sagemaker.d.ts
580 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
import {Request} from '../lib/request';
import {Response} from '../lib/response';
import {AWSError} from '../lib/error';
import {Service} from '../lib/service';
import {WaiterConfiguration} from '../lib/service';
import {ServiceConfigurationOptions} from '../lib/service';
import {ConfigBase as Config} from '../lib/config-base';
interface Blob {}
declare class SageMaker extends Service {
/**
* Constructs a service object. This object has one method for each API operation.
*/
constructor(options?: SageMaker.Types.ClientConfiguration)
config: Config & SageMaker.Types.ClientConfiguration;
/**
* Adds or overwrites one or more tags for the specified Amazon SageMaker resource. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more information about tags, see For more information, see AWS Tagging Strategies. Tags that you add to a hyperparameter tuning job by calling this API are also added to any training jobs that the hyperparameter tuning job launches after you call this API, but not to training jobs that the hyperparameter tuning job launched before you called this API. To make sure that the tags associated with a hyperparameter tuning job are also added to all training jobs that the hyperparameter tuning job launches, add the tags when you first create the tuning job by specifying them in the Tags parameter of CreateHyperParameterTuningJob
*/
addTags(params: SageMaker.Types.AddTagsInput, callback?: (err: AWSError, data: SageMaker.Types.AddTagsOutput) => void): Request<SageMaker.Types.AddTagsOutput, AWSError>;
/**
* Adds or overwrites one or more tags for the specified Amazon SageMaker resource. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more information about tags, see For more information, see AWS Tagging Strategies. Tags that you add to a hyperparameter tuning job by calling this API are also added to any training jobs that the hyperparameter tuning job launches after you call this API, but not to training jobs that the hyperparameter tuning job launched before you called this API. To make sure that the tags associated with a hyperparameter tuning job are also added to all training jobs that the hyperparameter tuning job launches, add the tags when you first create the tuning job by specifying them in the Tags parameter of CreateHyperParameterTuningJob
*/
addTags(callback?: (err: AWSError, data: SageMaker.Types.AddTagsOutput) => void): Request<SageMaker.Types.AddTagsOutput, AWSError>;
/**
* Associates a trial component with a trial. A trial component can be associated with multiple trials. To disassociate a trial component from a trial, call the DisassociateTrialComponent API.
*/
associateTrialComponent(params: SageMaker.Types.AssociateTrialComponentRequest, callback?: (err: AWSError, data: SageMaker.Types.AssociateTrialComponentResponse) => void): Request<SageMaker.Types.AssociateTrialComponentResponse, AWSError>;
/**
* Associates a trial component with a trial. A trial component can be associated with multiple trials. To disassociate a trial component from a trial, call the DisassociateTrialComponent API.
*/
associateTrialComponent(callback?: (err: AWSError, data: SageMaker.Types.AssociateTrialComponentResponse) => void): Request<SageMaker.Types.AssociateTrialComponentResponse, AWSError>;
/**
* Create a machine learning algorithm that you can use in Amazon SageMaker and list in the AWS Marketplace.
*/
createAlgorithm(params: SageMaker.Types.CreateAlgorithmInput, callback?: (err: AWSError, data: SageMaker.Types.CreateAlgorithmOutput) => void): Request<SageMaker.Types.CreateAlgorithmOutput, AWSError>;
/**
* Create a machine learning algorithm that you can use in Amazon SageMaker and list in the AWS Marketplace.
*/
createAlgorithm(callback?: (err: AWSError, data: SageMaker.Types.CreateAlgorithmOutput) => void): Request<SageMaker.Types.CreateAlgorithmOutput, AWSError>;
/**
* Creates a running App for the specified UserProfile. Supported Apps are JupyterServer and KernelGateway. This operation is automatically invoked by Amazon SageMaker Studio upon access to the associated Domain, and when new kernel configurations are selected by the user. A user may have multiple Apps active simultaneously.
*/
createApp(params: SageMaker.Types.CreateAppRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateAppResponse) => void): Request<SageMaker.Types.CreateAppResponse, AWSError>;
/**
* Creates a running App for the specified UserProfile. Supported Apps are JupyterServer and KernelGateway. This operation is automatically invoked by Amazon SageMaker Studio upon access to the associated Domain, and when new kernel configurations are selected by the user. A user may have multiple Apps active simultaneously.
*/
createApp(callback?: (err: AWSError, data: SageMaker.Types.CreateAppResponse) => void): Request<SageMaker.Types.CreateAppResponse, AWSError>;
/**
* Creates an Autopilot job. Find the best performing model after you run an Autopilot job by calling . Deploy that model by following the steps described in Step 6.1: Deploy the Model to Amazon SageMaker Hosting Services. For information about how to use Autopilot, see Automate Model Development with Amazon SageMaker Autopilot.
*/
createAutoMLJob(params: SageMaker.Types.CreateAutoMLJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobResponse) => void): Request<SageMaker.Types.CreateAutoMLJobResponse, AWSError>;
/**
* Creates an Autopilot job. Find the best performing model after you run an Autopilot job by calling . Deploy that model by following the steps described in Step 6.1: Deploy the Model to Amazon SageMaker Hosting Services. For information about how to use Autopilot, see Automate Model Development with Amazon SageMaker Autopilot.
*/
createAutoMLJob(callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobResponse) => void): Request<SageMaker.Types.CreateAutoMLJobResponse, AWSError>;
/**
* Creates a Git repository as a resource in your Amazon SageMaker account. You can associate the repository with notebook instances so that you can use Git source control for the notebooks you create. The Git repository is a resource in your Amazon SageMaker account, so it can be associated with more than one notebook instance, and it persists independently from the lifecycle of any notebook instances it is associated with. The repository can be hosted either in AWS CodeCommit or in any other Git repository.
*/
createCodeRepository(params: SageMaker.Types.CreateCodeRepositoryInput, callback?: (err: AWSError, data: SageMaker.Types.CreateCodeRepositoryOutput) => void): Request<SageMaker.Types.CreateCodeRepositoryOutput, AWSError>;
/**
* Creates a Git repository as a resource in your Amazon SageMaker account. You can associate the repository with notebook instances so that you can use Git source control for the notebooks you create. The Git repository is a resource in your Amazon SageMaker account, so it can be associated with more than one notebook instance, and it persists independently from the lifecycle of any notebook instances it is associated with. The repository can be hosted either in AWS CodeCommit or in any other Git repository.
*/
createCodeRepository(callback?: (err: AWSError, data: SageMaker.Types.CreateCodeRepositoryOutput) => void): Request<SageMaker.Types.CreateCodeRepositoryOutput, AWSError>;
/**
* Starts a model compilation job. After the model has been compiled, Amazon SageMaker saves the resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify. If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts with AWS IoT Greengrass. In that case, deploy them as an ML resource. In the request body, you provide the following: A name for the compilation job Information about the input model artifacts The output location for the compiled model and the device (target) that the model runs on The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker assumes to perform the model compilation job. You can also provide a Tag to track the model compilation job's resource use and costs. The response body contains the CompilationJobArn for the compiled job. To stop a model compilation job, use StopCompilationJob. To get information about a particular model compilation job, use DescribeCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.
*/
createCompilationJob(params: SageMaker.Types.CreateCompilationJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateCompilationJobResponse) => void): Request<SageMaker.Types.CreateCompilationJobResponse, AWSError>;
/**
* Starts a model compilation job. After the model has been compiled, Amazon SageMaker saves the resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify. If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts with AWS IoT Greengrass. In that case, deploy them as an ML resource. In the request body, you provide the following: A name for the compilation job Information about the input model artifacts The output location for the compiled model and the device (target) that the model runs on The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker assumes to perform the model compilation job. You can also provide a Tag to track the model compilation job's resource use and costs. The response body contains the CompilationJobArn for the compiled job. To stop a model compilation job, use StopCompilationJob. To get information about a particular model compilation job, use DescribeCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.
*/
createCompilationJob(callback?: (err: AWSError, data: SageMaker.Types.CreateCompilationJobResponse) => void): Request<SageMaker.Types.CreateCompilationJobResponse, AWSError>;
/**
* Creates a Domain used by Amazon SageMaker Studio. A domain consists of an associated Amazon Elastic File System (EFS) volume, a list of authorized users, and a variety of security, application, policy, and Amazon Virtual Private Cloud (VPC) configurations. An AWS account is limited to one domain per region. Users within a domain can share notebook files and other artifacts with each other. When a domain is created, an EFS volume is created for use by all of the users within the domain. Each user receives a private home directory within the EFS volume for notebooks, Git repositories, and data files. VPC configuration All SageMaker Studio traffic between the domain and the EFS volume is through the specified VPC and subnets. For other Studio traffic, you can specify the AppNetworkAccessType parameter. AppNetworkAccessType corresponds to the network access type that you choose when you onboard to Studio. The following options are available: PublicInternetOnly - Non-EFS traffic goes through a VPC managed by Amazon SageMaker, which allows internet access. This is the default value. VpcOnly - All Studio traffic is through the specified VPC and subnets. Internet access is disabled by default. To allow internet access, you must specify a NAT gateway. When internet access is disabled, you won't be able to train or host models unless your VPC has an interface endpoint (PrivateLink) or a NAT gateway and your security groups allow outbound connections. VpcOnly network access type When you choose VpcOnly, you must specify the following: Security group inbound and outbound rules to allow NFS traffic over TCP on port 2049 between the domain and the EFS volume Security group inbound and outbound rules to allow traffic between the JupyterServer app and the KernelGateway apps Interface endpoints to access the SageMaker API and SageMaker runtime For more information, see: Security groups for your VPC VPC with public and private subnets (NAT) Connect to SageMaker through a VPC interface endpoint
*/
createDomain(params: SageMaker.Types.CreateDomainRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateDomainResponse) => void): Request<SageMaker.Types.CreateDomainResponse, AWSError>;
/**
* Creates a Domain used by Amazon SageMaker Studio. A domain consists of an associated Amazon Elastic File System (EFS) volume, a list of authorized users, and a variety of security, application, policy, and Amazon Virtual Private Cloud (VPC) configurations. An AWS account is limited to one domain per region. Users within a domain can share notebook files and other artifacts with each other. When a domain is created, an EFS volume is created for use by all of the users within the domain. Each user receives a private home directory within the EFS volume for notebooks, Git repositories, and data files. VPC configuration All SageMaker Studio traffic between the domain and the EFS volume is through the specified VPC and subnets. For other Studio traffic, you can specify the AppNetworkAccessType parameter. AppNetworkAccessType corresponds to the network access type that you choose when you onboard to Studio. The following options are available: PublicInternetOnly - Non-EFS traffic goes through a VPC managed by Amazon SageMaker, which allows internet access. This is the default value. VpcOnly - All Studio traffic is through the specified VPC and subnets. Internet access is disabled by default. To allow internet access, you must specify a NAT gateway. When internet access is disabled, you won't be able to train or host models unless your VPC has an interface endpoint (PrivateLink) or a NAT gateway and your security groups allow outbound connections. VpcOnly network access type When you choose VpcOnly, you must specify the following: Security group inbound and outbound rules to allow NFS traffic over TCP on port 2049 between the domain and the EFS volume Security group inbound and outbound rules to allow traffic between the JupyterServer app and the KernelGateway apps Interface endpoints to access the SageMaker API and SageMaker runtime For more information, see: Security groups for your VPC VPC with public and private subnets (NAT) Connect to SageMaker through a VPC interface endpoint
*/
createDomain(callback?: (err: AWSError, data: SageMaker.Types.CreateDomainResponse) => void): Request<SageMaker.Types.CreateDomainResponse, AWSError>;
/**
* Creates an endpoint using the endpoint configuration specified in the request. Amazon SageMaker uses the endpoint to provision resources and deploy models. You create the endpoint configuration with the CreateEndpointConfig API. Use this API to deploy models using Amazon SageMaker hosting services. For an example that calls this method when deploying a model to Amazon SageMaker hosting services, see Deploy the Model to Amazon SageMaker Hosting Services (AWS SDK for Python (Boto 3)). You must not delete an EndpointConfig that is in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To update an endpoint, you must create a new EndpointConfig. The endpoint name must be unique within an AWS Region in your AWS account. When it receives the request, Amazon SageMaker creates the endpoint, launches the resources (ML compute instances), and deploys the model(s) on them. When you call CreateEndpoint, a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supporting Eventually Consistent Reads , the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call DescribeEndpointConfig before calling CreateEndpoint to minimize the potential impact of a DynamoDB eventually consistent read. When Amazon SageMaker receives the request, it sets the endpoint status to Creating. After it creates the endpoint, it sets the status to InService. Amazon SageMaker can then process incoming requests for inferences. To check the status of an endpoint, use the DescribeEndpoint API. If any of the models hosted at this endpoint get model data from an Amazon S3 location, Amazon SageMaker uses AWS Security Token Service to download model artifacts from the S3 path you provided. AWS STS is activated in your IAM user account by default. If you previously deactivated AWS STS for a region, you need to reactivate AWS STS for that region. For more information, see Activating and Deactivating AWS STS in an AWS Region in the AWS Identity and Access Management User Guide.
*/
createEndpoint(params: SageMaker.Types.CreateEndpointInput, callback?: (err: AWSError, data: SageMaker.Types.CreateEndpointOutput) => void): Request<SageMaker.Types.CreateEndpointOutput, AWSError>;
/**
* Creates an endpoint using the endpoint configuration specified in the request. Amazon SageMaker uses the endpoint to provision resources and deploy models. You create the endpoint configuration with the CreateEndpointConfig API. Use this API to deploy models using Amazon SageMaker hosting services. For an example that calls this method when deploying a model to Amazon SageMaker hosting services, see Deploy the Model to Amazon SageMaker Hosting Services (AWS SDK for Python (Boto 3)). You must not delete an EndpointConfig that is in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To update an endpoint, you must create a new EndpointConfig. The endpoint name must be unique within an AWS Region in your AWS account. When it receives the request, Amazon SageMaker creates the endpoint, launches the resources (ML compute instances), and deploys the model(s) on them. When you call CreateEndpoint, a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supporting Eventually Consistent Reads , the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call DescribeEndpointConfig before calling CreateEndpoint to minimize the potential impact of a DynamoDB eventually consistent read. When Amazon SageMaker receives the request, it sets the endpoint status to Creating. After it creates the endpoint, it sets the status to InService. Amazon SageMaker can then process incoming requests for inferences. To check the status of an endpoint, use the DescribeEndpoint API. If any of the models hosted at this endpoint get model data from an Amazon S3 location, Amazon SageMaker uses AWS Security Token Service to download model artifacts from the S3 path you provided. AWS STS is activated in your IAM user account by default. If you previously deactivated AWS STS for a region, you need to reactivate AWS STS for that region. For more information, see Activating and Deactivating AWS STS in an AWS Region in the AWS Identity and Access Management User Guide.
*/
createEndpoint(callback?: (err: AWSError, data: SageMaker.Types.CreateEndpointOutput) => void): Request<SageMaker.Types.CreateEndpointOutput, AWSError>;
/**
* Creates an endpoint configuration that Amazon SageMaker hosting services uses to deploy models. In the configuration, you identify one or more models, created using the CreateModel API, to deploy and the resources that you want Amazon SageMaker to provision. Then you call the CreateEndpoint API. Use this API if you want to use Amazon SageMaker hosting services to deploy models into production. In the request, you define a ProductionVariant, for each model that you want to deploy. Each ProductionVariant parameter also describes the resources that you want Amazon SageMaker to provision. This includes the number and type of ML compute instances to deploy. If you are hosting multiple models, you also assign a VariantWeight to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. Amazon SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B. For an example that calls this method when deploying a model to Amazon SageMaker hosting services, see Deploy the Model to Amazon SageMaker Hosting Services (AWS SDK for Python (Boto 3)). When you call CreateEndpoint, a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supporting Eventually Consistent Reads , the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call DescribeEndpointConfig before calling CreateEndpoint to minimize the potential impact of a DynamoDB eventually consistent read.
*/
createEndpointConfig(params: SageMaker.Types.CreateEndpointConfigInput, callback?: (err: AWSError, data: SageMaker.Types.CreateEndpointConfigOutput) => void): Request<SageMaker.Types.CreateEndpointConfigOutput, AWSError>;
/**
* Creates an endpoint configuration that Amazon SageMaker hosting services uses to deploy models. In the configuration, you identify one or more models, created using the CreateModel API, to deploy and the resources that you want Amazon SageMaker to provision. Then you call the CreateEndpoint API. Use this API if you want to use Amazon SageMaker hosting services to deploy models into production. In the request, you define a ProductionVariant, for each model that you want to deploy. Each ProductionVariant parameter also describes the resources that you want Amazon SageMaker to provision. This includes the number and type of ML compute instances to deploy. If you are hosting multiple models, you also assign a VariantWeight to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. Amazon SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B. For an example that calls this method when deploying a model to Amazon SageMaker hosting services, see Deploy the Model to Amazon SageMaker Hosting Services (AWS SDK for Python (Boto 3)). When you call CreateEndpoint, a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supporting Eventually Consistent Reads , the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call DescribeEndpointConfig before calling CreateEndpoint to minimize the potential impact of a DynamoDB eventually consistent read.
*/
createEndpointConfig(callback?: (err: AWSError, data: SageMaker.Types.CreateEndpointConfigOutput) => void): Request<SageMaker.Types.CreateEndpointConfigOutput, AWSError>;
/**
* Creates an SageMaker experiment. An experiment is a collection of trials that are observed, compared and evaluated as a group. A trial is a set of steps, called trial components, that produce a machine learning model. The goal of an experiment is to determine the components that produce the best model. Multiple trials are performed, each one isolating and measuring the impact of a change to one or more inputs, while keeping the remaining inputs constant. When you use Amazon SageMaker Studio or the Amazon SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the AWS SDK for Python (Boto), you must use the logging APIs provided by the SDK. You can add tags to experiments, trials, trial components and then use the Search API to search for the tags. To add a description to an experiment, specify the optional Description parameter. To add a description later, or to change the description, call the UpdateExperiment API. To get a list of all your experiments, call the ListExperiments API. To view an experiment's properties, call the DescribeExperiment API. To get a list of all the trials associated with an experiment, call the ListTrials API. To create a trial call the CreateTrial API.
*/
createExperiment(params: SageMaker.Types.CreateExperimentRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateExperimentResponse) => void): Request<SageMaker.Types.CreateExperimentResponse, AWSError>;
/**
* Creates an SageMaker experiment. An experiment is a collection of trials that are observed, compared and evaluated as a group. A trial is a set of steps, called trial components, that produce a machine learning model. The goal of an experiment is to determine the components that produce the best model. Multiple trials are performed, each one isolating and measuring the impact of a change to one or more inputs, while keeping the remaining inputs constant. When you use Amazon SageMaker Studio or the Amazon SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the AWS SDK for Python (Boto), you must use the logging APIs provided by the SDK. You can add tags to experiments, trials, trial components and then use the Search API to search for the tags. To add a description to an experiment, specify the optional Description parameter. To add a description later, or to change the description, call the UpdateExperiment API. To get a list of all your experiments, call the ListExperiments API. To view an experiment's properties, call the DescribeExperiment API. To get a list of all the trials associated with an experiment, call the ListTrials API. To create a trial call the CreateTrial API.
*/
createExperiment(callback?: (err: AWSError, data: SageMaker.Types.CreateExperimentResponse) => void): Request<SageMaker.Types.CreateExperimentResponse, AWSError>;
/**
* Creates a flow definition.
*/
createFlowDefinition(params: SageMaker.Types.CreateFlowDefinitionRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateFlowDefinitionResponse) => void): Request<SageMaker.Types.CreateFlowDefinitionResponse, AWSError>;
/**
* Creates a flow definition.
*/
createFlowDefinition(callback?: (err: AWSError, data: SageMaker.Types.CreateFlowDefinitionResponse) => void): Request<SageMaker.Types.CreateFlowDefinitionResponse, AWSError>;
/**
* Defines the settings you will use for the human review workflow user interface. Reviewers will see a three-panel interface with an instruction area, the item to review, and an input area.
*/
createHumanTaskUi(params: SageMaker.Types.CreateHumanTaskUiRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateHumanTaskUiResponse) => void): Request<SageMaker.Types.CreateHumanTaskUiResponse, AWSError>;
/**
* Defines the settings you will use for the human review workflow user interface. Reviewers will see a three-panel interface with an instruction area, the item to review, and an input area.
*/
createHumanTaskUi(callback?: (err: AWSError, data: SageMaker.Types.CreateHumanTaskUiResponse) => void): Request<SageMaker.Types.CreateHumanTaskUiResponse, AWSError>;
/**
* Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model by running many training jobs on your dataset using the algorithm you choose and values for hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in a model that performs the best, as measured by an objective metric that you choose.
*/
createHyperParameterTuningJob(params: SageMaker.Types.CreateHyperParameterTuningJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.CreateHyperParameterTuningJobResponse, AWSError>;
/**
* Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model by running many training jobs on your dataset using the algorithm you choose and values for hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in a model that performs the best, as measured by an objective metric that you choose.
*/
createHyperParameterTuningJob(callback?: (err: AWSError, data: SageMaker.Types.CreateHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.CreateHyperParameterTuningJobResponse, AWSError>;
/**
* Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled data to train machine learning models. You can select your workforce from one of three providers: A private workforce that you create. It can include employees, contractors, and outside experts. Use a private workforce when want the data to stay within your organization or when a specific set of skills is required. One or more vendors that you select from the AWS Marketplace. Vendors provide expertise in specific areas. The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for public data or data that has been stripped of any personally identifiable information. You can also use automated data labeling to reduce the number of data objects that need to be labeled by a human. Automated data labeling uses active learning to determine if a data object can be labeled by machine or if it needs to be sent to a human worker. For more information, see Using Automated Data Labeling. The data objects to be labeled are contained in an Amazon S3 bucket. You create a manifest file that describes the location of each object. For more information, see Using Input and Output Data. The output can be used as the manifest file for another labeling job or as training data for your machine learning models.
*/
createLabelingJob(params: SageMaker.Types.CreateLabelingJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateLabelingJobResponse) => void): Request<SageMaker.Types.CreateLabelingJobResponse, AWSError>;
/**
* Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled data to train machine learning models. You can select your workforce from one of three providers: A private workforce that you create. It can include employees, contractors, and outside experts. Use a private workforce when want the data to stay within your organization or when a specific set of skills is required. One or more vendors that you select from the AWS Marketplace. Vendors provide expertise in specific areas. The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for public data or data that has been stripped of any personally identifiable information. You can also use automated data labeling to reduce the number of data objects that need to be labeled by a human. Automated data labeling uses active learning to determine if a data object can be labeled by machine or if it needs to be sent to a human worker. For more information, see Using Automated Data Labeling. The data objects to be labeled are contained in an Amazon S3 bucket. You create a manifest file that describes the location of each object. For more information, see Using Input and Output Data. The output can be used as the manifest file for another labeling job or as training data for your machine learning models.
*/
createLabelingJob(callback?: (err: AWSError, data: SageMaker.Types.CreateLabelingJobResponse) => void): Request<SageMaker.Types.CreateLabelingJobResponse, AWSError>;
/**
* Creates a model in Amazon SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the Docker image that contains inference code, artifacts (from prior training), and a custom environment map that the inference code uses when you deploy the model for predictions. Use this API to create a model if you want to use Amazon SageMaker hosting services or run a batch transform job. To host your model, you create an endpoint configuration with the CreateEndpointConfig API, and then create an endpoint with the CreateEndpoint API. Amazon SageMaker then deploys all of the containers that you defined for the model in the hosting environment. For an example that calls this method when deploying a model to Amazon SageMaker hosting services, see Deploy the Model to Amazon SageMaker Hosting Services (AWS SDK for Python (Boto 3)). To run a batch transform using your model, you start a job with the CreateTransformJob API. Amazon SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location. In the CreateModel request, you must define a container with the PrimaryContainer parameter. In the request, you also provide an IAM role that Amazon SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other AWS resources, you grant necessary permissions via this role.
*/
createModel(params: SageMaker.Types.CreateModelInput, callback?: (err: AWSError, data: SageMaker.Types.CreateModelOutput) => void): Request<SageMaker.Types.CreateModelOutput, AWSError>;
/**
* Creates a model in Amazon SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the Docker image that contains inference code, artifacts (from prior training), and a custom environment map that the inference code uses when you deploy the model for predictions. Use this API to create a model if you want to use Amazon SageMaker hosting services or run a batch transform job. To host your model, you create an endpoint configuration with the CreateEndpointConfig API, and then create an endpoint with the CreateEndpoint API. Amazon SageMaker then deploys all of the containers that you defined for the model in the hosting environment. For an example that calls this method when deploying a model to Amazon SageMaker hosting services, see Deploy the Model to Amazon SageMaker Hosting Services (AWS SDK for Python (Boto 3)). To run a batch transform using your model, you start a job with the CreateTransformJob API. Amazon SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location. In the CreateModel request, you must define a container with the PrimaryContainer parameter. In the request, you also provide an IAM role that Amazon SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other AWS resources, you grant necessary permissions via this role.
*/
createModel(callback?: (err: AWSError, data: SageMaker.Types.CreateModelOutput) => void): Request<SageMaker.Types.CreateModelOutput, AWSError>;
/**
* Creates a model package that you can use to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker. To create a model package by specifying a Docker container that contains your inference code and the Amazon S3 location of your model artifacts, provide values for InferenceSpecification. To create a model from an algorithm resource that you created or subscribed to in AWS Marketplace, provide a value for SourceAlgorithmSpecification.
*/
createModelPackage(params: SageMaker.Types.CreateModelPackageInput, callback?: (err: AWSError, data: SageMaker.Types.CreateModelPackageOutput) => void): Request<SageMaker.Types.CreateModelPackageOutput, AWSError>;
/**
* Creates a model package that you can use to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker. To create a model package by specifying a Docker container that contains your inference code and the Amazon S3 location of your model artifacts, provide values for InferenceSpecification. To create a model from an algorithm resource that you created or subscribed to in AWS Marketplace, provide a value for SourceAlgorithmSpecification.
*/
createModelPackage(callback?: (err: AWSError, data: SageMaker.Types.CreateModelPackageOutput) => void): Request<SageMaker.Types.CreateModelPackageOutput, AWSError>;
/**
* Creates a schedule that regularly starts Amazon SageMaker Processing Jobs to monitor the data captured for an Amazon SageMaker Endoint.
*/
createMonitoringSchedule(params: SageMaker.Types.CreateMonitoringScheduleRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateMonitoringScheduleResponse) => void): Request<SageMaker.Types.CreateMonitoringScheduleResponse, AWSError>;
/**
* Creates a schedule that regularly starts Amazon SageMaker Processing Jobs to monitor the data captured for an Amazon SageMaker Endoint.
*/
createMonitoringSchedule(callback?: (err: AWSError, data: SageMaker.Types.CreateMonitoringScheduleResponse) => void): Request<SageMaker.Types.CreateMonitoringScheduleResponse, AWSError>;
/**
* Creates an Amazon SageMaker notebook instance. A notebook instance is a machine learning (ML) compute instance running on a Jupyter notebook. In a CreateNotebookInstance request, specify the type of ML compute instance that you want to run. Amazon SageMaker launches the instance, installs common libraries that you can use to explore datasets for model training, and attaches an ML storage volume to the notebook instance. Amazon SageMaker also provides a set of example notebooks. Each notebook demonstrates how to use Amazon SageMaker with a specific algorithm or with a machine learning framework. After receiving the request, Amazon SageMaker does the following: Creates a network interface in the Amazon SageMaker VPC. (Option) If you specified SubnetId, Amazon SageMaker creates a network interface in your own VPC, which is inferred from the subnet ID that you provide in the input. When creating this network interface, Amazon SageMaker attaches the security group that you specified in the request to the network interface that it creates in your VPC. Launches an EC2 instance of the type specified in the request in the Amazon SageMaker VPC. If you specified SubnetId of your VPC, Amazon SageMaker specifies both network interfaces when launching this instance. This enables inbound traffic from your own VPC to the notebook instance, assuming that the security groups allow it. After creating the notebook instance, Amazon SageMaker returns its Amazon Resource Name (ARN). You can't change the name of a notebook instance after you create it. After Amazon SageMaker creates the notebook instance, you can connect to the Jupyter server and work in Jupyter notebooks. For example, you can write code to explore a dataset that you can use for model training, train a model, host models by creating Amazon SageMaker endpoints, and validate hosted models. For more information, see How It Works.
*/
createNotebookInstance(params: SageMaker.Types.CreateNotebookInstanceInput, callback?: (err: AWSError, data: SageMaker.Types.CreateNotebookInstanceOutput) => void): Request<SageMaker.Types.CreateNotebookInstanceOutput, AWSError>;
/**
* Creates an Amazon SageMaker notebook instance. A notebook instance is a machine learning (ML) compute instance running on a Jupyter notebook. In a CreateNotebookInstance request, specify the type of ML compute instance that you want to run. Amazon SageMaker launches the instance, installs common libraries that you can use to explore datasets for model training, and attaches an ML storage volume to the notebook instance. Amazon SageMaker also provides a set of example notebooks. Each notebook demonstrates how to use Amazon SageMaker with a specific algorithm or with a machine learning framework. After receiving the request, Amazon SageMaker does the following: Creates a network interface in the Amazon SageMaker VPC. (Option) If you specified SubnetId, Amazon SageMaker creates a network interface in your own VPC, which is inferred from the subnet ID that you provide in the input. When creating this network interface, Amazon SageMaker attaches the security group that you specified in the request to the network interface that it creates in your VPC. Launches an EC2 instance of the type specified in the request in the Amazon SageMaker VPC. If you specified SubnetId of your VPC, Amazon SageMaker specifies both network interfaces when launching this instance. This enables inbound traffic from your own VPC to the notebook instance, assuming that the security groups allow it. After creating the notebook instance, Amazon SageMaker returns its Amazon Resource Name (ARN). You can't change the name of a notebook instance after you create it. After Amazon SageMaker creates the notebook instance, you can connect to the Jupyter server and work in Jupyter notebooks. For example, you can write code to explore a dataset that you can use for model training, train a model, host models by creating Amazon SageMaker endpoints, and validate hosted models. For more information, see How It Works.
*/
createNotebookInstance(callback?: (err: AWSError, data: SageMaker.Types.CreateNotebookInstanceOutput) => void): Request<SageMaker.Types.CreateNotebookInstanceOutput, AWSError>;
/**
* Creates a lifecycle configuration that you can associate with a notebook instance. A lifecycle configuration is a collection of shell scripts that run when you create or start a notebook instance. Each lifecycle configuration script has a limit of 16384 characters. The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/sbin:/usr/bin. View CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook]. Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
*/
createNotebookInstanceLifecycleConfig(params: SageMaker.Types.CreateNotebookInstanceLifecycleConfigInput, callback?: (err: AWSError, data: SageMaker.Types.CreateNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.CreateNotebookInstanceLifecycleConfigOutput, AWSError>;
/**
* Creates a lifecycle configuration that you can associate with a notebook instance. A lifecycle configuration is a collection of shell scripts that run when you create or start a notebook instance. Each lifecycle configuration script has a limit of 16384 characters. The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/sbin:/usr/bin. View CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook]. Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
*/
createNotebookInstanceLifecycleConfig(callback?: (err: AWSError, data: SageMaker.Types.CreateNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.CreateNotebookInstanceLifecycleConfigOutput, AWSError>;
/**
* Creates a URL for a specified UserProfile in a Domain. When accessed in a web browser, the user will be automatically signed in to Amazon SageMaker Studio, and granted access to all of the Apps and files associated with the Domain's Amazon Elastic File System (EFS) volume. This operation can only be called when the authentication mode equals IAM. The URL that you get from a call to CreatePresignedDomainUrl is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the AWS console sign-in page.
*/
createPresignedDomainUrl(params: SageMaker.Types.CreatePresignedDomainUrlRequest, callback?: (err: AWSError, data: SageMaker.Types.CreatePresignedDomainUrlResponse) => void): Request<SageMaker.Types.CreatePresignedDomainUrlResponse, AWSError>;
/**
* Creates a URL for a specified UserProfile in a Domain. When accessed in a web browser, the user will be automatically signed in to Amazon SageMaker Studio, and granted access to all of the Apps and files associated with the Domain's Amazon Elastic File System (EFS) volume. This operation can only be called when the authentication mode equals IAM. The URL that you get from a call to CreatePresignedDomainUrl is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the AWS console sign-in page.
*/
createPresignedDomainUrl(callback?: (err: AWSError, data: SageMaker.Types.CreatePresignedDomainUrlResponse) => void): Request<SageMaker.Types.CreatePresignedDomainUrlResponse, AWSError>;
/**
* Returns a URL that you can use to connect to the Jupyter server from a notebook instance. In the Amazon SageMaker console, when you choose Open next to a notebook instance, Amazon SageMaker opens a new tab showing the Jupyter server home page from the notebook instance. The console uses this API to get the URL and show the page. The IAM role or user used to call this API defines the permissions to access the notebook instance. Once the presigned URL is created, no additional permission is required to access this URL. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the notebook instance. You can restrict access to this API and to the URL that it returns to a list of IP addresses that you specify. Use the NotIpAddress condition operator and the aws:SourceIP condition context key to specify the list of IP addresses that you want to have access to the notebook instance. For more information, see Limit Access to a Notebook Instance by IP Address. The URL that you get from a call to CreatePresignedNotebookInstanceUrl is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the AWS console sign-in page.
*/
createPresignedNotebookInstanceUrl(params: SageMaker.Types.CreatePresignedNotebookInstanceUrlInput, callback?: (err: AWSError, data: SageMaker.Types.CreatePresignedNotebookInstanceUrlOutput) => void): Request<SageMaker.Types.CreatePresignedNotebookInstanceUrlOutput, AWSError>;
/**
* Returns a URL that you can use to connect to the Jupyter server from a notebook instance. In the Amazon SageMaker console, when you choose Open next to a notebook instance, Amazon SageMaker opens a new tab showing the Jupyter server home page from the notebook instance. The console uses this API to get the URL and show the page. The IAM role or user used to call this API defines the permissions to access the notebook instance. Once the presigned URL is created, no additional permission is required to access this URL. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the notebook instance. You can restrict access to this API and to the URL that it returns to a list of IP addresses that you specify. Use the NotIpAddress condition operator and the aws:SourceIP condition context key to specify the list of IP addresses that you want to have access to the notebook instance. For more information, see Limit Access to a Notebook Instance by IP Address. The URL that you get from a call to CreatePresignedNotebookInstanceUrl is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the AWS console sign-in page.
*/
createPresignedNotebookInstanceUrl(callback?: (err: AWSError, data: SageMaker.Types.CreatePresignedNotebookInstanceUrlOutput) => void): Request<SageMaker.Types.CreatePresignedNotebookInstanceUrlOutput, AWSError>;
/**
* Creates a processing job.
*/
createProcessingJob(params: SageMaker.Types.CreateProcessingJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateProcessingJobResponse) => void): Request<SageMaker.Types.CreateProcessingJobResponse, AWSError>;
/**
* Creates a processing job.
*/
createProcessingJob(callback?: (err: AWSError, data: SageMaker.Types.CreateProcessingJobResponse) => void): Request<SageMaker.Types.CreateProcessingJobResponse, AWSError>;
/**
* Starts a model training job. After training completes, Amazon SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify. If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than Amazon SageMaker, provided that you know how to use them for inferences. In the request body, you provide the following: AlgorithmSpecification - Identifies the training algorithm to use. HyperParameters - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see Algorithms. InputDataConfig - Describes the training dataset and the Amazon S3, EFS, or FSx location where it is stored. OutputDataConfig - Identifies the Amazon S3 bucket where you want Amazon SageMaker to save the results of model training. ResourceConfig - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance. EnableManagedSpotTraining - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training. RoleARN - The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete model training. StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a time limit for training. Use MaxWaitTimeInSeconds to specify how long you are willing to wait for a managed spot training job to complete. For more information about Amazon SageMaker, see How It Works.
*/
createTrainingJob(params: SageMaker.Types.CreateTrainingJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateTrainingJobResponse) => void): Request<SageMaker.Types.CreateTrainingJobResponse, AWSError>;
/**
* Starts a model training job. After training completes, Amazon SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify. If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than Amazon SageMaker, provided that you know how to use them for inferences. In the request body, you provide the following: AlgorithmSpecification - Identifies the training algorithm to use. HyperParameters - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see Algorithms. InputDataConfig - Describes the training dataset and the Amazon S3, EFS, or FSx location where it is stored. OutputDataConfig - Identifies the Amazon S3 bucket where you want Amazon SageMaker to save the results of model training. ResourceConfig - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance. EnableManagedSpotTraining - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training. RoleARN - The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete model training. StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a time limit for training. Use MaxWaitTimeInSeconds to specify how long you are willing to wait for a managed spot training job to complete. For more information about Amazon SageMaker, see How It Works.
*/
createTrainingJob(callback?: (err: AWSError, data: SageMaker.Types.CreateTrainingJobResponse) => void): Request<SageMaker.Types.CreateTrainingJobResponse, AWSError>;
/**
* Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify. To perform batch transformations, you create a transform job and use the data that you have readily available. In the request body, you provide the following: TransformJobName - Identifies the transform job. The name must be unique within an AWS Region in an AWS account. ModelName - Identifies the model to use. ModelName must be the name of an existing Amazon SageMaker model in the same AWS Region and AWS account. For information on creating a model, see CreateModel. TransformInput - Describes the dataset to be transformed and the Amazon S3 location where it is stored. TransformOutput - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job. TransformResources - Identifies the ML compute instances for the transform job. For more information about how batch transformation works, see Batch Transform.
*/
createTransformJob(params: SageMaker.Types.CreateTransformJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateTransformJobResponse) => void): Request<SageMaker.Types.CreateTransformJobResponse, AWSError>;
/**
* Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify. To perform batch transformations, you create a transform job and use the data that you have readily available. In the request body, you provide the following: TransformJobName - Identifies the transform job. The name must be unique within an AWS Region in an AWS account. ModelName - Identifies the model to use. ModelName must be the name of an existing Amazon SageMaker model in the same AWS Region and AWS account. For information on creating a model, see CreateModel. TransformInput - Describes the dataset to be transformed and the Amazon S3 location where it is stored. TransformOutput - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job. TransformResources - Identifies the ML compute instances for the transform job. For more information about how batch transformation works, see Batch Transform.
*/
createTransformJob(callback?: (err: AWSError, data: SageMaker.Types.CreateTransformJobResponse) => void): Request<SageMaker.Types.CreateTransformJobResponse, AWSError>;
/**
* Creates an Amazon SageMaker trial. A trial is a set of steps called trial components that produce a machine learning model. A trial is part of a single Amazon SageMaker experiment. When you use Amazon SageMaker Studio or the Amazon SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the AWS SDK for Python (Boto), you must use the logging APIs provided by the SDK. You can add tags to a trial and then use the Search API to search for the tags. To get a list of all your trials, call the ListTrials API. To view a trial's properties, call the DescribeTrial API. To create a trial component, call the CreateTrialComponent API.
*/
createTrial(params: SageMaker.Types.CreateTrialRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateTrialResponse) => void): Request<SageMaker.Types.CreateTrialResponse, AWSError>;
/**
* Creates an Amazon SageMaker trial. A trial is a set of steps called trial components that produce a machine learning model. A trial is part of a single Amazon SageMaker experiment. When you use Amazon SageMaker Studio or the Amazon SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the AWS SDK for Python (Boto), you must use the logging APIs provided by the SDK. You can add tags to a trial and then use the Search API to search for the tags. To get a list of all your trials, call the ListTrials API. To view a trial's properties, call the DescribeTrial API. To create a trial component, call the CreateTrialComponent API.
*/
createTrial(callback?: (err: AWSError, data: SageMaker.Types.CreateTrialResponse) => void): Request<SageMaker.Types.CreateTrialResponse, AWSError>;
/**
* Creates a trial component, which is a stage of a machine learning trial. A trial is composed of one or more trial components. A trial component can be used in multiple trials. Trial components include pre-processing jobs, training jobs, and batch transform jobs. When you use Amazon SageMaker Studio or the Amazon SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the AWS SDK for Python (Boto), you must use the logging APIs provided by the SDK. You can add tags to a trial component and then use the Search API to search for the tags. CreateTrialComponent can only be invoked from within an Amazon SageMaker managed environment. This includes Amazon SageMaker training jobs, processing jobs, transform jobs, and Amazon SageMaker notebooks. A call to CreateTrialComponent from outside one of these environments results in an error.
*/
createTrialComponent(params: SageMaker.Types.CreateTrialComponentRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateTrialComponentResponse) => void): Request<SageMaker.Types.CreateTrialComponentResponse, AWSError>;
/**
* Creates a trial component, which is a stage of a machine learning trial. A trial is composed of one or more trial components. A trial component can be used in multiple trials. Trial components include pre-processing jobs, training jobs, and batch transform jobs. When you use Amazon SageMaker Studio or the Amazon SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the AWS SDK for Python (Boto), you must use the logging APIs provided by the SDK. You can add tags to a trial component and then use the Search API to search for the tags. CreateTrialComponent can only be invoked from within an Amazon SageMaker managed environment. This includes Amazon SageMaker training jobs, processing jobs, transform jobs, and Amazon SageMaker notebooks. A call to CreateTrialComponent from outside one of these environments results in an error.
*/
createTrialComponent(callback?: (err: AWSError, data: SageMaker.Types.CreateTrialComponentResponse) => void): Request<SageMaker.Types.CreateTrialComponentResponse, AWSError>;
/**
* Creates a user profile. A user profile represents a single user within a domain, and is the main way to reference a "person" for the purposes of sharing, reporting, and other user-oriented features. This entity is created when a user onboards to Amazon SageMaker Studio. If an administrator invites a person by email or imports them from SSO, a user profile is automatically created. A user profile is the primary holder of settings for an individual user and has a reference to the user's private Amazon Elastic File System (EFS) home directory.
*/
createUserProfile(params: SageMaker.Types.CreateUserProfileRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateUserProfileResponse) => void): Request<SageMaker.Types.CreateUserProfileResponse, AWSError>;
/**
* Creates a user profile. A user profile represents a single user within a domain, and is the main way to reference a "person" for the purposes of sharing, reporting, and other user-oriented features. This entity is created when a user onboards to Amazon SageMaker Studio. If an administrator invites a person by email or imports them from SSO, a user profile is automatically created. A user profile is the primary holder of settings for an individual user and has a reference to the user's private Amazon Elastic File System (EFS) home directory.
*/
createUserProfile(callback?: (err: AWSError, data: SageMaker.Types.CreateUserProfileResponse) => void): Request<SageMaker.Types.CreateUserProfileResponse, AWSError>;
/**
* Use this operation to create a workforce. This operation will return an error if a workforce already exists in the AWS Region that you specify. You can only create one workforce in each AWS Region per AWS account. If you want to create a new workforce in an AWS Region where a workforce already exists, use the API operation to delete the existing workforce and then use CreateWorkforce to create a new workforce. To create a private workforce using Amazon Cognito, you must specify a Cognito user pool in CognitoConfig. You can also create an Amazon Cognito workforce using the Amazon SageMaker console. For more information, see Create a Private Workforce (Amazon Cognito). To create a private workforce using your own OIDC Identity Provider (IdP), specify your IdP configuration in OidcConfig. Your OIDC IdP must support groups because groups are used by Ground Truth and Amazon A2I to create work teams. For more information, see Create a Private Workforce (OIDC IdP).
*/
createWorkforce(params: SageMaker.Types.CreateWorkforceRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateWorkforceResponse) => void): Request<SageMaker.Types.CreateWorkforceResponse, AWSError>;
/**
* Use this operation to create a workforce. This operation will return an error if a workforce already exists in the AWS Region that you specify. You can only create one workforce in each AWS Region per AWS account. If you want to create a new workforce in an AWS Region where a workforce already exists, use the API operation to delete the existing workforce and then use CreateWorkforce to create a new workforce. To create a private workforce using Amazon Cognito, you must specify a Cognito user pool in CognitoConfig. You can also create an Amazon Cognito workforce using the Amazon SageMaker console. For more information, see Create a Private Workforce (Amazon Cognito). To create a private workforce using your own OIDC Identity Provider (IdP), specify your IdP configuration in OidcConfig. Your OIDC IdP must support groups because groups are used by Ground Truth and Amazon A2I to create work teams. For more information, see Create a Private Workforce (OIDC IdP).
*/
createWorkforce(callback?: (err: AWSError, data: SageMaker.Types.CreateWorkforceResponse) => void): Request<SageMaker.Types.CreateWorkforceResponse, AWSError>;
/**
* Creates a new work team for labeling your data. A work team is defined by one or more Amazon Cognito user pools. You must first create the user pools before you can create a work team. You cannot create more than 25 work teams in an account and region.
*/
createWorkteam(params: SageMaker.Types.CreateWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateWorkteamResponse) => void): Request<SageMaker.Types.CreateWorkteamResponse, AWSError>;
/**
* Creates a new work team for labeling your data. A work team is defined by one or more Amazon Cognito user pools. You must first create the user pools before you can create a work team. You cannot create more than 25 work teams in an account and region.
*/
createWorkteam(callback?: (err: AWSError, data: SageMaker.Types.CreateWorkteamResponse) => void): Request<SageMaker.Types.CreateWorkteamResponse, AWSError>;
/**
* Removes the specified algorithm from your account.
*/
deleteAlgorithm(params: SageMaker.Types.DeleteAlgorithmInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Removes the specified algorithm from your account.
*/
deleteAlgorithm(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Used to stop and delete an app.
*/
deleteApp(params: SageMaker.Types.DeleteAppRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Used to stop and delete an app.
*/
deleteApp(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes the specified Git repository from your account.
*/
deleteCodeRepository(params: SageMaker.Types.DeleteCodeRepositoryInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes the specified Git repository from your account.
*/
deleteCodeRepository(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Used to delete a domain. If you onboarded with IAM mode, you will need to delete your domain to onboard again using SSO. Use with caution. All of the members of the domain will lose access to their EFS volume, including data, notebooks, and other artifacts.
*/
deleteDomain(params: SageMaker.Types.DeleteDomainRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Used to delete a domain. If you onboarded with IAM mode, you will need to delete your domain to onboard again using SSO. Use with caution. All of the members of the domain will lose access to their EFS volume, including data, notebooks, and other artifacts.
*/
deleteDomain(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes an endpoint. Amazon SageMaker frees up all of the resources that were deployed when the endpoint was created. Amazon SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don't need to use the RevokeGrant API call.
*/
deleteEndpoint(params: SageMaker.Types.DeleteEndpointInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes an endpoint. Amazon SageMaker frees up all of the resources that were deployed when the endpoint was created. Amazon SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don't need to use the RevokeGrant API call.
*/
deleteEndpoint(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes an endpoint configuration. The DeleteEndpointConfig API deletes only the specified configuration. It does not delete endpoints created using the configuration. You must not delete an EndpointConfig in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. If you delete the EndpointConfig of an endpoint that is active or being created or updated you may lose visibility into the instance type the endpoint is using. The endpoint must be deleted in order to stop incurring charges.
