maj(a, b, c) (optimized the same way as SHA-1)
      maj_hi = ((a_hi & b_hi) | (c_hi & (a_hi ^ b_hi))) >>> 0;
      maj_lo = ((a_lo & b_lo) | (c_lo & (a_lo ^ b_lo))) >>> 0;

      // main algorithm
      // t1 = (h + s1 + ch + _k[i] + _w[i]) modulo 2^64 (carry lo overflow)
      lo = (h_lo + s1_lo + ch_lo + _k[i][1] + w[i][1]);
      t1_hi = (h_hi + s1_hi + ch_hi + _k[i][0] + w[i][0] +
        ((lo / 0x100000000) >>> 0)) >>> 0;
      t1_lo = lo >>> 0;

      // t2 = s0 + maj modulo 2^64 (carry lo overflow)
      lo = s0_lo + maj_lo;
      t2_hi = (s0_hi + maj_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
      t2_lo = lo >>> 0;

      h_hi = g_hi;
      h_lo = g_lo;

      g_hi = f_hi;
      g_lo = f_lo;

      f_hi = e_hi;
      f_lo = e_lo;

      // e = (d + t1) modulo 2^64 (carry lo overflow)
      lo = d_lo + t1_lo;
      e_hi = (d_hi + t1_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
      e_lo = lo >>> 0;

      d_hi = c_hi;
      d_lo = c_lo;

      c_hi = b_hi;
      c_lo = b_lo;

      b_hi = a_hi;
      b_lo = a_lo;

      // a = (t1 + t2) modulo 2^64 (carry lo overflow)
      lo = t1_lo + t2_lo;
      a_hi = (t1_hi + t2_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
      a_lo = lo >>> 0;
    }

    // update hash state (additional modulo 2^64)
    lo = s[0][1] + a_lo;
    s[0][0] = (s[0][0] + a_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
    s[0][1] = lo >>> 0;

    lo = s[1][1] + b_lo;
    s[1][0] = (s[1][0] + b_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
    s[1][1] = lo >>> 0;

    lo = s[2][1] + c_lo;
    s[2][0] = (s[2][0] + c_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
    s[2][1] = lo >>> 0;

    lo = s[3][1] + d_lo;
    s[3][0] = (s[3][0] + d_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
    s[3][1] = lo >>> 0;

    lo = s[4][1] + e_lo;
    s[4][0] = (s[4][0] + e_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
    s[4][1] = lo >>> 0;

    lo = s[5][1] + f_lo;
    s[5][0] = (s[5][0] + f_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
    s[5][1] = lo >>> 0;

    lo = s[6][1] + g_lo;
    s[6][0] = (s[6][0] + g_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
    s[6][1] = lo >>> 0;

    lo = s[7][1] + h_lo;
    s[7][0] = (s[7][0] + h_hi + ((lo / 0x100000000) >>> 0)) >>> 0;
    s[7][1] = lo >>> 0;

    len -= 128;
  }
}