*/
deleteEndpointConfig(params: SageMaker.Types.DeleteEndpointConfigInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes an endpoint configuration. The DeleteEndpointConfig API deletes only the specified configuration. It does not delete endpoints created using the configuration. You must not delete an EndpointConfig in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. If you delete the EndpointConfig of an endpoint that is active or being created or updated you may lose visibility into the instance type the endpoint is using. The endpoint must be deleted in order to stop incurring charges.
*/
deleteEndpointConfig(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes an Amazon SageMaker experiment. All trials associated with the experiment must be deleted first. Use the ListTrials API to get a list of the trials associated with the experiment.
*/
deleteExperiment(params: SageMaker.Types.DeleteExperimentRequest, callback?: (err: AWSError, data: SageMaker.Types.DeleteExperimentResponse) => void): Request<SageMaker.Types.DeleteExperimentResponse, AWSError>;
/**
* Deletes an Amazon SageMaker experiment. All trials associated with the experiment must be deleted first. Use the ListTrials API to get a list of the trials associated with the experiment.
*/
deleteExperiment(callback?: (err: AWSError, data: SageMaker.Types.DeleteExperimentResponse) => void): Request<SageMaker.Types.DeleteExperimentResponse, AWSError>;
/**
* Deletes the specified flow definition.
*/
deleteFlowDefinition(params: SageMaker.Types.DeleteFlowDefinitionRequest, callback?: (err: AWSError, data: SageMaker.Types.DeleteFlowDefinitionResponse) => void): Request<SageMaker.Types.DeleteFlowDefinitionResponse, AWSError>;
/**
* Deletes the specified flow definition.
*/
deleteFlowDefinition(callback?: (err: AWSError, data: SageMaker.Types.DeleteFlowDefinitionResponse) => void): Request<SageMaker.Types.DeleteFlowDefinitionResponse, AWSError>;
/**
* Use this operation to delete a human task user interface (worker task template). To see a list of human task user interfaces (work task templates) in your account, use . When you delete a worker task template, it no longer appears when you call ListHumanTaskUis.
*/
deleteHumanTaskUi(params: SageMaker.Types.DeleteHumanTaskUiRequest, callback?: (err: AWSError, data: SageMaker.Types.DeleteHumanTaskUiResponse) => void): Request<SageMaker.Types.DeleteHumanTaskUiResponse, AWSError>;
/**
* Use this operation to delete a human task user interface (worker task template). To see a list of human task user interfaces (work task templates) in your account, use . When you delete a worker task template, it no longer appears when you call ListHumanTaskUis.
*/
deleteHumanTaskUi(callback?: (err: AWSError, data: SageMaker.Types.DeleteHumanTaskUiResponse) => void): Request<SageMaker.Types.DeleteHumanTaskUiResponse, AWSError>;
/**
* Deletes a model. The DeleteModel API deletes only the model entry that was created in Amazon SageMaker when you called the CreateModel API. It does not delete model artifacts, inference code, or the IAM role that you specified when creating the model.
*/
deleteModel(params: SageMaker.Types.DeleteModelInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes a model. The DeleteModel API deletes only the model entry that was created in Amazon SageMaker when you called the CreateModel API. It does not delete model artifacts, inference code, or the IAM role that you specified when creating the model.
*/
deleteModel(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes a model package. A model package is used to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker.
*/
deleteModelPackage(params: SageMaker.Types.DeleteModelPackageInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes a model package. A model package is used to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker.
*/
deleteModelPackage(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes a monitoring schedule. Also stops the schedule had not already been stopped. This does not delete the job execution history of the monitoring schedule.
*/
deleteMonitoringSchedule(params: SageMaker.Types.DeleteMonitoringScheduleRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes a monitoring schedule. Also stops the schedule had not already been stopped. This does not delete the job execution history of the monitoring schedule.
*/
deleteMonitoringSchedule(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes an Amazon SageMaker notebook instance. Before you can delete a notebook instance, you must call the StopNotebookInstance API. When you delete a notebook instance, you lose all of your data. Amazon SageMaker removes the ML compute instance, and deletes the ML storage volume and the network interface associated with the notebook instance.
*/
deleteNotebookInstance(params: SageMaker.Types.DeleteNotebookInstanceInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes an Amazon SageMaker notebook instance. Before you can delete a notebook instance, you must call the StopNotebookInstance API. When you delete a notebook instance, you lose all of your data. Amazon SageMaker removes the ML compute instance, and deletes the ML storage volume and the network interface associated with the notebook instance.
*/
deleteNotebookInstance(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes a notebook instance lifecycle configuration.
*/
deleteNotebookInstanceLifecycleConfig(params: SageMaker.Types.DeleteNotebookInstanceLifecycleConfigInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes a notebook instance lifecycle configuration.
*/
deleteNotebookInstanceLifecycleConfig(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes the specified tags from an Amazon SageMaker resource. To list a resource's tags, use the ListTags API. When you call this API to delete tags from a hyperparameter tuning job, the deleted tags are not removed from training jobs that the hyperparameter tuning job launched before you called this API.
*/
deleteTags(params: SageMaker.Types.DeleteTagsInput, callback?: (err: AWSError, data: SageMaker.Types.DeleteTagsOutput) => void): Request<SageMaker.Types.DeleteTagsOutput, AWSError>;
/**
* Deletes the specified tags from an Amazon SageMaker resource. To list a resource's tags, use the ListTags API. When you call this API to delete tags from a hyperparameter tuning job, the deleted tags are not removed from training jobs that the hyperparameter tuning job launched before you called this API.
*/
deleteTags(callback?: (err: AWSError, data: SageMaker.Types.DeleteTagsOutput) => void): Request<SageMaker.Types.DeleteTagsOutput, AWSError>;
/**
* Deletes the specified trial. All trial components that make up the trial must be deleted first. Use the DescribeTrialComponent API to get the list of trial components.
*/
deleteTrial(params: SageMaker.Types.DeleteTrialRequest, callback?: (err: AWSError, data: SageMaker.Types.DeleteTrialResponse) => void): Request<SageMaker.Types.DeleteTrialResponse, AWSError>;
/**
* Deletes the specified trial. All trial components that make up the trial must be deleted first. Use the DescribeTrialComponent API to get the list of trial components.
*/
deleteTrial(callback?: (err: AWSError, data: SageMaker.Types.DeleteTrialResponse) => void): Request<SageMaker.Types.DeleteTrialResponse, AWSError>;
/**
* Deletes the specified trial component. A trial component must be disassociated from all trials before the trial component can be deleted. To disassociate a trial component from a trial, call the DisassociateTrialComponent API.
*/
deleteTrialComponent(params: SageMaker.Types.DeleteTrialComponentRequest, callback?: (err: AWSError, data: SageMaker.Types.DeleteTrialComponentResponse) => void): Request<SageMaker.Types.DeleteTrialComponentResponse, AWSError>;
/**
* Deletes the specified trial component. A trial component must be disassociated from all trials before the trial component can be deleted. To disassociate a trial component from a trial, call the DisassociateTrialComponent API.
*/
deleteTrialComponent(callback?: (err: AWSError, data: SageMaker.Types.DeleteTrialComponentResponse) => void): Request<SageMaker.Types.DeleteTrialComponentResponse, AWSError>;
/**
* Deletes a user profile. When a user profile is deleted, the user loses access to their EFS volume, including data, notebooks, and other artifacts.
*/
deleteUserProfile(params: SageMaker.Types.DeleteUserProfileRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes a user profile. When a user profile is deleted, the user loses access to their EFS volume, including data, notebooks, and other artifacts.
*/
deleteUserProfile(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Use this operation to delete a workforce. If you want to create a new workforce in an AWS Region where a workforce already exists, use this operation to delete the existing workforce and then use to create a new workforce. If a private workforce contains one or more work teams, you must use the operation to delete all work teams before you delete the workforce. If you try to delete a workforce that contains one or more work teams, you will recieve a ResourceInUse error.
*/
deleteWorkforce(params: SageMaker.Types.DeleteWorkforceRequest, callback?: (err: AWSError, data: SageMaker.Types.DeleteWorkforceResponse) => void): Request<SageMaker.Types.DeleteWorkforceResponse, AWSError>;
/**
* Use this operation to delete a workforce. If you want to create a new workforce in an AWS Region where a workforce already exists, use this operation to delete the existing workforce and then use to create a new workforce. If a private workforce contains one or more work teams, you must use the operation to delete all work teams before you delete the workforce. If you try to delete a workforce that contains one or more work teams, you will recieve a ResourceInUse error.
*/
deleteWorkforce(callback?: (err: AWSError, data: SageMaker.Types.DeleteWorkforceResponse) => void): Request<SageMaker.Types.DeleteWorkforceResponse, AWSError>;
/**
* Deletes an existing work team. This operation can't be undone.
*/
deleteWorkteam(params: SageMaker.Types.DeleteWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.DeleteWorkteamResponse) => void): Request<SageMaker.Types.DeleteWorkteamResponse, AWSError>;
/**
* Deletes an existing work team. This operation can't be undone.
*/
deleteWorkteam(callback?: (err: AWSError, data: SageMaker.Types.DeleteWorkteamResponse) => void): Request<SageMaker.Types.DeleteWorkteamResponse, AWSError>;
/**
* Returns a description of the specified algorithm that is in your account.
*/
describeAlgorithm(params: SageMaker.Types.DescribeAlgorithmInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeAlgorithmOutput) => void): Request<SageMaker.Types.DescribeAlgorithmOutput, AWSError>;
/**
* Returns a description of the specified algorithm that is in your account.
*/
describeAlgorithm(callback?: (err: AWSError, data: SageMaker.Types.DescribeAlgorithmOutput) => void): Request<SageMaker.Types.DescribeAlgorithmOutput, AWSError>;
/**
* Describes the app.
*/
describeApp(params: SageMaker.Types.DescribeAppRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeAppResponse) => void): Request<SageMaker.Types.DescribeAppResponse, AWSError>;
/**
* Describes the app.
*/
describeApp(callback?: (err: AWSError, data: SageMaker.Types.DescribeAppResponse) => void): Request<SageMaker.Types.DescribeAppResponse, AWSError>;
/**
* Returns information about an Amazon SageMaker job.
*/
describeAutoMLJob(params: SageMaker.Types.DescribeAutoMLJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeAutoMLJobResponse) => void): Request<SageMaker.Types.DescribeAutoMLJobResponse, AWSError>;
/**
* Returns information about an Amazon SageMaker job.
*/
describeAutoMLJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeAutoMLJobResponse) => void): Request<SageMaker.Types.DescribeAutoMLJobResponse, AWSError>;
/**
* Gets details about the specified Git repository.
*/
describeCodeRepository(params: SageMaker.Types.DescribeCodeRepositoryInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeCodeRepositoryOutput) => void): Request<SageMaker.Types.DescribeCodeRepositoryOutput, AWSError>;
/**
* Gets details about the specified Git repository.
*/
describeCodeRepository(callback?: (err: AWSError, data: SageMaker.Types.DescribeCodeRepositoryOutput) => void): Request<SageMaker.Types.DescribeCodeRepositoryOutput, AWSError>;
/**
* Returns information about a model compilation job. To create a model compilation job, use CreateCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.
*/
describeCompilationJob(params: SageMaker.Types.DescribeCompilationJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeCompilationJobResponse) => void): Request<SageMaker.Types.DescribeCompilationJobResponse, AWSError>;
/**
* Returns information about a model compilation job. To create a model compilation job, use CreateCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.
*/
describeCompilationJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeCompilationJobResponse) => void): Request<SageMaker.Types.DescribeCompilationJobResponse, AWSError>;
/**
* The description of the domain.
*/
describeDomain(params: SageMaker.Types.DescribeDomainRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeDomainResponse) => void): Request<SageMaker.Types.DescribeDomainResponse, AWSError>;
/**
* The description of the domain.
*/
describeDomain(callback?: (err: AWSError, data: SageMaker.Types.DescribeDomainResponse) => void): Request<SageMaker.Types.DescribeDomainResponse, AWSError>;
/**
* Returns the description of an endpoint.
*/
describeEndpoint(params: SageMaker.Types.DescribeEndpointInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointOutput) => void): Request<SageMaker.Types.DescribeEndpointOutput, AWSError>;
/**
* Returns the description of an endpoint.
*/
describeEndpoint(callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointOutput) => void): Request<SageMaker.Types.DescribeEndpointOutput, AWSError>;
/**
* Returns the description of an endpoint configuration created using the CreateEndpointConfig API.
*/
describeEndpointConfig(params: SageMaker.Types.DescribeEndpointConfigInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointConfigOutput) => void): Request<SageMaker.Types.DescribeEndpointConfigOutput, AWSError>;
/**
* Returns the description of an endpoint configuration created using the CreateEndpointConfig API.
*/
describeEndpointConfig(callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointConfigOutput) => void): Request<SageMaker.Types.DescribeEndpointConfigOutput, AWSError>;
/**
* Provides a list of an experiment's properties.
*/
describeExperiment(params: SageMaker.Types.DescribeExperimentRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeExperimentResponse) => void): Request<SageMaker.Types.DescribeExperimentResponse, AWSError>;
/**
* Provides a list of an experiment's properties.
*/
describeExperiment(callback?: (err: AWSError, data: SageMaker.Types.DescribeExperimentResponse) => void): Request<SageMaker.Types.DescribeExperimentResponse, AWSError>;
/**
* Returns information about the specified flow definition.
*/
describeFlowDefinition(params: SageMaker.Types.DescribeFlowDefinitionRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeFlowDefinitionResponse) => void): Request<SageMaker.Types.DescribeFlowDefinitionResponse, AWSError>;
/**
* Returns information about the specified flow definition.
*/
describeFlowDefinition(callback?: (err: AWSError, data: SageMaker.Types.DescribeFlowDefinitionResponse) => void): Request<SageMaker.Types.DescribeFlowDefinitionResponse, AWSError>;
/**
* Returns information about the requested human task user interface (worker task template).
*/
describeHumanTaskUi(params: SageMaker.Types.DescribeHumanTaskUiRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeHumanTaskUiResponse) => void): Request<SageMaker.Types.DescribeHumanTaskUiResponse, AWSError>;
/**
* Returns information about the requested human task user interface (worker task template).
*/
describeHumanTaskUi(callback?: (err: AWSError, data: SageMaker.Types.DescribeHumanTaskUiResponse) => void): Request<SageMaker.Types.DescribeHumanTaskUiResponse, AWSError>;
/**
* Gets a description of a hyperparameter tuning job.
*/
describeHyperParameterTuningJob(params: SageMaker.Types.DescribeHyperParameterTuningJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.DescribeHyperParameterTuningJobResponse, AWSError>;
/**
* Gets a description of a hyperparameter tuning job.
*/
describeHyperParameterTuningJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.DescribeHyperParameterTuningJobResponse, AWSError>;
/**
* Gets information about a labeling job.
*/
describeLabelingJob(params: SageMaker.Types.DescribeLabelingJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeLabelingJobResponse) => void): Request<SageMaker.Types.DescribeLabelingJobResponse, AWSError>;
/**
* Gets information about a labeling job.
*/
describeLabelingJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeLabelingJobResponse) => void): Request<SageMaker.Types.DescribeLabelingJobResponse, AWSError>;
/**
* Describes a model that you created using the CreateModel API.
*/
describeModel(params: SageMaker.Types.DescribeModelInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeModelOutput) => void): Request<SageMaker.Types.DescribeModelOutput, AWSError>;
/**
* Describes a model that you created using the CreateModel API.
*/
describeModel(callback?: (err: AWSError, data: SageMaker.Types.DescribeModelOutput) => void): Request<SageMaker.Types.DescribeModelOutput, AWSError>;
/**
* Returns a description of the specified model package, which is used to create Amazon SageMaker models or list them on AWS Marketplace. To create models in Amazon SageMaker, buyers can subscribe to model packages listed on AWS Marketplace.
*/
describeModelPackage(params: SageMaker.Types.DescribeModelPackageInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeModelPackageOutput) => void): Request<SageMaker.Types.DescribeModelPackageOutput, AWSError>;
/**
* Returns a description of the specified model package, which is used to create Amazon SageMaker models or list them on AWS Marketplace. To create models in Amazon SageMaker, buyers can subscribe to model packages listed on AWS Marketplace.
*/
describeModelPackage(callback?: (err: AWSError, data: SageMaker.Types.DescribeModelPackageOutput) => void): Request<SageMaker.Types.DescribeModelPackageOutput, AWSError>;
/**
* Describes the schedule for a monitoring job.
*/
describeMonitoringSchedule(params: SageMaker.Types.DescribeMonitoringScheduleRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeMonitoringScheduleResponse) => void): Request<SageMaker.Types.DescribeMonitoringScheduleResponse, AWSError>;
/**
* Describes the schedule for a monitoring job.
*/
describeMonitoringSchedule(callback?: (err: AWSError, data: SageMaker.Types.DescribeMonitoringScheduleResponse) => void): Request<SageMaker.Types.DescribeMonitoringScheduleResponse, AWSError>;
/**
* Returns information about a notebook instance.
*/
describeNotebookInstance(params: SageMaker.Types.DescribeNotebookInstanceInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
/**
* Returns information about a notebook instance.
*/
describeNotebookInstance(callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
/**
* Returns a description of a notebook instance lifecycle configuration. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
*/
describeNotebookInstanceLifecycleConfig(params: SageMaker.Types.DescribeNotebookInstanceLifecycleConfigInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceLifecycleConfigOutput, AWSError>;
/**
* Returns a description of a notebook instance lifecycle configuration. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
*/
describeNotebookInstanceLifecycleConfig(callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceLifecycleConfigOutput, AWSError>;
/**
* Returns a description of a processing job.
*/
describeProcessingJob(params: SageMaker.Types.DescribeProcessingJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeProcessingJobResponse) => void): Request<SageMaker.Types.DescribeProcessingJobResponse, AWSError>;
/**
* Returns a description of a processing job.
*/
describeProcessingJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeProcessingJobResponse) => void): Request<SageMaker.Types.DescribeProcessingJobResponse, AWSError>;
/**
* Gets information about a work team provided by a vendor. It returns details about the subscription with a vendor in the AWS Marketplace.
*/
describeSubscribedWorkteam(params: SageMaker.Types.DescribeSubscribedWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeSubscribedWorkteamResponse) => void): Request<SageMaker.Types.DescribeSubscribedWorkteamResponse, AWSError>;
/**
* Gets information about a work team provided by a vendor. It returns details about the subscription with a vendor in the AWS Marketplace.
*/
describeSubscribedWorkteam(callback?: (err: AWSError, data: SageMaker.Types.DescribeSubscribedWorkteamResponse) => void): Request<SageMaker.Types.DescribeSubscribedWorkteamResponse, AWSError>;
/**
* Returns information about a training job.
*/
describeTrainingJob(params: SageMaker.Types.DescribeTrainingJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeTrainingJobResponse) => void): Request<SageMaker.Types.DescribeTrainingJobResponse, AWSError>;
/**
* Returns information about a training job.
*/
describeTrainingJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeTrainingJobResponse) => void): Request<SageMaker.Types.DescribeTrainingJobResponse, AWSError>;
/**
* Returns information about a transform job.
*/
describeTransformJob(params: SageMaker.Types.DescribeTransformJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeTransformJobResponse) => void): Request<SageMaker.Types.DescribeTransformJobResponse, AWSError>;
/**
* Returns information about a transform job.
*/
describeTransformJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeTransformJobResponse) => void): Request<SageMaker.Types.DescribeTransformJobResponse, AWSError>;
/**
* Provides a list of a trial's properties.
*/
describeTrial(params: SageMaker.Types.DescribeTrialRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeTrialResponse) => void): Request<SageMaker.Types.DescribeTrialResponse, AWSError>;
/**
* Provides a list of a trial's properties.
*/
describeTrial(callback?: (err: AWSError, data: SageMaker.Types.DescribeTrialResponse) => void): Request<SageMaker.Types.DescribeTrialResponse, AWSError>;
/**
* Provides a list of a trials component's properties.
*/
describeTrialComponent(params: SageMaker.Types.DescribeTrialComponentRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeTrialComponentResponse) => void): Request<SageMaker.Types.DescribeTrialComponentResponse, AWSError>;
/**
* Provides a list of a trials component's properties.
*/
describeTrialComponent(callback?: (err: AWSError, data: SageMaker.Types.DescribeTrialComponentResponse) => void): Request<SageMaker.Types.DescribeTrialComponentResponse, AWSError>;
/**
* Describes a user profile. For more information, see CreateUserProfile.
*/
describeUserProfile(params: SageMaker.Types.DescribeUserProfileRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeUserProfileResponse) => void): Request<SageMaker.Types.DescribeUserProfileResponse, AWSError>;
/**
* Describes a user profile. For more information, see CreateUserProfile.
*/
describeUserProfile(callback?: (err: AWSError, data: SageMaker.Types.DescribeUserProfileResponse) => void): Request<SageMaker.Types.DescribeUserProfileResponse, AWSError>;
/**
* Lists private workforce information, including workforce name, Amazon Resource Name (ARN), and, if applicable, allowed IP address ranges (CIDRs). Allowable IP address ranges are the IP addresses that workers can use to access tasks. This operation applies only to private workforces.
*/
describeWorkforce(params: SageMaker.Types.DescribeWorkforceRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeWorkforceResponse) => void): Request<SageMaker.Types.DescribeWorkforceResponse, AWSError>;
/**
* Lists private workforce information, including workforce name, Amazon Resource Name (ARN), and, if applicable, allowed IP address ranges (CIDRs). Allowable IP address ranges are the IP addresses that workers can use to access tasks. This operation applies only to private workforces.
*/
describeWorkforce(callback?: (err: AWSError, data: SageMaker.Types.DescribeWorkforceResponse) => void): Request<SageMaker.Types.DescribeWorkforceResponse, AWSError>;
/**
* Gets information about a specific work team. You can see information such as the create date, the last updated date, membership information, and the work team's Amazon Resource Name (ARN).
*/
describeWorkteam(params: SageMaker.Types.DescribeWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeWorkteamResponse) => void): Request<SageMaker.Types.DescribeWorkteamResponse, AWSError>;
/**
* Gets information about a specific work team. You can see information such as the create date, the last updated date, membership information, and the work team's Amazon Resource Name (ARN).
*/
describeWorkteam(callback?: (err: AWSError, data: SageMaker.Types.DescribeWorkteamResponse) => void): Request<SageMaker.Types.DescribeWorkteamResponse, AWSError>;
/**
* Disassociates a trial component from a trial. This doesn't effect other trials the component is associated with. Before you can delete a component, you must disassociate the component from all trials it is associated with. To associate a trial component with a trial, call the AssociateTrialComponent API. To get a list of the trials a component is associated with, use the Search API. Specify ExperimentTrialComponent for the Resource parameter. The list appears in the response under Results.TrialComponent.Parents.
*/
disassociateTrialComponent(params: SageMaker.Types.DisassociateTrialComponentRequest, callback?: (err: AWSError, data: SageMaker.Types.DisassociateTrialComponentResponse) => void): Request<SageMaker.Types.DisassociateTrialComponentResponse, AWSError>;
/**
* Disassociates a trial component from a trial. This doesn't effect other trials the component is associated with. Before you can delete a component, you must disassociate the component from all trials it is associated with. To associate a trial component with a trial, call the AssociateTrialComponent API. To get a list of the trials a component is associated with, use the Search API. Specify ExperimentTrialComponent for the Resource parameter. The list appears in the response under Results.TrialComponent.Parents.
*/
disassociateTrialComponent(callback?: (err: AWSError, data: SageMaker.Types.DisassociateTrialComponentResponse) => void): Request<SageMaker.Types.DisassociateTrialComponentResponse, AWSError>;
/**
* An auto-complete API for the search functionality in the Amazon SageMaker console. It returns suggestions of possible matches for the property name to use in Search queries. Provides suggestions for HyperParameters, Tags, and Metrics.
*/
getSearchSuggestions(params: SageMaker.Types.GetSearchSuggestionsRequest, callback?: (err: AWSError, data: SageMaker.Types.GetSearchSuggestionsResponse) => void): Request<SageMaker.Types.GetSearchSuggestionsResponse, AWSError>;
/**
* An auto-complete API for the search functionality in the Amazon SageMaker console. It returns suggestions of possible matches for the property name to use in Search queries. Provides suggestions for HyperParameters, Tags, and Metrics.
*/
getSearchSuggestions(callback?: (err: AWSError, data: SageMaker.Types.GetSearchSuggestionsResponse) => void): Request<SageMaker.Types.GetSearchSuggestionsResponse, AWSError>;
/**
* Lists the machine learning algorithms that have been created.
*/
listAlgorithms(params: SageMaker.Types.ListAlgorithmsInput, callback?: (err: AWSError, data: SageMaker.Types.ListAlgorithmsOutput) => void): Request<SageMaker.Types.ListAlgorithmsOutput, AWSError>;
/**
* Lists the machine learning algorithms that have been created.
*/
listAlgorithms(callback?: (err: AWSError, data: SageMaker.Types.ListAlgorithmsOutput) => void): Request<SageMaker.Types.ListAlgorithmsOutput, AWSError>;
/**
* Lists apps.
*/
listApps(params: SageMaker.Types.ListAppsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListAppsResponse) => void): Request<SageMaker.Types.ListAppsResponse, AWSError>;
/**
* Lists apps.
*/
listApps(callback?: (err: AWSError, data: SageMaker.Types.ListAppsResponse) => void): Request<SageMaker.Types.ListAppsResponse, AWSError>;
/**
* Request a list of jobs.
*/
listAutoMLJobs(params: SageMaker.Types.ListAutoMLJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListAutoMLJobsResponse) => void): Request<SageMaker.Types.ListAutoMLJobsResponse, AWSError>;
/**
* Request a list of jobs.
*/
listAutoMLJobs(callback?: (err: AWSError, data: SageMaker.Types.ListAutoMLJobsResponse) => void): Request<SageMaker.Types.ListAutoMLJobsResponse, AWSError>;
/**
* List the Candidates created for the job.
*/
listCandidatesForAutoMLJob(params: SageMaker.Types.ListCandidatesForAutoMLJobRequest, callback?: (err: AWSError, data: SageMaker.Types.ListCandidatesForAutoMLJobResponse) => void): Request<SageMaker.Types.ListCandidatesForAutoMLJobResponse, AWSError>;
/**
* List the Candidates created for the job.
*/
listCandidatesForAutoMLJob(callback?: (err: AWSError, data: SageMaker.Types.ListCandidatesForAutoMLJobResponse) => void): Request<SageMaker.Types.ListCandidatesForAutoMLJobResponse, AWSError>;
/**
* Gets a list of the Git repositories in your account.
*/
listCodeRepositories(params: SageMaker.Types.ListCodeRepositoriesInput, callback?: (err: AWSError, data: SageMaker.Types.ListCodeRepositoriesOutput) => void): Request<SageMaker.Types.ListCodeRepositoriesOutput, AWSError>;
/**
* Gets a list of the Git repositories in your account.
*/
listCodeRepositories(callback?: (err: AWSError, data: SageMaker.Types.ListCodeRepositoriesOutput) => void): Request<SageMaker.Types.ListCodeRepositoriesOutput, AWSError>;
/**
* Lists model compilation jobs that satisfy various filters. To create a model compilation job, use CreateCompilationJob. To get information about a particular model compilation job you have created, use DescribeCompilationJob.
*/
listCompilationJobs(params: SageMaker.Types.ListCompilationJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListCompilationJobsResponse) => void): Request<SageMaker.Types.ListCompilationJobsResponse, AWSError>;
/**
* Lists model compilation jobs that satisfy various filters. To create a model compilation job, use CreateCompilationJob. To get information about a particular model compilation job you have created, use DescribeCompilationJob.
*/
listCompilationJobs(callback?: (err: AWSError, data: SageMaker.Types.ListCompilationJobsResponse) => void): Request<SageMaker.Types.ListCompilationJobsResponse, AWSError>;
/**
* Lists the domains.
*/
listDomains(params: SageMaker.Types.ListDomainsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListDomainsResponse) => void): Request<SageMaker.Types.ListDomainsResponse, AWSError>;
/**
* Lists the domains.
*/
listDomains(callback?: (err: AWSError, data: SageMaker.Types.ListDomainsResponse) => void): Request<SageMaker.Types.ListDomainsResponse, AWSError>;
/**
* Lists endpoint configurations.
*/
listEndpointConfigs(params: SageMaker.Types.ListEndpointConfigsInput, callback?: (err: AWSError, data: SageMaker.Types.ListEndpointConfigsOutput) => void): Request<SageMaker.Types.ListEndpointConfigsOutput, AWSError>;
/**
* Lists endpoint configurations.
*/
listEndpointConfigs(callback?: (err: AWSError, data: SageMaker.Types.ListEndpointConfigsOutput) => void): Request<SageMaker.Types.ListEndpointConfigsOutput, AWSError>;
/**
* Lists endpoints.
*/
listEndpoints(params: SageMaker.Types.ListEndpointsInput, callback?: (err: AWSError, data: SageMaker.Types.ListEndpointsOutput) => void): Request<SageMaker.Types.ListEndpointsOutput, AWSError>;
/**
* Lists endpoints.
*/
listEndpoints(callback?: (err: AWSError, data: SageMaker.Types.ListEndpointsOutput) => void): Request<SageMaker.Types.ListEndpointsOutput, AWSError>;
/**
* Lists all the experiments in your account. The list can be filtered to show only experiments that were created in a specific time range. The list can be sorted by experiment name or creation time.
*/
listExperiments(params: SageMaker.Types.ListExperimentsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListExperimentsResponse) => void): Request<SageMaker.Types.ListExperimentsResponse, AWSError>;
/**
* Lists all the experiments in your account. The list can be filtered to show only experiments that were created in a specific time range. The list can be sorted by experiment name or creation time.
*/
listExperiments(callback?: (err: AWSError, data: SageMaker.Types.ListExperimentsResponse) => void): Request<SageMaker.Types.ListExperimentsResponse, AWSError>;
/**
* Returns information about the flow definitions in your account.
*/
listFlowDefinitions(params: SageMaker.Types.ListFlowDefinitionsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListFlowDefinitionsResponse) => void): Request<SageMaker.Types.ListFlowDefinitionsResponse, AWSError>;
/**
* Returns information about the flow definitions in your account.
*/
listFlowDefinitions(callback?: (err: AWSError, data: SageMaker.Types.ListFlowDefinitionsResponse) => void): Request<SageMaker.Types.ListFlowDefinitionsResponse, AWSError>;
/**
* Returns information about the human task user interfaces in your account.
*/
listHumanTaskUis(params: SageMaker.Types.ListHumanTaskUisRequest, callback?: (err: AWSError, data: SageMaker.Types.ListHumanTaskUisResponse) => void): Request<SageMaker.Types.ListHumanTaskUisResponse, AWSError>;
/**
* Returns information about the human task user interfaces in your account.
*/
listHumanTaskUis(callback?: (err: AWSError, data: SageMaker.Types.ListHumanTaskUisResponse) => void): Request<SageMaker.Types.ListHumanTaskUisResponse, AWSError>;
/**
* Gets a list of HyperParameterTuningJobSummary objects that describe the hyperparameter tuning jobs launched in your account.
*/
listHyperParameterTuningJobs(params: SageMaker.Types.ListHyperParameterTuningJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListHyperParameterTuningJobsResponse) => void): Request<SageMaker.Types.ListHyperParameterTuningJobsResponse, AWSError>;
/**
* Gets a list of HyperParameterTuningJobSummary objects that describe the hyperparameter tuning jobs launched in your account.
*/
listHyperParameterTuningJobs(callback?: (err: AWSError, data: SageMaker.Types.ListHyperParameterTuningJobsResponse) => void): Request<SageMaker.Types.ListHyperParameterTuningJobsResponse, AWSError>;
/**
* Gets a list of labeling jobs.
*/
listLabelingJobs(params: SageMaker.Types.ListLabelingJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListLabelingJobsResponse) => void): Request<SageMaker.Types.ListLabelingJobsResponse, AWSError>;
/**
* Gets a list of labeling jobs.
*/
listLabelingJobs(callback?: (err: AWSError, data: SageMaker.Types.ListLabelingJobsResponse) => void): Request<SageMaker.Types.ListLabelingJobsResponse, AWSError>;
/**
* Gets a list of labeling jobs assigned to a specified work team.
*/
listLabelingJobsForWorkteam(params: SageMaker.Types.ListLabelingJobsForWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.ListLabelingJobsForWorkteamResponse) => void): Request<SageMaker.Types.ListLabelingJobsForWorkteamResponse, AWSError>;
/**
* Gets a list of labeling jobs assigned to a specified work team.
*/
listLabelingJobsForWorkteam(callback?: (err: AWSError, data: SageMaker.Types.ListLabelingJobsForWorkteamResponse) => void): Request<SageMaker.Types.ListLabelingJobsForWorkteamResponse, AWSError>;
/**
* Lists the model packages that have been created.
*/
listModelPackages(params: SageMaker.Types.ListModelPackagesInput, callback?: (err: AWSError, data: SageMaker.Types.ListModelPackagesOutput) => void): Request<SageMaker.Types.ListModelPackagesOutput, AWSError>;
/**
* Lists the model packages that have been created.
*/
listModelPackages(callback?: (err: AWSError, data: SageMaker.Types.ListModelPackagesOutput) => void): Request<SageMaker.Types.ListModelPackagesOutput, AWSError>;
/**
* Lists models created with the CreateModel API.
*/
listModels(params: SageMaker.Types.ListModelsInput, callback?: (err: AWSError, data: SageMaker.Types.ListModelsOutput) => void): Request<SageMaker.Types.ListModelsOutput, AWSError>;
/**
* Lists models created with the CreateModel API.
*/
listModels(callback?: (err: AWSError, data: SageMaker.Types.ListModelsOutput) => void): Request<SageMaker.Types.ListModelsOutput, AWSError>;
/**
* Returns list of all monitoring job executions.
*/
listMonitoringExecutions(params: SageMaker.Types.ListMonitoringExecutionsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListMonitoringExecutionsResponse) => void): Request<SageMaker.Types.ListMonitoringExecutionsResponse, AWSError>;
/**
* Returns list of all monitoring job executions.
*/
listMonitoringExecutions(callback?: (err: AWSError, data: SageMaker.Types.ListMonitoringExecutionsResponse) => void): Request<SageMaker.Types.ListMonitoringExecutionsResponse, AWSError>;
/**
* Returns list of all monitoring schedules.
*/
listMonitoringSchedules(params: SageMaker.Types.ListMonitoringSchedulesRequest, callback?: (err: AWSError, data: SageMaker.Types.ListMonitoringSchedulesResponse) => void): Request<SageMaker.Types.ListMonitoringSchedulesResponse, AWSError>;
/**
* Returns list of all monitoring schedules.
*/
listMonitoringSchedules(callback?: (err: AWSError, data: SageMaker.Types.ListMonitoringSchedulesResponse) => void): Request<SageMaker.Types.ListMonitoringSchedulesResponse, AWSError>;
/**
* Lists notebook instance lifestyle configurations created with the CreateNotebookInstanceLifecycleConfig API.
*/
listNotebookInstanceLifecycleConfigs(params: SageMaker.Types.ListNotebookInstanceLifecycleConfigsInput, callback?: (err: AWSError, data: SageMaker.Types.ListNotebookInstanceLifecycleConfigsOutput) => void): Request<SageMaker.Types.ListNotebookInstanceLifecycleConfigsOutput, AWSError>;
/**
* Lists notebook instance lifestyle configurations created with the CreateNotebookInstanceLifecycleConfig API.
*/
listNotebookInstanceLifecycleConfigs(callback?: (err: AWSError, data: SageMaker.Types.ListNotebookInstanceLifecycleConfigsOutput) => void): Request<SageMaker.Types.ListNotebookInstanceLifecycleConfigsOutput, AWSError>;
/**
* Returns a list of the Amazon SageMaker notebook instances in the requester's account in an AWS Region.
*/
listNotebookInstances(params: SageMaker.Types.ListNotebookInstancesInput, callback?: (err: AWSError, data: SageMaker.Types.ListNotebookInstancesOutput) => void): Request<SageMaker.Types.ListNotebookInstancesOutput, AWSError>;
/**
* Returns a list of the Amazon SageMaker notebook instances in the requester's account in an AWS Region.
*/
listNotebookInstances(callback?: (err: AWSError, data: SageMaker.Types.ListNotebookInstancesOutput) => void): Request<SageMaker.Types.ListNotebookInstancesOutput, AWSError>;
/**
* Lists processing jobs that satisfy various filters.
*/
listProcessingJobs(params: SageMaker.Types.ListProcessingJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListProcessingJobsResponse) => void): Request<SageMaker.Types.ListProcessingJobsResponse, AWSError>;
/**
* Lists processing jobs that satisfy various filters.
*/
listProcessingJobs(callback?: (err: AWSError, data: SageMaker.Types.ListProcessingJobsResponse) => void): Request<SageMaker.Types.ListProcessingJobsResponse, AWSError>;
/**
* Gets a list of the work teams that you are subscribed to in the AWS Marketplace. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.
*/
listSubscribedWorkteams(params: SageMaker.Types.ListSubscribedWorkteamsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListSubscribedWorkteamsResponse) => void): Request<SageMaker.Types.ListSubscribedWorkteamsResponse, AWSError>;
/**
* Gets a list of the work teams that you are subscribed to in the AWS Marketplace. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.
*/
listSubscribedWorkteams(callback?: (err: AWSError, data: SageMaker.Types.ListSubscribedWorkteamsResponse) => void): Request<SageMaker.Types.ListSubscribedWorkteamsResponse, AWSError>;
/**
* Returns the tags for the specified Amazon SageMaker resource.
*/
listTags(params: SageMaker.Types.ListTagsInput, callback?: (err: AWSError, data: SageMaker.Types.ListTagsOutput) => void): Request<SageMaker.Types.ListTagsOutput, AWSError>;
/**
* Returns the tags for the specified Amazon SageMaker resource.
*/
listTags(callback?: (err: AWSError, data: SageMaker.Types.ListTagsOutput) => void): Request<SageMaker.Types.ListTagsOutput, AWSError>;
/**
* Lists training jobs.
*/
listTrainingJobs(params: SageMaker.Types.ListTrainingJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListTrainingJobsResponse) => void): Request<SageMaker.Types.ListTrainingJobsResponse, AWSError>;
/**
* Lists training jobs.
*/
listTrainingJobs(callback?: (err: AWSError, data: SageMaker.Types.ListTrainingJobsResponse) => void): Request<SageMaker.Types.ListTrainingJobsResponse, AWSError>;
/**
* Gets a list of TrainingJobSummary objects that describe the training jobs that a hyperparameter tuning job launched.
*/
listTrainingJobsForHyperParameterTuningJob(params: SageMaker.Types.ListTrainingJobsForHyperParameterTuningJobRequest, callback?: (err: AWSError, data: SageMaker.Types.ListTrainingJobsForHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.ListTrainingJobsForHyperParameterTuningJobResponse, AWSError>;
/**
* Gets a list of TrainingJobSummary objects that describe the training jobs that a hyperparameter tuning job launched.
*/
listTrainingJobsForHyperParameterTuningJob(callback?: (err: AWSError, data: SageMaker.Types.ListTrainingJobsForHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.ListTrainingJobsForHyperParameterTuningJobResponse, AWSError>;
/**
* Lists transform jobs.
*/
listTransformJobs(params: SageMaker.Types.ListTransformJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListTransformJobsResponse) => void): Request<SageMaker.Types.ListTransformJobsResponse, AWSError>;
/**
* Lists transform jobs.
*/
listTransformJobs(callback?: (err: AWSError, data: SageMaker.Types.ListTransformJobsResponse) => void): Request<SageMaker.Types.ListTransformJobsResponse, AWSError>;
/**
* Lists the trial components in your account. You can sort the list by trial component name or creation time. You can filter the list to show only components that were created in a specific time range. You can also filter on one of the following: ExperimentName SourceArn TrialName
*/
listTrialComponents(params: SageMaker.Types.ListTrialComponentsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListTrialComponentsResponse) => void): Request<SageMaker.Types.ListTrialComponentsResponse, AWSError>;
/**
* Lists the trial components in your account. You can sort the list by trial component name or creation time. You can filter the list to show only components that were created in a specific time range. You can also filter on one of the following: ExperimentName SourceArn TrialName
*/
listTrialComponents(callback?: (err: AWSError, data: SageMaker.Types.ListTrialComponentsResponse) => void): Request<SageMaker.Types.ListTrialComponentsResponse, AWSError>;
/**
* Lists the trials in your account. Specify an experiment name to limit the list to the trials that are part of that experiment. Specify a trial component name to limit the list to the trials that associated with that trial component. The list can be filtered to show only trials that were created in a specific time range. The list can be sorted by trial name or creation time.
*/
listTrials(params: SageMaker.Types.ListTrialsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListTrialsResponse) => void): Request<SageMaker.Types.ListTrialsResponse, AWSError>;
/**
* Lists the trials in your account. Specify an experiment name to limit the list to the trials that are part of that experiment. Specify a trial component name to limit the list to the trials that associated with that trial component. The list can be filtered to show only trials that were created in a specific time range. The list can be sorted by trial name or creation time.
*/
listTrials(callback?: (err: AWSError, data: SageMaker.Types.ListTrialsResponse) => void): Request<SageMaker.Types.ListTrialsResponse, AWSError>;
/**
* Lists user profiles.
*/
listUserProfiles(params: SageMaker.Types.ListUserProfilesRequest, callback?: (err: AWSError, data: SageMaker.Types.ListUserProfilesResponse) => void): Request<SageMaker.Types.ListUserProfilesResponse, AWSError>;
/**
* Lists user profiles.
*/
listUserProfiles(callback?: (err: AWSError, data: SageMaker.Types.ListUserProfilesResponse) => void): Request<SageMaker.Types.ListUserProfilesResponse, AWSError>;
/**
* Use this operation to list all private and vendor workforces in an AWS Region. Note that you can only have one private workforce per AWS Region.
*/
listWorkforces(params: SageMaker.Types.ListWorkforcesRequest, callback?: (err: AWSError, data: SageMaker.Types.ListWorkforcesResponse) => void): Request<SageMaker.Types.ListWorkforcesResponse, AWSError>;
/**
* Use this operation to list all private and vendor workforces in an AWS Region. Note that you can only have one private workforce per AWS Region.
*/
listWorkforces(callback?: (err: AWSError, data: SageMaker.Types.ListWorkforcesResponse) => void): Request<SageMaker.Types.ListWorkforcesResponse, AWSError>;
/**
* Gets a list of private work teams that you have defined in a region. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.
*/
listWorkteams(params: SageMaker.Types.ListWorkteamsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListWorkteamsResponse) => void): Request<SageMaker.Types.ListWorkteamsResponse, AWSError>;
/**
* Gets a list of private work teams that you have defined in a region. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.
*/
listWorkteams(callback?: (err: AWSError, data: SageMaker.Types.ListWorkteamsResponse) => void): Request<SageMaker.Types.ListWorkteamsResponse, AWSError>;
/**
* Renders the UI template so that you can preview the worker's experience.
*/
renderUiTemplate(params: SageMaker.Types.RenderUiTemplateRequest, callback?: (err: AWSError, data: SageMaker.Types.RenderUiTemplateResponse) => void): Request<SageMaker.Types.RenderUiTemplateResponse, AWSError>;
/**
* Renders the UI template so that you can preview the worker's experience.
*/
renderUiTemplate(callback?: (err: AWSError, data: SageMaker.Types.RenderUiTemplateResponse) => void): Request<SageMaker.Types.RenderUiTemplateResponse, AWSError>;
/**
* Finds Amazon SageMaker resources that match a search query. Matching resources are returned as a list of SearchRecord objects in the response. You can sort the search results by any resource property in a ascending or descending order. You can query against the following value types: numeric, text, Boolean, and timestamp.
*/
search(params: SageMaker.Types.SearchRequest, callback?: (err: AWSError, data: SageMaker.Types.SearchResponse) => void): Request<SageMaker.Types.SearchResponse, AWSError>;
/**
* Finds Amazon SageMaker resources that match a search query. Matching resources are returned as a list of SearchRecord objects in the response. You can sort the search results by any resource property in a ascending or descending order. You can query against the following value types: numeric, text, Boolean, and timestamp.
*/
search(callback?: (err: AWSError, data: SageMaker.Types.SearchResponse) => void): Request<SageMaker.Types.SearchResponse, AWSError>;
/**
* Starts a previously stopped monitoring schedule. New monitoring schedules are immediately started after creation.
*/
startMonitoringSchedule(params: SageMaker.Types.StartMonitoringScheduleRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Starts a previously stopped monitoring schedule. New monitoring schedules are immediately started after creation.
*/
startMonitoringSchedule(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Launches an ML compute instance with the latest version of the libraries and attaches your ML storage volume. After configuring the notebook instance, Amazon SageMaker sets the notebook instance status to InService. A notebook instance's status must be InService before you can connect to your Jupyter notebook.
*/
startNotebookInstance(params: SageMaker.Types.StartNotebookInstanceInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Launches an ML compute instance with the latest version of the libraries and attaches your ML storage volume. After configuring the notebook instance, Amazon SageMaker sets the notebook instance status to InService. A notebook instance's status must be InService before you can connect to your Jupyter notebook.
*/
startNotebookInstance(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* A method for forcing the termination of a running job.
*/
stopAutoMLJob(params: SageMaker.Types.StopAutoMLJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* A method for forcing the termination of a running job.
*/
stopAutoMLJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Stops a model compilation job. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the job down. If the job hasn't stopped, it sends the SIGKILL signal. When it receives a StopCompilationJob request, Amazon SageMaker changes the CompilationJobSummary$CompilationJobStatus of the job to Stopping. After Amazon SageMaker stops the job, it sets the CompilationJobSummary$CompilationJobStatus to Stopped.
*/
stopCompilationJob(params: SageMaker.Types.StopCompilationJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Stops a model compilation job. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the job down. If the job hasn't stopped, it sends the SIGKILL signal. When it receives a StopCompilationJob request, Amazon SageMaker changes the CompilationJobSummary$CompilationJobStatus of the job to Stopping. After Amazon SageMaker stops the job, it sets the CompilationJobSummary$CompilationJobStatus to Stopped.
*/
stopCompilationJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Stops a running hyperparameter tuning job and all running training jobs that the tuning job launched. All model artifacts output from the training jobs are stored in Amazon Simple Storage Service (Amazon S3). All data that the training jobs write to Amazon CloudWatch Logs are still available in CloudWatch. After the tuning job moves to the Stopped state, it releases all reserved resources for the tuning job.
*/
stopHyperParameterTuningJob(params: SageMaker.Types.StopHyperParameterTuningJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Stops a running hyperparameter tuning job and all running training jobs that the tuning job launched. All model artifacts output from the training jobs are stored in Amazon Simple Storage Service (Amazon S3). All data that the training jobs write to Amazon CloudWatch Logs are still available in CloudWatch. After the tuning job moves to the Stopped state, it releases all reserved resources for the tuning job.
*/
stopHyperParameterTuningJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Stops a running labeling job. A job that is stopped cannot be restarted. Any results obtained before the job is stopped are placed in the Amazon S3 output bucket.
*/
stopLabelingJob(params: SageMaker.Types.StopLabelingJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Stops a running labeling job. A job that is stopped cannot be restarted. Any results obtained before the job is stopped are placed in the Amazon S3 output bucket.
*/
stopLabelingJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Stops a previously started monitoring schedule.
*/
stopMonitoringSchedule(params: SageMaker.Types.StopMonitoringScheduleRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Stops a previously started monitoring schedule.
*/
stopMonitoringSchedule(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Terminates the ML compute instance. Before terminating the instance, Amazon SageMaker disconnects the ML storage volume from it. Amazon SageMaker preserves the ML storage volume. Amazon SageMaker stops charging you for the ML compute instance when you call StopNotebookInstance. To access data on the ML storage volume for a notebook instance that has been terminated, call the StartNotebookInstance API. StartNotebookInstance launches another ML compute instance, configures it, and attaches the preserved ML storage volume so you can continue your work.
*/
stopNotebookInstance(params: SageMaker.Types.StopNotebookInstanceInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Terminates the ML compute instance. Before terminating the instance, Amazon SageMaker disconnects the ML storage volume from it. Amazon SageMaker preserves the ML storage volume. Amazon SageMaker stops charging you for the ML compute instance when you call StopNotebookInstance. To access data on the ML storage volume for a notebook instance that has been terminated, call the StartNotebookInstance API. StartNotebookInstance launches another ML compute instance, configures it, and attaches the preserved ML storage volume so you can continue your work.
*/
stopNotebookInstance(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Stops a processing job.
*/
stopProcessingJob(params: SageMaker.Types.StopProcessingJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Stops a processing job.
*/
stopProcessingJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Stops a training job. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model artifacts, so the results of the training is not lost. When it receives a StopTrainingJob request, Amazon SageMaker changes the status of the job to Stopping. After Amazon SageMaker stops the job, it sets the status to Stopped.
*/
stopTrainingJob(params: SageMaker.Types.StopTrainingJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Stops a training job. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model artifacts, so the results of the training is not lost. When it receives a StopTrainingJob request, Amazon SageMaker changes the status of the job to Stopping. After Amazon SageMaker stops the job, it sets the status to Stopped.
*/
stopTrainingJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Stops a transform job. When Amazon SageMaker receives a StopTransformJob request, the status of the job changes to Stopping. After Amazon SageMaker stops the job, the status is set to Stopped. When you stop a transform job before it is completed, Amazon SageMaker doesn't store the job's output in Amazon S3.
*/
stopTransformJob(params: SageMaker.Types.StopTransformJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Stops a transform job. When Amazon SageMaker receives a StopTransformJob request, the status of the job changes to Stopping. After Amazon SageMaker stops the job, the status is set to Stopped. When you stop a transform job before it is completed, Amazon SageMaker doesn't store the job's output in Amazon S3.
*/
stopTransformJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Updates the specified Git repository with the specified values.
*/
updateCodeRepository(params: SageMaker.Types.UpdateCodeRepositoryInput, callback?: (err: AWSError, data: SageMaker.Types.UpdateCodeRepositoryOutput) => void): Request<SageMaker.Types.UpdateCodeRepositoryOutput, AWSError>;
/**
* Updates the specified Git repository with the specified values.
*/
updateCodeRepository(callback?: (err: AWSError, data: SageMaker.Types.UpdateCodeRepositoryOutput) => void): Request<SageMaker.Types.UpdateCodeRepositoryOutput, AWSError>;
/**
* Updates the default settings for new user profiles in the domain.
*/
updateDomain(params: SageMaker.Types.UpdateDomainRequest, callback?: (err: AWSError, data: SageMaker.Types.UpdateDomainResponse) => void): Request<SageMaker.Types.UpdateDomainResponse, AWSError>;
/**
* Updates the default settings for new user profiles in the domain.
*/
updateDomain(callback?: (err: AWSError, data: SageMaker.Types.UpdateDomainResponse) => void): Request<SageMaker.Types.UpdateDomainResponse, AWSError>;
/**
* Deploys the new EndpointConfig specified in the request, switches to using newly created endpoint, and then deletes resources provisioned for the endpoint using the previous EndpointConfig (there is no availability loss). When Amazon SageMaker receives the request, it sets the endpoint status to Updating. After updating the endpoint, it sets the status to InService. To check the status of an endpoint, use the DescribeEndpoint API. You must not delete an EndpointConfig in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To update an endpoint, you must create a new EndpointConfig. If you delete the EndpointConfig of an endpoint that is active or being created or updated you may lose visibility into the instance type the endpoint is using. The endpoint must be deleted in order to stop incurring charges.
*/
updateEndpoint(params: SageMaker.Types.UpdateEndpointInput, callback?: (err: AWSError, data: SageMaker.Types.UpdateEndpointOutput) => void): Request<SageMaker.Types.UpdateEndpointOutput, AWSError>;
/**
* Deploys the new EndpointConfig specified in the request, switches to using newly created endpoint, and then deletes resources provisioned for the endpoint using the previous EndpointConfig (there is no availability loss). When Amazon SageMaker receives the request, it sets the endpoint status to Updating. After updating the endpoint, it sets the status to InService. To check the status of an endpoint, use the DescribeEndpoint API. You must not delete an EndpointConfig in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To update an endpoint, you must create a new EndpointConfig. If you delete the EndpointConfig of an endpoint that is active or being created or updated you may lose visibility into the instance type the endpoint is using. The endpoint must be deleted in order to stop incurring charges.
*/
updateEndpoint(callback?: (err: AWSError, data: SageMaker.Types.UpdateEndpointOutput) => void): Request<SageMaker.Types.UpdateEndpointOutput, AWSError>;
/**
* Updates variant weight of one or more variants associated with an existing endpoint, or capacity of one variant associated with an existing endpoint. When it receives the request, Amazon SageMaker sets the endpoint status to Updating. After updating the endpoint, it sets the status to InService. To check the status of an endpoint, use the DescribeEndpoint API.
*/
updateEndpointWeightsAndCapacities(params: SageMaker.Types.UpdateEndpointWeightsAndCapacitiesInput, callback?: (err: AWSError, data: SageMaker.Types.UpdateEndpointWeightsAndCapacitiesOutput) => void): Request<SageMaker.Types.UpdateEndpointWeightsAndCapacitiesOutput, AWSError>;
/**
* Updates variant weight of one or more variants associated with an existing endpoint, or capacity of one variant associated with an existing endpoint. When it receives the request, Amazon SageMaker sets the endpoint status to Updating. After updating the endpoint, it sets the status to InService. To check the status of an endpoint, use the DescribeEndpoint API.
*/
updateEndpointWeightsAndCapacities(callback?: (err: AWSError, data: SageMaker.Types.UpdateEndpointWeightsAndCapacitiesOutput) => void): Request<SageMaker.Types.UpdateEndpointWeightsAndCapacitiesOutput, AWSError>;
/**
* Adds, updates, or removes the description of an experiment. Updates the display name of an experiment.
*/
updateExperiment(params: SageMaker.Types.UpdateExperimentRequest, callback?: (err: AWSError, data: SageMaker.Types.UpdateExperimentResponse) => void): Request<SageMaker.Types.UpdateExperimentResponse, AWSError>;
/**
* Adds, updates, or removes the description of an experiment. Updates the display name of an experiment.
*/
updateExperiment(callback?: (err: AWSError, data: SageMaker.Types.UpdateExperimentResponse) => void): Request<SageMaker.Types.UpdateExperimentResponse, AWSError>;
/**
* Updates a previously created schedule.
*/
updateMonitoringSchedule(params: SageMaker.Types.UpdateMonitoringScheduleRequest, callback?: (err: AWSError, data: SageMaker.Types.UpdateMonitoringScheduleResponse) => void): Request<SageMaker.Types.UpdateMonitoringScheduleResponse, AWSError>;
/**
* Updates a previously created schedule.
*/
updateMonitoringSchedule(callback?: (err: AWSError, data: SageMaker.Types.UpdateMonitoringScheduleResponse) => void): Request<SageMaker.Types.UpdateMonitoringScheduleResponse, AWSError>;
/**
* Updates a notebook instance. NotebookInstance updates include upgrading or downgrading the ML compute instance used for your notebook instance to accommodate changes in your workload requirements.
*/
updateNotebookInstance(params: SageMaker.Types.UpdateNotebookInstanceInput, callback?: (err: AWSError, data: SageMaker.Types.UpdateNotebookInstanceOutput) => void): Request<SageMaker.Types.UpdateNotebookInstanceOutput, AWSError>;
/**
* Updates a notebook instance. NotebookInstance updates include upgrading or downgrading the ML compute instance used for your notebook instance to accommodate changes in your workload requirements.
*/
updateNotebookInstance(callback?: (err: AWSError, data: SageMaker.Types.UpdateNotebookInstanceOutput) => void): Request<SageMaker.Types.UpdateNotebookInstanceOutput, AWSError>;
/**
* Updates a notebook instance lifecycle configuration created with the CreateNotebookInstanceLifecycleConfig API.
*/
updateNotebookInstanceLifecycleConfig(params: SageMaker.Types.UpdateNotebookInstanceLifecycleConfigInput, callback?: (err: AWSError, data: SageMaker.Types.UpdateNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.UpdateNotebookInstanceLifecycleConfigOutput, AWSError>;
/**
* Updates a notebook instance lifecycle configuration created with the CreateNotebookInstanceLifecycleConfig API.
*/
updateNotebookInstanceLifecycleConfig(callback?: (err: AWSError, data: SageMaker.Types.UpdateNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.UpdateNotebookInstanceLifecycleConfigOutput, AWSError>;
/**
* Updates the display name of a trial.
*/
updateTrial(params: SageMaker.Types.UpdateTrialRequest, callback?: (err: AWSError, data: SageMaker.Types.UpdateTrialResponse) => void): Request<SageMaker.Types.UpdateTrialResponse, AWSError>;
/**
* Updates the display name of a trial.
*/
updateTrial(callback?: (err: AWSError, data: SageMaker.Types.UpdateTrialResponse) => void): Request<SageMaker.Types.UpdateTrialResponse, AWSError>;
/**
* Updates one or more properties of a trial component.
*/
updateTrialComponent(params: SageMaker.Types.UpdateTrialComponentRequest, callback?: (err: AWSError, data: SageMaker.Types.UpdateTrialComponentResponse) => void): Request<SageMaker.Types.UpdateTrialComponentResponse, AWSError>;
/**
* Updates one or more properties of a trial component.
*/
updateTrialComponent(callback?: (err: AWSError, data: SageMaker.Types.UpdateTrialComponentResponse) => void): Request<SageMaker.Types.UpdateTrialComponentResponse, AWSError>;
/**
* Updates a user profile.
*/
updateUserProfile(params: SageMaker.Types.UpdateUserProfileRequest, callback?: (err: AWSError, data: SageMaker.Types.UpdateUserProfileResponse) => void): Request<SageMaker.Types.UpdateUserProfileResponse, AWSError>;
/**
* Updates a user profile.
*/
updateUserProfile(callback?: (err: AWSError, data: SageMaker.Types.UpdateUserProfileResponse) => void): Request<SageMaker.Types.UpdateUserProfileResponse, AWSError>;
/**
* Use this operation to update your workforce. You can use this operation to require that workers use specific IP addresses to work on tasks and to update your OpenID Connect (OIDC) Identity Provider (IdP) workforce configuration. Use SourceIpConfig to restrict worker access to tasks to a specific range of IP addresses. You specify allowed IP addresses by creating a list of up to ten CIDRs. By default, a workforce isn't restricted to specific IP addresses. If you specify a range of IP addresses, workers who attempt to access tasks using any IP address outside the specified range are denied and get a Not Found error message on the worker portal. Use OidcConfig to update the configuration of a workforce created using your own OIDC IdP. You can only update your OIDC IdP configuration when there are no work teams associated with your workforce. You can delete work teams using the operation. After restricting access to a range of IP addresses or updating your OIDC IdP configuration with this operation, you can view details about your update workforce using the operation. This operation only applies to private workforces.
*/
updateWorkforce(params: SageMaker.Types.UpdateWorkforceRequest, callback?: (err: AWSError, data: SageMaker.Types.UpdateWorkforceResponse) => void): Request<SageMaker.Types.UpdateWorkforceResponse, AWSError>;
/**
* Use this operation to update your workforce. You can use this operation to require that workers use specific IP addresses to work on tasks and to update your OpenID Connect (OIDC) Identity Provider (IdP) workforce configuration. Use SourceIpConfig to restrict worker access to tasks to a specific range of IP addresses. You specify allowed IP addresses by creating a list of up to ten CIDRs. By default, a workforce isn't restricted to specific IP addresses. If you specify a range of IP addresses, workers who attempt to access tasks using any IP address outside the specified range are denied and get a Not Found error message on the worker portal. Use OidcConfig to update the configuration of a workforce created using your own OIDC IdP. You can only update your OIDC IdP configuration when there are no work teams associated with your workforce. You can delete work teams using the operation. After restricting access to a range of IP addresses or updating your OIDC IdP configuration with this operation, you can view details about your update workforce using the operation. This operation only applies to private workforces.
*/
updateWorkforce(callback?: (err: AWSError, data: SageMaker.Types.UpdateWorkforceResponse) => void): Request<SageMaker.Types.UpdateWorkforceResponse, AWSError>;
/**
* Updates an existing work team with new member definitions or description.
*/
updateWorkteam(params: SageMaker.Types.UpdateWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.UpdateWorkteamResponse) => void): Request<SageMaker.Types.UpdateWorkteamResponse, AWSError>;
/**
* Updates an existing work team with new member definitions or description.
*/
updateWorkteam(callback?: (err: AWSError, data: SageMaker.Types.UpdateWorkteamResponse) => void): Request<SageMaker.Types.UpdateWorkteamResponse, AWSError>;
/**
* Waits for the notebookInstanceInService state by periodically calling the underlying SageMaker.describeNotebookInstanceoperation every 30 seconds (at most 60 times).
*/
waitFor(state: "notebookInstanceInService", params: SageMaker.Types.DescribeNotebookInstanceInput & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
/**
* Waits for the notebookInstanceInService state by periodically calling the underlying SageMaker.describeNotebookInstanceoperation every 30 seconds (at most 60 times).
*/
waitFor(state: "notebookInstanceInService", callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
/**
* Waits for the notebookInstanceStopped state by periodically calling the underlying SageMaker.describeNotebookInstanceoperation every 30 seconds (at most 60 times).
*/
waitFor(state: "notebookInstanceStopped", params: SageMaker.Types.DescribeNotebookInstanceInput & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
/**
* Waits for the notebookInstanceStopped state by periodically calling the underlying SageMaker.describeNotebookInstanceoperation every 30 seconds (at most 60 times).
*/
waitFor(state: "notebookInstanceStopped", callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
/**
* Waits for the notebookInstanceDeleted state by periodically calling the underlying SageMaker.describeNotebookInstanceoperation every 30 seconds (at most 60 times).
*/
waitFor(state: "notebookInstanceDeleted", params: SageMaker.Types.DescribeNotebookInstanceInput & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
/**
* Waits for the notebookInstanceDeleted state by periodically calling the underlying SageMaker.describeNotebookInstanceoperation every 30 seconds (at most 60 times).
*/
waitFor(state: "notebookInstanceDeleted", callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
/**
* Waits for the trainingJobCompletedOrStopped state by periodically calling the underlying SageMaker.describeTrainingJoboperation every 120 seconds (at most 180 times).
*/
waitFor(state: "trainingJobCompletedOrStopped", params: SageMaker.Types.DescribeTrainingJobRequest & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeTrainingJobResponse) => void): Request<SageMaker.Types.DescribeTrainingJobResponse, AWSError>;
/**
* Waits for the trainingJobCompletedOrStopped state by periodically calling the underlying SageMaker.describeTrainingJoboperation every 120 seconds (at most 180 times).
*/
waitFor(state: "trainingJobCompletedOrStopped", callback?: (err: AWSError, data: SageMaker.Types.DescribeTrainingJobResponse) => void): Request<SageMaker.Types.DescribeTrainingJobResponse, AWSError>;
/**
* Waits for the endpointInService state by periodically calling the underlying SageMaker.describeEndpointoperation every 30 seconds (at most 120 times).
*/
waitFor(state: "endpointInService", params: SageMaker.Types.DescribeEndpointInput & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointOutput) => void): Request<SageMaker.Types.DescribeEndpointOutput, AWSError>;
/**
* Waits for the endpointInService state by periodically calling the underlying SageMaker.describeEndpointoperation every 30 seconds (at most 120 times).
*/
waitFor(state: "endpointInService", callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointOutput) => void): Request<SageMaker.Types.DescribeEndpointOutput, AWSError>;
/**
* Waits for the endpointDeleted state by periodically calling the underlying SageMaker.describeEndpointoperation every 30 seconds (at most 60 times).
*/
waitFor(state: "endpointDeleted", params: SageMaker.Types.DescribeEndpointInput & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointOutput) => void): Request<SageMaker.Types.DescribeEndpointOutput, AWSError>;
/**
* Waits for the endpointDeleted state by periodically calling the underlying SageMaker.describeEndpointoperation every 30 seconds (at most 60 times).
*/
waitFor(state: "endpointDeleted", callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointOutput) => void): Request<SageMaker.Types.DescribeEndpointOutput, AWSError>;
/**
* Waits for the transformJobCompletedOrStopped state by periodically calling the underlying SageMaker.describeTransformJoboperation every 60 seconds (at most 60 times).
*/
waitFor(state: "transformJobCompletedOrStopped", params: SageMaker.Types.DescribeTransformJobRequest & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeTransformJobResponse) => void): Request<SageMaker.Types.DescribeTransformJobResponse, AWSError>;
/**
* Waits for the transformJobCompletedOrStopped state by periodically calling the underlying SageMaker.describeTransformJoboperation every 60 seconds (at most 60 times).
*/
waitFor(state: "transformJobCompletedOrStopped", callback?: (err: AWSError, data: SageMaker.Types.DescribeTransformJobResponse) => void): Request<SageMaker.Types.DescribeTransformJobResponse, AWSError>;
/**
* Waits for the processingJobCompletedOrStopped state by periodically calling the underlying SageMaker.describeProcessingJoboperation every 60 seconds (at most 60 times).
*/
waitFor(state: "processingJobCompletedOrStopped", params: SageMaker.Types.DescribeProcessingJobRequest & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeProcessingJobResponse) => void): Request<SageMaker.Types.DescribeProcessingJobResponse, AWSError>;
/**
* Waits for the processingJobCompletedOrStopped state by periodically calling the underlying SageMaker.describeProcessingJoboperation every 60 seconds (at most 60 times).
*/
waitFor(state: "processingJobCompletedOrStopped", callback?: (err: AWSError, data: SageMaker.Types.DescribeProcessingJobResponse) => void): Request<SageMaker.Types.DescribeProcessingJobResponse, AWSError>;
}
declare namespace SageMaker {
export type Accept = string;
export type AccountId = string;
export interface AddTagsInput {
/**
* The Amazon Resource Name (ARN) of the resource that you want to tag.
*/
ResourceArn: ResourceArn;
/**
* An array of Tag objects. Each tag is a key-value pair. Only the key parameter is required. If you don't specify a value, Amazon SageMaker sets the value to an empty string.
*/
Tags: TagList;
}
export interface AddTagsOutput {
/**
* A list of tags associated with the Amazon SageMaker resource.
*/
Tags?: TagList;
}
export type AdditionalCodeRepositoryNamesOrUrls = CodeRepositoryNameOrUrl[];
export type AlgorithmArn = string;
export type AlgorithmImage = string;
export type AlgorithmSortBy = "Name"|"CreationTime"|string;
export interface AlgorithmSpecification {
/**
* The registry path of the Docker image that contains the training algorithm. For information about docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
*/
TrainingImage?: AlgorithmImage;
/**
* The name of the algorithm resource to use for the training job. This must be an algorithm resource that you created or subscribe to on AWS Marketplace. If you specify a value for this parameter, you can't specify a value for TrainingImage.
*/
AlgorithmName?: ArnOrName;
/**
* The input mode that the algorithm supports. For the input modes that Amazon SageMaker algorithms support, see Algorithms. If an algorithm supports the File input mode, Amazon SageMaker downloads the training data from S3 to the provisioned ML storage Volume, and mounts the directory to docker volume for training container. If an algorithm supports the Pipe input mode, Amazon SageMaker streams data directly from S3 to the container. In File mode, make sure you provision ML storage volume with sufficient capacity to accommodate the data download from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container use ML storage volume to also store intermediate information, if any. For distributed algorithms using File mode, training data is distributed uniformly, and your training duration is predictable if the input data objects size is approximately same. Amazon SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed where one host in a training cluster is overloaded, thus becoming bottleneck in training.
*/
TrainingInputMode: TrainingInputMode;
/**
* A list of metric definition objects. Each object specifies the metric name and regular expressions used to parse algorithm logs. Amazon SageMaker publishes each metric to Amazon CloudWatch.
*/
MetricDefinitions?: MetricDefinitionList;
/**
* To generate and save time-series metrics during training, set to true. The default is false and time-series metrics aren't generated except in the following cases: You use one of the Amazon SageMaker built-in algorithms You use one of the following Prebuilt Amazon SageMaker Docker Images: Tensorflow (version >= 1.15) MXNet (version >= 1.6) PyTorch (version >= 1.3) You specify at least one MetricDefinition
*/
EnableSageMakerMetricsTimeSeries?: Boolean;
}
export type AlgorithmStatus = "Pending"|"InProgress"|"Completed"|"Failed"|"Deleting"|string;
export interface AlgorithmStatusDetails {
/**
* The status of algorithm validation.
*/
ValidationStatuses?: AlgorithmStatusItemList;
/**
* The status of the scan of the algorithm's Docker image container.
*/
ImageScanStatuses?: AlgorithmStatusItemList;
}
export interface AlgorithmStatusItem {
/**
* The name of the algorithm for which the overall status is being reported.
*/
Name: EntityName;
/**
* The current status.
*/
Status: DetailedAlgorithmStatus;
/**
* if the overall status is Failed, the reason for the failure.
*/
FailureReason?: String;
}
export type AlgorithmStatusItemList = AlgorithmStatusItem[];
export interface AlgorithmSummary {
/**
* The name of the algorithm that is described by the summary.
*/
AlgorithmName: EntityName;
/**
* The Amazon Resource Name (ARN) of the algorithm.
*/
AlgorithmArn: AlgorithmArn;
/**
* A brief description of the algorithm.
*/
AlgorithmDescription?: EntityDescription;
/**
* A timestamp that shows when the algorithm was created.
*/
CreationTime: CreationTime;
/**
* The overall status of the algorithm.
*/
AlgorithmStatus: AlgorithmStatus;
}
export type AlgorithmSummaryList = AlgorithmSummary[];
export interface AlgorithmValidationProfile {
/**
* The name of the profile for the algorithm. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
*/
ProfileName: EntityName;
/**
* The TrainingJobDefinition object that describes the training job that Amazon SageMaker runs to validate your algorithm.
*/
TrainingJobDefinition: TrainingJobDefinition;
/**
* The TransformJobDefinition object that describes the transform job that Amazon SageMaker runs to validate your algorithm.
*/
TransformJobDefinition?: TransformJobDefinition;
}
export type AlgorithmValidationProfiles = AlgorithmValidationProfile[];
export interface AlgorithmValidationSpecification {
/**
* The IAM roles that Amazon SageMaker uses to run the training jobs.
*/
ValidationRole: RoleArn;
/**
* An array of AlgorithmValidationProfile objects, each of which specifies a training job and batch transform job that Amazon SageMaker runs to validate your algorithm.
*/
ValidationProfiles: AlgorithmValidationProfiles;
}
export interface AnnotationConsolidationConfig {
/**
* The Amazon Resource Name (ARN) of a Lambda function implements the logic for annotation consolidation and to process output data. This parameter is required for all labeling jobs. For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for AnnotationConsolidationLambdaArn. For custom labeling workflows, see Post-annotation Lambda. Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes. arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-BoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-BoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-BoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-BoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-BoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-BoundingBox Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClass arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClass arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClass arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClass arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClass arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClass arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClass arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClass Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClassMultiLabel Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label. arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-SemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-SemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-SemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-SemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-SemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-SemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-SemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-SemanticSegmentation Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClass arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClass arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClass arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClass arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClass Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClassMultiLabel Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label. arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label. arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video. arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoMultiClass arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoMultiClass arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoMultiClass arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoMultiClass arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoMultiClass arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoMultiClass arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoMultiClass arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoMultiClass Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectDetection arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectDetection arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectDetection Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectTracking arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectTracking arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectTracking 3D point cloud object detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectDetection 3D point cloud object tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames. arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectTracking 3D point cloud semantic segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify. arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudSemanticSegmentation Use the following ARNs for Label Verification and Adjustment Jobs Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels . Semantic segmentation adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label. arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation Semantic segmentation verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationSemanticSegmentation Bounding box verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox Bounding box adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations. arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentBoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentBoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentBoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentBoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentBoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames. arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectDetection Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames. arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectTracking 3D point cloud object detection adjustment - Use this task type when you want workers to adjust 3D cuboids around objects in a 3D point cloud. arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection 3D point cloud object tracking adjustment - Use this task type when you want workers to adjust 3D cuboids around objects that appear in a sequence of 3D point cloud frames. arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectTracking 3D point cloud semantic segmentation adjustment - Use this task type when you want workers to adjust a point-level semantic segmentation masks using a paint tool. arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudSemanticSegmentation
*/
AnnotationConsolidationLambdaArn: LambdaFunctionArn;
}
export type AppArn = string;
export interface AppDetails {
/**
* The domain ID.
*/
DomainId?: DomainId;
/**
* The user profile name.
*/
UserProfileName?: UserProfileName;
/**
* The type of app.
*/
AppType?: AppType;
/**
* The name of the app.
*/
AppName?: AppName;
/**
* The status.
*/
Status?: AppStatus;
/**
* The creation time.
*/
CreationTime?: CreationTime;
}
export type AppInstanceType = "system"|"ml.t3.micro"|"ml.t3.small"|"ml.t3.medium"|"ml.t3.large"|"ml.t3.xlarge"|"ml.t3.2xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.8xlarge"|"ml.m5.12xlarge"|"ml.m5.16xlarge"|"ml.m5.24xlarge"|"ml.c5.large"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.12xlarge"|"ml.c5.18xlarge"|"ml.c5.24xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|string;
export type AppList = AppDetails[];
export type AppName = string;
export type AppNetworkAccessType = "PublicInternetOnly"|"VpcOnly"|string;
export type AppSortKey = "CreationTime"|string;
export interface AppSpecification {
/**
* The container image to be run by the processing job.
*/
ImageUri: ImageUri;
/**
* The entrypoint for a container used to run a processing job.
*/
ContainerEntrypoint?: ContainerEntrypoint;
/**
* The arguments for a container used to run a processing job.
*/
ContainerArguments?: ContainerArguments;
}
export type AppStatus = "Deleted"|"Deleting"|"Failed"|"InService"|"Pending"|string;
export type AppType = "JupyterServer"|"KernelGateway"|"TensorBoard"|string;
export type ArnOrName = string;
export type AssemblyType = "None"|"Line"|string;
export interface AssociateTrialComponentRequest {
/**
* The name of the component to associated with the trial.
*/
TrialComponentName: ExperimentEntityName;
/**
* The name of the trial to associate with.
*/
TrialName: ExperimentEntityName;
}
export interface AssociateTrialComponentResponse {
/**
* The ARN of the trial component.
*/
TrialComponentArn?: TrialComponentArn;
/**
* The Amazon Resource Name (ARN) of the trial.
*/
TrialArn?: TrialArn;
}
export type AttributeName = string;
export type AttributeNames = AttributeName[];
export type AuthMode = "SSO"|"IAM"|string;
export interface AutoMLCandidate {
/**
* The candidate name.
*/
CandidateName: CandidateName;
FinalAutoMLJobObjectiveMetric?: FinalAutoMLJobObjectiveMetric;
/**
* The objective status.
*/
ObjectiveStatus: ObjectiveStatus;
/**
* The candidate's steps.
*/
CandidateSteps: CandidateSteps;
/**
* The candidate's status.
*/
CandidateStatus: CandidateStatus;
/**
* The inference containers.
*/
InferenceContainers?: AutoMLContainerDefinitions;
/**
* The creation time.
*/
CreationTime: Timestamp;
/**
* The end time.
*/
EndTime?: Timestamp;
/**
* The last modified time.
*/
LastModifiedTime: Timestamp;
/**
* The failure reason.
*/
FailureReason?: AutoMLFailureReason;
}
export interface AutoMLCandidateStep {
/**
* Whether the Candidate is at the transform, training, or processing step.
*/
CandidateStepType: CandidateStepType;
/**
* The ARN for the Candidate's step.
*/
CandidateStepArn: CandidateStepArn;
/**
* The name for the Candidate's step.
*/
CandidateStepName: CandidateStepName;
}
export type AutoMLCandidates = AutoMLCandidate[];
export interface AutoMLChannel {
/**
* The data source.
*/
DataSource: AutoMLDataSource;
/**
* You can use Gzip or None. The default value is None.
*/
CompressionType?: CompressionType;
/**
* The name of the target variable in supervised learning, a.k.a. 'y'.
*/
TargetAttributeName: TargetAttributeName;
}
export interface AutoMLContainerDefinition {
/**
* The ECR path of the container. Refer to ContainerDefinition for more details.
*/
Image: ContainerImage;
/**
* The location of the model artifacts. Refer to ContainerDefinition for more details.
*/
ModelDataUrl: Url;
/**
* Environment variables to set in the container. Refer to ContainerDefinition for more details.
*/
Environment?: EnvironmentMap;
}
export type AutoMLContainerDefinitions = AutoMLContainerDefinition[];
export interface AutoMLDataSource {
/**
* The Amazon S3 location of the input data. The input data must be in CSV format and contain at least 500 rows.
*/
S3DataSource: AutoMLS3DataSource;
}
export type AutoMLFailureReason = string;
export type AutoMLInputDataConfig = AutoMLChannel[];
export type AutoMLJobArn = string;
export interface AutoMLJobArtifacts {
/**
* The URL to the notebook location.
*/
CandidateDefinitionNotebookLocation?: CandidateDefinitionNotebookLocation;
/**
* The URL to the notebook location.
*/
DataExplorationNotebookLocation?: DataExplorationNotebookLocation;
}
export interface AutoMLJobCompletionCriteria {
/**
* The maximum number of times a training job is allowed to run.
*/
MaxCandidates?: MaxCandidates;
/**
* The maximum time, in seconds, a job is allowed to run.
*/
MaxRuntimePerTrainingJobInSeconds?: MaxRuntimePerTrainingJobInSeconds;
/**
* The maximum time, in seconds, an AutoML job is allowed to wait for a trial to complete. It must be equal to or greater than MaxRuntimePerTrainingJobInSeconds.
*/
MaxAutoMLJobRuntimeInSeconds?: MaxAutoMLJobRuntimeInSeconds;
}
export interface AutoMLJobConfig {
/**
* How long a job is allowed to run, or how many candidates a job is allowed to generate.
*/
CompletionCriteria?: AutoMLJobCompletionCriteria;
/**
* Security configuration for traffic encryption or Amazon VPC settings.
*/
SecurityConfig?: AutoMLSecurityConfig;
}
export type AutoMLJobName = string;
export interface AutoMLJobObjective {
/**
* The name of the objective metric used to measure the predictive quality of a machine learning system. This metric is optimized during training to provide the best estimate for model parameter values from data. Here are the options: MSE: The mean squared error (MSE) is the average of the squared differences between the predicted and actual values. It is used for regression. MSE values are always positive, the better a model is at predicting the actual values the smaller the MSE value. When the data contains outliers, they tend to dominate the MSE which might cause subpar prediction performance. Accuracy: The ratio of the number correctly classified items to the total number (correctly and incorrectly) classified. It is used for binary and multiclass classification. Measures how close the predicted class values are to the actual values. Accuracy values vary between zero and one, one being perfect accuracy and zero perfect inaccuracy. F1: The F1 score is the harmonic mean of the precision and recall. It is used for binary classification into classes traditionally referred to as positive and negative. Predictions are said to be true when they match their actual (correct) class; false when they do not. Precision is the ratio of the true positive predictions to all positive predictions (including the false positives) in a data set and measures the quality of the prediction when it predicts the positive class. Recall (or sensitivity) is the ratio of the true positive predictions to all actual positive instances and measures how completely a model predicts the actual class members in a data set. The standard F1 score weighs precision and recall equally. But which metric is paramount typically depends on specific aspects of a problem. F1 scores vary between zero and one, one being the best possible performance and zero the worst. AUC: The area under the curve (AUC) metric is used to compare and evaluate binary classification by algorithms such as logistic regression that return probabilities. A threshold is needed to map the probabilities into classifications. The relevant curve is the receiver operating characteristic curve that plots the true positive rate (TPR) of predictions (or recall) against the false positive rate (FPR) as a function of the threshold value, above which a prediction is considered positive. Increasing the threshold results in fewer false positives but more false negatives. AUC is the area under this receiver operating characteristic curve and so provides an aggregated measure of the model performance across all possible classification thresholds. The AUC score can also be interpreted as the probability that a randomly selected positive data point is more likely to be predicted positive than a randomly selected negative example. AUC scores vary between zero and one, one being perfect accuracy and one half not better than a random classifier. Values less that one half predict worse than a random predictor and such consistently bad predictors can be inverted to obtain better than random predictors. F1macro: The F1macro score applies F1 scoring to multiclass classification. In this context, you have multiple classes to predict. You just calculate the precision and recall for each class as you did for the positive class in binary classification. Then used these values to calculate the F1 score for each class and average them to obtain the F1macro score. F1macro scores vary between zero and one, one being the best possible performance and zero the worst. If you do not specify a metric explicitly, the default behavior is to automatically use: MSE: for regression. F1: for binary classification Accuracy: for multiclass classification.
*/
MetricName: AutoMLMetricEnum;
}
export type AutoMLJobObjectiveType = "Maximize"|"Minimize"|string;
export type AutoMLJobSecondaryStatus = "Starting"|"AnalyzingData"|"FeatureEngineering"|"ModelTuning"|"MaxCandidatesReached"|"Failed"|"Stopped"|"MaxAutoMLJobRuntimeReached"|"Stopping"|"CandidateDefinitionsGenerated"|string;
export type AutoMLJobStatus = "Completed"|"InProgress"|"Failed"|"Stopped"|"Stopping"|string;
export type AutoMLJobSummaries = AutoMLJobSummary[];
export interface AutoMLJobSummary {
/**
* The name of the object you are requesting.
*/
AutoMLJobName: AutoMLJobName;
/**
* The ARN of the job.
*/
AutoMLJobArn: AutoMLJobArn;
/**
* The job's status.
*/
AutoMLJobStatus: AutoMLJobStatus;
/**
* The job's secondary status.
*/
AutoMLJobSecondaryStatus: AutoMLJobSecondaryStatus;
/**
* When the job was created.
*/
CreationTime: Timestamp;
/**
* The end time of an AutoML job.
*/
EndTime?: Timestamp;
/**
* When the job was last modified.
*/
LastModifiedTime: Timestamp;
/**
* The failure reason of a job.
*/
FailureReason?: AutoMLFailureReason;
}
export type AutoMLMaxResults = number;
export type AutoMLMetricEnum = "Accuracy"|"MSE"|"F1"|"F1macro"|"AUC"|string;
export type AutoMLNameContains = string;
export interface AutoMLOutputDataConfig {
/**
* The AWS KMS encryption key ID.
*/
KmsKeyId?: KmsKeyId;
/**
* The Amazon S3 output path. Must be 128 characters or less.
*/
S3OutputPath: S3Uri;
}
export interface AutoMLS3DataSource {
/**
* The data type.
*/
S3DataType: AutoMLS3DataType;
/**
* The URL to the Amazon S3 data source.
*/
S3Uri: S3Uri;
}
export type AutoMLS3DataType = "ManifestFile"|"S3Prefix"|string;
export interface AutoMLSecurityConfig {
/**
* The key used to encrypt stored data.
*/
VolumeKmsKeyId?: KmsKeyId;
/**
* Whether to use traffic encryption between the container layers.
*/
EnableInterContainerTrafficEncryption?: Boolean;
/**
* VPC configuration.
*/
VpcConfig?: VpcConfig;
}
export type AutoMLSortBy = "Name"|"CreationTime"|"Status"|string;
export type AutoMLSortOrder = "Ascending"|"Descending"|string;
export type AwsManagedHumanLoopRequestSource = "AWS/Rekognition/DetectModerationLabels/Image/V3"|"AWS/Textract/AnalyzeDocument/Forms/V1"|string;
export type BatchStrategy = "MultiRecord"|"SingleRecord"|string;
export type BillableTimeInSeconds = number;
export type Boolean = boolean;
export type BooleanOperator = "And"|"Or"|string;
export type Branch = string;
export type CandidateDefinitionNotebookLocation = string;
export type CandidateName = string;
export type CandidateSortBy = "CreationTime"|"Status"|"FinalObjectiveMetricValue"|string;
export type CandidateStatus = "Completed"|"InProgress"|"Failed"|"Stopped"|"Stopping"|string;
export type CandidateStepArn = string;
export type CandidateStepName = string;
export type CandidateStepType = "AWS::SageMaker::TrainingJob"|"AWS::SageMaker::TransformJob"|"AWS::SageMaker::ProcessingJob"|string;
export type CandidateSteps = AutoMLCandidateStep[];
export interface CaptureContentTypeHeader {
/**
*
*/
CsvContentTypes?: CsvContentTypes;
/**
*
*/
JsonContentTypes?: JsonContentTypes;
}
export type CaptureMode = "Input"|"Output"|string;
export interface CaptureOption {
/**
*
*/
CaptureMode: CaptureMode;
}
export type CaptureOptionList = CaptureOption[];
export type CaptureStatus = "Started"|"Stopped"|string;
export interface CategoricalParameterRange {
/**
* The name of the categorical hyperparameter to tune.
*/
Name: ParameterKey;
/**
* A list of the categories for the hyperparameter.
*/
Values: ParameterValues;
}
export interface CategoricalParameterRangeSpecification {
/**
* The allowed categories for the hyperparameter.
*/
Values: ParameterValues;
}
export type CategoricalParameterRanges = CategoricalParameterRange[];
export type Cents = number;
export type CertifyForMarketplace = boolean;
export interface Channel {
/**
* The name of the channel.
*/
ChannelName: ChannelName;
/**
* The location of the channel data.
*/
DataSource: DataSource;
/**
* The MIME type of the data.
*/
ContentType?: ContentType;
/**
* If training data is compressed, the compression type. The default value is None. CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.
*/
CompressionType?: CompressionType;
/**
* Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, Amazon SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO. In File mode, leave this field unset or set it to None.
*/
RecordWrapperType?: RecordWrapper;
/**
* (Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode, Amazon SageMaker uses the value set for TrainingInputMode. Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode. To use a model for incremental training, choose File input model.
*/
InputMode?: TrainingInputMode;
/**
* A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType, this shuffles the results of the S3 key prefix matches. If you use ManifestFile, the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile, the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value. For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key, the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.
*/
ShuffleConfig?: ShuffleConfig;
}
export type ChannelName = string;
export interface ChannelSpecification {
/**
* The name of the channel.
*/
Name: ChannelName;
/**
* A brief description of the channel.
*/
Description?: EntityDescription;
/**
* Indicates whether the channel is required by the algorithm.
*/
IsRequired?: Boolean;
/**
* The supported MIME types for the data.
*/
SupportedContentTypes: ContentTypes;
/**
* The allowed compression types, if data compression is used.
*/
SupportedCompressionTypes?: CompressionTypes;
/**
* The allowed input mode, either FILE or PIPE. In FILE mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode. In PIPE mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.
*/
SupportedInputModes: InputModes;
}
export type ChannelSpecifications = ChannelSpecification[];
export interface CheckpointConfig {
/**
* Identifies the S3 path where you want Amazon SageMaker to store checkpoints. For example, s3://bucket-name/key-name-prefix.
*/
S3Uri: S3Uri;
/**
* (Optional) The local directory where checkpoints are written. The default directory is /opt/ml/checkpoints/.
*/
LocalPath?: DirectoryPath;
}
export type Cidr = string;
export type Cidrs = Cidr[];
export type ClientId = string;
export type ClientSecret = string;
export type CodeRepositoryArn = string;
export type CodeRepositoryContains = string;
export type CodeRepositoryNameContains = string;
export type CodeRepositoryNameOrUrl = string;
export type CodeRepositorySortBy = "Name"|"CreationTime"|"LastModifiedTime"|string;
export type CodeRepositorySortOrder = "Ascending"|"Descending"|string;
export interface CodeRepositorySummary {
/**
* The name of the Git repository.
*/
CodeRepositoryName: EntityName;
/**
* The Amazon Resource Name (ARN) of the Git repository.
*/
CodeRepositoryArn: CodeRepositoryArn;
/**
* The date and time that the Git repository was created.
*/
CreationTime: CreationTime;
/**
* The date and time that the Git repository was last modified.
*/
LastModifiedTime: LastModifiedTime;
/**
* Configuration details for the Git repository, including the URL where it is located and the ARN of the AWS Secrets Manager secret that contains the credentials used to access the repository.
*/
GitConfig?: GitConfig;
}
export type CodeRepositorySummaryList = CodeRepositorySummary[];
export interface CognitoConfig {
/**
* A user pool is a user directory in Amazon Cognito. With a user pool, your users can sign in to your web or mobile app through Amazon Cognito. Your users can also sign in through social identity providers like Google, Facebook, Amazon, or Apple, and through SAML identity providers.
*/
UserPool: CognitoUserPool;
/**
* The client ID for your Amazon Cognito user pool.
*/
ClientId: ClientId;
}
export interface CognitoMemberDefinition {
/**
* An identifier for a user pool. The user pool must be in the same region as the service that you are calling.
*/
UserPool: CognitoUserPool;
/**
* An identifier for a user group.
*/
UserGroup: CognitoUserGroup;
/**
* An identifier for an application client. You must create the app client ID using Amazon Cognito.
*/
ClientId: ClientId;
}
export type CognitoUserGroup = string;
export type CognitoUserPool = string;
export interface CollectionConfiguration {
/**
* The name of the tensor collection. The name must be unique relative to other rule configuration names.
*/
CollectionName?: CollectionName;
/**
* Parameter values for the tensor collection. The allowed parameters are "name", "include_regex", "reduction_config", "save_config", "tensor_names", and "save_histogram".
*/
CollectionParameters?: CollectionParameters;
}
export type CollectionConfigurations = CollectionConfiguration[];
export type CollectionName = string;
export type CollectionParameters = {[key: string]: ConfigValue};
export type CompilationJobArn = string;
export type CompilationJobStatus = "INPROGRESS"|"COMPLETED"|"FAILED"|"STARTING"|"STOPPING"|"STOPPED"|string;
export type CompilationJobSummaries = CompilationJobSummary[];
export interface CompilationJobSummary {
/**
* The name of the model compilation job that you want a summary for.
*/
CompilationJobName: EntityName;
/**
* The Amazon Resource Name (ARN) of the model compilation job.
*/
CompilationJobArn: CompilationJobArn;
/**
* The time when the model compilation job was created.
*/
CreationTime: CreationTime;
/**
* The time when the model compilation job started.
*/
CompilationStartTime?: Timestamp;
/**
* The time when the model compilation job completed.
*/
CompilationEndTime?: Timestamp;
/**
* The type of device that the model will run on after the compilation job has completed.
*/
CompilationTargetDevice?: TargetDevice;
/**
* The type of OS that the model will run on after the compilation job has completed.
*/
CompilationTargetPlatformOs?: TargetPlatformOs;
/**
* The type of architecture that the model will run on after the compilation job has completed.
*/
CompilationTargetPlatformArch?: TargetPlatformArch;
/**
* The type of accelerator that the model will run on after the compilation job has completed.
*/
CompilationTargetPlatformAccelerator?: TargetPlatformAccelerator;
/**
* The time when the model compilation job was last modified.
*/
LastModifiedTime?: LastModifiedTime;
/**
* The status of the model compilation job.
*/
CompilationJobStatus: CompilationJobStatus;
}
export type CompilerOptions = string;
export type CompressionType = "None"|"Gzip"|string;
export type CompressionTypes = CompressionType[];
export type ConfigKey = string;
export type ConfigValue = string;
export type ContainerArgument = string;
export type ContainerArguments = ContainerArgument[];
export interface ContainerDefinition {
/**
* This parameter is ignored for models that contain only a PrimaryContainer. When a ContainerDefinition is part of an inference pipeline, the value of the parameter uniquely identifies the container for the purposes of logging and metrics. For information, see Use Logs and Metrics to Monitor an Inference Pipeline. If you don't specify a value for this parameter for a ContainerDefinition that is part of an inference pipeline, a unique name is automatically assigned based on the position of the ContainerDefinition in the pipeline. If you specify a value for the ContainerHostName for any ContainerDefinition that is part of an inference pipeline, you must specify a value for the ContainerHostName parameter of every ContainerDefinition in that pipeline.
*/
ContainerHostname?: ContainerHostname;
/**
* The path where inference code is stored. This can be either in Amazon EC2 Container Registry or in a Docker registry that is accessible from the same VPC that you configure for your endpoint. If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker, the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker
*/
Image?: ContainerImage;
/**
* Specifies whether the model container is in Amazon ECR or a private Docker registry accessible from your Amazon Virtual Private Cloud (VPC). For information about storing containers in a private Docker registry, see Use a Private Docker Registry for Real-Time Inference Containers
*/
ImageConfig?: ImageConfig;
/**
* Whether the container hosts a single model or multiple models.
*/
Mode?: ContainerMode;
/**
* The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The S3 path is required for Amazon SageMaker built-in algorithms, but not if you use your own algorithms. For more information on built-in algorithms, see Common Parameters. The model artifacts must be in an S3 bucket that is in the same region as the model or endpoint you are creating. If you provide a value for this parameter, Amazon SageMaker uses AWS Security Token Service to download model artifacts from the S3 path you provide. AWS STS is activated in your IAM user account by default. If you previously deactivated AWS STS for a region, you need to reactivate AWS STS for that region. For more information, see Activating and Deactivating AWS STS in an AWS Region in the AWS Identity and Access Management User Guide. If you use a built-in algorithm to create a model, Amazon SageMaker requires that you provide a S3 path to the model artifacts in ModelDataUrl.
*/
ModelDataUrl?: Url;
/**
* The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.
*/
Environment?: EnvironmentMap;
/**
* The name or Amazon Resource Name (ARN) of the model package to use to create the model.
*/
ModelPackageName?: ArnOrName;
}
export type ContainerDefinitionList = ContainerDefinition[];
export type ContainerEntrypoint = ContainerEntrypointString[];
export type ContainerEntrypointString = string;
export type ContainerHostname = string;
export type ContainerImage = string;
export type ContainerMode = "SingleModel"|"MultiModel"|string;
export type ContentClassifier = "FreeOfPersonallyIdentifiableInformation"|"FreeOfAdultContent"|string;
export type ContentClassifiers = ContentClassifier[];
export type ContentType = string;
export type ContentTypes = ContentType[];
export interface ContinuousParameterRange {
/**
* The name of the continuous hyperparameter to tune.
*/
Name: ParameterKey;
/**
* The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and MaxValuefor tuning.
*/
MinValue: ParameterValue;
/**
* The maximum value for the hyperparameter. The tuning job uses floating-point values between MinValue value and this value for tuning.
*/
MaxValue: ParameterValue;
/**
* The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values: Auto Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter. Linear Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale. Logarithmic Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. Logarithmic scaling works only for ranges that have only values greater than 0. ReverseLogarithmic Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale. Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0.
*/
ScalingType?: HyperParameterScalingType;
}
export interface ContinuousParameterRangeSpecification {
/**
* The minimum floating-point value allowed.
*/
MinValue: ParameterValue;
/**
* The maximum floating-point value allowed.
*/
MaxValue: ParameterValue;
}
export type ContinuousParameterRanges = ContinuousParameterRange[];
export interface CreateAlgorithmInput {
/**
* The name of the algorithm.
*/
AlgorithmName: EntityName;
/**
* A description of the algorithm.
*/
AlgorithmDescription?: EntityDescription;
/**
* Specifies details about training jobs run by this algorithm, including the following: The Amazon ECR path of the container and the version digest of the algorithm. The hyperparameters that the algorithm supports. The instance types that the algorithm supports for training. Whether the algorithm supports distributed training. The metrics that the algorithm emits to Amazon CloudWatch. Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs. The input channels that the algorithm supports for training data. For example, an algorithm might support train, validation, and test channels.
*/
TrainingSpecification: TrainingSpecification;
/**
* Specifies details about inference jobs that the algorithm runs, including the following: The Amazon ECR paths of containers that contain the inference code and model artifacts. The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference. The input and output content formats that the algorithm supports for inference.
*/
InferenceSpecification?: InferenceSpecification;
/**
* Specifies configurations for one or more training jobs and that Amazon SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that Amazon SageMaker runs to test the algorithm's inference code.
*/
ValidationSpecification?: AlgorithmValidationSpecification;
/**
* Whether to certify the algorithm so that it can be listed in AWS Marketplace.
*/
CertifyForMarketplace?: CertifyForMarketplace;
}
export interface CreateAlgorithmOutput {
/**
* The Amazon Resource Name (ARN) of the new algorithm.
*/
AlgorithmArn: AlgorithmArn;
}
export interface CreateAppRequest {
/**
* The domain ID.
*/
DomainId: DomainId;
/**
* The user profile name.
*/
UserProfileName: UserProfileName;
/**
* The type of app.
*/
AppType: AppType;
/**
* The name of the app.
*/
AppName: AppName;
/**
* Each tag consists of a key and an optional value. Tag keys must be unique per resource.
*/
Tags?: TagList;
/**
* The instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
*/
ResourceSpec?: ResourceSpec;
}
export interface CreateAppResponse {
/**
* The App's Amazon Resource Name (ARN).
*/
AppArn?: AppArn;
}
export interface CreateAutoMLJobRequest {
/**
* Identifies an Autopilot job. Must be unique to your account and is case-insensitive.
*/
AutoMLJobName: AutoMLJobName;
/**
* Similar to InputDataConfig supported by Tuning. Format(s) supported: CSV. Minimum of 500 rows.
*/
InputDataConfig: AutoMLInputDataConfig;
/**
* Similar to OutputDataConfig supported by Tuning. Format(s) supported: CSV.
*/
OutputDataConfig: AutoMLOutputDataConfig;
/**
* Defines the kind of preprocessing and algorithms intended for the candidates. Options include: BinaryClassification, MulticlassClassification, and Regression.
*/
ProblemType?: ProblemType;
/**
* Defines the objective of a an AutoML job. You provide a AutoMLJobObjective$MetricName and Autopilot infers whether to minimize or maximize it. If a metric is not specified, the most commonly used ObjectiveMetric for problem type is automaically selected.
*/
AutoMLJobObjective?: AutoMLJobObjective;
/**
* Contains CompletionCriteria and SecurityConfig.
*/
AutoMLJobConfig?: AutoMLJobConfig;
/**
* The ARN of the role that is used to access the data.
*/
RoleArn: RoleArn;
/**
* Generates possible candidates without training a model. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
*/
GenerateCandidateDefinitionsOnly?: GenerateCandidateDefinitionsOnly;
/**
* Each tag consists of a key and an optional value. Tag keys must be unique per resource.
*/
Tags?: TagList;
}
export interface CreateAutoMLJobResponse {
/**
* When a job is created, it is assigned a unique ARN.
*/
AutoMLJobArn: AutoMLJobArn;
}
export interface CreateCodeRepositoryInput {
/**
* The name of the Git repository. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
*/
CodeRepositoryName: EntityName;
/**
* Specifies details about the repository, including the URL where the repository is located, the default branch, and credentials to use to access the repository.
*/
GitConfig: GitConfig;
}
export interface CreateCodeRepositoryOutput {
/**
* The Amazon Resource Name (ARN) of the new repository.
*/
CodeRepositoryArn: CodeRepositoryArn;
}
export interface CreateCompilationJobRequest {
/**
* A name for the model compilation job. The name must be unique within the AWS Region and within your AWS account.
*/
CompilationJobName: EntityName;
/**
* The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf. During model compilation, Amazon SageMaker needs your permission to: Read input data from an S3 bucket Write model artifacts to an S3 bucket Write logs to Amazon CloudWatch Logs Publish metrics to Amazon CloudWatch You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission. For more information, see Amazon SageMaker Roles.
*/
RoleArn: RoleArn;
/**
* Provides information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
*/
InputConfig: InputConfig;
/**
* Provides information about the output location for the compiled model and the target device the model runs on.
*/
OutputConfig: OutputConfig;
/**
* Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker ends the compilation job. Use this API to cap model training costs.
*/
StoppingCondition: StoppingCondition;
}
export interface CreateCompilationJobResponse {
/**
* If the action is successful, the service sends back an HTTP 200 response. Amazon SageMaker returns the following data in JSON format: CompilationJobArn: The Amazon Resource Name (ARN) of the compiled job.
*/
CompilationJobArn: CompilationJobArn;
}
export interface CreateDomainRequest {
/**
* A name for the domain.
*/
DomainName: DomainName;
/**
* The mode of authentication that members use to access the domain.
*/
AuthMode: AuthMode;
/**
* The default user settings.
*/
DefaultUserSettings: UserSettings;
/**
* The VPC subnets that Studio uses for communication.
*/
SubnetIds: Subnets;
/**
* The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses for communication.
*/
VpcId: VpcId;
/**
* Tags to associated with the Domain. Each tag consists of a key and an optional value. Tag keys must be unique per resource. Tags are searchable using the Search API.
*/
Tags?: TagList;
/**
* The AWS Key Management Service (KMS) encryption key ID. Encryption with a customer master key (CMK) is not supported.
*/
HomeEfsFileSystemKmsKeyId?: KmsKeyId;
/**
* Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly. PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker, which allows direct internet access VpcOnly - All Studio traffic is through the specified VPC and subnets
*/
AppNetworkAccessType?: AppNetworkAccessType;
}
export interface CreateDomainResponse {
/**
* The Amazon Resource Name (ARN) of the created domain.
*/
DomainArn?: DomainArn;
/**
* The URL to the created domain.
*/
Url?: String1024;
}
export interface CreateEndpointConfigInput {
/**
* The name of the endpoint configuration. You specify this name in a CreateEndpoint request.
*/
EndpointConfigName: EndpointConfigName;
/**
* An list of ProductionVariant objects, one for each model that you want to host at this endpoint.
*/
ProductionVariants: ProductionVariantList;
DataCaptureConfig?: DataCaptureConfig;
/**
* A list of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
*/
Tags?: TagList;
/**
* The Amazon Resource Name (ARN) of a AWS Key Management Service key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint, UpdateEndpoint requests. For more information, refer to the AWS Key Management Service section Using Key Policies in AWS KMS Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a KmsKeyId when using an instance type with local storage. If any of the models that you specify in the ProductionVariants parameter use nitro-based instances with local storage, do not specify a value for the KmsKeyId parameter. If you specify a value for KmsKeyId when using any nitro-based instances with local storage, the call to CreateEndpointConfig fails. For a list of instance types that support local instance storage, see Instance Store Volumes. For more information about local instance storage encryption, see SSD Instance Store Volumes.
*/
KmsKeyId?: KmsKeyId;
}
export interface CreateEndpointConfigOutput {
/**
* The Amazon Resource Name (ARN) of the endpoint configuration.
*/
EndpointConfigArn: EndpointConfigArn;
}
export interface CreateEndpointInput {
/**
* The name of the endpoint. The name must be unique within an AWS Region in your AWS account.
*/
EndpointName: EndpointName;
/**
* The name of an endpoint configuration. For more information, see CreateEndpointConfig.
*/
EndpointConfigName: EndpointConfigName;
/**
* An array of key-value pairs. For more information, see Using Cost Allocation Tagsin the AWS Billing and Cost Management User Guide.
*/
Tags?: TagList;
}
export interface CreateEndpointOutput {
/**
* The Amazon Resource Name (ARN) of the endpoint.
*/
EndpointArn: EndpointArn;
}
export interface CreateExperimentRequest {
/**
* The name of the experiment. The name must be unique in your AWS account and is not case-sensitive.
*/
ExperimentName: ExperimentEntityName;
/**
* The name of the experiment as displayed. The name doesn't need to be unique. If you don't specify DisplayName, the value in ExperimentName is displayed.
*/
DisplayName?: ExperimentEntityName;
/**
* The description of the experiment.
*/
Description?: ExperimentDescription;
/**
* A list of tags to associate with the experiment. You can use Search API to search on the tags.
*/
Tags?: TagList;
}
export interface CreateExperimentResponse {
/**
* The Amazon Resource Name (ARN) of the experiment.
*/
ExperimentArn?: ExperimentArn;
}
export interface CreateFlowDefinitionRequest {
/**
* The name of your flow definition.
*/
FlowDefinitionName: FlowDefinitionName;
/**
* Container for configuring the source of human task requests. Use to specify if Amazon Rekognition or Amazon Textract is used as an integration source.
*/
HumanLoopRequestSource?: HumanLoopRequestSource;
/**
* An object containing information about the events that trigger a human workflow.
*/
HumanLoopActivationConfig?: HumanLoopActivationConfig;
/**
* An object containing information about the tasks the human reviewers will perform.
*/
HumanLoopConfig: HumanLoopConfig;
/**
* An object containing information about where the human review results will be uploaded.
*/
OutputConfig: FlowDefinitionOutputConfig;
/**
* The Amazon Resource Name (ARN) of the role needed to call other services on your behalf. For example, arn:aws:iam::1234567890:role/service-role/AmazonSageMaker-ExecutionRole-20180111T151298.
*/
RoleArn: RoleArn;
/**
* An array of key-value pairs that contain metadata to help you categorize and organize a flow definition. Each tag consists of a key and a value, both of which you define.
*/
Tags?: TagList;
}
export interface CreateFlowDefinitionResponse {
/**
* The Amazon Resource Name (ARN) of the flow definition you create.
*/
FlowDefinitionArn: FlowDefinitionArn;
}
export interface CreateHumanTaskUiRequest {
/**
* The name of the user interface you are creating.
*/
HumanTaskUiName: HumanTaskUiName;
UiTemplate: UiTemplate;
/**
* An array of key-value pairs that contain metadata to help you categorize and organize a human review workflow user interface. Each tag consists of a key and a value, both of which you define.
*/
Tags?: TagList;
}
export interface CreateHumanTaskUiResponse {
/**
* The Amazon Resource Name (ARN) of the human review workflow user interface you create.
*/
HumanTaskUiArn: HumanTaskUiArn;
}
export interface CreateHyperParameterTuningJobRequest {
/**
* The name of the tuning job. This name is the prefix for the names of all training jobs that this tuning job launches. The name must be unique within the same AWS account and AWS Region. The name must have { } to { } characters. Valid characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case sensitive.
*/
HyperParameterTuningJobName: HyperParameterTuningJobName;
/**
* The HyperParameterTuningJobConfig object that describes the tuning job, including the search strategy, the objective metric used to evaluate training jobs, ranges of parameters to search, and resource limits for the tuning job. For more information, see How Hyperparameter Tuning Works.
*/
HyperParameterTuningJobConfig: HyperParameterTuningJobConfig;
/**
* The HyperParameterTrainingJobDefinition object that describes the training jobs that this tuning job launches, including static hyperparameters, input data configuration, output data configuration, resource configuration, and stopping condition.
*/
TrainingJobDefinition?: HyperParameterTrainingJobDefinition;
/**
* A list of the HyperParameterTrainingJobDefinition objects launched for this tuning job.
*/
TrainingJobDefinitions?: HyperParameterTrainingJobDefinitions;
/**
* Specifies the configuration for starting the hyperparameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job. All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric. If you specify IDENTICAL_DATA_AND_ALGORITHM as the WarmStartType value for the warm start configuration, the training job that performs the best in the new tuning job is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job. All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job.
*/
WarmStartConfig?: HyperParameterTuningJobWarmStartConfig;
/**
* An array of key-value pairs. You can use tags to categorize your AWS resources in different ways, for example, by purpose, owner, or environment. For more information, see AWS Tagging Strategies. Tags that you specify for the tuning job are also added to all training jobs that the tuning job launches.
*/
Tags?: TagList;
}
export interface CreateHyperParameterTuningJobResponse {
/**
* The Amazon Resource Name (ARN) of the tuning job. Amazon SageMaker assigns an ARN to a hyperparameter tuning job when you create it.
*/
HyperParameterTuningJobArn: HyperParameterTuningJobArn;
}
export interface CreateLabelingJobRequest {
/**
* The name of the labeling job. This name is used to identify the job in a list of labeling jobs.
*/
LabelingJobName: LabelingJobName;
/**
* The attribute name to use for the label in the output manifest file. This is the key for the key/value pair formed with the label that a worker assigns to the object. The name can't end with "-metadata". If you are running a semantic segmentation labeling job, the attribute name must end with "-ref". If you are running any other kind of labeling job, the attribute name must not end with "-ref".
*/
LabelAttributeName: LabelAttributeName;
/**
* Input data for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.
*/
InputConfig: LabelingJobInputConfig;
/**
* The location of the output data and the AWS Key Management Service key ID for the key used to encrypt the output data, if any.
*/
OutputConfig: LabelingJobOutputConfig;
/**
* The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete data labeling.
*/
RoleArn: RoleArn;
/**
* The S3 URL of the file that defines the categories used to label the data objects. For 3D point cloud task types, see Create a Labeling Category Configuration File for 3D Point Cloud Labeling Jobs. For all other built-in task types and custom tasks, your label category configuration file must be a JSON file in the following format. Identify the labels you want to use by replacing label_1, label_2,...,label_n with your label categories. { "document-version": "2018-11-28" "labels": [ { "label": "label_1" }, { "label": "label_2" }, ... { "label": "label_n" } ] }
*/
LabelCategoryConfigS3Uri?: S3Uri;
/**
* A set of conditions for stopping the labeling job. If any of the conditions are met, the job is automatically stopped. You can use these conditions to control the cost of data labeling.
*/
StoppingConditions?: LabelingJobStoppingConditions;
/**
* Configures the information required to perform automated data labeling.
*/
LabelingJobAlgorithmsConfig?: LabelingJobAlgorithmsConfig;
/**
* Configures the labeling task and how it is presented to workers; including, but not limited to price, keywords, and batch size (task count).
*/
HumanTaskConfig: HumanTaskConfig;
/**
* An array of key/value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
*/
Tags?: TagList;
}
export interface CreateLabelingJobResponse {
/**
* The Amazon Resource Name (ARN) of the labeling job. You use this ARN to identify the labeling job.
*/
LabelingJobArn: LabelingJobArn;
}
export interface CreateModelInput {
/**
* The name of the new model.
*/
ModelName: ModelName;
/**
* The location of the primary docker image containing inference code, associated artifacts, and custom environment map that the inference code uses when the model is deployed for predictions.
*/
PrimaryContainer?: ContainerDefinition;
/**
* Specifies the containers in the inference pipeline.
*/
Containers?: ContainerDefinitionList;
/**
* The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker can assume to access model artifacts and docker image for deployment on ML compute instances or for batch transform jobs. Deploying on ML compute instances is part of model hosting. For more information, see Amazon SageMaker Roles. To be able to pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission.
*/
ExecutionRoleArn: RoleArn;
/**
* An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
*/
Tags?: TagList;
/**
* A VpcConfig object that specifies the VPC that you want your model to connect to. Control access to and from your model container by configuring the VPC. VpcConfig is used in hosting services and in batch transform. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Data in Batch Transform Jobs by Using an Amazon Virtual Private Cloud.
*/
VpcConfig?: VpcConfig;
/**
* Isolates the model container. No inbound or outbound network calls can be made to or from the model container.
*/
EnableNetworkIsolation?: Boolean;
}
export interface CreateModelOutput {
/**
* The ARN of the model created in Amazon SageMaker.
*/
ModelArn: ModelArn;
}
export interface CreateModelPackageInput {
/**
* The name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
*/
ModelPackageName: EntityName;
/**
* A description of the model package.
*/
ModelPackageDescription?: EntityDescription;
/**
* Specifies details about inference jobs that can be run with models based on this model package, including the following: The Amazon ECR paths of containers that contain the inference code and model artifacts. The instance types that the model package supports for transform jobs and real-time endpoints used for inference. The input and output content formats that the model package supports for inference.
*/
InferenceSpecification?: InferenceSpecification;
/**
* Specifies configurations for one or more transform jobs that Amazon SageMaker runs to test the model package.
*/
ValidationSpecification?: ModelPackageValidationSpecification;
/**
* Details about the algorithm that was used to create the model package.
*/
SourceAlgorithmSpecification?: SourceAlgorithmSpecification;
/**
* Whether to certify the model package for listing on AWS Marketplace.
*/
CertifyForMarketplace?: CertifyForMarketplace;
}
export interface CreateModelPackageOutput {
/**
* The Amazon Resource Name (ARN) of the new model package.
*/
ModelPackageArn: ModelPackageArn;
}
export interface CreateMonitoringScheduleRequest {
/**
* The name of the monitoring schedule. The name must be unique within an AWS Region within an AWS account.
*/
MonitoringScheduleName: MonitoringScheduleName;
/**
* The configuration object that specifies the monitoring schedule and defines the monitoring job.
*/
MonitoringScheduleConfig: MonitoringScheduleConfig;
/**
* (Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
*/
Tags?: TagList;
}
export interface CreateMonitoringScheduleResponse {
/**
* The Amazon Resource Name (ARN) of the monitoring schedule.
*/
MonitoringScheduleArn: MonitoringScheduleArn;
}
export interface CreateNotebookInstanceInput {
/**
* The name of the new notebook instance.
*/
NotebookInstanceName: NotebookInstanceName;
/**
* The type of ML compute instance to launch for the notebook instance.
*/
InstanceType: InstanceType;
/**
* The ID of the subnet in a VPC to which you would like to have a connectivity from your ML compute instance.
*/
SubnetId?: SubnetId;
/**
* The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.
*/
SecurityGroupIds?: SecurityGroupIds;
/**
* When you send any requests to AWS resources from the notebook instance, Amazon SageMaker assumes this role to perform tasks on your behalf. You must grant this role necessary permissions so Amazon SageMaker can perform these tasks. The policy must allow the Amazon SageMaker service principal (sagemaker.amazonaws.com) permissions to assume this role. For more information, see Amazon SageMaker Roles. To be able to pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission.
*/
RoleArn: RoleArn;
/**
* The Amazon Resource Name (ARN) of a AWS Key Management Service key that Amazon SageMaker uses to encrypt data on the storage volume attached to your notebook instance. The KMS key you provide must be enabled. For information, see Enabling and Disabling Keys in the AWS Key Management Service Developer Guide.
*/
KmsKeyId?: KmsKeyId;
/**
* A list of tags to associate with the notebook instance. You can add tags later by using the CreateTags API.
*/
Tags?: TagList;
/**
* The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
*/
LifecycleConfigName?: NotebookInstanceLifecycleConfigName;
/**
* Sets whether Amazon SageMaker provides internet access to the notebook instance. If you set this to Disabled this notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker training and endpoint services unless your configure a NAT Gateway in your VPC. For more information, see Notebook Instances Are Internet-Enabled by Default. You can set the value of this parameter to Disabled only if you set a value for the SubnetId parameter.
*/
DirectInternetAccess?: DirectInternetAccess;
/**
* The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
*/
VolumeSizeInGB?: NotebookInstanceVolumeSizeInGB;
/**
* A list of Elastic Inference (EI) instance types to associate with this notebook instance. Currently, only one instance type can be associated with a notebook instance. For more information, see Using Elastic Inference in Amazon SageMaker.
*/
AcceleratorTypes?: NotebookInstanceAcceleratorTypes;
/**
* A Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
*/
DefaultCodeRepository?: CodeRepositoryNameOrUrl;
/**
* An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
*/
AdditionalCodeRepositories?: AdditionalCodeRepositoryNamesOrUrls;
/**
* Whether root access is enabled or disabled for users of the notebook instance. The default value is Enabled. Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users.
*/
RootAccess?: RootAccess;
}
export interface CreateNotebookInstanceLifecycleConfigInput {
/**
* The name of the lifecycle configuration.
*/
NotebookInstanceLifecycleConfigName: NotebookInstanceLifecycleConfigName;
/**
* A shell script that runs only once, when you create a notebook instance. The shell script must be a base64-encoded string.
*/
OnCreate?: NotebookInstanceLifecycleConfigList;
/**
* A shell script that runs every time you start a notebook instance, including when you create the notebook instance. The shell script must be a base64-encoded string.
*/
OnStart?: NotebookInstanceLifecycleConfigList;
}
export interface CreateNotebookInstanceLifecycleConfigOutput {
/**
* The Amazon Resource Name (ARN) of the lifecycle configuration.
*/
NotebookInstanceLifecycleConfigArn?: NotebookInstanceLifecycleConfigArn;
}
export interface CreateNotebookInstanceOutput {
/**
* The Amazon Resource Name (ARN) of the notebook instance.
*/
NotebookInstanceArn?: NotebookInstanceArn;
}
export interface CreatePresignedDomainUrlRequest {
/**
* The domain ID.
*/
DomainId: DomainId;
/**
* The name of the UserProfile to sign-in as.
*/
UserProfileName: UserProfileName;
/**
* The session expiration duration in seconds.
*/
SessionExpirationDurationInSeconds?: SessionExpirationDurationInSeconds;
}
export interface CreatePresignedDomainUrlResponse {
/**
* The presigned URL.
*/
AuthorizedUrl?: PresignedDomainUrl;
}
export interface CreatePresignedNotebookInstanceUrlInput {
/**
* The name of the notebook instance.
*/
NotebookInstanceName: NotebookInstanceName;
/**
* The duration of the session, in seconds. The default is 12 hours.
*/
SessionExpirationDurationInSeconds?: SessionExpirationDurationInSeconds;
}
export interface CreatePresignedNotebookInstanceUrlOutput {
/**
* A JSON object that contains the URL string.
*/
AuthorizedUrl?: NotebookInstanceUrl;
}
export interface CreateProcessingJobRequest {
/**
* For each input, data is downloaded from S3 into the processing container before the processing job begins running if "S3InputMode" is set to File.
*/
ProcessingInputs?: ProcessingInputs;
/**
* Output configuration for the processing job.
*/
ProcessingOutputConfig?: ProcessingOutputConfig;
/**
* The name of the processing job. The name must be unique within an AWS Region in the AWS account.
*/
ProcessingJobName: ProcessingJobName;
/**
* Identifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job. In distributed training, you specify more than one instance.
*/
ProcessingResources: ProcessingResources;
/**
* The time limit for how long the processing job is allowed to run.
*/
StoppingCondition?: ProcessingStoppingCondition;
/**
* Configures the processing job to run a specified Docker container image.
*/
AppSpecification: AppSpecification;
/**
* Sets the environment variables in the Docker container.
*/
Environment?: ProcessingEnvironmentMap;
/**
* Networking options for a processing job.
*/
NetworkConfig?: NetworkConfig;
/**
* The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
*/
RoleArn: RoleArn;
/**
* (Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
*/
Tags?: TagList;
ExperimentConfig?: ExperimentConfig;
}
export interface CreateProcessingJobResponse {
/**
* The Amazon Resource Name (ARN) of the processing job.
*/
ProcessingJobArn: ProcessingJobArn;
}
export interface CreateTrainingJobRequest {
/**
* The name of the training job. The name must be unique within an AWS Region in an AWS account.
*/
TrainingJobName: TrainingJobName;
/**
* Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see Algorithms. You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the Length Constraint.
*/
HyperParameters?: HyperParameters;
/**
* The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by Amazon SageMaker, see Algorithms. For information about providing your own algorithms, see Using Your Own Algorithms with Amazon SageMaker.
*/
AlgorithmSpecification: AlgorithmSpecification;
/**
* The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf. During model training, Amazon SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see Amazon SageMaker Roles. To be able to pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission.
*/
RoleArn: RoleArn;
/**
* An array of Channel objects. Each channel is a named input source. InputDataConfig describes the input data and its location. Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, training_data and validation_data. The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format. Depending on the input mode that the algorithm supports, Amazon SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files will be made available as input streams. They do not need to be downloaded.
*/
InputDataConfig?: InputDataConfig;
/**
* Specifies the path to the S3 location where you want to store model artifacts. Amazon SageMaker creates subfolders for the artifacts.
*/
OutputDataConfig: OutputDataConfig;
/**
* The resources, including the ML compute instances and ML storage volumes, to use for model training. ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want Amazon SageMaker to use the ML storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.
*/
ResourceConfig: ResourceConfig;
/**
* A VpcConfig object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
*/
VpcConfig?: VpcConfig;
/**
* Specifies a limit to how long a model training job can run. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.
*/
StoppingCondition: StoppingCondition;
/**
* An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
*/
Tags?: TagList;
/**
* Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.
*/
EnableNetworkIsolation?: Boolean;
/**
* To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see Protect Communications Between ML Compute Instances in a Distributed Training Job.
*/
EnableInterContainerTrafficEncryption?: Boolean;
/**
* To train models using managed spot training, choose True. Managed spot training provides a fully managed and scalable infrastructure for training machine learning models. this option is useful when training jobs can be interrupted and when there is flexibility when the training job is run. The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed.
*/
EnableManagedSpotTraining?: Boolean;
/**
* Contains information about the output location for managed spot training checkpoint data.
*/
CheckpointConfig?: CheckpointConfig;
DebugHookConfig?: DebugHookConfig;
/**
* Configuration information for debugging rules.
*/
DebugRuleConfigurations?: DebugRuleConfigurations;
TensorBoardOutputConfig?: TensorBoardOutputConfig;
ExperimentConfig?: ExperimentConfig;
}
export interface CreateTrainingJobResponse {
/**
* The Amazon Resource Name (ARN) of the training job.
*/
TrainingJobArn: TrainingJobArn;
}
export interface CreateTransformJobRequest {
/**
* The name of the transform job. The name must be unique within an AWS Region in an AWS account.
*/
TransformJobName: TransformJobName;
/**
* The name of the model that you want to use for the transform job. ModelName must be the name of an existing Amazon SageMaker model within an AWS Region in an AWS account.
*/
ModelName: ModelName;
/**
* The maximum number of parallel requests that can be sent to each instance in a transform job. If MaxConcurrentTransforms is set to 0 or left unset, Amazon SageMaker checks the optional execution-parameters to determine the settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is 1. For more information on execution-parameters, see How Containers Serve Requests. For built-in algorithms, you don't need to set a value for MaxConcurrentTransforms.
*/
MaxConcurrentTransforms?: MaxConcurrentTransforms;
/**
* Configures the timeout and maximum number of retries for processing a transform job invocation.
*/
ModelClientConfig?: ModelClientConfig;
/**
* The maximum allowed size of the payload, in MB. A payload is the data portion of a record (without metadata). The value in MaxPayloadInMB must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is 6 MB. For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to 0. This feature works only in supported algorithms. Currently, Amazon SageMaker built-in algorithms do not support HTTP chunked encoding.
*/
MaxPayloadInMB?: MaxPayloadInMB;
/**
* Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record. To enable the batch strategy, you must set the SplitType property to Line, RecordIO, or TFRecord. To use only one record when making an HTTP invocation request to a container, set BatchStrategy to SingleRecord and SplitType to Line. To fit as many records in a mini-batch as can fit within the MaxPayloadInMB limit, set BatchStrategy to MultiRecord and SplitType to Line.
*/
BatchStrategy?: BatchStrategy;
/**
* The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
*/
Environment?: TransformEnvironmentMap;
/**
* Describes the input source and the way the transform job consumes it.
*/
TransformInput: TransformInput;
/**
* Describes the results of the transform job.
*/
TransformOutput: TransformOutput;
/**
* Describes the resources, including ML instance types and ML instance count, to use for the transform job.
*/
TransformResources: TransformResources;
/**
* The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records.
*/
DataProcessing?: DataProcessing;
/**
* (Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
*/
Tags?: TagList;
ExperimentConfig?: ExperimentConfig;
}
export interface CreateTransformJobResponse {
/**
* The Amazon Resource Name (ARN) of the transform job.
*/
TransformJobArn: TransformJobArn;
}
export interface CreateTrialComponentRequest {
/**
* The name of the component. The name must be unique in your AWS account and is not case-sensitive.
*/
TrialComponentName: ExperimentEntityName;
/**
* The name of the component as displayed. The name doesn't need to be unique. If DisplayName isn't specified, TrialComponentName is displayed.
*/
DisplayName?: ExperimentEntityName;
/**
* The status of the component. States include: InProgress Completed Failed
*/
Status?: TrialComponentStatus;
/**
* When the component started.
*/
StartTime?: Timestamp;
/**
* When the component ended.
*/
EndTime?: Timestamp;
/**
* The hyperparameters for the component.
*/
Parameters?: TrialComponentParameters;
/**
* The input artifacts for the component. Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types.
*/
InputArtifacts?: TrialComponentArtifacts;
/**
* The output artifacts for the component. Examples of output artifacts are metrics, snapshots, logs, and images.
*/
OutputArtifacts?: TrialComponentArtifacts;
/**
* A list of tags to associate with the component. You can use Search API to search on the tags.
*/
Tags?: TagList;
}
export interface CreateTrialComponentResponse {
/**
* The Amazon Resource Name (ARN) of the trial component.
*/
TrialComponentArn?: TrialComponentArn;
}
export interface CreateTrialRequest {
/**
* The name of the trial. The name must be unique in your AWS account and is not case-sensitive.
*/
TrialName: ExperimentEntityName;
/**
* The name of the trial as displayed. The name doesn't need to be unique. If DisplayName isn't specified, TrialName is displayed.
*/
DisplayName?: ExperimentEntityName;
/**
* The name of the experiment to associate the trial with.
*/
ExperimentName: ExperimentEntityName;
/**
* A list of tags to associate with the trial. You can use Search API to search on the tags.
*/
Tags?: TagList;
}
export interface CreateTrialResponse {
/**
* The Amazon Resource Name (ARN) of the trial.
*/
TrialArn?: TrialArn;
}
export interface CreateUserProfileRequest {
/**
* The ID of the associated Domain.
*/
DomainId: DomainId;
/**
* A name for the UserProfile.
*/
UserProfileName: UserProfileName;
/**
* A specifier for the type of value specified in SingleSignOnUserValue. Currently, the only supported value is "UserName". If the Domain's AuthMode is SSO, this field is required. If the Domain's AuthMode is not SSO, this field cannot be specified.
*/
SingleSignOnUserIdentifier?: SingleSignOnUserIdentifier;
/**
* The username of the associated AWS Single Sign-On User for this UserProfile. If the Domain's AuthMode is SSO, this field is required, and must match a valid username of a user in your directory. If the Domain's AuthMode is not SSO, this field cannot be specified.
*/
SingleSignOnUserValue?: String256;
/**
* Each tag consists of a key and an optional value. Tag keys must be unique per resource.
*/
Tags?: TagList;
/**
* A collection of settings.
*/
UserSettings?: UserSettings;
}
export interface CreateUserProfileResponse {
/**
* The user profile Amazon Resource Name (ARN).
*/
UserProfileArn?: UserProfileArn;
}
export interface CreateWorkforceRequest {
/**
* Use this parameter to configure an Amazon Cognito private workforce. A single Cognito workforce is created using and corresponds to a single Amazon Cognito user pool. Do not use OidcConfig if you specify values for CognitoConfig.
*/
CognitoConfig?: CognitoConfig;
/**
* Use this parameter to configure a private workforce using your own OIDC Identity Provider. Do not use CognitoConfig if you specify values for OidcConfig.
*/
OidcConfig?: OidcConfig;
SourceIpConfig?: SourceIpConfig;
/**
* The name of the private workforce.
*/
WorkforceName: WorkforceName;
/**
* An array of key-value pairs that contain metadata to help you categorize and organize our workforce. Each tag consists of a key and a value, both of which you define.
*/
Tags?: TagList;
}
export interface CreateWorkforceResponse {
/**
* The Amazon Resource Name (ARN) of the workforce.
*/
WorkforceArn: WorkforceArn;
}
export interface CreateWorkteamRequest {
/**
* The name of the work team. Use this name to identify the work team.
*/
WorkteamName: WorkteamName;
/**
* The name of the workforce.
*/
WorkforceName?: WorkforceName;
/**
* A list of MemberDefinition objects that contains objects that identify the workers that make up the work team. Workforces can be created using Amazon Cognito or your own OIDC Identity Provider (IdP). For private workforces created using Amazon Cognito use CognitoMemberDefinition. For workforces created using your own OIDC identity provider (IdP) use OidcMemberDefinition. Do not provide input for both of these parameters in a single request. For workforces created using Amazon Cognito, private work teams correspond to Amazon Cognito user groups within the user pool used to create a workforce. All of the CognitoMemberDefinition objects that make up the member definition must have the same ClientId and UserPool values. To add a Amazon Cognito user group to an existing worker pool, see Adding groups to a User Pool. For more information about user pools, see Amazon Cognito User Pools. For workforces created using your own OIDC IdP, specify the user groups that you want to include in your private work team in OidcMemberDefinition by listing those groups in Groups.
*/
MemberDefinitions: MemberDefinitions;
/**
* A description of the work team.
*/
Description: String200;
/**
* Configures notification of workers regarding available or expiring work items.
*/
NotificationConfiguration?: NotificationConfiguration;
/**
* An array of key-value pairs. For more information, see Resource Tag and Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
*/
Tags?: TagList;
}
export interface CreateWorkteamResponse {
/**
* The Amazon Resource Name (ARN) of the work team. You can use this ARN to identify the work team.
*/
WorkteamArn?: WorkteamArn;
}
export type CreationTime = Date;
export type CsvContentType = string;
export type CsvContentTypes = CsvContentType[];
export interface DataCaptureConfig {
/**
*
*/
EnableCapture?: EnableCapture;
/**
*
*/
InitialSamplingPercentage: SamplingPercentage;
/**
*
*/
DestinationS3Uri: DestinationS3Uri;
/**
*
*/
KmsKeyId?: KmsKeyId;
/**
*
*/
CaptureOptions: CaptureOptionList;
/**
*
*/
CaptureContentTypeHeader?: CaptureContentTypeHeader;
}
export interface DataCaptureConfigSummary {
/**
*
*/
EnableCapture: EnableCapture;
/**
*
*/
CaptureStatus: CaptureStatus;
/**
*
*/
CurrentSamplingPercentage: SamplingPercentage;
/**
*
*/
DestinationS3Uri: DestinationS3Uri;
/**
*
*/
KmsKeyId: KmsKeyId;
}
export type DataExplorationNotebookLocation = string;
export type DataInputConfig = string;
export interface DataProcessing {
/**
* A JSONPath expression used to select a portion of the input data to pass to the algorithm. Use the InputFilter parameter to exclude fields, such as an ID column, from the input. If you want Amazon SageMaker to pass the entire input dataset to the algorithm, accept the default value $. Examples: "$", "$[1:]", "$.features"
*/
InputFilter?: JsonPath;
/**
* A JSONPath expression used to select a portion of the joined dataset to save in the output file for a batch transform job. If you want Amazon SageMaker to store the entire input dataset in the output file, leave the default value, $. If you specify indexes that aren't within the dimension size of the joined dataset, you get an error. Examples: "$", "$[0,5:]", "$['id','SageMakerOutput']"
*/
OutputFilter?: JsonPath;
/**
* Specifies the source of the data to join with the transformed data. The valid values are None and Input. The default value is None, which specifies not to join the input with the transformed data. If you want the batch transform job to join the original input data with the transformed data, set JoinSource to Input. For JSON or JSONLines objects, such as a JSON array, Amazon SageMaker adds the transformed data to the input JSON object in an attribute called SageMakerOutput. The joined result for JSON must be a key-value pair object. If the input is not a key-value pair object, Amazon SageMaker creates a new JSON file. In the new JSON file, and the input data is stored under the SageMakerInput key and the results are stored in SageMakerOutput. For CSV files, Amazon SageMaker combines the transformed data with the input data at the end of the input data and stores it in the output file. The joined data has the joined input data followed by the transformed data and the output is a CSV file.
*/
JoinSource?: JoinSource;
}
export interface DataSource {
/**
* The S3 location of the data source that is associated with a channel.
*/
S3DataSource?: S3DataSource;
/**
* The file system that is associated with a channel.
*/
FileSystemDataSource?: FileSystemDataSource;
}
export interface DebugHookConfig {
/**
* Path to local storage location for tensors. Defaults to /opt/ml/output/tensors/.
*/
LocalPath?: DirectoryPath;
/**
* Path to Amazon S3 storage location for tensors.
*/
S3OutputPath: S3Uri;
/**
* Configuration information for the debug hook parameters.
*/
HookParameters?: HookParameters;
/**
* Configuration information for tensor collections.
*/
CollectionConfigurations?: CollectionConfigurations;
}
export interface DebugRuleConfiguration {
/**
* The name of the rule configuration. It must be unique relative to other rule configuration names.
*/
RuleConfigurationName: RuleConfigurationName;
/**
* Path to local storage location for output of rules. Defaults to /opt/ml/processing/output/rule/.
*/
LocalPath?: DirectoryPath;
/**
* Path to Amazon S3 storage location for rules.
*/
S3OutputPath?: S3Uri;
/**
* The Amazon Elastic Container (ECR) Image for the managed rule evaluation.
*/
RuleEvaluatorImage: AlgorithmImage;
/**
* The instance type to deploy for a training job.
*/
InstanceType?: ProcessingInstanceType;
/**
* The size, in GB, of the ML storage volume attached to the processing instance.
*/
VolumeSizeInGB?: OptionalVolumeSizeInGB;
/**
* Runtime configuration for rule container.
*/
RuleParameters?: RuleParameters;
}
export type DebugRuleConfigurations = DebugRuleConfiguration[];
export interface DebugRuleEvaluationStatus {
/**
* The name of the rule configuration
*/
RuleConfigurationName?: RuleConfigurationName;
/**
* The Amazon Resource Name (ARN) of the rule evaluation job.
*/
RuleEvaluationJobArn?: ProcessingJobArn;
/**
* Status of the rule evaluation.
*/
RuleEvaluationStatus?: RuleEvaluationStatus;
/**
* Details from the rule evaluation.
*/
StatusDetails?: StatusDetails;
/**
* Timestamp when the rule evaluation status was last modified.
*/
LastModifiedTime?: Timestamp;
}
export type DebugRuleEvaluationStatuses = DebugRuleEvaluationStatus[];
export interface DeleteAlgorithmInput {
/**
* The name of the algorithm to delete.
*/
AlgorithmName: EntityName;
}
export interface DeleteAppRequest {
/**
* The domain ID.
*/
DomainId: DomainId;
/**
* The user profile name.
*/
UserProfileName: UserProfileName;
/**
* The type of app.
*/
AppType: AppType;
/**
* The name of the app.
*/
AppName: AppName;
}
export interface DeleteCodeRepositoryInput {
/**
* The name of the Git repository to delete.
*/
CodeRepositoryName: EntityName;
}
export interface DeleteDomainRequest {
/**
* The domain ID.
*/
DomainId: DomainId;
/**
* The retention policy for this domain, which specifies whether resources will be retained after the Domain is deleted. By default, all resources are retained (not automatically deleted).
*/
RetentionPolicy?: RetentionPolicy;
}
export interface DeleteEndpointConfigInput {
/**
* The name of the endpoint configuration that you want to delete.
*/
EndpointConfigName: EndpointConfigName;
}
export interface DeleteEndpointInput {
/**
* The name of the endpoint that you want to delete.
*/
EndpointName: EndpointName;
}
export interface DeleteExperimentRequest {
/**
* The name of the experiment to delete.
*/
ExperimentName: ExperimentEntityName;
}
export interface DeleteExperimentResponse {
/**
* The Amazon Resource Name (ARN) of the experiment that is being deleted.
*/
ExperimentArn?: ExperimentArn;
}
export interface DeleteFlowDefinitionRequest {
/**
* The name of the flow definition you are deleting.
*/
FlowDefinitionName: FlowDefinitionName;
}
export interface DeleteFlowDefinitionResponse {
}
export interface DeleteHumanTaskUiRequest {
/**
* The name of the human task user interface (work task template) you want to delete.
*/
HumanTaskUiName: HumanTaskUiName;
}
export interface DeleteHumanTaskUiResponse {
}
export interface DeleteModelInput {
/**
* The name of the model to delete.
*/
ModelName: ModelName;
}
export interface DeleteModelPackageInput {
/**
* The name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
*/
ModelPackageName: EntityName;
}
export interface DeleteMonitoringScheduleRequest {
/**
* The name of the monitoring schedule to delete.
*/
MonitoringScheduleName: MonitoringScheduleName;
}
export interface DeleteNotebookInstanceInput {
/**
* The name of the Amazon SageMaker notebook instance to delete.
*/
NotebookInstanceName: NotebookInstanceName;
}
export interface DeleteNotebookInstanceLifecycleConfigInput {
/**
* The name of the lifecycle configuration to delete.
*/
NotebookInstanceLifecycleConfigName: NotebookInstanceLifecycleConfigName;
}
export interface DeleteTagsInput {
/**
* The Amazon Resource Name (ARN) of the resource whose tags you want to delete.
*/
ResourceArn: ResourceArn;
/**
* An array or one or more tag keys to delete.
*/
TagKeys: TagKeyList;
}
export interface DeleteTagsOutput {
}
export interface DeleteTrialComponentRequest {
/**
* The name of the component to delete.
*/
TrialComponentName: ExperimentEntityName;
}
export interface DeleteTrialComponentResponse {
/**
* The Amazon Resource Name (ARN) of the component is being deleted.
*/
TrialComponentArn?: TrialComponentArn;
}
export interface DeleteTrialRequest {
/**
* The name of the trial to delete.
*/
TrialName: ExperimentEntityName;
}
export interface DeleteTrialResponse {
/**
* The Amazon Resource Name (ARN) of the trial that is being deleted.
*/
TrialArn?: TrialArn;
}
export interface DeleteUserProfileRequest {
/**
* The domain ID.
*/
DomainId: DomainId;
/**
* The user profile name.
*/
UserProfileName: UserProfileName;
}
export interface DeleteWorkforceRequest {
/**
* The name of the workforce.
*/
WorkforceName: WorkforceName;
}
export interface DeleteWorkforceResponse {
}
export interface DeleteWorkteamRequest {
/**
* The name of the work team to delete.
*/
WorkteamName: WorkteamName;
}
export interface DeleteWorkteamResponse {
/**
* Returns true if the work team was successfully deleted; otherwise, returns false.
*/
Success: Success;
}
export interface DeployedImage {
/**
* The image path you specified when you created the model.
*/
SpecifiedImage?: ContainerImage;
/**
* The specific digest path of the image hosted in this ProductionVariant.
*/
ResolvedImage?: ContainerImage;
/**
* The date and time when the image path for the model resolved to the ResolvedImage
*/
ResolutionTime?: Timestamp;
}
export type DeployedImages = DeployedImage[];
export interface DescribeAlgorithmInput {
/**
* The name of the algorithm to describe.
*/
AlgorithmName: ArnOrName;
}
export interface DescribeAlgorithmOutput {
/**
* The name of the algorithm being described.
*/
AlgorithmName: EntityName;
/**
* The Amazon Resource Name (ARN) of the algorithm.
*/
AlgorithmArn: AlgorithmArn;
/**
* A brief summary about the algorithm.
*/
AlgorithmDescription?: EntityDescription;
/**
* A timestamp specifying when the algorithm was created.
*/
CreationTime: CreationTime;
/**
* Details about training jobs run by this algorithm.
*/
TrainingSpecification: TrainingSpecification;
/**
* Details about inference jobs that the algorithm runs.
*/
InferenceSpecification?: InferenceSpecification;
/**
* Details about configurations for one or more training jobs that Amazon SageMaker runs to test the algorithm.
*/
ValidationSpecification?: AlgorithmValidationSpecification;
/**
* The current status of the algorithm.
*/
AlgorithmStatus: AlgorithmStatus;
/**
* Details about the current status of the algorithm.
*/
AlgorithmStatusDetails: AlgorithmStatusDetails;
/**
* The product identifier of the algorithm.
*/
ProductId?: ProductId;
/**
* Whether the algorithm is certified to be listed in AWS Marketplace.
*/
CertifyForMarketplace?: CertifyForMarketplace;
}
export interface DescribeAppRequest {
/**
* The domain ID.
*/
DomainId: DomainId;
/**
* The user profile name.
*/
UserProfileName: UserProfileName;
/**
* The type of app.
*/
AppType: AppType;
/**
* The name of the app.
*/
AppName: AppName;
}
export interface DescribeAppResponse {
/**
* The app's Amazon Resource Name (ARN).
*/
AppArn?: AppArn;
/**
* The type of app.
*/
AppType?: AppType;
/**
* The name of the app.
*/
AppName?: AppName;
/**
* The domain ID.
*/
DomainId?: DomainId;
/**
* The user profile name.
*/
UserProfileName?: UserProfileName;
/**
* The status.
*/
Status?: AppStatus;
/**
* The timestamp of the last health check.
*/
LastHealthCheckTimestamp?: Timestamp;
/**
* The timestamp of the last user's activity.
*/
LastUserActivityTimestamp?: Timestamp;
/**
* The creation time.
*/
CreationTime?: CreationTime;
/**
* The failure reason.
*/
FailureReason?: FailureReason;
/**
* The instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
*/
ResourceSpec?: ResourceSpec;
}
export interface DescribeAutoMLJobRequest {
/**
* Request information about a job using that job's unique name.
*/
AutoMLJobName: AutoMLJobName;
}
export interface DescribeAutoMLJobResponse {
/**
* Returns the name of a job.
*/
AutoMLJobName: AutoMLJobName;
/**
* Returns the job's ARN.
*/
AutoMLJobArn: AutoMLJobArn;
/**
* Returns the job's input data config.
*/
InputDataConfig: AutoMLInputDataConfig;
/**
* Returns the job's output data config.
*/
OutputDataConfig: AutoMLOutputDataConfig;
/**
* The Amazon Resource Name (ARN) of the AWS Identity and Access Management (IAM) role that has read permission to the input data location and write permission to the output data location in Amazon S3.
*/
RoleArn: RoleArn;
/**
* Returns the job's objective.
*/
AutoMLJobObjective?: AutoMLJobObjective;
/**
* Returns the job's problem type.
*/
ProblemType?: ProblemType;
/**
* Returns the job's config.
*/
AutoMLJobConfig?: AutoMLJobConfig;
/**
* Returns the job's creation time.
*/
CreationTime: Timestamp;
/**
* Returns the job's end time.
*/
EndTime?: Timestamp;
/**
* Returns the job's last modified time.
*/
LastModifiedTime: Timestamp;
/**
* Returns the job's FailureReason.
*/
FailureReason?: AutoMLFailureReason;
/**
* Returns the job's BestCandidate.
*/
BestCandidate?: AutoMLCandidate;
/**
* Returns the job's AutoMLJobStatus.
*/
AutoMLJobStatus: AutoMLJobStatus;
/**
* Returns the job's AutoMLJobSecondaryStatus.
*/
AutoMLJobSecondaryStatus: AutoMLJobSecondaryStatus;
/**
* Returns the job's output from GenerateCandidateDefinitionsOnly.
*/
GenerateCandidateDefinitionsOnly?: GenerateCandidateDefinitionsOnly;
/**
* Returns information on the job's artifacts found in AutoMLJobArtifacts.
*/
AutoMLJobArtifacts?: AutoMLJobArtifacts;
/**
* This contains ProblemType, AutoMLJobObjective and CompletionCriteria. They're auto-inferred values, if not provided by you. If you do provide them, then they'll be the same as provided.
*/
ResolvedAttributes?: ResolvedAttributes;
}
export interface DescribeCodeRepositoryInput {
/**
* The name of the Git repository to describe.
*/
CodeRepositoryName: EntityName;
}
export interface DescribeCodeRepositoryOutput {
/**
* The name of the Git repository.
*/
CodeRepositoryName: EntityName;
/**
* The Amazon Resource Name (ARN) of the Git repository.
*/
CodeRepositoryArn: CodeRepositoryArn;
/**
* The date and time that the repository was created.
*/
CreationTime: CreationTime;
/**
* The date and time that the repository was last changed.
*/
LastModifiedTime: LastModifiedTime;
/**
* Configuration details about the repository, including the URL where the repository is located, the default branch, and the Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the repository.
*/
GitConfig?: GitConfig;
}
export interface DescribeCompilationJobRequest {
/**
* The name of the model compilation job that you want information about.
*/
CompilationJobName: EntityName;
}
export interface DescribeCompilationJobResponse {
/**
* The name of the model compilation job.
*/
CompilationJobName: EntityName;
/**
* The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker assumes to perform the model compilation job.
*/
CompilationJobArn: CompilationJobArn;
/**
* The status of the model compilation job.
*/
CompilationJobStatus: CompilationJobStatus;
/**
* The time when the model compilation job started the CompilationJob instances. You are billed for the time between this timestamp and the timestamp in the DescribeCompilationJobResponse$CompilationEndTime field. In Amazon CloudWatch Logs, the start time might be later than this time. That's because it takes time to download the compilation job, which depends on the size of the compilation job container.
*/
CompilationStartTime?: Timestamp;
/**
* The time when the model compilation job on a compilation job instance ended. For a successful or stopped job, this is when the job's model artifacts have finished uploading. For a failed job, this is when Amazon SageMaker detected that the job failed.
*/
CompilationEndTime?: Timestamp;
/**
* Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker ends the compilation job. Use this API to cap model training costs.
*/
StoppingCondition: StoppingCondition;
/**
* The time that the model compilation job was created.
*/
CreationTime: CreationTime;
/**
* The time that the status of the model compilation job was last modified.
*/
LastModifiedTime: LastModifiedTime;
/**
* If a model compilation job failed, the reason it failed.
*/
FailureReason: FailureReason;
/**
* Information about the location in Amazon S3 that has been configured for storing the model artifacts used in the compilation job.
*/
ModelArtifacts: ModelArtifacts;
/**
* The Amazon Resource Name (ARN) of the model compilation job.
*/
RoleArn: RoleArn;
/**
* Information about the location in Amazon S3 of the input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
*/
InputConfig: InputConfig;
/**
* Information about the output location for the compiled model and the target device that the model runs on.
*/
OutputConfig: OutputConfig;
}
export interface DescribeDomainRequest {
/**
* The domain ID.
*/
DomainId: DomainId;
}
export interface DescribeDomainResponse {
/**
* The domain's Amazon Resource Name (ARN).
*/
DomainArn?: DomainArn;
/**
* The domain ID.
*/
DomainId?: DomainId;
/**
* The domain name.
*/
DomainName?: DomainName;
/**
* The ID of the Amazon Elastic File System (EFS) managed by this Domain.
*/
HomeEfsFileSystemId?: ResourceId;
/**
* The SSO managed application instance ID.
*/
SingleSignOnManagedApplicationInstanceId?: String256;
/**
* The status.
*/
Status?: DomainStatus;
/**
* The creation time.
*/
CreationTime?: CreationTime;
/**
* The last modified time.
*/
LastModifiedTime?: LastModifiedTime;
/**
* The failure reason.
*/
FailureReason?: FailureReason;
/**
* The domain's authentication mode.
*/
AuthMode?: AuthMode;
/**
* Settings which are applied to all UserProfile in this domain, if settings are not explicitly specified in a given UserProfile.
*/
DefaultUserSettings?: UserSettings;
/**
* The AWS Key Management Service encryption key ID.
*/
HomeEfsFileSystemKmsKeyId?: KmsKeyId;
/**
* The VPC subnets that Studio uses for communication.
*/
SubnetIds?: Subnets;
/**
* The domain's URL.
*/
Url?: String1024;
/**
* The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses for communication.
*/
VpcId?: VpcId;
/**
* Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly. PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker, which allows direct internet access VpcOnly - All Studio traffic is through the specified VPC and subnets
*/
AppNetworkAccessType?: AppNetworkAccessType;
}
export interface DescribeEndpointConfigInput {
/**
* The name of the endpoint configuration.
*/
EndpointConfigName: EndpointConfigName;
}
export interface DescribeEndpointConfigOutput {
/**
* Name of the Amazon SageMaker endpoint configuration.
*/
EndpointConfigName: EndpointConfigName;
/**
* The Amazon Resource Name (ARN) of the endpoint configuration.
*/
EndpointConfigArn: EndpointConfigArn;
/**
* An array of ProductionVariant objects, one for each model that you want to host at this endpoint.
*/
ProductionVariants: ProductionVariantList;
DataCaptureConfig?: DataCaptureConfig;
/**
* AWS KMS key ID Amazon SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance.
*/
KmsKeyId?: KmsKeyId;
/**
* A timestamp that shows when the endpoint configuration was created.
*/
CreationTime: Timestamp;
}
export interface DescribeEndpointInput {
/**
* The name of the endpoint.
*/
EndpointName: EndpointName;
}
export interface DescribeEndpointOutput {
/**
* Name of the endpoint.
*/
EndpointName: EndpointName;
/**
* The Amazon Resource Name (ARN) of the endpoint.
*/
EndpointArn: EndpointArn;
/**
* The name of the endpoint configuration associated with this endpoint.
*/
EndpointConfigName: EndpointConfigName;
/**
* An array of ProductionVariantSummary objects, one for each model hosted behind this endpoint.
*/
ProductionVariants?: ProductionVariantSummaryList;
DataCaptureConfig?: DataCaptureConfigSummary;
/**
* The status of the endpoint. OutOfService: Endpoint is not available to take incoming requests. Creating: CreateEndpoint is executing. Updating: UpdateEndpoint or UpdateEndpointWeightsAndCapacities is executing. SystemUpdating: Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count. RollingBack: Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an InService status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an UpdateEndpointWeightsAndCapacities call or when the UpdateEndpointWeightsAndCapacities operation is called explicitly. InService: Endpoint is available to process incoming requests. Deleting: DeleteEndpoint is executing. Failed: Endpoint could not be created, updated, or re-scaled. Use DescribeEndpointOutput$FailureReason for information about the failure. DeleteEndpoint is the only operation that can be performed on a failed endpoint.
*/
EndpointStatus: EndpointStatus;
/**
* If the status of the endpoint is Failed, the reason why it failed.
*/
FailureReason?: FailureReason;
/**
* A timestamp that shows when the endpoint was created.
*/
CreationTime: Timestamp;
/**
* A timestamp that shows when the endpoint was last modified.
*/
LastModifiedTime: Timestamp;
}
export interface DescribeExperimentRequest {
/**
* The name of the experiment to describe.
*/
ExperimentName: ExperimentEntityName;
}
export interface DescribeExperimentResponse {
/**
* The name of the experiment.
*/
ExperimentName?: ExperimentEntityName;
/**
* The Amazon Resource Name (ARN) of the experiment.
*/
ExperimentArn?: ExperimentArn;
/**
* The name of the experiment as displayed. If DisplayName isn't specified, ExperimentName is displayed.
*/
DisplayName?: ExperimentEntityName;
/**
* The ARN of the source and, optionally, the type.
*/
Source?: ExperimentSource;
/**
* The description of the experiment.
*/
Description?: ExperimentDescription;
/**
* When the experiment was created.
*/
CreationTime?: Timestamp;
/**
* Who created the experiment.
*/
CreatedBy?: UserContext;
/**
* When the experiment was last modified.
*/
LastModifiedTime?: Timestamp;
/**
* Who last modified the experiment.
*/
LastModifiedBy?: UserContext;
}
export interface DescribeFlowDefinitionRequest {
/**
* The name of the flow definition.
*/
FlowDefinitionName: FlowDefinitionName;
}
export interface DescribeFlowDefinitionResponse {
/**
* The Amazon Resource Name (ARN) of the flow defintion.
*/
FlowDefinitionArn: FlowDefinitionArn;
/**
* The Amazon Resource Name (ARN) of the flow definition.
*/
FlowDefinitionName: FlowDefinitionName;
/**
* The status of the flow definition. Valid values are listed below.
*/
FlowDefinitionStatus: FlowDefinitionStatus;
/**
* The timestamp when the flow definition was created.
*/
CreationTime: Timestamp;
/**
* Container for configuring the source of human task requests. Used to specify if Amazon Rekognition or Amazon Textract is used as an integration source.
*/
HumanLoopRequestSource?: HumanLoopRequestSource;
/**
* An object containing information about what triggers a human review workflow.
*/
HumanLoopActivationConfig?: HumanLoopActivationConfig;
/**
* An object containing information about who works on the task, the workforce task price, and other task details.
*/
HumanLoopConfig: HumanLoopConfig;
/**
* An object containing information about the output file.
*/
OutputConfig: FlowDefinitionOutputConfig;
/**
* The Amazon Resource Name (ARN) of the AWS Identity and Access Management (IAM) execution role for the flow definition.
*/
RoleArn: RoleArn;
/**
* The reason your flow definition failed.
*/
FailureReason?: FailureReason;
}
export interface DescribeHumanTaskUiRequest {
/**
* The name of the human task user interface (worker task template) you want information about.
*/
HumanTaskUiName: HumanTaskUiName;
}
export interface DescribeHumanTaskUiResponse {
/**
* The Amazon Resource Name (ARN) of the human task user interface (worker task template).
*/
HumanTaskUiArn: HumanTaskUiArn;
/**
* The name of the human task user interface (worker task template).
*/
HumanTaskUiName: HumanTaskUiName;
/**
* The status of the human task user interface (worker task template). Valid values are listed below.
*/
HumanTaskUiStatus?: HumanTaskUiStatus;
/**
* The timestamp when the human task user interface was created.
*/
CreationTime: Timestamp;
UiTemplate: UiTemplateInfo;
}
export interface DescribeHyperParameterTuningJobRequest {
/**
* The name of the tuning job.
*/
HyperParameterTuningJobName: HyperParameterTuningJobName;
}
export interface DescribeHyperParameterTuningJobResponse {
/**
* The name of the tuning job.
*/
HyperParameterTuningJobName: HyperParameterTuningJobName;
/**
* The Amazon Resource Name (ARN) of the tuning job.
*/
HyperParameterTuningJobArn: HyperParameterTuningJobArn;
/**
* The HyperParameterTuningJobConfig object that specifies the configuration of the tuning job.
*/
HyperParameterTuningJobConfig: HyperParameterTuningJobConfig;
/**
* The HyperParameterTrainingJobDefinition object that specifies the definition of the training jobs that this tuning job launches.
*/
TrainingJobDefinition?: HyperParameterTrainingJobDefinition;
/**
* A list of the HyperParameterTrainingJobDefinition objects launched for this tuning job.
*/
TrainingJobDefinitions?: HyperParameterTrainingJobDefinitions;
/**
* The status of the tuning job: InProgress, Completed, Failed, Stopping, or Stopped.
*/
HyperParameterTuningJobStatus: HyperParameterTuningJobStatus;
/**
* The date and time that the tuning job started.
*/
CreationTime: Timestamp;
/**
* The date and time that the tuning job ended.
*/
HyperParameterTuningEndTime?: Timestamp;
/**
* The date and time that the status of the tuning job was modified.
*/
LastModifiedTime?: Timestamp;
/**
* The TrainingJobStatusCounters object that specifies the number of training jobs, categorized by status, that this tuning job launched.
*/
TrainingJobStatusCounters: TrainingJobStatusCounters;
/**
* The ObjectiveStatusCounters object that specifies the number of training jobs, categorized by the status of their final objective metric, that this tuning job launched.
*/
ObjectiveStatusCounters: ObjectiveStatusCounters;
/**
* A TrainingJobSummary object that describes the training job that completed with the best current HyperParameterTuningJobObjective.
*/
BestTrainingJob?: HyperParameterTrainingJobSummary;
/**
* If the hyperparameter tuning job is an warm start tuning job with a WarmStartType of IDENTICAL_DATA_AND_ALGORITHM, this is the TrainingJobSummary for the training job with the best objective metric value of all training jobs launched by this tuning job and all parent jobs specified for the warm start tuning job.
*/
OverallBestTrainingJob?: HyperParameterTrainingJobSummary;
/**
* The configuration for starting the hyperparameter parameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.
*/
WarmStartConfig?: HyperParameterTuningJobWarmStartConfig;
/**
* If the tuning job failed, the reason it failed.
*/
FailureReason?: FailureReason;
}
export interface DescribeLabelingJobRequest {
/**
* The name of the labeling job to return information for.
*/
LabelingJobName: LabelingJobName;
}
export interface DescribeLabelingJobResponse {
/**
* The processing status of the labeling job.
*/
LabelingJobStatus: LabelingJobStatus;
/**
* Provides a breakdown of the number of data objects labeled by humans, the number of objects labeled by machine, the number of objects than couldn't be labeled, and the total number of objects labeled.
*/
LabelCounters: LabelCounters;
/**
* If the job failed, the reason that it failed.
*/
FailureReason?: FailureReason;
/**
* The date and time that the labeling job was created.
*/
CreationTime: Timestamp;
/**
* The date and time that the labeling job was last updated.
*/
LastModifiedTime: Timestamp;
/**
* A unique identifier for work done as part of a labeling job.
*/
JobReferenceCode: JobReferenceCode;
/**
* The name assigned to the labeling job when it was created.
*/
LabelingJobName: LabelingJobName;
/**
* The Amazon Resource Name (ARN) of the labeling job.
*/
LabelingJobArn: LabelingJobArn;
/**
* The attribute used as the label in the output manifest file.
*/
LabelAttributeName?: LabelAttributeName;
/**
* Input configuration information for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.
*/
InputConfig: LabelingJobInputConfig;
/**
* The location of the job's output data and the AWS Key Management Service key ID for the key used to encrypt the output data, if any.
*/
OutputConfig: LabelingJobOutputConfig;
/**
* The Amazon Resource Name (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling.
*/
RoleArn: RoleArn;
/**
* The S3 location of the JSON file that defines the categories used to label data objects. Please note the following label-category limits: Semantic segmentation labeling jobs using automated labeling: 20 labels Box bounding labeling jobs (all): 10 labels The file is a JSON structure in the following format: { "document-version": "2018-11-28" "labels": [ { "label": "label 1" }, { "label": "label 2" }, ... { "label": "label n" } ] }
*/
LabelCategoryConfigS3Uri?: S3Uri;
/**
* A set of conditions for stopping a labeling job. If any of the conditions are met, the job is automatically stopped.
*/
StoppingConditions?: LabelingJobStoppingConditions;
/**
* Configuration information for automated data labeling.
*/
LabelingJobAlgorithmsConfig?: LabelingJobAlgorithmsConfig;
/**
* Configuration information required for human workers to complete a labeling task.
*/
HumanTaskConfig: HumanTaskConfig;
/**
* An array of key/value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
*/
Tags?: TagList;
/**
* The location of the output produced by the labeling job.
*/
LabelingJobOutput?: LabelingJobOutput;
}
export interface DescribeModelInput {
/**
* The name of the model.
*/
ModelName: ModelName;
}
export interface DescribeModelOutput {
/**
* Name of the Amazon SageMaker model.
*/
ModelName: ModelName;
/**
* The location of the primary inference code, associated artifacts, and custom environment map that the inference code uses when it is deployed in production.
*/
PrimaryContainer?: ContainerDefinition;
/**
* The containers in the inference pipeline.
*/
Containers?: ContainerDefinitionList;
/**
* The Amazon Resource Name (ARN) of the IAM role that you specified for the model.
*/
ExecutionRoleArn: RoleArn;
/**
* A VpcConfig object that specifies the VPC that this model has access to. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud
*/
VpcConfig?: VpcConfig;
/**
* A timestamp that shows when the model was created.
*/
CreationTime: Timestamp;
/**
* The Amazon Resource Name (ARN) of the model.
*/
ModelArn: ModelArn;
/**
* If True, no inbound or outbound network calls can be made to or from the model container.
*/
EnableNetworkIsolation?: Boolean;
}
export interface DescribeModelPackageInput {
/**
* The name of the model package to describe.
*/
ModelPackageName: ArnOrName;
}
export interface DescribeModelPackageOutput {
/**
* The name of the model package being described.
*/
ModelPackageName: EntityName;
/**
* The Amazon Resource Name (ARN) of the model package.
*/
ModelPackageArn: ModelPackageArn;
/**
* A brief summary of the model package.
*/
ModelPackageDescription?: EntityDescription;
/**
* A timestamp specifying when the model package was created.
*/
CreationTime: CreationTime;
/**
* Details about inference jobs that can be run with models based on this model package.
*/
InferenceSpecification?: InferenceSpecification;
/**
* Details about the algorithm that was used to create the model package.
*/
SourceAlgorithmSpecification?: SourceAlgorithmSpecification;
/**
* Configurations for one or more transform jobs that Amazon SageMaker runs to test the model package.
*/
ValidationSpecification?: ModelPackageValidationSpecification;
/**
* The current status of the model package.
*/
ModelPackageStatus: ModelPackageStatus;
/**
* Details about the current status of the model package.
*/
ModelPackageStatusDetails: ModelPackageStatusDetails;
/**
* Whether the model package is certified for listing on AWS Marketplace.
*/
CertifyForMarketplace?: CertifyForMarketplace;
}
export interface DescribeMonitoringScheduleRequest {
/**
* Name of a previously created monitoring schedule.
*/
MonitoringScheduleName: MonitoringScheduleName;
}
export interface DescribeMonitoringScheduleResponse {
/**
* The Amazon Resource Name (ARN) of the monitoring schedule.
*/
MonitoringScheduleArn: MonitoringScheduleArn;
/**
* Name of the monitoring schedule.
*/
MonitoringScheduleName: MonitoringScheduleName;
/**
* The status of an monitoring job.
*/
MonitoringScheduleStatus: ScheduleStatus;
/**
* A string, up to one KB in size, that contains the reason a monitoring job failed, if it failed.
*/
FailureReason?: FailureReason;
/**
* The time at which the monitoring job was created.
*/
CreationTime: Timestamp;
/**
* The time at which the monitoring job was last modified.
*/
LastModifiedTime: Timestamp;
/**
* The configuration object that specifies the monitoring schedule and defines the monitoring job.
*/
MonitoringScheduleConfig: MonitoringScheduleConfig;
/**
* The name of the endpoint for the monitoring job.
*/
EndpointName?: EndpointName;
/**
* Describes metadata on the last execution to run, if there was one.
*/
LastMonitoringExecutionSummary?: MonitoringExecutionSummary;
}
export interface DescribeNotebookInstanceInput {
/**
* The name of the notebook instance that you want information about.
*/
NotebookInstanceName: NotebookInstanceName;
}
export interface DescribeNotebookInstanceLifecycleConfigInput {
/**
* The name of the lifecycle configuration to describe.
*/
NotebookInstanceLifecycleConfigName: NotebookInstanceLifecycleConfigName;
}
export interface DescribeNotebookInstanceLifecycleConfigOutput {
/**
* The Amazon Resource Name (ARN) of the lifecycle configuration.
*/
NotebookInstanceLifecycleConfigArn?: NotebookInstanceLifecycleConfigArn;
/**
* The name of the lifecycle configuration.
*/
NotebookInstanceLifecycleConfigName?: NotebookInstanceLifecycleConfigName;
/**
* The shell script that runs only once, when you create a notebook instance.
*/
OnCreate?: NotebookInstanceLifecycleConfigList;
/**
* The shell script that runs every time you start a notebook instance, including when you create the notebook instance.
*/
OnStart?: NotebookInstanceLifecycleConfigList;
/**
* A timestamp that tells when the lifecycle configuration was last modified.
*/
LastModifiedTime?: LastModifiedTime;
/**
* A timestamp that tells when the lifecycle configuration was created.
*/
CreationTime?: CreationTime;
}
export interface DescribeNotebookInstanceOutput {
/**
* The Amazon Resource Name (ARN) of the notebook instance.
*/
NotebookInstanceArn?: NotebookInstanceArn;
/**
* The name of the Amazon SageMaker notebook instance.
*/
NotebookInstanceName?: NotebookInstanceName;
/**
* The status of the notebook instance.
*/
NotebookInstanceStatus?: NotebookInstanceStatus;
/**
* If status is Failed, the reason it failed.
*/
FailureReason?: FailureReason;
/**
* The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
*/
Url?: NotebookInstanceUrl;
/**
* The type of ML compute instance running on the notebook instance.
*/
InstanceType?: InstanceType;
/**
* The ID of the VPC subnet.
*/
SubnetId?: SubnetId;
/**
* The IDs of the VPC security groups.
*/
SecurityGroups?: SecurityGroupIds;
/**
* The Amazon Resource Name (ARN) of the IAM role associated with the instance.
*/
RoleArn?: RoleArn;
/**
* The AWS KMS key ID Amazon SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance.
*/
KmsKeyId?: KmsKeyId;
/**
* The network interface IDs that Amazon SageMaker created at the time of creating the instance.
*/
NetworkInterfaceId?: NetworkInterfaceId;
/**
* A timestamp. Use this parameter to retrieve the time when the notebook instance was last modified.
*/
LastModifiedTime?: LastModifiedTime;
/**
* A timestamp. Use this parameter to return the time when the notebook instance was created
*/
CreationTime?: CreationTime;
/**
* Returns the name of a notebook instance lifecycle configuration. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance
*/
NotebookInstanceLifecycleConfigName?: NotebookInstanceLifecycleConfigName;
/**
* Describes whether Amazon SageMaker provides internet access to the notebook instance. If this value is set to Disabled, the notebook instance does not have internet access, and cannot connect to Amazon SageMaker training and endpoint services. For more information, see Notebook Instances Are Internet-Enabled by Default.
*/
DirectInternetAccess?: DirectInternetAccess;
/**
* The size, in GB, of the ML storage volume attached to the notebook instance.
*/
VolumeSizeInGB?: NotebookInstanceVolumeSizeInGB;
/**
* A list of the Elastic Inference (EI) instance types associated with this notebook instance. Currently only one EI instance type can be associated with a notebook instance. For more information, see Using Elastic Inference in Amazon SageMaker.
*/
AcceleratorTypes?: NotebookInstanceAcceleratorTypes;
/**
* The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
*/
DefaultCodeRepository?: CodeRepositoryNameOrUrl;
/**
* An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
*/
AdditionalCodeRepositories?: AdditionalCodeRepositoryNamesOrUrls;
/**
* Whether root access is enabled or disabled for users of the notebook instance. Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users.
*/
RootAccess?: RootAccess;
}
export interface DescribeProcessingJobRequest {
/**
* The name of the processing job. The name must be unique within an AWS Region in the AWS account.
*/
ProcessingJobName: ProcessingJobName;
}
export interface DescribeProcessingJobResponse {
/**
* The inputs for a processing job.
*/
ProcessingInputs?: ProcessingInputs;
/**
* Output configuration for the processing job.
*/
ProcessingOutputConfig?: ProcessingOutputConfig;
/**
* The name of the processing job. The name must be unique within an AWS Region in the AWS account.
*/
ProcessingJobName: ProcessingJobName;
/**
* Identifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job. In distributed training, you specify more than one instance.
*/
ProcessingResources: ProcessingResources;
/**
* The time limit for how long the processing job is allowed to run.
*/
StoppingCondition?: ProcessingStoppingCondition;
/**
* Configures the processing job to run a specified container image.
*/
AppSpecification: AppSpecification;
/**
* The environment variables set in the Docker container.
*/
Environment?: ProcessingEnvironmentMap;
/**
* Networking options for a processing job.
*/
NetworkConfig?: NetworkConfig;
/**
* The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
*/
RoleArn?: RoleArn;
/**
* The configuration information used to create an experiment.
*/
ExperimentConfig?: ExperimentConfig;
/**
* The Amazon Resource Name (ARN) of the processing job.
*/
ProcessingJobArn: ProcessingJobArn;
/**
* Provides the status of a processing job.
*/
ProcessingJobStatus: ProcessingJobStatus;
/**
* An optional string, up to one KB in size, that contains metadata from the processing container when the processing job exits.
*/
ExitMessage?: ExitMessage;
/**
* A string, up to one KB in size, that contains the reason a processing job failed, if it failed.
*/
FailureReason?: FailureReason;
/**
* The time at which the processing job completed.
*/
ProcessingEndTime?: Timestamp;
/**
* The time at which the processing job started.
*/
ProcessingStartTime?: Timestamp;
/**
* The time at which the processing job was last modified.
*/
LastModifiedTime?: Timestamp;
/**
* The time at which the processing job was created.
*/
CreationTime: Timestamp;
/**
* The ARN of a monitoring schedule for an endpoint associated with this processing job.
*/
MonitoringScheduleArn?: MonitoringScheduleArn;
/**
* The ARN of an AutoML job associated with this processing job.
*/
AutoMLJobArn?: AutoMLJobArn;
/**
* The ARN of a training job associated with this processing job.
*/
TrainingJobArn?: TrainingJobArn;
}
export interface DescribeSubscribedWorkteamRequest {
/**
* The Amazon Resource Name (ARN) of the subscribed work team to describe.
*/
WorkteamArn: WorkteamArn;
}
export interface DescribeSubscribedWorkteamResponse {
/**
* A Workteam instance that contains information about the work team.
*/
SubscribedWorkteam: SubscribedWorkteam;
}
export interface DescribeTrainingJobRequest {
/**
* The name of the training job.
*/
TrainingJobName: TrainingJobName;
}
export interface DescribeTrainingJobResponse {
/**
* Name of the model training job.
*/
TrainingJobName: TrainingJobName;
/**
* The Amazon Resource Name (ARN) of the training job.
*/
TrainingJobArn: TrainingJobArn;
/**
* The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.
*/
TuningJobArn?: HyperParameterTuningJobArn;
/**
* The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or training job.
*/
LabelingJobArn?: LabelingJobArn;
/**
* The Amazon Resource Name (ARN) of an AutoML job.
*/
AutoMLJobArn?: AutoMLJobArn;
/**
* Information about the Amazon S3 location that is configured for storing model artifacts.
*/
ModelArtifacts: ModelArtifacts;
/**
* The status of the training job. Amazon SageMaker provides the following training job statuses: InProgress - The training is in progress. Completed - The training job has completed. Failed - The training job has failed. To see the reason for the failure, see the FailureReason field in the response to a DescribeTrainingJobResponse call. Stopping - The training job is stopping. Stopped - The training job has stopped. For more detailed information, see SecondaryStatus.
*/
TrainingJobStatus: TrainingJobStatus;
/**
* Provides detailed information about the state of the training job. For detailed information on the secondary status of the training job, see StatusMessage under SecondaryStatusTransition. Amazon SageMaker provides primary statuses and secondary statuses that apply to each of them: InProgress Starting - Starting the training job. Downloading - An optional stage for algorithms that support File training input mode. It indicates that data is being downloaded to the ML storage volumes. Training - Training is in progress. Interrupted - The job stopped because the managed spot training instances were interrupted. Uploading - Training is complete and the model artifacts are being uploaded to the S3 location. Completed Completed - The training job has completed. Failed Failed - The training job has failed. The reason for the failure is returned in the FailureReason field of DescribeTrainingJobResponse. Stopped MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed runtime. MaxWaitTimeExceeded - The job stopped because it exceeded the maximum allowed wait time. Stopped - The training job has stopped. Stopping Stopping - Stopping the training job. Valid values for SecondaryStatus are subject to change. We no longer support the following secondary statuses: LaunchingMLInstances PreparingTrainingStack DownloadingTrainingImage
*/
SecondaryStatus: SecondaryStatus;
/**
* If the training job failed, the reason it failed.
*/
FailureReason?: FailureReason;
/**
* Algorithm-specific parameters.
*/
HyperParameters?: HyperParameters;
/**
* Information about the algorithm used for training, and algorithm metadata.
*/
AlgorithmSpecification: AlgorithmSpecification;
/**
* The AWS Identity and Access Management (IAM) role configured for the training job.
*/
RoleArn?: RoleArn;
/**
* An array of Channel objects that describes each data input channel.
*/
InputDataConfig?: InputDataConfig;
/**
* The S3 path where model artifacts that you configured when creating the job are stored. Amazon SageMaker creates subfolders for model artifacts.
*/
OutputDataConfig?: OutputDataConfig;
/**
* Resources, including ML compute instances and ML storage volumes, that are configured for model training.
*/
ResourceConfig: ResourceConfig;
/**
* A VpcConfig object that specifies the VPC that this training job has access to. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
*/
VpcConfig?: VpcConfig;
/**
* Specifies a limit to how long a model training job can run. It also specifies the maximum time to wait for a spot instance. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.
*/
StoppingCondition: StoppingCondition;
/**
* A timestamp that indicates when the training job was created.
*/
CreationTime: Timestamp;
/**
* Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of TrainingEndTime. The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.
*/
TrainingStartTime?: Timestamp;
/**
* Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.
*/
TrainingEndTime?: Timestamp;
/**
* A timestamp that indicates when the status of the training job was last modified.
*/
LastModifiedTime?: Timestamp;
/**
* A history of all of the secondary statuses that the training job has transitioned through.
*/
SecondaryStatusTransitions?: SecondaryStatusTransitions;
/**
* A collection of MetricData objects that specify the names, values, and dates and times that the training algorithm emitted to Amazon CloudWatch.
*/
FinalMetricDataList?: FinalMetricDataList;
/**
* If you want to allow inbound or outbound network calls, except for calls between peers within a training cluster for distributed training, choose True. If you enable network isolation for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.
*/
EnableNetworkIsolation?: Boolean;
/**
* To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithms in distributed training.
*/
EnableInterContainerTrafficEncryption?: Boolean;
/**
* A Boolean indicating whether managed spot training is enabled (True) or not (False).
*/
EnableManagedSpotTraining?: Boolean;
CheckpointConfig?: CheckpointConfig;
/**
* The training time in seconds.
*/
TrainingTimeInSeconds?: TrainingTimeInSeconds;
/**
* The billable time in seconds. You can calculate the savings from using managed spot training using the formula (1 - BillableTimeInSeconds / TrainingTimeInSeconds) * 100. For example, if BillableTimeInSeconds is 100 and TrainingTimeInSeconds is 500, the savings is 80%.
*/
BillableTimeInSeconds?: BillableTimeInSeconds;
DebugHookConfig?: DebugHookConfig;
ExperimentConfig?: ExperimentConfig;
/**
* Configuration information for debugging rules.
*/
DebugRuleConfigurations?: DebugRuleConfigurations;
TensorBoardOutputConfig?: TensorBoardOutputConfig;
/**
* Status about the debug rule evaluation.
*/
DebugRuleEvaluationStatuses?: DebugRuleEvaluationStatuses;
}
export interface DescribeTransformJobRequest {
/**
* The name of the transform job that you want to view details of.
*/
TransformJobName: TransformJobName;
}
export interface DescribeTransformJobResponse {
/**
* The name of the transform job.
*/
TransformJobName: TransformJobName;
/**
* The Amazon Resource Name (ARN) of the transform job.
*/
TransformJobArn: TransformJobArn;
/**
* The status of the transform job. If the transform job failed, the reason is returned in the FailureReason field.
*/
TransformJobStatus: TransformJobStatus;
/**
* If the transform job failed, FailureReason describes why it failed. A transform job creates a log file, which includes error messages, and stores it as an Amazon S3 object. For more information, see Log Amazon SageMaker Events with Amazon CloudWatch.
*/
FailureReason?: FailureReason;
/**
* The name of the model used in the transform job.
*/
ModelName: ModelName;
/**
* The maximum number of parallel requests on each instance node that can be launched in a transform job. The default value is 1.
*/
MaxConcurrentTransforms?: MaxConcurrentTransforms;
/**
* The timeout and maximum number of retries for processing a transform job invocation.
*/
ModelClientConfig?: ModelClientConfig;
/**
* The maximum payload size, in MB, used in the transform job.
*/
MaxPayloadInMB?: MaxPayloadInMB;
/**
* Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record. To enable the batch strategy, you must set SplitType to Line, RecordIO, or TFRecord.
*/
BatchStrategy?: BatchStrategy;
/**
* The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
*/
Environment?: TransformEnvironmentMap;
/**
* Describes the dataset to be transformed and the Amazon S3 location where it is stored.
*/
TransformInput: TransformInput;
/**
* Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.
*/
TransformOutput?: TransformOutput;
/**
* Describes the resources, including ML instance types and ML instance count, to use for the transform job.
*/
TransformResources: TransformResources;
/**
* A timestamp that shows when the transform Job was created.
*/
CreationTime: Timestamp;
/**
* Indicates when the transform job starts on ML instances. You are billed for the time interval between this time and the value of TransformEndTime.
*/
TransformStartTime?: Timestamp;
/**
* Indicates when the transform job has been completed, or has stopped or failed. You are billed for the time interval between this time and the value of TransformStartTime.
*/
TransformEndTime?: Timestamp;
/**
* The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or training job.
*/
LabelingJobArn?: LabelingJobArn;
/**
* The Amazon Resource Name (ARN) of the AutoML transform job.
*/
AutoMLJobArn?: AutoMLJobArn;
DataProcessing?: DataProcessing;
ExperimentConfig?: ExperimentConfig;
}
export interface DescribeTrialComponentRequest {
/**
* The name of the trial component to describe.
*/
TrialComponentName: ExperimentEntityName;
}
export interface DescribeTrialComponentResponse {
/**
* The name of the trial component.
*/
TrialComponentName?: ExperimentEntityName;
/**
* The Amazon Resource Name (ARN) of the trial component.
*/
TrialComponentArn?: TrialComponentArn;
/**
* The name of the component as displayed. If DisplayName isn't specified, TrialComponentName is displayed.
*/
DisplayName?: ExperimentEntityName;
/**
* The Amazon Resource Name (ARN) of the source and, optionally, the job type.
*/
Source?: TrialComponentSource;
/**
* The status of the component. States include: InProgress Completed Failed
*/
Status?: TrialComponentStatus;
/**
* When the component started.
*/
StartTime?: Timestamp;
/**
* When the component ended.
*/
EndTime?: Timestamp;
/**
* When the component was created.
*/
CreationTime?: Timestamp;
/**
* Who created the component.
*/
CreatedBy?: UserContext;
/**
* When the component was last modified.
*/
LastModifiedTime?: Timestamp;
/**
* Who last modified the component.
*/
LastModifiedBy?: UserContext;
/**
* The hyperparameters of the component.
*/
Parameters?: TrialComponentParameters;
/**
* The input artifacts of the component.
*/
InputArtifacts?: TrialComponentArtifacts;
/**
* The output artifacts of the component.
*/
OutputArtifacts?: TrialComponentArtifacts;
/**
* The metrics for the component.
*/
Metrics?: TrialComponentMetricSummaries;
}
export interface DescribeTrialRequest {
/**
* The name of the trial to describe.
*/
TrialName: ExperimentEntityName;
}
export interface DescribeTrialResponse {
/**
* The name of the trial.
*/
TrialName?: ExperimentEntityName;
/**
* The Amazon Resource Name (ARN) of the trial.
*/
TrialArn?: TrialArn;
/**
* The name of the trial as displayed. If DisplayName isn't specified, TrialName is displayed.
*/
DisplayName?: ExperimentEntityName;
/**
* The name of the experiment the trial is part of.
*/
ExperimentName?: ExperimentEntityName;
/**
* The Amazon Resource Name (ARN) of the source and, optionally, the job type.
*/
Source?: TrialSource;
/**
* When the trial was created.
*/
CreationTime?: Timestamp;
/**
* Who created the trial.
*/
CreatedBy?: UserContext;
/**
* When the trial was last modified.
*/
LastModifiedTime?: Timestamp;
/**
* Who last modified the trial.
*/
LastModifiedBy?: UserContext;
}
export interface DescribeUserProfileRequest {
/**
* The domain ID.
*/
DomainId: DomainId;
/**
* The user profile name.
*/
UserProfileName: UserProfileName;
}
export interface DescribeUserProfileResponse {
/**
* The ID of the domain that contains the profile.
*/
DomainId?: DomainId;
/**
* The user profile Amazon Resource Name (ARN).
*/
UserProfileArn?: UserProfileArn;
/**
* The user profile name.
*/
UserProfileName?: UserProfileName;
/**
* The ID of the user's profile in the Amazon Elastic File System (EFS) volume.
*/
HomeEfsFileSystemUid?: EfsUid;
/**
* The status.
*/
Status?: UserProfileStatus;
/**
* The last modified time.
*/
LastModifiedTime?: LastModifiedTime;
/**
* The creation time.
*/
CreationTime?: CreationTime;
/**
* The failure reason.
*/
FailureReason?: FailureReason;
/**
* The SSO user identifier.
*/
SingleSignOnUserIdentifier?: SingleSignOnUserIdentifier;
/**
* The SSO user value.
*/
SingleSignOnUserValue?: String256;
/**
* A collection of settings.
*/
UserSettings?: UserSettings;
}
export interface DescribeWorkforceRequest {
/**
* The name of the private workforce whose access you want to restrict. WorkforceName is automatically set to default when a workforce is created and cannot be modified.
*/
WorkforceName: WorkforceName;
}
export interface DescribeWorkforceResponse {
/**
* A single private workforce, which is automatically created when you create your first private work team. You can create one private work force in each AWS Region. By default, any workforce-related API operation used in a specific region will apply to the workforce created in that region. To learn how to create a private workforce, see Create a Private Workforce.
*/
Workforce: Workforce;
}
export interface DescribeWorkteamRequest {
/**
* The name of the work team to return a description of.
*/
WorkteamName: WorkteamName;
}
export interface DescribeWorkteamResponse {
/**
* A Workteam instance that contains information about the work team.
*/
Workteam: Workteam;
}
export interface DesiredWeightAndCapacity {
/**
* The name of the variant to update.
*/
VariantName: VariantName;
/**
* The variant's weight.
*/
DesiredWeight?: VariantWeight;
/**
* The variant's capacity.
*/
DesiredInstanceCount?: TaskCount;
}
export type DesiredWeightAndCapacityList = DesiredWeightAndCapacity[];
export type DestinationS3Uri = string;
export type DetailedAlgorithmStatus = "NotStarted"|"InProgress"|"Completed"|"Failed"|string;
export type DetailedModelPackageStatus = "NotStarted"|"InProgress"|"Completed"|"Failed"|string;
export type DirectInternetAccess = "Enabled"|"Disabled"|string;
export type DirectoryPath = string;
export type DisassociateAdditionalCodeRepositories = boolean;
export type DisassociateDefaultCodeRepository = boolean;
export type DisassociateNotebookInstanceAcceleratorTypes = boolean;
export type DisassociateNotebookInstanceLifecycleConfig = boolean;
export interface DisassociateTrialComponentRequest {
/**
* The name of the component to disassociate from the trial.
*/
TrialComponentName: ExperimentEntityName;
/**
* The name of the trial to disassociate from.
*/
TrialName: ExperimentEntityName;
}
export interface DisassociateTrialComponentResponse {
/**
* The ARN of the trial component.
*/
TrialComponentArn?: TrialComponentArn;
/**
* The Amazon Resource Name (ARN) of the trial.
*/
TrialArn?: TrialArn;
}
export type Dollars = number;
export type DomainArn = string;
export interface DomainDetails {
/**
* The domain's Amazon Resource Name (ARN).
*/
DomainArn?: DomainArn;
/**
* The domain ID.
*/
DomainId?: DomainId;
/**
* The domain name.
*/
DomainName?: DomainName;
/**
* The status.
*/
Status?: DomainStatus;
/**
* The creation time.
*/
CreationTime?: CreationTime;
/**
* The last modified time.
*/
LastModifiedTime?: LastModifiedTime;
/**
* The domain's URL.
*/
Url?: String1024;
}
export type DomainId = string;
export type DomainList = DomainDetails[];
export type DomainName = string;
export type DomainStatus = "Deleting"|"Failed"|"InService"|"Pending"|string;
export type DoubleParameterValue = number;
export type EfsUid = string;
export type EnableCapture = boolean;
export type EndpointArn = string;
export type EndpointConfigArn = string;
export type EndpointConfigName = string;
export type EndpointConfigNameContains = string;
export type EndpointConfigSortKey = "Name"|"CreationTime"|string;
export interface EndpointConfigSummary {
/**
* The name of the endpoint configuration.
*/
EndpointConfigName: EndpointConfigName;
/**
* The Amazon Resource Name (ARN) of the endpoint configuration.
*/
EndpointConfigArn: EndpointConfigArn;
/**
* A timestamp that shows when the endpoint configuration was created.
*/
CreationTime: Timestamp;
}
export type EndpointConfigSummaryList = EndpointConfigSummary[];
export interface EndpointInput {
/**
* An endpoint in customer's account which has enabled DataCaptureConfig enabled.
*/
EndpointName: EndpointName;
/**
* Path to the filesystem where the endpoint data is available to the container.
*/
LocalPath: ProcessingLocalPath;
/**
* Whether the Pipe or File is used as the input mode for transfering data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File.
*/
S3InputMode?: ProcessingS3InputMode;
/**
* Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defauts to FullyReplicated
*/
S3DataDistributionType?: ProcessingS3DataDistributionType;
}
export type EndpointName = string;
export type EndpointNameContains = string;
export type EndpointSortKey = "Name"|"CreationTime"|"Status"|string;
export type EndpointStatus = "OutOfService"|"Creating"|"Updating"|"SystemUpdating"|"RollingBack"|"InService"|"Deleting"|"Failed"|string;
export interface EndpointSummary {
/**
* The name of the endpoint.
*/
EndpointName: EndpointName;
/**
* The Amazon Resource Name (ARN) of the endpoint.
*/
EndpointArn: EndpointArn;
/**
* A timestamp that shows when the endpoint was created.
*/
CreationTime: Timestamp;
/**
* A timestamp that shows when the endpoint was last modified.
*/
LastModifiedTime: Timestamp;
/**
* The status of the endpoint. OutOfService: Endpoint is not available to take incoming requests. Creating: CreateEndpoint is executing. Updating: UpdateEndpoint or UpdateEndpointWeightsAndCapacities is executing. SystemUpdating: Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count. RollingBack: Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an InService status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an UpdateEndpointWeightsAndCapacities call or when the UpdateEndpointWeightsAndCapacities operation is called explicitly. InService: Endpoint is available to process incoming requests. Deleting: DeleteEndpoint is executing. Failed: Endpoint could not be created, updated, or re-scaled. Use DescribeEndpointOutput$FailureReason for information about the failure. DeleteEndpoint is the only operation that can be performed on a failed endpoint. To get a list of endpoints with a specified status, use the ListEndpointsInput$StatusEquals filter.
*/
EndpointStatus: EndpointStatus;
}
export type EndpointSummaryList = EndpointSummary[];
export type EntityDescription = string;
export type EntityName = string;
export type EnvironmentKey = string;
export type EnvironmentMap = {[key: string]: EnvironmentValue};
export type EnvironmentValue = string;
export type ExecutionStatus = "Pending"|"Completed"|"CompletedWithViolations"|"InProgress"|"Failed"|"Stopping"|"Stopped"|string;
export type ExitMessage = string;
export interface Experiment {
/**
* The name of the experiment.
*/
ExperimentName?: ExperimentEntityName;
/**
* The Amazon Resource Name (ARN) of the experiment.
*/
ExperimentArn?: ExperimentArn;
/**
* The name of the experiment as displayed. If DisplayName isn't specified, ExperimentName is displayed.
*/
DisplayName?: ExperimentEntityName;
Source?: ExperimentSource;
/**
* The description of the experiment.
*/
Description?: ExperimentDescription;
/**
* When the experiment was created.
*/
CreationTime?: Timestamp;
CreatedBy?: UserContext;
/**
* When the experiment was last modified.
*/
LastModifiedTime?: Timestamp;
LastModifiedBy?: UserContext;
/**
* The list of tags that are associated with the experiment. You can use Search API to search on the tags.
*/
Tags?: TagList;
}
export type ExperimentArn = string;
export interface ExperimentConfig {
/**
* The name of an existing experiment to associate the trial component with.
*/
ExperimentName?: ExperimentEntityName;
/**
* The name of an existing trial to associate the trial component with. If not specified, a new trial is created.
*/
TrialName?: ExperimentEntityName;
/**
* The display name for the trial component. If this key isn't specified, the display name is the trial component name.
*/
TrialComponentDisplayName?: ExperimentEntityName;
}
export type ExperimentDescription = string;
export type ExperimentEntityName = string;
export interface ExperimentSource {
/**
* The Amazon Resource Name (ARN) of the source.
*/
SourceArn: ExperimentSourceArn;
/**
* The source type.
*/
SourceType?: SourceType;
}
export type ExperimentSourceArn = string;
export type ExperimentSummaries = ExperimentSummary[];
export interface ExperimentSummary {
/**
* The Amazon Resource Name (ARN) of the experiment.
*/
ExperimentArn?: ExperimentArn;
/**
* The name of the experiment.
*/
ExperimentName?: ExperimentEntityName;
/**
* The name of the experiment as displayed. If DisplayName isn't specified, ExperimentName is displayed.
*/
DisplayName?: ExperimentEntityName;
ExperimentSource?: ExperimentSource;
/**
* When the experiment was created.
*/
CreationTime?: Timestamp;
/**
* When the experiment was last modified.
*/
LastModifiedTime?: Timestamp;
}
export type FailureReason = string;
export type FileSystemAccessMode = "rw"|"ro"|string;
export interface FileSystemDataSource {
/**
* The file system id.
*/
FileSystemId: FileSystemId;
/**
* The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.
*/
FileSystemAccessMode: FileSystemAccessMode;
/**
* The file system type.
*/
FileSystemType: FileSystemType;
/**
* The full path to the directory to associate with the channel.
*/
DirectoryPath: DirectoryPath;
}
export type FileSystemId = string;
export type FileSystemType = "EFS"|"FSxLustre"|string;
export interface Filter {
/**
* A resource property name. For example, TrainingJobName. For valid property names, see SearchRecord. You must specify a valid property for the resource.
*/
Name: ResourcePropertyName;
/**
* A Boolean binary operator that is used to evaluate the filter. The operator field contains one of the following values: Equals The value of Name equals Value. NotEquals The value of Name doesn't equal Value. Exists The Name property exists. NotExists The Name property does not exist. GreaterThan The value of Name is greater than Value. Not supported for text properties. GreaterThanOrEqualTo The value of Name is greater than or equal to Value. Not supported for text properties. LessThan The value of Name is less than Value. Not supported for text properties. LessThanOrEqualTo The value of Name is less than or equal to Value. Not supported for text properties. In The value of Name is one of the comma delimited strings in Value. Only supported for text properties. Contains The value of Name contains the string Value. Only supported for text properties. A SearchExpression can include the Contains operator multiple times when the value of Name is one of the following: Experiment.DisplayName Experiment.ExperimentName Experiment.Tags Trial.DisplayName Trial.TrialName Trial.Tags TrialComponent.DisplayName TrialComponent.TrialComponentName TrialComponent.Tags TrialComponent.InputArtifacts TrialComponent.OutputArtifacts A SearchExpression can include only one Contains operator for all other values of Name. In these cases, if you include multiple Contains operators in the SearchExpression, the result is the following error message: "'CONTAINS' operator usage limit of 1 exceeded."
*/
Operator?: Operator;
/**
* A value used with Name and Operator to determine which resources satisfy the filter's condition. For numerical properties, Value must be an integer or floating-point decimal. For timestamp properties, Value must be an ISO 8601 date-time string of the following format: YYYY-mm-dd'T'HH:MM:SS.
*/
Value?: FilterValue;
}
export type FilterList = Filter[];
export type FilterValue = string;
export interface FinalAutoMLJobObjectiveMetric {
/**
* The type of metric with the best result.
*/
Type?: AutoMLJobObjectiveType;
/**
* The name of the metric with the best result. For a description of the possible objective metrics, see AutoMLJobObjective$MetricName.
*/
MetricName: AutoMLMetricEnum;
/**
* The value of the metric with the best result.
*/
Value: MetricValue;
}
export interface FinalHyperParameterTuningJobObjectiveMetric {
/**
* Whether to minimize or maximize the objective metric. Valid values are Minimize and Maximize.
*/
Type?: HyperParameterTuningJobObjectiveType;
/**
* The name of the objective metric.
*/
MetricName: MetricName;
/**
* The value of the objective metric.
*/
Value: MetricValue;
}
export type FinalMetricDataList = MetricData[];
export type Float = number;
export type FlowDefinitionArn = string;
export type FlowDefinitionName = string;
export interface FlowDefinitionOutputConfig {
/**
* The Amazon S3 path where the object containing human output will be made available.
*/
S3OutputPath: S3Uri;
/**
* The Amazon Key Management Service (KMS) key ID for server-side encryption.
*/
KmsKeyId?: KmsKeyId;
}
export type FlowDefinitionStatus = "Initializing"|"Active"|"Failed"|"Deleting"|string;
export type FlowDefinitionSummaries = FlowDefinitionSummary[];
export interface FlowDefinitionSummary {
/**
* The name of the flow definition.
*/
FlowDefinitionName: FlowDefinitionName;
/**
* The Amazon Resource Name (ARN) of the flow definition.
*/
FlowDefinitionArn: FlowDefinitionArn;
/**
* The status of the flow definition. Valid values:
*/
FlowDefinitionStatus: FlowDefinitionStatus;
/**
* The timestamp when SageMaker created the flow definition.
*/
CreationTime: Timestamp;
/**
* The reason why the flow definition creation failed. A failure reason is returned only when the flow definition status is Failed.
*/
FailureReason?: FailureReason;
}
export type FlowDefinitionTaskAvailabilityLifetimeInSeconds = number;
export type FlowDefinitionTaskCount = number;
export type FlowDefinitionTaskDescription = string;
export type FlowDefinitionTaskKeyword = string;
export type FlowDefinitionTaskKeywords = FlowDefinitionTaskKeyword[];
export type FlowDefinitionTaskTimeLimitInSeconds = number;
export type FlowDefinitionTaskTitle = string;
export type Framework = "TENSORFLOW"|"KERAS"|"MXNET"|"ONNX"|"PYTORCH"|"XGBOOST"|"TFLITE"|string;
export type GenerateCandidateDefinitionsOnly = boolean;
export interface GetSearchSuggestionsRequest {
/**
* The name of the Amazon SageMaker resource to search for.
*/
Resource: ResourceType;
/**
* Limits the property names that are included in the response.
*/
SuggestionQuery?: SuggestionQuery;
}
export interface GetSearchSuggestionsResponse {
/**
* A list of property names for a Resource that match a SuggestionQuery.
*/
PropertyNameSuggestions?: PropertyNameSuggestionList;
}
export interface GitConfig {
/**
* The URL where the Git repository is located.
*/
RepositoryUrl: GitConfigUrl;
/**
* The default branch for the Git repository.
*/
Branch?: Branch;
/**
* The Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the git repository. The secret must have a staging label of AWSCURRENT and must be in the following format: {"username": UserName, "password": Password}
*/
SecretArn?: SecretArn;
}
export interface GitConfigForUpdate {
/**
* The Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the git repository. The secret must have a staging label of AWSCURRENT and must be in the following format: {"username": UserName, "password": Password}
*/
SecretArn?: SecretArn;
}
export type GitConfigUrl = string;
export type Group = string;
export type Groups = Group[];
export type HookParameters = {[key: string]: ConfigValue};
export type HumanLoopActivationConditions = string;
export interface HumanLoopActivationConditionsConfig {
/**
* JSON expressing use-case specific conditions declaratively. If any condition is matched, atomic tasks are created against the configured work team. The set of conditions is different for Rekognition and Textract. For more information about how to structure the JSON, see JSON Schema for Human Loop Activation Conditions in Amazon Augmented AI in the Amazon SageMaker Developer Guide.
*/
HumanLoopActivationConditions: HumanLoopActivationConditions;
}
export interface HumanLoopActivationConfig {
/**
* Container structure for defining under what conditions SageMaker creates a human loop.
*/
HumanLoopActivationConditionsConfig: HumanLoopActivationConditionsConfig;
}
export interface HumanLoopConfig {
/**
* Amazon Resource Name (ARN) of a team of workers.
*/
WorkteamArn: WorkteamArn;
/**
* The Amazon Resource Name (ARN) of the human task user interface.
*/
HumanTaskUiArn: HumanTaskUiArn;
/**
* A title for the human worker task.
*/
TaskTitle: FlowDefinitionTaskTitle;
/**
* A description for the human worker task.
*/
TaskDescription: FlowDefinitionTaskDescription;
/**
* The number of distinct workers who will perform the same task on each object. For example, if TaskCount is set to 3 for an image classification labeling job, three workers will classify each input image. Increasing TaskCount can improve label accuracy.
*/
TaskCount: FlowDefinitionTaskCount;
/**
* The length of time that a task remains available for review by human workers.
*/
TaskAvailabilityLifetimeInSeconds?: FlowDefinitionTaskAvailabilityLifetimeInSeconds;
/**
* The amount of time that a worker has to complete a task. The default value is 3,600 seconds (1 hour)
*/
TaskTimeLimitInSeconds?: FlowDefinitionTaskTimeLimitInSeconds;
/**
* Keywords used to describe the task so that workers can discover the task.
*/
TaskKeywords?: FlowDefinitionTaskKeywords;
PublicWorkforceTaskPrice?: PublicWorkforceTaskPrice;
}
export interface HumanLoopRequestSource {
/**
* Specifies whether Amazon Rekognition or Amazon Textract are used as the integration source. The default field settings and JSON parsing rules are different based on the integration source. Valid values:
*/
AwsManagedHumanLoopRequestSource: AwsManagedHumanLoopRequestSource;
}
export interface HumanTaskConfig {
/**
* The Amazon Resource Name (ARN) of the work team assigned to complete the tasks.
*/
WorkteamArn: WorkteamArn;
/**
* Information about the user interface that workers use to complete the labeling task.
*/
UiConfig: UiConfig;
/**
* The Amazon Resource Name (ARN) of a Lambda function that is run before a data object is sent to a human worker. Use this function to provide input to a custom labeling job. For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for PreHumanTaskLambdaArn. For custom labeling workflows, see Pre-annotation Lambda. Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes. arn:aws:lambda:us-east-1:432418664414:function:PRE-BoundingBox arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox arn:aws:lambda:ca-central-1:918755190332:function:PRE-BoundingBox arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox arn:aws:lambda:eu-west-2:487402164563:function:PRE-BoundingBox arn:aws:lambda:eu-central-1:203001061592:function:PRE-BoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-BoundingBox arn:aws:lambda:ap-south-1:565803892007:function:PRE-BoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-BoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClass arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClass arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClass arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClass arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClass arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClass arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClass arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClass Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClassMultiLabel Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label. arn:aws:lambda:us-east-1:432418664414:function:PRE-SemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:PRE-SemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:PRE-SemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:PRE-SemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:PRE-SemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:PRE-SemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:PRE-SemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-SemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-SemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:PRE-SemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-SemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-SemanticSegmentation Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClass arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClass arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClass arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClassMultiLabel Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label. arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition arn:aws:lambda:ca-central-1:918755190332:function:PRE-NamedEntityRecognition arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition arn:aws:lambda:eu-west-2:487402164563:function:PRE-NamedEntityRecognition arn:aws:lambda:eu-central-1:203001061592:function:PRE-NamedEntityRecognition arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-NamedEntityRecognition arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-NamedEntityRecognition arn:aws:lambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video. arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoMultiClass arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoMultiClass arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoMultiClass arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoMultiClass arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoMultiClass arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoMultiClass arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoMultiClass arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoMultiClass Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectDetection arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectDetection arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectDetection Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectTracking arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectTracking arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectTracking 3D Point Cloud Modalities Use the following pre-annotation lambdas for 3D point cloud labeling modality tasks. See 3D Point Cloud Task types to learn more. 3D Point Cloud Object Detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectDetection 3D Point Cloud Object Tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames. arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectTracking 3D Point Cloud Semantic Segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify. arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudSemanticSegmentation Use the following ARNs for Label Verification and Adjustment Jobs Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels . Bounding box verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking Bounding box adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations. arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentBoundingBox arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentBoundingBox arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentBoundingBox arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentBoundingBox arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentBoundingBox arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentBoundingBox arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentBoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentBoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentBoundingBox arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentBoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentBoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentBoundingBox Semantic segmentation verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationSemanticSegmentation Semantic segmentation adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label. arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames. arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectDetection Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames. arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectTracking 3D point cloud object detection adjustment - Adjust 3D cuboids in a point cloud frame. arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectDetection 3D point cloud object tracking adjustment - Adjust 3D cuboids across a sequence of point cloud frames. arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking 3D point cloud semantic segmentation adjustment - Adjust semantic segmentation masks in a 3D point cloud. arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudSemanticSegmentation
*/
PreHumanTaskLambdaArn: LambdaFunctionArn;
/**
* Keywords used to describe the task so that workers on Amazon Mechanical Turk can discover the task.
*/
TaskKeywords?: TaskKeywords;
/**
* A title for the task for your human workers.
*/
TaskTitle: TaskTitle;
/**
* A description of the task for your human workers.
*/
TaskDescription: TaskDescription;
/**
* The number of human workers that will label an object.
*/
NumberOfHumanWorkersPerDataObject: NumberOfHumanWorkersPerDataObject;
/**
* The amount of time that a worker has to complete a task.
*/
TaskTimeLimitInSeconds: TaskTimeLimitInSeconds;
/**
* The length of time that a task remains available for labeling by human workers. If you choose the Amazon Mechanical Turk workforce, the maximum is 12 hours (43200). The default value is 864000 seconds (10 days). For private and vendor workforces, the maximum is as listed.
*/
TaskAvailabilityLifetimeInSeconds?: TaskAvailabilityLifetimeInSeconds;
/**
* Defines the maximum number of data objects that can be labeled by human workers at the same time. Also referred to as batch size. Each object may have more than one worker at one time. The default value is 1000 objects.
*/
MaxConcurrentTaskCount?: MaxConcurrentTaskCount;
/**
* Configures how labels are consolidated across human workers.
*/
AnnotationConsolidationConfig: AnnotationConsolidationConfig;
/**
* The price that you pay for each task performed by an Amazon Mechanical Turk worker.
*/
PublicWorkforceTaskPrice?: PublicWorkforceTaskPrice;
}
export type HumanTaskUiArn = string;
export type HumanTaskUiName = string;
export type HumanTaskUiStatus = "Active"|"Deleting"|string;
export type HumanTaskUiSummaries = HumanTaskUiSummary[];
export interface HumanTaskUiSummary {
/**
* The name of the human task user interface.
*/
HumanTaskUiName: HumanTaskUiName;
/**
* The Amazon Resource Name (ARN) of the human task user interface.
*/
HumanTaskUiArn: HumanTaskUiArn;
/**
* A timestamp when SageMaker created the human task user interface.
*/
CreationTime: Timestamp;
}
export interface HyperParameterAlgorithmSpecification {
/**
* The registry path of the Docker image that contains the training algorithm. For information about Docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
*/
TrainingImage?: AlgorithmImage;
/**
* The input mode that the algorithm supports: File or Pipe. In File input mode, Amazon SageMaker downloads the training data from Amazon S3 to the storage volume that is attached to the training instance and mounts the directory to the Docker volume for the training container. In Pipe input mode, Amazon SageMaker streams data directly from Amazon S3 to the container. If you specify File mode, make sure that you provision the storage volume that is attached to the training instance with enough capacity to accommodate the training data downloaded from Amazon S3, the model artifacts, and intermediate information. For more information about input modes, see Algorithms.
*/
TrainingInputMode: TrainingInputMode;
/**
* The name of the resource algorithm to use for the hyperparameter tuning job. If you specify a value for this parameter, do not specify a value for TrainingImage.
*/
AlgorithmName?: ArnOrName;
/**
* An array of MetricDefinition objects that specify the metrics that the algorithm emits.
*/
MetricDefinitions?: MetricDefinitionList;
}
export type HyperParameterScalingType = "Auto"|"Linear"|"Logarithmic"|"ReverseLogarithmic"|string;
export interface HyperParameterSpecification {
/**
* The name of this hyperparameter. The name must be unique.
*/
Name: ParameterName;
/**
* A brief description of the hyperparameter.
*/
Description?: EntityDescription;
/**
* The type of this hyperparameter. The valid types are Integer, Continuous, Categorical, and FreeText.
*/
Type: ParameterType;
/**
* The allowed range for this hyperparameter.
*/
Range?: ParameterRange;
/**
* Indicates whether this hyperparameter is tunable in a hyperparameter tuning job.
*/
IsTunable?: Boolean;
/**
* Indicates whether this hyperparameter is required.
*/
IsRequired?: Boolean;
/**
* The default value for this hyperparameter. If a default value is specified, a hyperparameter cannot be required.
*/
DefaultValue?: ParameterValue;
}
export type HyperParameterSpecifications = HyperParameterSpecification[];
export interface HyperParameterTrainingJobDefinition {
/**
* The job definition name.
*/
DefinitionName?: HyperParameterTrainingJobDefinitionName;
TuningObjective?: HyperParameterTuningJobObjective;
HyperParameterRanges?: ParameterRanges;
/**
* Specifies the values of hyperparameters that do not change for the tuning job.
*/
StaticHyperParameters?: HyperParameters;
/**
* The HyperParameterAlgorithmSpecification object that specifies the resource algorithm to use for the training jobs that the tuning job launches.
*/
AlgorithmSpecification: HyperParameterAlgorithmSpecification;
/**
* The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning job launches.
*/
RoleArn: RoleArn;
/**
* An array of Channel objects that specify the input for the training jobs that the tuning job launches.
*/
InputDataConfig?: InputDataConfig;
/**
* The VpcConfig object that specifies the VPC that you want the training jobs that this hyperparameter tuning job launches to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
*/
VpcConfig?: VpcConfig;
/**
* Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs that the tuning job launches.
*/
OutputDataConfig: OutputDataConfig;
/**
* The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches. Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want Amazon SageMaker to use the storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.
*/
ResourceConfig: ResourceConfig;
/**
* Specifies a limit to how long a model hyperparameter training job can run. It also specifies how long you are willing to wait for a managed spot training job to complete. When the job reaches the a limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.
*/
StoppingCondition: StoppingCondition;
/**
* Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If network isolation is used for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.
*/
EnableNetworkIsolation?: Boolean;
/**
* To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.
*/
EnableInterContainerTrafficEncryption?: Boolean;
/**
* A Boolean indicating whether managed spot training is enabled (True) or not (False).
*/
EnableManagedSpotTraining?: Boolean;
CheckpointConfig?: CheckpointConfig;
}
export type HyperParameterTrainingJobDefinitionName = string;
export type HyperParameterTrainingJobDefinitions = HyperParameterTrainingJobDefinition[];
export type HyperParameterTrainingJobSummaries = HyperParameterTrainingJobSummary[];
export interface HyperParameterTrainingJobSummary {
/**
* The training job definition name.
*/
TrainingJobDefinitionName?: HyperParameterTrainingJobDefinitionName;
/**
* The name of the training job.
*/
TrainingJobName: TrainingJobName;
/**
* The Amazon Resource Name (ARN) of the training job.
*/
TrainingJobArn: TrainingJobArn;
/**
* The HyperParameter tuning job that launched the training job.
*/
TuningJobName?: HyperParameterTuningJobName;
/**
* The date and time that the training job was created.
*/
CreationTime: Timestamp;
/**
* The date and time that the training job started.
*/
TrainingStartTime?: Timestamp;
/**
* Specifies the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.
*/
TrainingEndTime?: Timestamp;
/**
* The status of the training job.
*/
TrainingJobStatus: TrainingJobStatus;
/**
* A list of the hyperparameters for which you specified ranges to search.
*/
TunedHyperParameters: HyperParameters;
/**
* The reason that the training job failed.
*/
FailureReason?: FailureReason;
/**
* The FinalHyperParameterTuningJobObjectiveMetric object that specifies the value of the objective metric of the tuning job that launched this training job.
*/
FinalHyperParameterTuningJobObjectiveMetric?: FinalHyperParameterTuningJobObjectiveMetric;
/**
* The status of the objective metric for the training job: Succeeded: The final objective metric for the training job was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process. Pending: The training job is in progress and evaluation of its final objective metric is pending. Failed: The final objective metric for the training job was not evaluated, and was not used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.
*/
ObjectiveStatus?: ObjectiveStatus;
}
export type HyperParameterTuningJobArn = string;
export interface HyperParameterTuningJobConfig {
/**
* Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. To use the Bayesian search strategy, set this to Bayesian. To randomly search, set it to Random. For information about search strategies, see How Hyperparameter Tuning Works.
*/
Strategy: HyperParameterTuningJobStrategyType;
/**
* The HyperParameterTuningJobObjective object that specifies the objective metric for this tuning job.
*/
HyperParameterTuningJobObjective?: HyperParameterTuningJobObjective;
/**
* The ResourceLimits object that specifies the maximum number of training jobs and parallel training jobs for this tuning job.
*/
ResourceLimits: ResourceLimits;
/**
* The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches.
*/
ParameterRanges?: ParameterRanges;
/**
* Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. This can be one of the following values (the default value is OFF): OFF Training jobs launched by the hyperparameter tuning job do not use early stopping. AUTO Amazon SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.
*/
TrainingJobEarlyStoppingType?: TrainingJobEarlyStoppingType;
/**
* The tuning job's completion criteria.
*/
TuningJobCompletionCriteria?: TuningJobCompletionCriteria;
}
export type HyperParameterTuningJobName = string;
export interface HyperParameterTuningJobObjective {
/**
* Whether to minimize or maximize the objective metric.
*/
Type: HyperParameterTuningJobObjectiveType;
/**
* The name of the metric to use for the objective metric.
*/
MetricName: MetricName;
}
export type HyperParameterTuningJobObjectiveType = "Maximize"|"Minimize"|string;
export type HyperParameterTuningJobObjectives = HyperParameterTuningJobObjective[];
export type HyperParameterTuningJobSortByOptions = "Name"|"Status"|"CreationTime"|string;
export type HyperParameterTuningJobStatus = "Completed"|"InProgress"|"Failed"|"Stopped"|"Stopping"|string;
export type HyperParameterTuningJobStrategyType = "Bayesian"|"Random"|string;
export type HyperParameterTuningJobSummaries = HyperParameterTuningJobSummary[];
export interface HyperParameterTuningJobSummary {
/**
* The name of the tuning job.
*/
HyperParameterTuningJobName: HyperParameterTuningJobName;
/**
* The Amazon Resource Name (ARN) of the tuning job.
*/
HyperParameterTuningJobArn: HyperParameterTuningJobArn;
/**
* The status of the tuning job.
*/
HyperParameterTuningJobStatus: HyperParameterTuningJobStatus;
/**
* Specifies the search strategy hyperparameter tuning uses to choose which hyperparameters to use for each iteration. Currently, the only valid value is Bayesian.
*/
Strategy: HyperParameterTuningJobStrategyType;
/**
* The date and time that the tuning job was created.
*/
CreationTime: Timestamp;
/**
* The date and time that the tuning job ended.
*/
HyperParameterTuningEndTime?: Timestamp;
/**
* The date and time that the tuning job was modified.
*/
LastModifiedTime?: Timestamp;
/**
* The TrainingJobStatusCounters object that specifies the numbers of training jobs, categorized by status, that this tuning job launched.
*/
TrainingJobStatusCounters: TrainingJobStatusCounters;
/**
* The ObjectiveStatusCounters object that specifies the numbers of training jobs, categorized by objective metric status, that this tuning job launched.
*/
ObjectiveStatusCounters: ObjectiveStatusCounters;
/**
* The ResourceLimits object that specifies the maximum number of training jobs and parallel training jobs allowed for this tuning job.
*/
ResourceLimits?: ResourceLimits;
}
export interface HyperParameterTuningJobWarmStartConfig {
/**
* An array of hyperparameter tuning jobs that are used as the starting point for the new hyperparameter tuning job. For more information about warm starting a hyperparameter tuning job, see Using a Previous Hyperparameter Tuning Job as a Starting Point. Hyperparameter tuning jobs created before October 1, 2018 cannot be used as parent jobs for warm start tuning jobs.
*/
ParentHyperParameterTuningJobs: ParentHyperParameterTuningJobs;
/**
* Specifies one of the following: IDENTICAL_DATA_AND_ALGORITHM The new hyperparameter tuning job uses the same input data and training image as the parent tuning jobs. You can change the hyperparameter ranges to search and the maximum number of training jobs that the hyperparameter tuning job launches. You cannot use a new version of the training algorithm, unless the changes in the new version do not affect the algorithm itself. For example, changes that improve logging or adding support for a different data format are allowed. You can also change hyperparameters from tunable to static, and from static to tunable, but the total number of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The objective metric for the new tuning job must be the same as for all parent jobs. TRANSFER_LEARNING The new hyperparameter tuning job can include input data, hyperparameter ranges, maximum number of concurrent training jobs, and maximum number of training jobs that are different than those of its parent hyperparameter tuning jobs. The training image can also be a different version from the version used in the parent hyperparameter tuning job. You can also change hyperparameters from tunable to static, and from static to tunable, but the total number of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The objective metric for the new tuning job must be the same as for all parent jobs.
*/
WarmStartType: HyperParameterTuningJobWarmStartType;
}
export type HyperParameterTuningJobWarmStartType = "IdenticalDataAndAlgorithm"|"TransferLearning"|string;
export type HyperParameters = {[key: string]: ParameterValue};
export type ImageArn = string;
export interface ImageConfig {
/**
* Set this to one of the following values: Platform - The model image is hosted in Amazon ECR. Vpc - The model image is hosted in a private Docker registry in your VPC.
*/
RepositoryAccessMode: RepositoryAccessMode;
}
export type ImageDigest = string;
export type ImageUri = string;
export interface InferenceSpecification {
/**
* The Amazon ECR registry path of the Docker image that contains the inference code.
*/
Containers: ModelPackageContainerDefinitionList;
/**
* A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.
*/
SupportedTransformInstanceTypes: TransformInstanceTypes;
/**
* A list of the instance types that are used to generate inferences in real-time.
*/
SupportedRealtimeInferenceInstanceTypes: RealtimeInferenceInstanceTypes;
/**
* The supported MIME types for the input data.
*/
SupportedContentTypes: ContentTypes;
/**
* The supported MIME types for the output data.
*/
SupportedResponseMIMETypes: ResponseMIMETypes;
}
export interface InputConfig {
/**
* The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
*/
S3Uri: S3Uri;
/**
* Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific. TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different. Examples for one input: If using the console, {"input":[1,1024,1024,3]} If using the CLI, {\"input\":[1,1024,1024,3]} Examples for two inputs: If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]} If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]} KERAS: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format, DataInputConfig should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different. Examples for one input: If using the console, {"input_1":[1,3,224,224]} If using the CLI, {\"input_1\":[1,3,224,224]} Examples for two inputs: If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]} If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]} MXNET/ONNX: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different. Examples for one input: If using the console, {"data":[1,3,1024,1024]} If using the CLI, {\"data\":[1,3,1024,1024]} Examples for two inputs: If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]} If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]} PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same. Examples for one input in dictionary format: If using the console, {"input0":[1,3,224,224]} If using the CLI, {\"input0\":[1,3,224,224]} Example for one input in list format: [[1,3,224,224]] Examples for two inputs in dictionary format: If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]} If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]} Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]] XGBOOST: input data name and shape are not needed. DataInputConfig supports the following parameters for CoreML OutputConfig$TargetDevice (ML Model format): shape: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}. In addition to static input shapes, CoreML converter supports Flexible input shapes: Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}} Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example: {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}} default_shape: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}} type: Input type. Allowed values: Image and Tensor. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such as bias and scale. bias: If the input type is an Image, you need to provide the bias vector. scale: If the input type is an Image, you need to provide a scale factor. CoreML ClassifierConfig parameters can be specified using OutputConfig$CompilerOptions. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples: Tensor type input: "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}} Tensor type input without input name (PyTorch): "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}] Image type input: "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}} "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"} Image type input without input name (PyTorch): "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}] "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
*/
DataInputConfig: DataInputConfig;
/**
* Identifies the framework in which the model was trained. For example: TENSORFLOW.
*/
Framework: Framework;
}
export type InputDataConfig = Channel[];
export type InputModes = TrainingInputMode[];
export type InstanceType = "ml.t2.medium"|"ml.t2.large"|"ml.t2.xlarge"|"ml.t2.2xlarge"|"ml.t3.medium"|"ml.t3.large"|"ml.t3.xlarge"|"ml.t3.2xlarge"|"ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5d.xlarge"|"ml.c5d.2xlarge"|"ml.c5d.4xlarge"|"ml.c5d.9xlarge"|"ml.c5d.18xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|string;
export interface IntegerParameterRange {
/**
* The name of the hyperparameter to search.
*/
Name: ParameterKey;
/**
* The minimum value of the hyperparameter to search.
*/
MinValue: ParameterValue;
/**
* The maximum value of the hyperparameter to search.
*/
MaxValue: ParameterValue;
/**
* The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values: Auto Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter. Linear Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale. Logarithmic Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. Logarithmic scaling works only for ranges that have only values greater than 0.
*/
ScalingType?: HyperParameterScalingType;
}
export interface IntegerParameterRangeSpecification {
/**
* The minimum integer value allowed.
*/
MinValue: ParameterValue;
/**
* The maximum integer value allowed.
*/
MaxValue: ParameterValue;
}
export type IntegerParameterRanges = IntegerParameterRange[];
export type InvocationsMaxRetries = number;
export type InvocationsTimeoutInSeconds = number;
export type JobReferenceCode = string;
export type JobReferenceCodeContains = string;
export type JoinSource = "Input"|"None"|string;
export type JsonContentType = string;
export type JsonContentTypes = JsonContentType[];
export type JsonPath = string;
export interface JupyterServerAppSettings {
/**
* The default instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
*/
DefaultResourceSpec?: ResourceSpec;
}
export interface KernelGatewayAppSettings {
/**
* The default instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
*/
DefaultResourceSpec?: ResourceSpec;
}
export type KmsKeyId = string;
export type LabelAttributeName = string;
export type LabelCounter = number;
export interface LabelCounters {
/**
* The total number of objects labeled.
*/
TotalLabeled?: LabelCounter;
/**
* The total number of objects labeled by a human worker.
*/
HumanLabeled?: LabelCounter;
/**
* The total number of objects labeled by automated data labeling.
*/
MachineLabeled?: LabelCounter;
/**
* The total number of objects that could not be labeled due to an error.
*/
FailedNonRetryableError?: LabelCounter;
/**
* The total number of objects not yet labeled.
*/
Unlabeled?: LabelCounter;
}
export interface LabelCountersForWorkteam {
/**
* The total number of data objects labeled by a human worker.
*/
HumanLabeled?: LabelCounter;
/**
* The total number of data objects that need to be labeled by a human worker.
*/
PendingHuman?: LabelCounter;
/**
* The total number of tasks in the labeling job.
*/
Total?: LabelCounter;
}
export type LabelingJobAlgorithmSpecificationArn = string;
export interface LabelingJobAlgorithmsConfig {
/**
* Specifies the Amazon Resource Name (ARN) of the algorithm used for auto-labeling. You must select one of the following ARNs: Image classification arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/image-classification Text classification arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/text-classification Object detection arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/object-detection Semantic Segmentation arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/semantic-segmentation
*/
LabelingJobAlgorithmSpecificationArn: LabelingJobAlgorithmSpecificationArn;
/**
* At the end of an auto-label job Ground Truth sends the Amazon Resource Name (ARN) of the final model used for auto-labeling. You can use this model as the starting point for subsequent similar jobs by providing the ARN of the model here.
*/
InitialActiveLearningModelArn?: ModelArn;
/**
* Provides configuration information for a labeling job.
*/
LabelingJobResourceConfig?: LabelingJobResourceConfig;
}
export type LabelingJobArn = string;
export interface LabelingJobDataAttributes {
/**
* Declares that your content is free of personally identifiable information or adult content. Amazon SageMaker may restrict the Amazon Mechanical Turk workers that can view your task based on this information.
*/
ContentClassifiers?: ContentClassifiers;
}
export interface LabelingJobDataSource {
/**
* The Amazon S3 location of the input data objects.
*/
S3DataSource?: LabelingJobS3DataSource;
/**
* An Amazon SNS data source used for streaming labeling jobs.
*/
SnsDataSource?: LabelingJobSnsDataSource;
}
export interface LabelingJobForWorkteamSummary {
/**
* The name of the labeling job that the work team is assigned to.
*/
LabelingJobName?: LabelingJobName;
/**
* A unique identifier for a labeling job. You can use this to refer to a specific labeling job.
*/
JobReferenceCode: JobReferenceCode;
/**
*
*/
WorkRequesterAccountId: AccountId;
/**
* The date and time that the labeling job was created.
*/
CreationTime: Timestamp;
/**
* Provides information about the progress of a labeling job.
*/
LabelCounters?: LabelCountersForWorkteam;
/**
* The configured number of workers per data object.
*/
NumberOfHumanWorkersPerDataObject?: NumberOfHumanWorkersPerDataObject;
}
export type LabelingJobForWorkteamSummaryList = LabelingJobForWorkteamSummary[];
export interface LabelingJobInputConfig {
/**
* The location of the input data.
*/
DataSource: LabelingJobDataSource;
/**
* Attributes of the data specified by the customer.
*/
DataAttributes?: LabelingJobDataAttributes;
}
export type LabelingJobName = string;
export interface LabelingJobOutput {
/**
* The Amazon S3 bucket location of the manifest file for labeled data.
*/
OutputDatasetS3Uri: S3Uri;
/**
* The Amazon Resource Name (ARN) for the most recent Amazon SageMaker model trained as part of automated data labeling.
*/
FinalActiveLearningModelArn?: ModelArn;
}
export interface LabelingJobOutputConfig {
/**
* The Amazon S3 location to write output data.
*/
S3OutputPath: S3Uri;
/**
* The AWS Key Management Service ID of the key used to encrypt the output data, if any. If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS-managed keys for LabelingJobOutputConfig. If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms". For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide. The KMS key policy must grant permission to the IAM role that you specify in your CreateLabelingJob request. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide.
*/
KmsKeyId?: KmsKeyId;
/**
* An Amazon Simple Notification Service (Amazon SNS) output topic ARN. When workers complete labeling tasks, Ground Truth will send labeling task output data to the SNS output topic you specify here. You must provide a value for this parameter if you provide an Amazon SNS input topic in SnsDataSource in InputConfig.
*/
SnsTopicArn?: SnsTopicArn;
}
export interface LabelingJobResourceConfig {
/**
* The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job. The VolumeKmsKeyId can be any of the following formats: // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab" // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
*/
VolumeKmsKeyId?: KmsKeyId;
}
export interface LabelingJobS3DataSource {
/**
* The Amazon S3 location of the manifest file that describes the input data objects.
*/
ManifestS3Uri: S3Uri;
}
export interface LabelingJobSnsDataSource {
/**
* The Amazon SNS input topic Amazon Resource Name (ARN). Specify the ARN of the input topic you will use to send new data objects to a streaming labeling job. If you specify an input topic for SnsTopicArn in InputConfig, you must specify a value for SnsTopicArn in OutputConfig.
*/
SnsTopicArn: SnsTopicArn;
}
export type LabelingJobStatus = "Initializing"|"InProgress"|"Completed"|"Failed"|"Stopping"|"Stopped"|string;
export interface LabelingJobStoppingConditions {
/**
* The maximum number of objects that can be labeled by human workers.
*/
MaxHumanLabeledObjectCount?: MaxHumanLabeledObjectCount;
/**
* The maximum number of input data objects that should be labeled.
*/
MaxPercentageOfInputDatasetLabeled?: MaxPercentageOfInputDatasetLabeled;
}
export interface LabelingJobSummary {
/**
* The name of the labeling job.
*/
LabelingJobName: LabelingJobName;
/**
* The Amazon Resource Name (ARN) assigned to the labeling job when it was created.
*/
LabelingJobArn: LabelingJobArn;
/**
* The date and time that the job was created (timestamp).
*/
CreationTime: Timestamp;
/**
* The date and time that the job was last modified (timestamp).
*/
LastModifiedTime: Timestamp;
/**
* The current status of the labeling job.
*/
LabelingJobStatus: LabelingJobStatus;
/**
* Counts showing the progress of the labeling job.
*/
LabelCounters: LabelCounters;
/**
* The Amazon Resource Name (ARN) of the work team assigned to the job.
*/
WorkteamArn: WorkteamArn;
/**
* The Amazon Resource Name (ARN) of a Lambda function. The function is run before each data object is sent to a worker.
*/
PreHumanTaskLambdaArn: LambdaFunctionArn;
/**
* The Amazon Resource Name (ARN) of the Lambda function used to consolidate the annotations from individual workers into a label for a data object. For more information, see Annotation Consolidation.
*/
AnnotationConsolidationLambdaArn?: LambdaFunctionArn;
/**
* If the LabelingJobStatus field is Failed, this field contains a description of the error.
*/
FailureReason?: FailureReason;
/**
* The location of the output produced by the labeling job.
*/
LabelingJobOutput?: LabelingJobOutput;
/**
* Input configuration for the labeling job.
*/
InputConfig?: LabelingJobInputConfig;
}
export type LabelingJobSummaryList = LabelingJobSummary[];
export type LambdaFunctionArn = string;
export type LastModifiedTime = Date;
export interface ListAlgorithmsInput {
/**
* A filter that returns only algorithms created after the specified time (timestamp).
*/
CreationTimeAfter?: CreationTime;
/**
* A filter that returns only algorithms created before the specified time (timestamp).
*/
CreationTimeBefore?: CreationTime;
/**
* The maximum number of algorithms to return in the response.
*/
MaxResults?: MaxResults;
/**
* A string in the algorithm name. This filter returns only algorithms whose name contains the specified string.
*/
NameContains?: NameContains;
/**
* If the response to a previous ListAlgorithms request was truncated, the response includes a NextToken. To retrieve the next set of algorithms, use the token in the next request.
*/
NextToken?: NextToken;
/**
* The parameter by which to sort the results. The default is CreationTime.
*/
SortBy?: AlgorithmSortBy;
/**
* The sort order for the results. The default is Ascending.
*/
SortOrder?: SortOrder;
}
export interface ListAlgorithmsOutput {
/**
* >An array of AlgorithmSummary objects, each of which lists an algorithm.
*/
AlgorithmSummaryList: AlgorithmSummaryList;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of algorithms, use it in the subsequent request.
*/
NextToken?: NextToken;
}
export interface ListAppsRequest {
/**
* If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
*/
NextToken?: NextToken;
/**
* Returns a list up to a specified limit.
*/
MaxResults?: MaxResults;
/**
* The sort order for the results. The default is Ascending.
*/
SortOrder?: SortOrder;
/**
* The parameter by which to sort the results. The default is CreationTime.
*/
SortBy?: AppSortKey;
/**
* A parameter to search for the domain ID.
*/
DomainIdEquals?: DomainId;
/**
* A parameter to search by user profile name.
*/
UserProfileNameEquals?: UserProfileName;
}
export interface ListAppsResponse {
/**
* The list of apps.
*/
Apps?: AppList;
/**
* If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
*/
NextToken?: NextToken;
}
export interface ListAutoMLJobsRequest {
/**
* Request a list of jobs, using a filter for time.
*/
CreationTimeAfter?: Timestamp;
/**
* Request a list of jobs, using a filter for time.
*/
CreationTimeBefore?: Timestamp;
/**
* Request a list of jobs, using a filter for time.
*/
LastModifiedTimeAfter?: Timestamp;
/**
* Request a list of jobs, using a filter for time.
*/
LastModifiedTimeBefore?: Timestamp;
/**
* Request a list of jobs, using a search filter for name.
*/
NameContains?: AutoMLNameContains;
/**
* Request a list of jobs, using a filter for status.
*/
StatusEquals?: AutoMLJobStatus;
/**
* The sort order for the results. The default is Descending.
*/
SortOrder?: AutoMLSortOrder;
/**
* The parameter by which to sort the results. The default is AutoMLJobName.
*/
SortBy?: AutoMLSortBy;
/**
* Request a list of jobs up to a specified limit.
*/
MaxResults?: AutoMLMaxResults;
/**
* If the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.
*/
NextToken?: NextToken;
}
export interface ListAutoMLJobsResponse {
/**
* Returns a summary list of jobs.
*/
AutoMLJobSummaries: AutoMLJobSummaries;
/**
* If the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.
*/
NextToken?: NextToken;
}
export interface ListCandidatesForAutoMLJobRequest {
/**
* List the Candidates created for the job by providing the job's name.
*/
AutoMLJobName: AutoMLJobName;
/**
* List the Candidates for the job and filter by status.
*/
StatusEquals?: CandidateStatus;
/**
* List the Candidates for the job and filter by candidate name.
*/
CandidateNameEquals?: CandidateName;
/**
* The sort order for the results. The default is Ascending.
*/
SortOrder?: AutoMLSortOrder;
/**
* The parameter by which to sort the results. The default is Descending.
*/
SortBy?: CandidateSortBy;
/**
* List the job's Candidates up to a specified limit.
*/
MaxResults?: AutoMLMaxResults;
/**
* If the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.
*/
NextToken?: NextToken;
}
export interface ListCandidatesForAutoMLJobResponse {
/**
* Summaries about the Candidates.
*/
Candidates: AutoMLCandidates;
/**
* If the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.
*/
NextToken?: NextToken;
}
export interface ListCodeRepositoriesInput {
/**
* A filter that returns only Git repositories that were created after the specified time.
*/
CreationTimeAfter?: CreationTime;
/**
* A filter that returns only Git repositories that were created before the specified time.
*/
CreationTimeBefore?: CreationTime;
/**
* A filter that returns only Git repositories that were last modified after the specified time.
*/
LastModifiedTimeAfter?: Timestamp;
/**
* A filter that returns only Git repositories that were last modified before the specified time.
*/
LastModifiedTimeBefore?: Timestamp;
/**
* The maximum number of Git repositories to return in the response.
*/
MaxResults?: MaxResults;
/**
* A string in the Git repositories name. This filter returns only repositories whose name contains the specified string.
*/
NameContains?: CodeRepositoryNameContains;
/**
* If the result of a ListCodeRepositoriesOutput request was truncated, the response includes a NextToken. To get the next set of Git repositories, use the token in the next request.
*/
NextToken?: NextToken;
/**
* The field to sort results by. The default is Name.
*/
SortBy?: CodeRepositorySortBy;
/**
* The sort order for results. The default is Ascending.
*/
SortOrder?: CodeRepositorySortOrder;
}
export interface ListCodeRepositoriesOutput {
/**
* Gets a list of summaries of the Git repositories. Each summary specifies the following values for the repository: Name Amazon Resource Name (ARN) Creation time Last modified time Configuration information, including the URL location of the repository and the ARN of the AWS Secrets Manager secret that contains the credentials used to access the repository.
*/
CodeRepositorySummaryList: CodeRepositorySummaryList;
/**
* If the result of a ListCodeRepositoriesOutput request was truncated, the response includes a NextToken. To get the next set of Git repositories, use the token in the next request.
*/
NextToken?: NextToken;
}
export interface ListCompilationJobsRequest {
/**
* If the result of the previous ListCompilationJobs request was truncated, the response includes a NextToken. To retrieve the next set of model compilation jobs, use the token in the next request.
*/
NextToken?: NextToken;
/**
* The maximum number of model compilation jobs to return in the response.
*/
MaxResults?: MaxResults;
/**
* A filter that returns the model compilation jobs that were created after a specified time.
*/
CreationTimeAfter?: CreationTime;
/**
* A filter that returns the model compilation jobs that were created before a specified time.
*/
CreationTimeBefore?: CreationTime;
/**
* A filter that returns the model compilation jobs that were modified after a specified time.
*/
LastModifiedTimeAfter?: LastModifiedTime;
/**
* A filter that returns the model compilation jobs that were modified before a specified time.
*/
LastModifiedTimeBefore?: LastModifiedTime;
/**
* A filter that returns the model compilation jobs whose name contains a specified string.
*/
NameContains?: NameContains;
/**
* A filter that retrieves model compilation jobs with a specific DescribeCompilationJobResponse$CompilationJobStatus status.
*/
StatusEquals?: CompilationJobStatus;
/**
* The field by which to sort results. The default is CreationTime.
*/
SortBy?: ListCompilationJobsSortBy;
/**
* The sort order for results. The default is Ascending.
*/
SortOrder?: SortOrder;
}
export interface ListCompilationJobsResponse {
/**
* An array of CompilationJobSummary objects, each describing a model compilation job.
*/
CompilationJobSummaries: CompilationJobSummaries;
/**
* If the response is truncated, Amazon SageMaker returns this NextToken. To retrieve the next set of model compilation jobs, use this token in the next request.
*/
NextToken?: NextToken;
}
export type ListCompilationJobsSortBy = "Name"|"CreationTime"|"Status"|string;
export interface ListDomainsRequest {
/**
* If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
*/
NextToken?: NextToken;
/**
* Returns a list up to a specified limit.
*/
MaxResults?: MaxResults;
}
export interface ListDomainsResponse {
/**
* The list of domains.
*/
Domains?: DomainList;
/**
* If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
*/
NextToken?: NextToken;
}
export interface ListEndpointConfigsInput {
/**
* The field to sort results by. The default is CreationTime.
*/
SortBy?: EndpointConfigSortKey;
/**
* The sort order for results. The default is Descending.
*/
SortOrder?: OrderKey;
/**
* If the result of the previous ListEndpointConfig request was truncated, the response includes a NextToken. To retrieve the next set of endpoint configurations, use the token in the next request.
*/
NextToken?: PaginationToken;
/**
* The maximum number of training jobs to return in the response.
*/
MaxResults?: MaxResults;
/**
* A string in the endpoint configuration name. This filter returns only endpoint configurations whose name contains the specified string.
*/
NameContains?: EndpointConfigNameContains;
/**
* A filter that returns only endpoint configurations created before the specified time (timestamp).
*/
CreationTimeBefore?: Timestamp;
/**
* A filter that returns only endpoint configurations with a creation time greater than or equal to the specified time (timestamp).
*/
CreationTimeAfter?: Timestamp;
}
export interface ListEndpointConfigsOutput {
/**
* An array of endpoint configurations.
*/
EndpointConfigs: EndpointConfigSummaryList;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of endpoint configurations, use it in the subsequent request
*/
NextToken?: PaginationToken;
}
export interface ListEndpointsInput {
/**
* Sorts the list of results. The default is CreationTime.
*/
SortBy?: EndpointSortKey;
/**
* The sort order for results. The default is Descending.
*/
SortOrder?: OrderKey;
/**
* If the result of a ListEndpoints request was truncated, the response includes a NextToken. To retrieve the next set of endpoints, use the token in the next request.
*/
NextToken?: PaginationToken;
/**
* The maximum number of endpoints to return in the response.
*/
MaxResults?: MaxResults;
/**
* A string in endpoint names. This filter returns only endpoints whose name contains the specified string.
*/
NameContains?: EndpointNameContains;
/**
* A filter that returns only endpoints that were created before the specified time (timestamp).
*/
CreationTimeBefore?: Timestamp;
/**
* A filter that returns only endpoints with a creation time greater than or equal to the specified time (timestamp).
*/
CreationTimeAfter?: Timestamp;
/**
* A filter that returns only endpoints that were modified before the specified timestamp.
*/
LastModifiedTimeBefore?: Timestamp;
/**
* A filter that returns only endpoints that were modified after the specified timestamp.
*/
LastModifiedTimeAfter?: Timestamp;
/**
* A filter that returns only endpoints with the specified status.
*/
StatusEquals?: EndpointStatus;
}
export interface ListEndpointsOutput {
/**
* An array or endpoint objects.
*/
Endpoints: EndpointSummaryList;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of training jobs, use it in the subsequent request.
*/
NextToken?: PaginationToken;
}
export interface ListExperimentsRequest {
/**
* A filter that returns only experiments created after the specified time.
*/
CreatedAfter?: Timestamp;
/**
* A filter that returns only experiments created before the specified time.
*/
CreatedBefore?: Timestamp;
/**
* The property used to sort results. The default value is CreationTime.
*/
SortBy?: SortExperimentsBy;
/**
* The sort order. The default value is Descending.
*/
SortOrder?: SortOrder;
/**
* If the previous call to ListExperiments didn't return the full set of experiments, the call returns a token for getting the next set of experiments.
*/
NextToken?: NextToken;
/**
* The maximum number of experiments to return in the response. The default value is 10.
*/
MaxResults?: MaxResults;
}
export interface ListExperimentsResponse {
/**
* A list of the summaries of your experiments.
*/
ExperimentSummaries?: ExperimentSummaries;
/**
* A token for getting the next set of experiments, if there are any.
*/
NextToken?: NextToken;
}
export interface ListFlowDefinitionsRequest {
/**
* A filter that returns only flow definitions with a creation time greater than or equal to the specified timestamp.
*/
CreationTimeAfter?: Timestamp;
/**
* A filter that returns only flow definitions that were created before the specified timestamp.
*/
CreationTimeBefore?: Timestamp;
/**
* An optional value that specifies whether you want the results sorted in Ascending or Descending order.
*/
SortOrder?: SortOrder;
/**
* A token to resume pagination.
*/
NextToken?: NextToken;
/**
* The total number of items to return. If the total number of available items is more than the value specified in MaxResults, then a NextToken will be provided in the output that you can use to resume pagination.
*/
MaxResults?: MaxResults;
}
export interface ListFlowDefinitionsResponse {
/**
* An array of objects describing the flow definitions.
*/
FlowDefinitionSummaries: FlowDefinitionSummaries;
/**
* A token to resume pagination.
*/
NextToken?: NextToken;
}
export interface ListHumanTaskUisRequest {
/**
* A filter that returns only human task user interfaces with a creation time greater than or equal to the specified timestamp.
*/
CreationTimeAfter?: Timestamp;
/**
* A filter that returns only human task user interfaces that were created before the specified timestamp.
*/
CreationTimeBefore?: Timestamp;
/**
* An optional value that specifies whether you want the results sorted in Ascending or Descending order.
*/
SortOrder?: SortOrder;
/**
* A token to resume pagination.
*/
NextToken?: NextToken;
/**
* The total number of items to return. If the total number of available items is more than the value specified in MaxResults, then a NextToken will be provided in the output that you can use to resume pagination.
*/
MaxResults?: MaxResults;
}
export interface ListHumanTaskUisResponse {
/**
* An array of objects describing the human task user interfaces.
*/
HumanTaskUiSummaries: HumanTaskUiSummaries;
/**
* A token to resume pagination.
*/
NextToken?: NextToken;
}
export interface ListHyperParameterTuningJobsRequest {
/**
* If the result of the previous ListHyperParameterTuningJobs request was truncated, the response includes a NextToken. To retrieve the next set of tuning jobs, use the token in the next request.
*/
NextToken?: NextToken;
/**
* The maximum number of tuning jobs to return. The default value is 10.
*/
MaxResults?: MaxResults;
/**
* The field to sort results by. The default is Name.
*/
SortBy?: HyperParameterTuningJobSortByOptions;
/**
* The sort order for results. The default is Ascending.
*/
SortOrder?: SortOrder;
/**
* A string in the tuning job name. This filter returns only tuning jobs whose name contains the specified string.
*/
NameContains?: NameContains;
/**
* A filter that returns only tuning jobs that were created after the specified time.
*/
CreationTimeAfter?: Timestamp;
/**
* A filter that returns only tuning jobs that were created before the specified time.
*/
CreationTimeBefore?: Timestamp;
/**
* A filter that returns only tuning jobs that were modified after the specified time.
*/
LastModifiedTimeAfter?: Timestamp;
/**
* A filter that returns only tuning jobs that were modified before the specified time.
*/
LastModifiedTimeBefore?: Timestamp;
/**
* A filter that returns only tuning jobs with the specified status.
*/
StatusEquals?: HyperParameterTuningJobStatus;
}
export interface ListHyperParameterTuningJobsResponse {
/**
* A list of HyperParameterTuningJobSummary objects that describe the tuning jobs that the ListHyperParameterTuningJobs request returned.
*/
HyperParameterTuningJobSummaries: HyperParameterTuningJobSummaries;
/**
* If the result of this ListHyperParameterTuningJobs request was truncated, the response includes a NextToken. To retrieve the next set of tuning jobs, use the token in the next request.
*/
NextToken?: NextToken;
}
export interface ListLabelingJobsForWorkteamRequest {
/**
* The Amazon Resource Name (ARN) of the work team for which you want to see labeling jobs for.
*/
WorkteamArn: WorkteamArn;
/**
* The maximum number of labeling jobs to return in each page of the response.
*/
MaxResults?: MaxResults;
/**
* If the result of the previous ListLabelingJobsForWorkteam request was truncated, the response includes a NextToken. To retrieve the next set of labeling jobs, use the token in the next request.
*/
NextToken?: NextToken;
/**
* A filter that returns only labeling jobs created after the specified time (timestamp).
*/
CreationTimeAfter?: Timestamp;
/**
* A filter that returns only labeling jobs created before the specified time (timestamp).
*/
CreationTimeBefore?: Timestamp;
/**
* A filter the limits jobs to only the ones whose job reference code contains the specified string.
*/
JobReferenceCodeContains?: JobReferenceCodeContains;
/**
* The field to sort results by. The default is CreationTime.
*/
SortBy?: ListLabelingJobsForWorkteamSortByOptions;
/**
* The sort order for results. The default is Ascending.
*/
SortOrder?: SortOrder;
}
export interface ListLabelingJobsForWorkteamResponse {
/**
* An array of LabelingJobSummary objects, each describing a labeling job.
*/
LabelingJobSummaryList: LabelingJobForWorkteamSummaryList;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of labeling jobs, use it in the subsequent request.
*/
NextToken?: NextToken;
}
export type ListLabelingJobsForWorkteamSortByOptions = "CreationTime"|string;
export interface ListLabelingJobsRequest {
/**
* A filter that returns only labeling jobs created after the specified time (timestamp).
*/
CreationTimeAfter?: Timestamp;
/**
* A filter that returns only labeling jobs created before the specified time (timestamp).
*/
CreationTimeBefore?: Timestamp;
/**
* A filter that returns only labeling jobs modified after the specified time (timestamp).
*/
LastModifiedTimeAfter?: Timestamp;
/**
* A filter that returns only labeling jobs modified before the specified time (timestamp).
*/
LastModifiedTimeBefore?: Timestamp;
/**
* The maximum number of labeling jobs to return in each page of the response.
*/
MaxResults?: MaxResults;
/**
* If the result of the previous ListLabelingJobs request was truncated, the response includes a NextToken. To retrieve the next set of labeling jobs, use the token in the next request.
*/
NextToken?: NextToken;
/**
* A string in the labeling job name. This filter returns only labeling jobs whose name contains the specified string.
*/
NameContains?: NameContains;
/**
* The field to sort results by. The default is CreationTime.
*/
SortBy?: SortBy;
/**
* The sort order for results. The default is Ascending.
*/
SortOrder?: SortOrder;
/**
* A filter that retrieves only labeling jobs with a specific status.
*/
StatusEquals?: LabelingJobStatus;
}
export interface ListLabelingJobsResponse {
/**
* An array of LabelingJobSummary objects, each describing a labeling job.
*/
LabelingJobSummaryList?: LabelingJobSummaryList;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of labeling jobs, use it in the subsequent request.
*/
NextToken?: NextToken;
}
export interface ListModelPackagesInput {
/**
* A filter that returns only model packages created after the specified time (timestamp).
*/
CreationTimeAfter?: CreationTime;
/**
* A filter that returns only model packages created before the specified time (timestamp).
*/
CreationTimeBefore?: CreationTime;
/**
* The maximum number of model packages to return in the response.
*/
MaxResults?: MaxResults;
/**
* A string in the model package name. This filter returns only model packages whose name contains the specified string.
*/
NameContains?: NameContains;
/**
* If the response to a previous ListModelPackages request was truncated, the response includes a NextToken. To retrieve the next set of model packages, use the token in the next request.
*/
NextToken?: NextToken;
/**
* The parameter by which to sort the results. The default is CreationTime.
*/
SortBy?: ModelPackageSortBy;
/**
* The sort order for the results. The default is Ascending.
*/
SortOrder?: SortOrder;
}
export interface ListModelPackagesOutput {
/**
* An array of ModelPackageSummary objects, each of which lists a model package.
*/
ModelPackageSummaryList: ModelPackageSummaryList;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of model packages, use it in the subsequent request.
*/
NextToken?: NextToken;
}
export interface ListModelsInput {
/**
* Sorts the list of results. The default is CreationTime.
*/
SortBy?: ModelSortKey;
/**
* The sort order for results. The default is Descending.
*/
SortOrder?: OrderKey;
/**
* If the response to a previous ListModels request was truncated, the response includes a NextToken. To retrieve the next set of models, use the token in the next request.
*/
NextToken?: PaginationToken;
/**
* The maximum number of models to return in the response.
*/
MaxResults?: MaxResults;
/**
* A string in the training job name. This filter returns only models in the training job whose name contains the specified string.
*/
NameContains?: ModelNameContains;
/**
* A filter that returns only models created before the specified time (timestamp).
*/
CreationTimeBefore?: Timestamp;
/**
* A filter that returns only models with a creation time greater than or equal to the specified time (timestamp).
*/
CreationTimeAfter?: Timestamp;
}
export interface ListModelsOutput {
/**
* An array of ModelSummary objects, each of which lists a model.
*/
Models: ModelSummaryList;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of models, use it in the subsequent request.
*/
NextToken?: PaginationToken;
}
export interface ListMonitoringExecutionsRequest {
/**
* Name of a specific schedule to fetch jobs for.
*/
MonitoringScheduleName?: MonitoringScheduleName;
/**
* Name of a specific endpoint to fetch jobs for.
*/
EndpointName?: EndpointName;
/**
* Whether to sort results by Status, CreationTime, ScheduledTime field. The default is CreationTime.
*/
SortBy?: MonitoringExecutionSortKey;
/**
* Whether to sort the results in Ascending or Descending order. The default is Descending.
*/
SortOrder?: SortOrder;
/**
* The token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.
*/
NextToken?: NextToken;
/**
* The maximum number of jobs to return in the response. The default value is 10.
*/
MaxResults?: MaxResults;
/**
* Filter for jobs scheduled before a specified time.
*/
ScheduledTimeBefore?: Timestamp;
/**
* Filter for jobs scheduled after a specified time.
*/
ScheduledTimeAfter?: Timestamp;
/**
* A filter that returns only jobs created before a specified time.
*/
CreationTimeBefore?: Timestamp;
/**
* A filter that returns only jobs created after a specified time.
*/
CreationTimeAfter?: Timestamp;
/**
* A filter that returns only jobs modified after a specified time.
*/
LastModifiedTimeBefore?: Timestamp;
/**
* A filter that returns only jobs modified before a specified time.
*/
LastModifiedTimeAfter?: Timestamp;
/**
* A filter that retrieves only jobs with a specific status.
*/
StatusEquals?: ExecutionStatus;
}
export interface ListMonitoringExecutionsResponse {
/**
* A JSON array in which each element is a summary for a monitoring execution.
*/
MonitoringExecutionSummaries: MonitoringExecutionSummaryList;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of jobs, use it in the subsequent reques
*/
NextToken?: NextToken;
}
export interface ListMonitoringSchedulesRequest {
/**
* Name of a specific endpoint to fetch schedules for.
*/
EndpointName?: EndpointName;
/**
* Whether to sort results by Status, CreationTime, ScheduledTime field. The default is CreationTime.
*/
SortBy?: MonitoringScheduleSortKey;
/**
* Whether to sort the results in Ascending or Descending order. The default is Descending.
*/
SortOrder?: SortOrder;
/**
* The token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.
*/
NextToken?: NextToken;
/**
* The maximum number of jobs to return in the response. The default value is 10.
*/
MaxResults?: MaxResults;
/**
* Filter for monitoring schedules whose name contains a specified string.
*/
NameContains?: NameContains;
/**
* A filter that returns only monitoring schedules created before a specified time.
*/
CreationTimeBefore?: Timestamp;
/**
* A filter that returns only monitoring schedules created after a specified time.
*/
CreationTimeAfter?: Timestamp;
/**
* A filter that returns only monitoring schedules modified before a specified time.
*/
LastModifiedTimeBefore?: Timestamp;
/**
* A filter that returns only monitoring schedules modified after a specified time.
*/
LastModifiedTimeAfter?: Timestamp;
/**
* A filter that returns only monitoring schedules modified before a specified time.
*/
StatusEquals?: ScheduleStatus;
}
export interface ListMonitoringSchedulesResponse {
/**
* A JSON array in which each element is a summary for a monitoring schedule.
*/
MonitoringScheduleSummaries: MonitoringScheduleSummaryList;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of jobs, use it in the subsequent reques
*/
NextToken?: NextToken;
}
export interface ListNotebookInstanceLifecycleConfigsInput {
/**
* If the result of a ListNotebookInstanceLifecycleConfigs request was truncated, the response includes a NextToken. To get the next set of lifecycle configurations, use the token in the next request.
*/
NextToken?: NextToken;
/**
* The maximum number of lifecycle configurations to return in the response.
*/
MaxResults?: MaxResults;
/**
* Sorts the list of results. The default is CreationTime.
*/
SortBy?: NotebookInstanceLifecycleConfigSortKey;
/**
* The sort order for results.
*/
SortOrder?: NotebookInstanceLifecycleConfigSortOrder;
/**
* A string in the lifecycle configuration name. This filter returns only lifecycle configurations whose name contains the specified string.
*/
NameContains?: NotebookInstanceLifecycleConfigNameContains;
/**
* A filter that returns only lifecycle configurations that were created before the specified time (timestamp).
*/
CreationTimeBefore?: CreationTime;
/**
* A filter that returns only lifecycle configurations that were created after the specified time (timestamp).
*/
CreationTimeAfter?: CreationTime;
/**
* A filter that returns only lifecycle configurations that were modified before the specified time (timestamp).
*/
LastModifiedTimeBefore?: LastModifiedTime;
/**
* A filter that returns only lifecycle configurations that were modified after the specified time (timestamp).
*/
LastModifiedTimeAfter?: LastModifiedTime;
}
export interface ListNotebookInstanceLifecycleConfigsOutput {
/**
* If the response is truncated, Amazon SageMaker returns this token. To get the next set of lifecycle configurations, use it in the next request.
*/
NextToken?: NextToken;
/**
* An array of NotebookInstanceLifecycleConfiguration objects, each listing a lifecycle configuration.
*/
NotebookInstanceLifecycleConfigs?: NotebookInstanceLifecycleConfigSummaryList;
}
export interface ListNotebookInstancesInput {
/**
* If the previous call to the ListNotebookInstances is truncated, the response includes a NextToken. You can use this token in your subsequent ListNotebookInstances request to fetch the next set of notebook instances. You might specify a filter or a sort order in your request. When response is truncated, you must use the same values for the filer and sort order in the next request.
*/
NextToken?: NextToken;
/**
* The maximum number of notebook instances to return.
*/
MaxResults?: MaxResults;
/**
* The field to sort results by. The default is Name.
*/
SortBy?: NotebookInstanceSortKey;
/**
* The sort order for results.
*/
SortOrder?: NotebookInstanceSortOrder;
/**
* A string in the notebook instances' name. This filter returns only notebook instances whose name contains the specified string.
*/
NameContains?: NotebookInstanceNameContains;
/**
* A filter that returns only notebook instances that were created before the specified time (timestamp).
*/
CreationTimeBefore?: CreationTime;
/**
* A filter that returns only notebook instances that were created after the specified time (timestamp).
*/
CreationTimeAfter?: CreationTime;
/**
* A filter that returns only notebook instances that were modified before the specified time (timestamp).
*/
LastModifiedTimeBefore?: LastModifiedTime;
/**
* A filter that returns only notebook instances that were modified after the specified time (timestamp).
*/
LastModifiedTimeAfter?: LastModifiedTime;
/**
* A filter that returns only notebook instances with the specified status.
*/
StatusEquals?: NotebookInstanceStatus;
/**
* A string in the name of a notebook instances lifecycle configuration associated with this notebook instance. This filter returns only notebook instances associated with a lifecycle configuration with a name that contains the specified string.
*/
NotebookInstanceLifecycleConfigNameContains?: NotebookInstanceLifecycleConfigName;
/**
* A string in the name or URL of a Git repository associated with this notebook instance. This filter returns only notebook instances associated with a git repository with a name that contains the specified string.
*/
DefaultCodeRepositoryContains?: CodeRepositoryContains;
/**
* A filter that returns only notebook instances with associated with the specified git repository.
*/
AdditionalCodeRepositoryEquals?: CodeRepositoryNameOrUrl;
}
export interface ListNotebookInstancesOutput {
/**
* If the response to the previous ListNotebookInstances request was truncated, Amazon SageMaker returns this token. To retrieve the next set of notebook instances, use the token in the next request.
*/
NextToken?: NextToken;
/**
* An array of NotebookInstanceSummary objects, one for each notebook instance.
*/
NotebookInstances?: NotebookInstanceSummaryList;
}
export interface ListProcessingJobsRequest {
/**
* A filter that returns only processing jobs created after the specified time.
*/
CreationTimeAfter?: Timestamp;
/**
* A filter that returns only processing jobs created after the specified time.
*/
CreationTimeBefore?: Timestamp;
/**
* A filter that returns only processing jobs modified after the specified time.
*/
LastModifiedTimeAfter?: Timestamp;
/**
* A filter that returns only processing jobs modified before the specified time.
*/
LastModifiedTimeBefore?: Timestamp;
/**
* A string in the processing job name. This filter returns only processing jobs whose name contains the specified string.
*/
NameContains?: String;
/**
* A filter that retrieves only processing jobs with a specific status.
*/
StatusEquals?: ProcessingJobStatus;
/**
* The field to sort results by. The default is CreationTime.
*/
SortBy?: SortBy;
/**
* The sort order for results. The default is Ascending.
*/
SortOrder?: SortOrder;
/**
* If the result of the previous ListProcessingJobs request was truncated, the response includes a NextToken. To retrieve the next set of processing jobs, use the token in the next request.
*/
NextToken?: NextToken;
/**
* The maximum number of processing jobs to return in the response.
*/
MaxResults?: MaxResults;
}
export interface ListProcessingJobsResponse {
/**
* An array of ProcessingJobSummary objects, each listing a processing job.
*/
ProcessingJobSummaries: ProcessingJobSummaries;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of processing jobs, use it in the subsequent request.
*/
NextToken?: NextToken;
}
export interface ListSubscribedWorkteamsRequest {
/**
* A string in the work team name. This filter returns only work teams whose name contains the specified string.
*/
NameContains?: WorkteamName;
/**
* If the result of the previous ListSubscribedWorkteams request was truncated, the response includes a NextToken. To retrieve the next set of labeling jobs, use the token in the next request.
*/
NextToken?: NextToken;
/**
* The maximum number of work teams to return in each page of the response.
*/
MaxResults?: MaxResults;
}
export interface ListSubscribedWorkteamsResponse {
/**
* An array of Workteam objects, each describing a work team.
*/
SubscribedWorkteams: SubscribedWorkteams;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of work teams, use it in the subsequent request.
*/
NextToken?: NextToken;
}
export interface ListTagsInput {
/**
* The Amazon Resource Name (ARN) of the resource whose tags you want to retrieve.
*/
ResourceArn: ResourceArn;
/**
* If the response to the previous ListTags request is truncated, Amazon SageMaker returns this token. To retrieve the next set of tags, use it in the subsequent request.
*/
NextToken?: NextToken;
/**
* Maximum number of tags to return.
*/
MaxResults?: ListTagsMaxResults;
}
export type ListTagsMaxResults = number;
export interface ListTagsOutput {
/**
* An array of Tag objects, each with a tag key and a value.
*/
Tags?: TagList;
/**
* If response is truncated, Amazon SageMaker includes a token in the response. You can use this token in your subsequent request to fetch next set of tokens.
*/
NextToken?: NextToken;
}
export interface ListTrainingJobsForHyperParameterTuningJobRequest {
/**
* The name of the tuning job whose training jobs you want to list.
*/
HyperParameterTuningJobName: HyperParameterTuningJobName;
/**
* If the result of the previous ListTrainingJobsForHyperParameterTuningJob request was truncated, the response includes a NextToken. To retrieve the next set of training jobs, use the token in the next request.
*/
NextToken?: NextToken;
/**
* The maximum number of training jobs to return. The default value is 10.
*/
MaxResults?: MaxResults;
/**
* A filter that returns only training jobs with the specified status.
*/
StatusEquals?: TrainingJobStatus;
/**
* The field to sort results by. The default is Name. If the value of this field is FinalObjectiveMetricValue, any training jobs that did not return an objective metric are not listed.
*/
SortBy?: TrainingJobSortByOptions;
/**
* The sort order for results. The default is Ascending.
*/
SortOrder?: SortOrder;
}
export interface ListTrainingJobsForHyperParameterTuningJobResponse {
/**
* A list of TrainingJobSummary objects that describe the training jobs that the ListTrainingJobsForHyperParameterTuningJob request returned.
*/
TrainingJobSummaries: HyperParameterTrainingJobSummaries;
/**
* If the result of this ListTrainingJobsForHyperParameterTuningJob request was truncated, the response includes a NextToken. To retrieve the next set of training jobs, use the token in the next request.
*/
NextToken?: NextToken;
}
export interface ListTrainingJobsRequest {
/**
* If the result of the previous ListTrainingJobs request was truncated, the response includes a NextToken. To retrieve the next set of training jobs, use the token in the next request.
*/
NextToken?: NextToken;
/**
* The maximum number of training jobs to return in the response.
*/
MaxResults?: MaxResults;
/**
* A filter that returns only training jobs created after the specified time (timestamp).
*/
CreationTimeAfter?: Timestamp;
/**
* A filter that returns only training jobs created before the specified time (timestamp).
*/
CreationTimeBefore?: Timestamp;
/**
* A filter that returns only training jobs modified after the specified time (timestamp).
*/
LastModifiedTimeAfter?: Timestamp;
/**
* A filter that returns only training jobs modified before the specified time (timestamp).
*/
LastModifiedTimeBefore?: Timestamp;
/**
* A string in the training job name. This filter returns only training jobs whose name contains the specified string.
*/
NameContains?: NameContains;
/**
* A filter that retrieves only training jobs with a specific status.
*/
StatusEquals?: TrainingJobStatus;
/**
* The field to sort results by. The default is CreationTime.
*/
SortBy?: SortBy;
/**
* The sort order for results. The default is Ascending.
*/
SortOrder?: SortOrder;
}
export interface ListTrainingJobsResponse {
/**
* An array of TrainingJobSummary objects, each listing a training job.
*/
TrainingJobSummaries: TrainingJobSummaries;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of training jobs, use it in the subsequent request.
*/
NextToken?: NextToken;
}
export interface ListTransformJobsRequest {
/**
* A filter that returns only transform jobs created after the specified time.
*/
CreationTimeAfter?: Timestamp;
/**
* A filter that returns only transform jobs created before the specified time.
*/
CreationTimeBefore?: Timestamp;
/**
* A filter that returns only transform jobs modified after the specified time.
*/
LastModifiedTimeAfter?: Timestamp;
/**
* A filter that returns only transform jobs modified before the specified time.
*/
LastModifiedTimeBefore?: Timestamp;
/**
* A string in the transform job name. This filter returns only transform jobs whose name contains the specified string.
*/
NameContains?: NameContains;
/**
* A filter that retrieves only transform jobs with a specific status.
*/
StatusEquals?: TransformJobStatus;
/**
* The field to sort results by. The default is CreationTime.
*/
SortBy?: SortBy;
/**
* The sort order for results. The default is Descending.
*/
SortOrder?: SortOrder;
/**
* If the result of the previous ListTransformJobs request was truncated, the response includes a NextToken. To retrieve the next set of transform jobs, use the token in the next request.
*/
NextToken?: NextToken;
/**
* The maximum number of transform jobs to return in the response. The default value is 10.
*/
MaxResults?: MaxResults;
}
export interface ListTransformJobsResponse {
/**
* An array of TransformJobSummary objects.
*/
TransformJobSummaries: TransformJobSummaries;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of transform jobs, use it in the next request.
*/
NextToken?: NextToken;
}
export type ListTrialComponentKey256 = TrialComponentKey256[];
export interface ListTrialComponentsRequest {
/**
* A filter that returns only components that are part of the specified experiment. If you specify ExperimentName, you can't filter by SourceArn or TrialName.
*/
ExperimentName?: ExperimentEntityName;
/**
* A filter that returns only components that are part of the specified trial. If you specify TrialName, you can't filter by ExperimentName or SourceArn.
*/
TrialName?: ExperimentEntityName;
/**
* A filter that returns only components that have the specified source Amazon Resource Name (ARN). If you specify SourceArn, you can't filter by ExperimentName or TrialName.
*/
SourceArn?: String256;
/**
* A filter that returns only components created after the specified time.
*/
CreatedAfter?: Timestamp;
/**
* A filter that returns only components created before the specified time.
*/
CreatedBefore?: Timestamp;
/**
* The property used to sort results. The default value is CreationTime.
*/
SortBy?: SortTrialComponentsBy;
/**
* The sort order. The default value is Descending.
*/
SortOrder?: SortOrder;
/**
* The maximum number of components to return in the response. The default value is 10.
*/
MaxResults?: MaxResults;
/**
* If the previous call to ListTrialComponents didn't return the full set of components, the call returns a token for getting the next set of components.
*/
NextToken?: NextToken;
}
export interface ListTrialComponentsResponse {
/**
* A list of the summaries of your trial components.
*/
TrialComponentSummaries?: TrialComponentSummaries;
/**
* A token for getting the next set of components, if there are any.
*/
NextToken?: NextToken;
}
export interface ListTrialsRequest {
/**
* A filter that returns only trials that are part of the specified experiment.
*/
ExperimentName?: ExperimentEntityName;
/**
* A filter that returns only trials that are associated with the specified trial component.
*/
TrialComponentName?: ExperimentEntityName;
/**
* A filter that returns only trials created after the specified time.
*/
CreatedAfter?: Timestamp;
/**
* A filter that returns only trials created before the specified time.
*/
CreatedBefore?: Timestamp;
/**
* The property used to sort results. The default value is CreationTime.
*/
SortBy?: SortTrialsBy;
/**
* The sort order. The default value is Descending.
*/
SortOrder?: SortOrder;
/**
* The maximum number of trials to return in the response. The default value is 10.
*/
MaxResults?: MaxResults;
/**
* If the previous call to ListTrials didn't return the full set of trials, the call returns a token for getting the next set of trials.
*/
NextToken?: NextToken;
}
export interface ListTrialsResponse {
/**
* A list of the summaries of your trials.
*/
TrialSummaries?: TrialSummaries;
/**
* A token for getting the next set of trials, if there are any.
*/
NextToken?: NextToken;
}
export interface ListUserProfilesRequest {
/**
* If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
*/
NextToken?: NextToken;
/**
* Returns a list up to a specified limit.
*/
MaxResults?: MaxResults;
/**
* The sort order for the results. The default is Ascending.
*/
SortOrder?: SortOrder;
/**
* The parameter by which to sort the results. The default is CreationTime.
*/
SortBy?: UserProfileSortKey;
/**
* A parameter by which to filter the results.
*/
DomainIdEquals?: DomainId;
/**
* A parameter by which to filter the results.
*/
UserProfileNameContains?: UserProfileName;
}
export interface ListUserProfilesResponse {
/**
* The list of user profiles.
*/
UserProfiles?: UserProfileList;
/**
* If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
*/
NextToken?: NextToken;
}
export interface ListWorkforcesRequest {
/**
* Sort workforces using the workforce name or creation date.
*/
SortBy?: ListWorkforcesSortByOptions;
/**
* Sort workforces in ascending or descending order.
*/
SortOrder?: SortOrder;
/**
* A filter you can use to search for workforces using part of the workforce name.
*/
NameContains?: WorkforceName;
/**
* A token to resume pagination.
*/
NextToken?: NextToken;
/**
* The maximum number of workforces returned in the response.
*/
MaxResults?: MaxResults;
}
export interface ListWorkforcesResponse {
/**
* A list containing information about your workforce.
*/
Workforces: Workforces;
/**
* A token to resume pagination.
*/
NextToken?: NextToken;
}
export type ListWorkforcesSortByOptions = "Name"|"CreateDate"|string;
export interface ListWorkteamsRequest {
/**
* The field to sort results by. The default is CreationTime.
*/
SortBy?: ListWorkteamsSortByOptions;
/**
* The sort order for results. The default is Ascending.
*/
SortOrder?: SortOrder;
/**
* A string in the work team's name. This filter returns only work teams whose name contains the specified string.
*/
NameContains?: WorkteamName;
/**
* If the result of the previous ListWorkteams request was truncated, the response includes a NextToken. To retrieve the next set of labeling jobs, use the token in the next request.
*/
NextToken?: NextToken;
/**
* The maximum number of work teams to return in each page of the response.
*/
MaxResults?: MaxResults;
}
export interface ListWorkteamsResponse {
/**
* An array of Workteam objects, each describing a work team.
*/
Workteams: Workteams;
/**
* If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of work teams, use it in the subsequent request.
*/
NextToken?: NextToken;
}
export type ListWorkteamsSortByOptions = "Name"|"CreateDate"|string;
export type MaxAutoMLJobRuntimeInSeconds = number;
export type MaxCandidates = number;
export type MaxConcurrentTaskCount = number;
export type MaxConcurrentTransforms = number;
export type MaxHumanLabeledObjectCount = number;
export type MaxNumberOfTrainingJobs = number;
export type MaxParallelTrainingJobs = number;
export type MaxPayloadInMB = number;
export type MaxPercentageOfInputDatasetLabeled = number;
export type MaxResults = number;
export type MaxRuntimeInSeconds = number;
export type MaxRuntimePerTrainingJobInSeconds = number;
export type MaxWaitTimeInSeconds = number;
export type MediaType = string;
export interface MemberDefinition {
/**
* The Amazon Cognito user group that is part of the work team.
*/
CognitoMemberDefinition?: CognitoMemberDefinition;
/**
* A list user groups that exist in your OIDC Identity Provider (IdP). One to ten groups can be used to create a single private work team. When you add a user group to the list of Groups, you can add that user group to one or more private work teams. If you add a user group to a private work team, all workers in that user group are added to the work team.
*/
OidcMemberDefinition?: OidcMemberDefinition;
}
export type MemberDefinitions = MemberDefinition[];
export interface MetricData {
/**
* The name of the metric.
*/
MetricName?: MetricName;
/**
* The value of the metric.
*/
Value?: Float;
/**
* The date and time that the algorithm emitted the metric.
*/
Timestamp?: Timestamp;
}
export interface MetricDefinition {
/**
* The name of the metric.
*/
Name: MetricName;
/**
* A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics.
*/
Regex: MetricRegex;
}
export type MetricDefinitionList = MetricDefinition[];
export type MetricName = string;
export type MetricRegex = string;
export type MetricValue = number;
export type ModelArn = string;
export interface ModelArtifacts {
/**
* The path of the S3 object that contains the model artifacts. For example, s3://bucket-name/keynameprefix/model.tar.gz.
*/
S3ModelArtifacts: S3Uri;
}
export interface ModelClientConfig {
/**
* The timeout value in seconds for an invocation request.
*/
InvocationsTimeoutInSeconds?: InvocationsTimeoutInSeconds;
/**
* The maximum number of retries when invocation requests are failing.
*/
InvocationsMaxRetries?: InvocationsMaxRetries;
}
export type ModelName = string;
export type ModelNameContains = string;
export type ModelPackageArn = string;
export interface ModelPackageContainerDefinition {
/**
* The DNS host name for the Docker container.
*/
ContainerHostname?: ContainerHostname;
/**
* The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored. If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker, the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
*/
Image: ContainerImage;
/**
* An MD5 hash of the training algorithm that identifies the Docker image used for training.
*/
ImageDigest?: ImageDigest;
/**
* The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The model artifacts must be in an S3 bucket that is in the same region as the model package.
*/
ModelDataUrl?: Url;
/**
* The AWS Marketplace product ID of the model package.
*/
ProductId?: ProductId;
}
export type ModelPackageContainerDefinitionList = ModelPackageContainerDefinition[];
export type ModelPackageSortBy = "Name"|"CreationTime"|string;
export type ModelPackageStatus = "Pending"|"InProgress"|"Completed"|"Failed"|"Deleting"|string;
export interface ModelPackageStatusDetails {
/**
* The validation status of the model package.
*/
ValidationStatuses: ModelPackageStatusItemList;
/**
* The status of the scan of the Docker image container for the model package.
*/
ImageScanStatuses?: ModelPackageStatusItemList;
}
export interface ModelPackageStatusItem {
/**
* The name of the model package for which the overall status is being reported.
*/
Name: EntityName;
/**
* The current status.
*/
Status: DetailedModelPackageStatus;
/**
* if the overall status is Failed, the reason for the failure.
*/
FailureReason?: String;
}
export type ModelPackageStatusItemList = ModelPackageStatusItem[];
export interface ModelPackageSummary {
/**
* The name of the model package.
*/
ModelPackageName: EntityName;
/**
* The Amazon Resource Name (ARN) of the model package.
*/
ModelPackageArn: ModelPackageArn;
/**
* A brief description of the model package.
*/
ModelPackageDescription?: EntityDescription;
/**
* A timestamp that shows when the model package was created.
*/
CreationTime: CreationTime;
/**
* The overall status of the model package.
*/
ModelPackageStatus: ModelPackageStatus;
}
export type ModelPackageSummaryList = ModelPackageSummary[];
export interface ModelPackageValidationProfile {
/**
* The name of the profile for the model package.
*/
ProfileName: EntityName;
/**
* The TransformJobDefinition object that describes the transform job used for the validation of the model package.
*/
TransformJobDefinition: TransformJobDefinition;
}
export type ModelPackageValidationProfiles = ModelPackageValidationProfile[];
export interface ModelPackageValidationSpecification {
/**
* The IAM roles to be used for the validation of the model package.
*/
ValidationRole: RoleArn;
/**
* An array of ModelPackageValidationProfile objects, each of which specifies a batch transform job that Amazon SageMaker runs to validate your model package.
*/
ValidationProfiles: ModelPackageValidationProfiles;
}
export type ModelSortKey = "Name"|"CreationTime"|string;
export interface ModelSummary {
/**
* The name of the model that you want a summary for.
*/
ModelName: ModelName;
/**
* The Amazon Resource Name (ARN) of the model.
*/
ModelArn: ModelArn;
/**
* A timestamp that indicates when the model was created.
*/
CreationTime: Timestamp;
}
export type ModelSummaryList = ModelSummary[];
export interface MonitoringAppSpecification {
/**
* The container image to be run by the monitoring job.
*/
ImageUri: ImageUri;
/**
* Specifies the entrypoint for a container used to run the monitoring job.
*/
ContainerEntrypoint?: ContainerEntrypoint;
/**
* An array of arguments for the container used to run the monitoring job.
*/
ContainerArguments?: MonitoringContainerArguments;
/**
* An Amazon S3 URI to a script that is called per row prior to running analysis. It can base64 decode the payload and convert it into a flatted json so that the built-in container can use the converted data. Applicable only for the built-in (first party) containers.
*/
RecordPreprocessorSourceUri?: S3Uri;
/**
* An Amazon S3 URI to a script that is called after analysis has been performed. Applicable only for the built-in (first party) containers.
*/
PostAnalyticsProcessorSourceUri?: S3Uri;
}
export interface MonitoringBaselineConfig {
/**
* The baseline constraint file in Amazon S3 that the current monitoring job should validated against.
*/
ConstraintsResource?: MonitoringConstraintsResource;
/**
* The baseline statistics file in Amazon S3 that the current monitoring job should be validated against.
*/
StatisticsResource?: MonitoringStatisticsResource;
}
export interface MonitoringClusterConfig {
/**
* The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.
*/
InstanceCount: ProcessingInstanceCount;
/**
* The ML compute instance type for the processing job.
*/
InstanceType: ProcessingInstanceType;
/**
* The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.
*/
VolumeSizeInGB: ProcessingVolumeSizeInGB;
/**
* The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.
*/
VolumeKmsKeyId?: KmsKeyId;
}
export interface MonitoringConstraintsResource {
/**
* The Amazon S3 URI for the constraints resource.
*/
S3Uri?: S3Uri;
}
export type MonitoringContainerArguments = ContainerArgument[];
export type MonitoringEnvironmentMap = {[key: string]: ProcessingEnvironmentValue};
export type MonitoringExecutionSortKey = "CreationTime"|"ScheduledTime"|"Status"|string;
export interface MonitoringExecutionSummary {
/**
* The name of the monitoring schedule.
*/
MonitoringScheduleName: MonitoringScheduleName;
/**
* The time the monitoring job was scheduled.
*/
ScheduledTime: Timestamp;
/**
* The time at which the monitoring job was created.
*/
CreationTime: Timestamp;
/**
* A timestamp that indicates the last time the monitoring job was modified.
*/
LastModifiedTime: Timestamp;
/**
* The status of the monitoring job.
*/
MonitoringExecutionStatus: ExecutionStatus;
/**
* The Amazon Resource Name (ARN) of the monitoring job.
*/
ProcessingJobArn?: ProcessingJobArn;
/**
* The name of teh endpoint used to run the monitoring job.
*/
EndpointName?: EndpointName;
/**
* Contains the reason a monitoring job failed, if it failed.
*/
FailureReason?: FailureReason;
}
export type MonitoringExecutionSummaryList = MonitoringExecutionSummary[];
export interface MonitoringInput {
/**
* The endpoint for a monitoring job.
*/
EndpointInput: EndpointInput;
}
export type MonitoringInputs = MonitoringInput[];
export interface MonitoringJobDefinition {
/**
* Baseline configuration used to validate that the data conforms to the specified constraints and statistics
*/
BaselineConfig?: MonitoringBaselineConfig;
/**
* The array of inputs for the monitoring job. Currently we support monitoring an Amazon SageMaker Endpoint.
*/
MonitoringInputs: MonitoringInputs;
/**
* The array of outputs from the monitoring job to be uploaded to Amazon Simple Storage Service (Amazon S3).
*/
MonitoringOutputConfig: MonitoringOutputConfig;
/**
* Identifies the resources, ML compute instances, and ML storage volumes to deploy for a monitoring job. In distributed processing, you specify more than one instance.
*/
MonitoringResources: MonitoringResources;
/**
* Configures the monitoring job to run a specified Docker container image.
*/
MonitoringAppSpecification: MonitoringAppSpecification;
/**
* Specifies a time limit for how long the monitoring job is allowed to run.
*/
StoppingCondition?: MonitoringStoppingCondition;
/**
* Sets the environment variables in the Docker container.
*/
Environment?: MonitoringEnvironmentMap;
/**
* Specifies networking options for an monitoring job.
*/
NetworkConfig?: NetworkConfig;
/**
* The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
*/
RoleArn: RoleArn;
}
export type MonitoringMaxRuntimeInSeconds = number;
export interface MonitoringOutput {
/**
* The Amazon S3 storage location where the results of a monitoring job are saved.
*/
S3Output: MonitoringS3Output;
}
export interface MonitoringOutputConfig {
/**
* Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.
*/
MonitoringOutputs: MonitoringOutputs;
/**
* The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
*/
KmsKeyId?: KmsKeyId;
}
export type MonitoringOutputs = MonitoringOutput[];
export interface MonitoringResources {
/**
* The configuration for the cluster resources used to run the processing job.
*/
ClusterConfig: MonitoringClusterConfig;
}
export interface MonitoringS3Output {
/**
* A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.
*/
S3Uri: MonitoringS3Uri;
/**
* The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.
*/
LocalPath: ProcessingLocalPath;
/**
* Whether to upload the results of the monitoring job continuously or after the job completes.
*/
S3UploadMode?: ProcessingS3UploadMode;
}
export type MonitoringS3Uri = string;
export type MonitoringScheduleArn = string;
export interface MonitoringScheduleConfig {
/**
* Configures the monitoring schedule.
*/
ScheduleConfig?: ScheduleConfig;
/**
* Defines the monitoring job.
*/
MonitoringJobDefinition: MonitoringJobDefinition;
}
export type MonitoringScheduleName = string;
export type MonitoringScheduleSortKey = "Name"|"CreationTime"|"Status"|string;
export interface MonitoringScheduleSummary {
/**
* The name of the monitoring schedule.
*/
MonitoringScheduleName: MonitoringScheduleName;
/**
* The Amazon Resource Name (ARN) of the monitoring schedule.
*/
MonitoringScheduleArn: MonitoringScheduleArn;
/**
* The creation time of the monitoring schedule.
*/
CreationTime: Timestamp;
/**
* The last time the monitoring schedule was modified.
*/
LastModifiedTime: Timestamp;
/**
* The status of the monitoring schedule.
*/
MonitoringScheduleStatus: ScheduleStatus;
/**
* The name of the endpoint using the monitoring schedule.
*/
EndpointName?: EndpointName;
}
export type MonitoringScheduleSummaryList = MonitoringScheduleSummary[];
export interface MonitoringStatisticsResource {
/**
* The Amazon S3 URI for the statistics resource.
*/
S3Uri?: S3Uri;
}
export interface MonitoringStoppingCondition {
/**
* The maximum runtime allowed in seconds.
*/
MaxRuntimeInSeconds: MonitoringMaxRuntimeInSeconds;
}
export type NameContains = string;
export interface NestedFilters {
/**
* The name of the property to use in the nested filters. The value must match a listed property name, such as InputDataConfig.
*/
NestedPropertyName: ResourcePropertyName;
/**
* A list of filters. Each filter acts on a property. Filters must contain at least one Filters value. For example, a NestedFilters call might include a filter on the PropertyName parameter of the InputDataConfig property: InputDataConfig.DataSource.S3DataSource.S3Uri.
*/
Filters: FilterList;
}
export type NestedFiltersList = NestedFilters[];
export interface NetworkConfig {
/**
* Whether to encrypt all communications between distributed processing jobs. Choose True to encrypt communications. Encryption provides greater security for distributed processing jobs, but the processing might take longer.
*/
EnableInterContainerTrafficEncryption?: Boolean;
/**
* Whether to allow inbound and outbound network calls to and from the containers used for the processing job.
*/
EnableNetworkIsolation?: Boolean;
VpcConfig?: VpcConfig;
}
export type NetworkInterfaceId = string;
export type NextToken = string;
export type NotebookInstanceAcceleratorType = "ml.eia1.medium"|"ml.eia1.large"|"ml.eia1.xlarge"|"ml.eia2.medium"|"ml.eia2.large"|"ml.eia2.xlarge"|string;
export type NotebookInstanceAcceleratorTypes = NotebookInstanceAcceleratorType[];
export type NotebookInstanceArn = string;
export type NotebookInstanceLifecycleConfigArn = string;
export type NotebookInstanceLifecycleConfigContent = string;
export type NotebookInstanceLifecycleConfigList = NotebookInstanceLifecycleHook[];
export type NotebookInstanceLifecycleConfigName = string;
export type NotebookInstanceLifecycleConfigNameContains = string;
export type NotebookInstanceLifecycleConfigSortKey = "Name"|"CreationTime"|"LastModifiedTime"|string;
export type NotebookInstanceLifecycleConfigSortOrder = "Ascending"|"Descending"|string;
export interface NotebookInstanceLifecycleConfigSummary {
/**
* The name of the lifecycle configuration.
*/
NotebookInstanceLifecycleConfigName: NotebookInstanceLifecycleConfigName;
/**
* The Amazon Resource Name (ARN) of the lifecycle configuration.
*/
NotebookInstanceLifecycleConfigArn: NotebookInstanceLifecycleConfigArn;
/**
* A timestamp that tells when the lifecycle configuration was created.
*/
CreationTime?: CreationTime;
/**
* A timestamp that tells when the lifecycle configuration was last modified.
*/
LastModifiedTime?: LastModifiedTime;
}
export type NotebookInstanceLifecycleConfigSummaryList = NotebookInstanceLifecycleConfigSummary[];
export interface NotebookInstanceLifecycleHook {
/**
* A base64-encoded string that contains a shell script for a notebook instance lifecycle configuration.
*/
Content?: NotebookInstanceLifecycleConfigContent;
}
export type NotebookInstanceName = string;
export type NotebookInstanceNameContains = string;
export type NotebookInstanceSortKey = "Name"|"CreationTime"|"Status"|string;
export type NotebookInstanceSortOrder = "Ascending"|"Descending"|string;
export type NotebookInstanceStatus = "Pending"|"InService"|"Stopping"|"Stopped"|"Failed"|"Deleting"|"Updating"|string;
export interface NotebookInstanceSummary {
/**
* The name of the notebook instance that you want a summary for.
*/
NotebookInstanceName: NotebookInstanceName;
/**
* The Amazon Resource Name (ARN) of the notebook instance.
*/
NotebookInstanceArn: NotebookInstanceArn;
/**
* The status of the notebook instance.
*/
NotebookInstanceStatus?: NotebookInstanceStatus;
/**
* The URL that you use to connect to the Jupyter instance running in your notebook instance.
*/
Url?: NotebookInstanceUrl;
/**
* The type of ML compute instance that the notebook instance is running on.
*/
InstanceType?: InstanceType;
/**
* A timestamp that shows when the notebook instance was created.
*/
CreationTime?: CreationTime;
/**
* A timestamp that shows when the notebook instance was last modified.
*/
LastModifiedTime?: LastModifiedTime;
/**
* The name of a notebook instance lifecycle configuration associated with this notebook instance. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
*/
NotebookInstanceLifecycleConfigName?: NotebookInstanceLifecycleConfigName;
/**
* The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
*/
DefaultCodeRepository?: CodeRepositoryNameOrUrl;
/**
* An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
*/
AdditionalCodeRepositories?: AdditionalCodeRepositoryNamesOrUrls;
}
export type NotebookInstanceSummaryList = NotebookInstanceSummary[];
export type NotebookInstanceUrl = string;
export type NotebookInstanceVolumeSizeInGB = number;
export type NotebookOutputOption = "Allowed"|"Disabled"|string;
export interface NotificationConfiguration {
/**
* The ARN for the SNS topic to which notifications should be published.
*/
NotificationTopicArn?: NotificationTopicArn;
}
export type NotificationTopicArn = string;
export type NumberOfHumanWorkersPerDataObject = number;
export type ObjectiveStatus = "Succeeded"|"Pending"|"Failed"|string;
export type ObjectiveStatusCounter = number;
export interface ObjectiveStatusCounters {
/**
* The number of training jobs whose final objective metric was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process.
*/
Succeeded?: ObjectiveStatusCounter;
/**
* The number of training jobs that are in progress and pending evaluation of their final objective metric.
*/
Pending?: ObjectiveStatusCounter;
/**
* The number of training jobs whose final objective metric was not evaluated and used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.
*/
Failed?: ObjectiveStatusCounter;
}
export interface OidcConfig {
/**
* The OIDC IdP client ID used to configure your private workforce.
*/
ClientId: ClientId;
/**
* The OIDC IdP client secret used to configure your private workforce.
*/
ClientSecret: ClientSecret;
/**
* The OIDC IdP issuer used to configure your private workforce.
*/
Issuer: OidcEndpoint;
/**
* The OIDC IdP authorization endpoint used to configure your private workforce.
*/
AuthorizationEndpoint: OidcEndpoint;
/**
* The OIDC IdP token endpoint used to configure your private workforce.
*/
TokenEndpoint: OidcEndpoint;
/**
* The OIDC IdP user information endpoint used to configure your private workforce.
*/
UserInfoEndpoint: OidcEndpoint;
/**
* The OIDC IdP logout endpoint used to configure your private workforce.
*/
LogoutEndpoint: OidcEndpoint;
/**
* The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private workforce.
*/
JwksUri: OidcEndpoint;
}
export interface OidcConfigForResponse {
/**
* The OIDC IdP client ID used to configure your private workforce.
*/
ClientId?: ClientId;
/**
* The OIDC IdP issuer used to configure your private workforce.
*/
Issuer?: OidcEndpoint;
/**
* The OIDC IdP authorization endpoint used to configure your private workforce.
*/
AuthorizationEndpoint?: OidcEndpoint;
/**
* The OIDC IdP token endpoint used to configure your private workforce.
*/
TokenEndpoint?: OidcEndpoint;
/**
* The OIDC IdP user information endpoint used to configure your private workforce.
*/
UserInfoEndpoint?: OidcEndpoint;
/**
* The OIDC IdP logout endpoint used to configure your private workforce.
*/
LogoutEndpoint?: OidcEndpoint;
/**
* The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private workforce.
*/
JwksUri?: OidcEndpoint;
}
export type OidcEndpoint = string;
export interface OidcMemberDefinition {
/**
* A list of comma seperated strings that identifies user groups in your OIDC IdP. Each user group is made up of a group of private workers.
*/
Groups: Groups;
}
export type Operator = "Equals"|"NotEquals"|"GreaterThan"|"GreaterThanOrEqualTo"|"LessThan"|"LessThanOrEqualTo"|"Contains"|"Exists"|"NotExists"|"In"|string;
export type OptionalDouble = number;
export type OptionalInteger = number;
export type OptionalVolumeSizeInGB = number;
export type OrderKey = "Ascending"|"Descending"|string;
export interface OutputConfig {
/**
* Identifies the S3 bucket where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix.
*/
S3OutputLocation: S3Uri;
/**
* Identifies the target device or the machine learning instance that you want to run your model on after the compilation has completed. Alternatively, you can specify OS, architecture, and accelerator using TargetPlatform fields. It can be used instead of TargetPlatform.
*/
TargetDevice?: TargetDevice;
/**
* Contains information about a target platform that you want your model to run on, such as OS, architecture, and accelerators. It is an alternative of TargetDevice. The following examples show how to configure the TargetPlatform and CompilerOptions JSON strings for popular target platforms: Raspberry Pi 3 Model B+ "TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"}, "CompilerOptions": {'mattr': ['+neon']} Jetson TX2 "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "NVIDIA"}, "CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver': '6.0.1', 'cuda-ver': '10.0'} EC2 m5.2xlarge instance OS "TargetPlatform": {"Os": "LINUX", "Arch": "X86_64", "Accelerator": "NVIDIA"}, "CompilerOptions": {'mcpu': 'skylake-avx512'} RK3399 "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "MALI"} ARMv7 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"}, "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']} ARMv8 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"}, "CompilerOptions": {'ANDROID_PLATFORM': 29}
*/
TargetPlatform?: TargetPlatform;
/**
* Specifies additional parameters for compiler options in JSON format. The compiler options are TargetPlatform specific. It is required for NVIDIA accelerators and highly recommended for CPU compilations. For any other cases, it is optional to specify CompilerOptions. CPU: Compilation for CPU supports the following compiler options. mcpu: CPU micro-architecture. For example, {'mcpu': 'skylake-avx512'} mattr: CPU flags. For example, {'mattr': ['+neon', '+vfpv4']} ARM: Details of ARM CPU compilations. NEON: NEON is an implementation of the Advanced SIMD extension used in ARMv7 processors. For example, add {'mattr': ['+neon']} to the compiler options if compiling for ARM 32-bit platform with the NEON support. NVIDIA: Compilation for NVIDIA GPU supports the following compiler options. gpu_code: Specifies the targeted architecture. trt-ver: Specifies the TensorRT versions in x.y.z. format. cuda-ver: Specifies the CUDA version in x.y format. For example, {'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'} ANDROID: Compilation for the Android OS supports the following compiler options: ANDROID_PLATFORM: Specifies the Android API levels. Available levels range from 21 to 29. For example, {'ANDROID_PLATFORM': 28}. mattr: Add {'mattr': ['+neon']} to compiler options if compiling for ARM 32-bit platform with NEON support. CoreML: Compilation for the CoreML OutputConfig$TargetDevice supports the following compiler options: class_labels: Specifies the classification labels file name inside input tar.gz file. For example, {"class_labels": "imagenet_labels_1000.txt"}. Labels inside the txt file should be separated by newlines.
*/
CompilerOptions?: CompilerOptions;
}
export interface OutputDataConfig {
/**
* The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats: // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab" // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" // KMS Key Alias "alias/ExampleAlias" // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias" If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig. If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms". For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide. The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob, CreateTransformJob, or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide.
*/
KmsKeyId?: KmsKeyId;
/**
* Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix.
*/
S3OutputPath: S3Uri;
}
export type PaginationToken = string;
export type ParameterKey = string;
export type ParameterName = string;
export interface ParameterRange {
/**
* A IntegerParameterRangeSpecification object that defines the possible values for an integer hyperparameter.
*/
IntegerParameterRangeSpecification?: IntegerParameterRangeSpecification;
/**
* A ContinuousParameterRangeSpecification object that defines the possible values for a continuous hyperparameter.
*/
ContinuousParameterRangeSpecification?: ContinuousParameterRangeSpecification;
/**
* A CategoricalParameterRangeSpecification object that defines the possible values for a categorical hyperparameter.
*/
CategoricalParameterRangeSpecification?: CategoricalParameterRangeSpecification;
}
export interface ParameterRanges {
/**
* The array of IntegerParameterRange objects that specify ranges of integer hyperparameters that a hyperparameter tuning job searches.
*/
IntegerParameterRanges?: IntegerParameterRanges;
/**
* The array of ContinuousParameterRange objects that specify ranges of continuous hyperparameters that a hyperparameter tuning job searches.
*/
ContinuousParameterRanges?: ContinuousParameterRanges;
/**
* The array of CategoricalParameterRange objects that specify ranges of categorical hyperparameters that a hyperparameter tuning job searches.
*/
CategoricalParameterRanges?: CategoricalParameterRanges;
}
export type ParameterType = "Integer"|"Continuous"|"Categorical"|"FreeText"|string;
export type ParameterValue = string;
export type ParameterValues = ParameterValue[];
export interface Parent {
/**
* The name of the trial.
*/
TrialName?: ExperimentEntityName;
/**
* The name of the experiment.
*/
ExperimentName?: ExperimentEntityName;
}
export interface ParentHyperParameterTuningJob {
/**
* The name of the hyperparameter tuning job to be used as a starting point for a new hyperparameter tuning job.
*/
HyperParameterTuningJobName?: HyperParameterTuningJobName;
}
export type ParentHyperParameterTuningJobs = ParentHyperParameterTuningJob[];
export type Parents = Parent[];
export type PresignedDomainUrl = string;
export type ProblemType = "BinaryClassification"|"MulticlassClassification"|"Regression"|string;
export interface ProcessingClusterConfig {
/**
* The number of ML compute instances to use in the processing job. For distributed processing jobs, specify a value greater than 1. The default value is 1.
*/
InstanceCount: ProcessingInstanceCount;
/**
* The ML compute instance type for the processing job.
*/
InstanceType: ProcessingInstanceType;
/**
* The size of the ML storage volume in gigabytes that you want to provision. You must specify sufficient ML storage for your scenario.
*/
VolumeSizeInGB: ProcessingVolumeSizeInGB;
/**
* The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the processing job.
*/
VolumeKmsKeyId?: KmsKeyId;
}
export type ProcessingEnvironmentKey = string;
export type ProcessingEnvironmentMap = {[key: string]: ProcessingEnvironmentValue};
export type ProcessingEnvironmentValue = string;
export interface ProcessingInput {
/**
* The name of the inputs for the processing job.
*/
InputName: String;
/**
* The S3 inputs for the processing job.
*/
S3Input: ProcessingS3Input;
}
export type ProcessingInputs = ProcessingInput[];
export type ProcessingInstanceCount = number;
export type ProcessingInstanceType = "ml.t3.medium"|"ml.t3.large"|"ml.t3.xlarge"|"ml.t3.2xlarge"|"ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.r5.large"|"ml.r5.xlarge"|"ml.r5.2xlarge"|"ml.r5.4xlarge"|"ml.r5.8xlarge"|"ml.r5.12xlarge"|"ml.r5.16xlarge"|"ml.r5.24xlarge"|string;
export interface ProcessingJob {
/**
* For each input, data is downloaded from S3 into the processing container before the processing job begins running if "S3InputMode" is set to File.
*/
ProcessingInputs?: ProcessingInputs;
ProcessingOutputConfig?: ProcessingOutputConfig;
/**
* The name of the processing job.
*/
ProcessingJobName?: ProcessingJobName;
ProcessingResources?: ProcessingResources;
StoppingCondition?: ProcessingStoppingCondition;
AppSpecification?: AppSpecification;
/**
* Sets the environment variables in the Docker container.
*/
Environment?: ProcessingEnvironmentMap;
NetworkConfig?: NetworkConfig;
/**
* The ARN of the role used to create the processing job.
*/
RoleArn?: RoleArn;
ExperimentConfig?: ExperimentConfig;
/**
* The ARN of the processing job.
*/
ProcessingJobArn?: ProcessingJobArn;
/**
* The status of the processing job.
*/
ProcessingJobStatus?: ProcessingJobStatus;
/**
* A string, up to one KB in size, that contains metadata from the processing container when the processing job exits.
*/
ExitMessage?: ExitMessage;
/**
* A string, up to one KB in size, that contains the reason a processing job failed, if it failed.
*/
FailureReason?: FailureReason;
/**
* The time that the processing job ended.
*/
ProcessingEndTime?: Timestamp;
/**
* The time that the processing job started.
*/
ProcessingStartTime?: Timestamp;
/**
* The time the processing job was last modified.
*/
LastModifiedTime?: Timestamp;
/**
* The time the processing job was created.
*/
CreationTime?: Timestamp;
/**
* The ARN of a monitoring schedule for an endpoint associated with this processing job.
*/
MonitoringScheduleArn?: MonitoringScheduleArn;
/**
* The Amazon Resource Name (ARN) of the AutoML job associated with this processing job.
*/
AutoMLJobArn?: AutoMLJobArn;
/**
* The ARN of the training job associated with this processing job.
*/
TrainingJobArn?: TrainingJobArn;
/**
* An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
*/
Tags?: TagList;
}
export type ProcessingJobArn = string;
export type ProcessingJobName = string;
export type ProcessingJobStatus = "InProgress"|"Completed"|"Failed"|"Stopping"|"Stopped"|string;
export type ProcessingJobSummaries = ProcessingJobSummary[];
export interface ProcessingJobSummary {
/**
* The name of the processing job.
*/
ProcessingJobName: ProcessingJobName;
/**
* The Amazon Resource Name (ARN) of the processing job..
*/
ProcessingJobArn: ProcessingJobArn;
/**
* The time at which the processing job was created.
*/
CreationTime: Timestamp;
/**
* The time at which the processing job completed.
*/
ProcessingEndTime?: Timestamp;
/**
* A timestamp that indicates the last time the processing job was modified.
*/
LastModifiedTime?: Timestamp;
/**
* The status of the processing job.
*/
ProcessingJobStatus: ProcessingJobStatus;
/**
* A string, up to one KB in size, that contains the reason a processing job failed, if it failed.
*/
FailureReason?: FailureReason;
/**
* An optional string, up to one KB in size, that contains metadata from the processing container when the processing job exits.
*/
ExitMessage?: ExitMessage;
}
export type ProcessingLocalPath = string;
export type ProcessingMaxRuntimeInSeconds = number;
export interface ProcessingOutput {
/**
* The name for the processing job output.
*/
OutputName: String;
/**
* Configuration for processing job outputs in Amazon S3.
*/
S3Output: ProcessingS3Output;
}
export interface ProcessingOutputConfig {
/**
* Output configuration information for a processing job.
*/
Outputs: ProcessingOutputs;
/**
* The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the processing job output. KmsKeyId can be an ID of a KMS key, ARN of a KMS key, alias of a KMS key, or alias of a KMS key. The KmsKeyId is applied to all outputs.
*/
KmsKeyId?: KmsKeyId;
}
export type ProcessingOutputs = ProcessingOutput[];
export interface ProcessingResources {
/**
* The configuration for the resources in a cluster used to run the processing job.
*/
ClusterConfig: ProcessingClusterConfig;
}
export type ProcessingS3CompressionType = "None"|"Gzip"|string;
export type ProcessingS3DataDistributionType = "FullyReplicated"|"ShardedByS3Key"|string;
export type ProcessingS3DataType = "ManifestFile"|"S3Prefix"|string;
export interface ProcessingS3Input {
/**
* The URI for the Amazon S3 storage where you want Amazon SageMaker to download the artifacts needed to run a processing job.
*/
S3Uri: S3Uri;
/**
* The local path to the Amazon S3 bucket where you want Amazon SageMaker to download the inputs to run a processing job. LocalPath is an absolute path to the input data.
*/
LocalPath: ProcessingLocalPath;
/**
* Whether you use an S3Prefix or a ManifestFile for the data type. If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for the processing job. If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for the processing job.
*/
S3DataType: ProcessingS3DataType;
/**
* Whether to use File or Pipe input mode. In File mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode. In Pipe mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.
*/
S3InputMode: ProcessingS3InputMode;
/**
* Whether the data stored in Amazon S3 is FullyReplicated or ShardedByS3Key.
*/
S3DataDistributionType?: ProcessingS3DataDistributionType;
/**
* Whether to use Gzip compression for Amazon S3 storage.
*/
S3CompressionType?: ProcessingS3CompressionType;
}
export type ProcessingS3InputMode = "Pipe"|"File"|string;
export interface ProcessingS3Output {
/**
* A URI that identifies the Amazon S3 bucket where you want Amazon SageMaker to save the results of a processing job.
*/
S3Uri: S3Uri;
/**
* The local path to the Amazon S3 bucket where you want Amazon SageMaker to save the results of an processing job. LocalPath is an absolute path to the input data.
*/
LocalPath: ProcessingLocalPath;
/**
* Whether to upload the results of the processing job continuously or after the job completes.
*/
S3UploadMode: ProcessingS3UploadMode;
}
export type ProcessingS3UploadMode = "Continuous"|"EndOfJob"|string;
export interface ProcessingStoppingCondition {
/**
* Specifies the maximum runtime in seconds.
*/
MaxRuntimeInSeconds: ProcessingMaxRuntimeInSeconds;
}
export type ProcessingVolumeSizeInGB = number;
export type ProductId = string;
export type ProductListings = String[];
export interface ProductionVariant {
/**
* The name of the production variant.
*/
VariantName: VariantName;
/**
* The name of the model that you want to host. This is the name that you specified when creating the model.
*/
ModelName: ModelName;
/**
* Number of instances to launch initially.
*/
InitialInstanceCount: TaskCount;
/**
* The ML compute instance type.
*/
InstanceType: ProductionVariantInstanceType;
/**
* Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to 1.0.
*/
InitialVariantWeight?: VariantWeight;
/**
* The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.
*/
AcceleratorType?: ProductionVariantAcceleratorType;
}
export type ProductionVariantAcceleratorType = "ml.eia1.medium"|"ml.eia1.large"|"ml.eia1.xlarge"|"ml.eia2.medium"|"ml.eia2.large"|"ml.eia2.xlarge"|string;
export type ProductionVariantInstanceType = "ml.t2.medium"|"ml.t2.large"|"ml.t2.xlarge"|"ml.t2.2xlarge"|"ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.m5d.large"|"ml.m5d.xlarge"|"ml.m5d.2xlarge"|"ml.m5d.4xlarge"|"ml.m5d.12xlarge"|"ml.m5d.24xlarge"|"ml.c4.large"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.c5.large"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5d.large"|"ml.c5d.xlarge"|"ml.c5d.2xlarge"|"ml.c5d.4xlarge"|"ml.c5d.9xlarge"|"ml.c5d.18xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|"ml.r5.large"|"ml.r5.xlarge"|"ml.r5.2xlarge"|"ml.r5.4xlarge"|"ml.r5.12xlarge"|"ml.r5.24xlarge"|"ml.r5d.large"|"ml.r5d.xlarge"|"ml.r5d.2xlarge"|"ml.r5d.4xlarge"|"ml.r5d.12xlarge"|"ml.r5d.24xlarge"|"ml.inf1.xlarge"|"ml.inf1.2xlarge"|"ml.inf1.6xlarge"|"ml.inf1.24xlarge"|string;
export type ProductionVariantList = ProductionVariant[];
export interface ProductionVariantSummary {
/**
* The name of the variant.
*/
VariantName: VariantName;
/**
* An array of DeployedImage objects that specify the Amazon EC2 Container Registry paths of the inference images deployed on instances of this ProductionVariant.
*/
DeployedImages?: DeployedImages;
/**
* The weight associated with the variant.
*/
CurrentWeight?: VariantWeight;
/**
* The requested weight, as specified in the UpdateEndpointWeightsAndCapacities request.
*/
DesiredWeight?: VariantWeight;
/**
* The number of instances associated with the variant.
*/
CurrentInstanceCount?: TaskCount;
/**
* The number of instances requested in the UpdateEndpointWeightsAndCapacities request.
*/
DesiredInstanceCount?: TaskCount;
}
export type ProductionVariantSummaryList = ProductionVariantSummary[];
export type PropertyNameHint = string;
export interface PropertyNameQuery {
/**
* Text that begins a property's name.
*/
PropertyNameHint: PropertyNameHint;
}
export interface PropertyNameSuggestion {
/**
* A suggested property name based on what you entered in the search textbox in the Amazon SageMaker console.
*/
PropertyName?: ResourcePropertyName;
}
export type PropertyNameSuggestionList = PropertyNameSuggestion[];
export interface PublicWorkforceTaskPrice {
/**
* Defines the amount of money paid to an Amazon Mechanical Turk worker in United States dollars.
*/
AmountInUsd?: USD;
}
export type RealtimeInferenceInstanceTypes = ProductionVariantInstanceType[];
export type RecordWrapper = "None"|"RecordIO"|string;
export interface RenderUiTemplateRequest {
/**
* A Template object containing the worker UI template to render.
*/
UiTemplate?: UiTemplate;
/**
* A RenderableTask object containing a representative task to render.
*/
Task: RenderableTask;
/**
* The Amazon Resource Name (ARN) that has access to the S3 objects that are used by the template.
*/
RoleArn: RoleArn;
/**
* The HumanTaskUiArn of the worker UI that you want to render. Do not provide a HumanTaskUiArn if you use the UiTemplate parameter. See a list of available Human Ui Amazon Resource Names (ARNs) in UiConfig.
*/
HumanTaskUiArn?: HumanTaskUiArn;
}
export interface RenderUiTemplateResponse {
/**
* A Liquid template that renders the HTML for the worker UI.
*/
RenderedContent: String;
/**
* A list of one or more RenderingError objects if any were encountered while rendering the template. If there were no errors, the list is empty.
*/
Errors: RenderingErrorList;
}
export interface RenderableTask {
/**
* A JSON object that contains values for the variables defined in the template. It is made available to the template under the substitution variable task.input. For example, if you define a variable task.input.text in your template, you can supply the variable in the JSON object as "text": "sample text".
*/
Input: TaskInput;
}
export interface RenderingError {
/**
* A unique identifier for a specific class of errors.
*/
Code: String;
/**
* A human-readable message describing the error.
*/
Message: String;
}
export type RenderingErrorList = RenderingError[];
export type RepositoryAccessMode = "Platform"|"Vpc"|string;
export interface ResolvedAttributes {
AutoMLJobObjective?: AutoMLJobObjective;
/**
* The problem type.
*/
ProblemType?: ProblemType;
CompletionCriteria?: AutoMLJobCompletionCriteria;
}
export type ResourceArn = string;
export interface ResourceConfig {
/**
* The ML compute instance type.
*/
InstanceType: TrainingInstanceType;
/**
* The number of ML compute instances to use. For distributed training, provide a value greater than 1.
*/
InstanceCount: TrainingInstanceCount;
/**
* The size of the ML storage volume that you want to provision. ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification. You must specify sufficient ML storage for your scenario. Amazon SageMaker supports only the General Purpose SSD (gp2) ML storage volume type. Certain Nitro-based instances include local storage with a fixed total size, dependent on the instance type. When using these instances for training, Amazon SageMaker mounts the local instance storage instead of Amazon EBS gp2 storage. You can't request a VolumeSizeInGB greater than the total size of the local instance storage. For a list of instance types that support local instance storage, including the total size per instance type, see Instance Store Volumes.
*/
VolumeSizeInGB: VolumeSizeInGB;
/**
* The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job. Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage. For a list of instance types that support local instance storage, see Instance Store Volumes. For more information about local instance storage encryption, see SSD Instance Store Volumes. The VolumeKmsKeyId can be in any of the following formats: // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab" // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
*/
VolumeKmsKeyId?: KmsKeyId;
}
export type ResourceId = string;
export interface ResourceLimits {
/**
* The maximum number of training jobs that a hyperparameter tuning job can launch.
*/
MaxNumberOfTrainingJobs: MaxNumberOfTrainingJobs;
/**
* The maximum number of concurrent training jobs that a hyperparameter tuning job can launch.
*/
MaxParallelTrainingJobs: MaxParallelTrainingJobs;
}
export type ResourcePropertyName = string;
export interface ResourceSpec {
/**
* The Amazon Resource Name (ARN) of the SageMaker image created on the instance.
*/
SageMakerImageArn?: ImageArn;
/**
* The instance type.
*/
InstanceType?: AppInstanceType;
}
export type ResourceType = "TrainingJob"|"Experiment"|"ExperimentTrial"|"ExperimentTrialComponent"|string;
export type ResponseMIMEType = string;
export type ResponseMIMETypes = ResponseMIMEType[];
export interface RetentionPolicy {
/**
* The default is Retain, which specifies to keep the data stored on the EFS volume. Specify Delete to delete the data stored on the EFS volume.
*/
HomeEfsFileSystem?: RetentionType;
}
export type RetentionType = "Retain"|"Delete"|string;
export type RoleArn = string;
export type RootAccess = "Enabled"|"Disabled"|string;
export type RuleConfigurationName = string;
export type RuleEvaluationStatus = "InProgress"|"NoIssuesFound"|"IssuesFound"|"Error"|"Stopping"|"Stopped"|string;
export type RuleParameters = {[key: string]: ConfigValue};
export type S3DataDistribution = "FullyReplicated"|"ShardedByS3Key"|string;
export interface S3DataSource {
/**
* If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects that match the specified key name prefix for model training. If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for model training. If you choose AugmentedManifestFile, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe.
*/
S3DataType: S3DataType;
/**
* Depending on the value specified for the S3DataType, identifies either a key name prefix or a manifest. For example: A key name prefix might look like this: s3://bucketname/exampleprefix A manifest might look like this: s3://bucketname/example.manifest A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of S3Uri. Note that the prefix must be a valid non-empty S3Uri that precludes users from specifying a manifest whose individual S3Uri is sourced from different S3 buckets. The following code example shows a valid manifest format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] This JSON is equivalent to the following S3Uri list: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uri in this manifest is the input data for the channel for this data source. The object that each S3Uri points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.
*/
S3Uri: S3Uri;
/**
* If you want Amazon SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated. If you want Amazon SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key. If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data. Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms. In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key. If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File), this copies 1/n of the number of objects.
*/
S3DataDistributionType?: S3DataDistribution;
/**
* A list of one or more attribute names to use that are found in a specified augmented manifest file.
*/
AttributeNames?: AttributeNames;
}
export type S3DataType = "ManifestFile"|"S3Prefix"|"AugmentedManifestFile"|string;
export type S3Uri = string;
export type SamplingPercentage = number;
export interface ScheduleConfig {
/**
* A cron expression that describes details about the monitoring schedule. Currently the only supported cron expressions are: If you want to set the job to start every hour, please use the following: Hourly: cron(0 * ? * * *) If you want to start the job daily: cron(0 [00-23] ? * * *) For example, the following are valid cron expressions: Daily at noon UTC: cron(0 12 ? * * *) Daily at midnight UTC: cron(0 0 ? * * *) To support running every 6, 12 hours, the following are also supported: cron(0 [00-23]/[01-24] ? * * *) For example, the following are valid cron expressions: Every 12 hours, starting at 5pm UTC: cron(0 17/12 ? * * *) Every two hours starting at midnight: cron(0 0/2 ? * * *) Even though the cron expression is set to start at 5PM UTC, note that there could be a delay of 0-20 minutes from the actual requested time to run the execution. We recommend that if you would like a daily schedule, you do not provide this parameter. Amazon SageMaker will pick a time for running every day.
*/
ScheduleExpression: ScheduleExpression;
}
export type ScheduleExpression = string;
export type ScheduleStatus = "Pending"|"Failed"|"Scheduled"|"Stopped"|string;
export interface SearchExpression {
/**
* A list of filter objects.
*/
Filters?: FilterList;
/**
* A list of nested filter objects.
*/
NestedFilters?: NestedFiltersList;
/**
* A list of search expression objects.
*/
SubExpressions?: SearchExpressionList;
/**
* A Boolean operator used to evaluate the search expression. If you want every conditional statement in all lists to be satisfied for the entire search expression to be true, specify And. If only a single conditional statement needs to be true for the entire search expression to be true, specify Or. The default value is And.
*/
Operator?: BooleanOperator;
}
export type SearchExpressionList = SearchExpression[];
export interface SearchRecord {
/**
* The properties of a training job.
*/
TrainingJob?: TrainingJob;
/**
* The properties of an experiment.
*/
Experiment?: Experiment;
/**
* The properties of a trial.
*/
Trial?: Trial;
/**
* The properties of a trial component.
*/
TrialComponent?: TrialComponent;
}
export interface SearchRequest {
/**
* The name of the Amazon SageMaker resource to search for.
*/
Resource: ResourceType;
/**
* A Boolean conditional statement. Resources must satisfy this condition to be included in search results. You must provide at least one subexpression, filter, or nested filter. The maximum number of recursive SubExpressions, NestedFilters, and Filters that can be included in a SearchExpression object is 50.
*/
SearchExpression?: SearchExpression;
/**
* The name of the resource property used to sort the SearchResults. The default is LastModifiedTime.
*/
SortBy?: ResourcePropertyName;
/**
* How SearchResults are ordered. Valid values are Ascending or Descending. The default is Descending.
*/
SortOrder?: SearchSortOrder;
/**
* If more than MaxResults resources match the specified SearchExpression, the response includes a NextToken. The NextToken can be passed to the next SearchRequest to continue retrieving results.
*/
NextToken?: NextToken;
/**
* The maximum number of results to return.
*/
MaxResults?: MaxResults;
}
export interface SearchResponse {
/**
* A list of SearchRecord objects.
*/
Results?: SearchResultsList;
/**
* If the result of the previous Search request was truncated, the response includes a NextToken. To retrieve the next set of results, use the token in the next request.
*/
NextToken?: NextToken;
}
export type SearchResultsList = SearchRecord[];
export type SearchSortOrder = "Ascending"|"Descending"|string;
export type SecondaryStatus = "Starting"|"LaunchingMLInstances"|"PreparingTrainingStack"|"Downloading"|"DownloadingTrainingImage"|"Training"|"Uploading"|"Stopping"|"Stopped"|"MaxRuntimeExceeded"|"Completed"|"Failed"|"Interrupted"|"MaxWaitTimeExceeded"|string;
export interface SecondaryStatusTransition {
/**
* Contains a secondary status information from a training job. Status might be one of the following secondary statuses: InProgress Starting - Starting the training job. Downloading - An optional stage for algorithms that support File training input mode. It indicates that data is being downloaded to the ML storage volumes. Training - Training is in progress. Uploading - Training is complete and the model artifacts are being uploaded to the S3 location. Completed Completed - The training job has completed. Failed Failed - The training job has failed. The reason for the failure is returned in the FailureReason field of DescribeTrainingJobResponse. Stopped MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed runtime. Stopped - The training job has stopped. Stopping Stopping - Stopping the training job. We no longer support the following secondary statuses: LaunchingMLInstances PreparingTrainingStack DownloadingTrainingImage
*/
Status: SecondaryStatus;
/**
* A timestamp that shows when the training job transitioned to the current secondary status state.
*/
StartTime: Timestamp;
/**
* A timestamp that shows when the training job transitioned out of this secondary status state into another secondary status state or when the training job has ended.
*/
EndTime?: Timestamp;
/**
* A detailed description of the progress within a secondary status. Amazon SageMaker provides secondary statuses and status messages that apply to each of them: Starting Starting the training job. Launching requested ML instances. Insufficient capacity error from EC2 while launching instances, retrying! Launched instance was unhealthy, replacing it! Preparing the instances for training. Training Downloading the training image. Training image download completed. Training in progress. Status messages are subject to change. Therefore, we recommend not including them in code that programmatically initiates actions. For examples, don't use status messages in if statements. To have an overview of your training job's progress, view TrainingJobStatus and SecondaryStatus in DescribeTrainingJob, and StatusMessage together. For example, at the start of a training job, you might see the following: TrainingJobStatus - InProgress SecondaryStatus - Training StatusMessage - Downloading the training image
*/
StatusMessage?: StatusMessage;
}
export type SecondaryStatusTransitions = SecondaryStatusTransition[];
export type SecretArn = string;
export type SecurityGroupId = string;
export type SecurityGroupIds = SecurityGroupId[];
export type Seed = number;
export type SessionExpirationDurationInSeconds = number;
export interface SharingSettings {
/**
* Whether to include the notebook cell output when sharing the notebook. The default is Disabled.
*/
NotebookOutputOption?: NotebookOutputOption;
/**
* When NotebookOutputOption is Allowed, the Amazon S3 bucket used to save the notebook cell output.
*/
S3OutputPath?: S3Uri;
/**
* When NotebookOutputOption is Allowed, the AWS Key Management Service (KMS) encryption key ID used to encrypt the notebook cell output in the Amazon S3 bucket.
*/
S3KmsKeyId?: KmsKeyId;
}
export interface ShuffleConfig {
/**
* Determines the shuffling order in ShuffleConfig value.
*/
Seed: Seed;
}
export type SingleSignOnUserIdentifier = string;
export type SnsTopicArn = string;
export type SortBy = "Name"|"CreationTime"|"Status"|string;
export type SortExperimentsBy = "Name"|"CreationTime"|string;
export type SortOrder = "Ascending"|"Descending"|string;
export type SortTrialComponentsBy = "Name"|"CreationTime"|string;
export type SortTrialsBy = "Name"|"CreationTime"|string;
export interface SourceAlgorithm {
/**
* The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The model artifacts must be in an S3 bucket that is in the same region as the algorithm.
*/
ModelDataUrl?: Url;
/**
* The name of an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your Amazon SageMaker account or an algorithm in AWS Marketplace that you are subscribed to.
*/
AlgorithmName: ArnOrName;
}
export type SourceAlgorithmList = SourceAlgorithm[];
export interface SourceAlgorithmSpecification {
/**
* A list of the algorithms that were used to create a model package.
*/
SourceAlgorithms: SourceAlgorithmList;
}
export interface SourceIpConfig {
/**
* A list of one to ten Classless Inter-Domain Routing (CIDR) values. Maximum: Ten CIDR values The following Length Constraints apply to individual CIDR values in the CIDR value list.
*/
Cidrs: Cidrs;
}
export type SourceType = string;
export type SplitType = "None"|"Line"|"RecordIO"|"TFRecord"|string;
export interface StartMonitoringScheduleRequest {
/**
* The name of the schedule to start.
*/
MonitoringScheduleName: MonitoringScheduleName;
}
export interface StartNotebookInstanceInput {
/**
* The name of the notebook instance to start.
*/
NotebookInstanceName: NotebookInstanceName;
}
export type StatusDetails = string;
export type StatusMessage = string;
export interface StopAutoMLJobRequest {
/**
* The name of the object you are requesting.
*/
AutoMLJobName: AutoMLJobName;
}
export interface StopCompilationJobRequest {
/**
* The name of the model compilation job to stop.
*/
CompilationJobName: EntityName;
}
export interface StopHyperParameterTuningJobRequest {
/**
* The name of the tuning job to stop.
*/
HyperParameterTuningJobName: HyperParameterTuningJobName;
}
export interface StopLabelingJobRequest {
/**
* The name of the labeling job to stop.
*/
LabelingJobName: LabelingJobName;
}
export interface StopMonitoringScheduleRequest {
/**
* The name of the schedule to stop.
*/
MonitoringScheduleName: MonitoringScheduleName;
}
export interface StopNotebookInstanceInput {
/**
* The name of the notebook instance to terminate.
*/
NotebookInstanceName: NotebookInstanceName;
}
export interface StopProcessingJobRequest {
/**
* The name of the processing job to stop.
*/
ProcessingJobName: ProcessingJobName;
}
export interface StopTrainingJobRequest {
/**
* The name of the training job to stop.
*/
TrainingJobName: TrainingJobName;
}
export interface StopTransformJobRequest {
/**
* The name of the transform job to stop.
*/
TransformJobName: TransformJobName;
}
export interface StoppingCondition {
/**
* The maximum length of time, in seconds, that the training or compilation job can run. If job does not complete during this time, Amazon SageMaker ends the job. If value is not specified, default value is 1 day. The maximum value is 28 days.
*/
MaxRuntimeInSeconds?: MaxRuntimeInSeconds;
/**
* The maximum length of time, in seconds, how long you are willing to wait for a managed spot training job to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the training job runs. It must be equal to or greater than MaxRuntimeInSeconds.
*/
MaxWaitTimeInSeconds?: MaxWaitTimeInSeconds;
}
export type String = string;
export type String1024 = string;
export type String200 = string;
export type String256 = string;
export type StringParameterValue = string;
export type SubnetId = string;
export type Subnets = SubnetId[];
export interface SubscribedWorkteam {
/**
* The Amazon Resource Name (ARN) of the vendor that you have subscribed.
*/
WorkteamArn: WorkteamArn;
/**
* The title of the service provided by the vendor in the Amazon Marketplace.
*/
MarketplaceTitle?: String200;
/**
* The name of the vendor in the Amazon Marketplace.
*/
SellerName?: String;
/**
* The description of the vendor from the Amazon Marketplace.
*/
MarketplaceDescription?: String200;
/**
* Marketplace product listing ID.
*/
ListingId?: String;
}
export type SubscribedWorkteams = SubscribedWorkteam[];
export type Success = boolean;
export interface SuggestionQuery {
/**
* Defines a property name hint. Only property names that begin with the specified hint are included in the response.
*/
PropertyNameQuery?: PropertyNameQuery;
}
export interface Tag {
/**
* The tag key.
*/
Key: TagKey;
/**
* The tag value.
*/
Value: TagValue;
}
export type TagKey = string;
export type TagKeyList = TagKey[];
export type TagList = Tag[];
export type TagValue = string;
export type TargetAttributeName = string;
export type TargetDevice = "lambda"|"ml_m4"|"ml_m5"|"ml_c4"|"ml_c5"|"ml_p2"|"ml_p3"|"ml_g4dn"|"ml_inf1"|"jetson_tx1"|"jetson_tx2"|"jetson_nano"|"jetson_xavier"|"rasp3b"|"imx8qm"|"deeplens"|"rk3399"|"rk3288"|"aisage"|"sbe_c"|"qcs605"|"qcs603"|"sitara_am57x"|"amba_cv22"|"x86_win32"|"x86_win64"|"coreml"|string;
export type TargetObjectiveMetricValue = number;
export interface TargetPlatform {
/**
* Specifies a target platform OS. LINUX: Linux-based operating systems. ANDROID: Android operating systems. Android API level can be specified using the ANDROID_PLATFORM compiler option. For example, "CompilerOptions": {'ANDROID_PLATFORM': 28}
*/
Os: TargetPlatformOs;
/**
* Specifies a target platform architecture. X86_64: 64-bit version of the x86 instruction set. X86: 32-bit version of the x86 instruction set. ARM64: ARMv8 64-bit CPU. ARM_EABIHF: ARMv7 32-bit, Hard Float. ARM_EABI: ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM platform.
*/
Arch: TargetPlatformArch;
/**
* Specifies a target platform accelerator (optional). NVIDIA: Nvidia graphics processing unit. It also requires gpu-code, trt-ver, cuda-ver compiler options MALI: ARM Mali graphics processor INTEL_GRAPHICS: Integrated Intel graphics
*/
Accelerator?: TargetPlatformAccelerator;
}
export type TargetPlatformAccelerator = "INTEL_GRAPHICS"|"MALI"|"NVIDIA"|string;
export type TargetPlatformArch = "X86_64"|"X86"|"ARM64"|"ARM_EABI"|"ARM_EABIHF"|string;
export type TargetPlatformOs = "ANDROID"|"LINUX"|string;
export type TaskAvailabilityLifetimeInSeconds = number;
export type TaskCount = number;
export type TaskDescription = string;
export type TaskInput = string;
export type TaskKeyword = string;
export type TaskKeywords = TaskKeyword[];
export type TaskTimeLimitInSeconds = number;
export type TaskTitle = string;
export type TemplateContent = string;
export type TemplateContentSha256 = string;
export type TemplateUrl = string;
export interface TensorBoardAppSettings {
/**
* The default instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
*/
DefaultResourceSpec?: ResourceSpec;
}
export interface TensorBoardOutputConfig {
/**
* Path to local storage location for tensorBoard output. Defaults to /opt/ml/output/tensorboard.
*/
LocalPath?: DirectoryPath;
/**
* Path to Amazon S3 storage location for TensorBoard output.
*/
S3OutputPath: S3Uri;
}
export type TenthFractionsOfACent = number;
export type Timestamp = Date;
export type TrainingInputMode = "Pipe"|"File"|string;
export type TrainingInstanceCount = number;
export type TrainingInstanceType = "ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.p3dn.24xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5n.xlarge"|"ml.c5n.2xlarge"|"ml.c5n.4xlarge"|"ml.c5n.9xlarge"|"ml.c5n.18xlarge"|string;
export type TrainingInstanceTypes = TrainingInstanceType[];
export interface TrainingJob {
/**
* The name of the training job.
*/
TrainingJobName?: TrainingJobName;
/**
* The Amazon Resource Name (ARN) of the training job.
*/
TrainingJobArn?: TrainingJobArn;
/**
* The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.
*/
TuningJobArn?: HyperParameterTuningJobArn;
/**
* The Amazon Resource Name (ARN) of the labeling job.
*/
LabelingJobArn?: LabelingJobArn;
/**
* The Amazon Resource Name (ARN) of the job.
*/
AutoMLJobArn?: AutoMLJobArn;
/**
* Information about the Amazon S3 location that is configured for storing model artifacts.
*/
ModelArtifacts?: ModelArtifacts;
/**
* The status of the training job. Training job statuses are: InProgress - The training is in progress. Completed - The training job has completed. Failed - The training job has failed. To see the reason for the failure, see the FailureReason field in the response to a DescribeTrainingJobResponse call. Stopping - The training job is stopping. Stopped - The training job has stopped. For more detailed information, see SecondaryStatus.
*/
TrainingJobStatus?: TrainingJobStatus;
/**
* Provides detailed information about the state of the training job. For detailed information about the secondary status of the training job, see StatusMessage under SecondaryStatusTransition. Amazon SageMaker provides primary statuses and secondary statuses that apply to each of them: InProgress Starting - Starting the training job. Downloading - An optional stage for algorithms that support File training input mode. It indicates that data is being downloaded to the ML storage volumes. Training - Training is in progress. Uploading - Training is complete and the model artifacts are being uploaded to the S3 location. Completed Completed - The training job has completed. Failed Failed - The training job has failed. The reason for the failure is returned in the FailureReason field of DescribeTrainingJobResponse. Stopped MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed runtime. Stopped - The training job has stopped. Stopping Stopping - Stopping the training job. Valid values for SecondaryStatus are subject to change. We no longer support the following secondary statuses: LaunchingMLInstances PreparingTrainingStack DownloadingTrainingImage
*/
SecondaryStatus?: SecondaryStatus;
/**
* If the training job failed, the reason it failed.
*/
FailureReason?: FailureReason;
/**
* Algorithm-specific parameters.
*/
HyperParameters?: HyperParameters;
/**
* Information about the algorithm used for training, and algorithm metadata.
*/
AlgorithmSpecification?: AlgorithmSpecification;
/**
* The AWS Identity and Access Management (IAM) role configured for the training job.
*/
RoleArn?: RoleArn;
/**
* An array of Channel objects that describes each data input channel.
*/
InputDataConfig?: InputDataConfig;
/**
* The S3 path where model artifacts that you configured when creating the job are stored. Amazon SageMaker creates subfolders for model artifacts.
*/
OutputDataConfig?: OutputDataConfig;
/**
* Resources, including ML compute instances and ML storage volumes, that are configured for model training.
*/
ResourceConfig?: ResourceConfig;
/**
* A VpcConfig object that specifies the VPC that this training job has access to. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
*/
VpcConfig?: VpcConfig;
/**
* Specifies a limit to how long a model training job can run. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.
*/
StoppingCondition?: StoppingCondition;
/**
* A timestamp that indicates when the training job was created.
*/
CreationTime?: Timestamp;
/**
* Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of TrainingEndTime. The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.
*/
TrainingStartTime?: Timestamp;
/**
* Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.
*/
TrainingEndTime?: Timestamp;
/**
* A timestamp that indicates when the status of the training job was last modified.
*/
LastModifiedTime?: Timestamp;
/**
* A history of all of the secondary statuses that the training job has transitioned through.
*/
SecondaryStatusTransitions?: SecondaryStatusTransitions;
/**
* A list of final metric values that are set when the training job completes. Used only if the training job was configured to use metrics.
*/
FinalMetricDataList?: FinalMetricDataList;
/**
* If the TrainingJob was created with network isolation, the value is set to true. If network isolation is enabled, nodes can't communicate beyond the VPC they run in.
*/
EnableNetworkIsolation?: Boolean;
/**
* To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.
*/
EnableInterContainerTrafficEncryption?: Boolean;
/**
* When true, enables managed spot training using Amazon EC2 Spot instances to run training jobs instead of on-demand instances. For more information, see Managed Spot Training.
*/
EnableManagedSpotTraining?: Boolean;
CheckpointConfig?: CheckpointConfig;
/**
* The training time in seconds.
*/
TrainingTimeInSeconds?: TrainingTimeInSeconds;
/**
* The billable time in seconds.
*/
BillableTimeInSeconds?: BillableTimeInSeconds;
DebugHookConfig?: DebugHookConfig;
ExperimentConfig?: ExperimentConfig;
/**
* Information about the debug rule configuration.
*/
DebugRuleConfigurations?: DebugRuleConfigurations;
TensorBoardOutputConfig?: TensorBoardOutputConfig;
/**
* Information about the evaluation status of the rules for the training job.
*/
DebugRuleEvaluationStatuses?: DebugRuleEvaluationStatuses;
/**
* An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
*/
Tags?: TagList;
}
export type TrainingJobArn = string;
export interface TrainingJobDefinition {
/**
* The input mode used by the algorithm for the training job. For the input modes that Amazon SageMaker algorithms support, see Algorithms. If an algorithm supports the File input mode, Amazon SageMaker downloads the training data from S3 to the provisioned ML storage Volume, and mounts the directory to docker volume for training container. If an algorithm supports the Pipe input mode, Amazon SageMaker streams data directly from S3 to the container.
*/
TrainingInputMode: TrainingInputMode;
/**
* The hyperparameters used for the training job.
*/
HyperParameters?: HyperParameters;
/**
* An array of Channel objects, each of which specifies an input source.
*/
InputDataConfig: InputDataConfig;
/**
* the path to the S3 bucket where you want to store model artifacts. Amazon SageMaker creates subfolders for the artifacts.
*/
OutputDataConfig: OutputDataConfig;
/**
* The resources, including the ML compute instances and ML storage volumes, to use for model training.
*/
ResourceConfig: ResourceConfig;
/**
* Specifies a limit to how long a model training job can run. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts.
*/
StoppingCondition: StoppingCondition;
}
export type TrainingJobEarlyStoppingType = "Off"|"Auto"|string;
export type TrainingJobName = string;
export type TrainingJobSortByOptions = "Name"|"CreationTime"|"Status"|"FinalObjectiveMetricValue"|string;
export type TrainingJobStatus = "InProgress"|"Completed"|"Failed"|"Stopping"|"Stopped"|string;
export type TrainingJobStatusCounter = number;
export interface TrainingJobStatusCounters {
/**
* The number of completed training jobs launched by the hyperparameter tuning job.
*/
Completed?: TrainingJobStatusCounter;
/**
* The number of in-progress training jobs launched by a hyperparameter tuning job.
*/
InProgress?: TrainingJobStatusCounter;
/**
* The number of training jobs that failed, but can be retried. A failed training job can be retried only if it failed because an internal service error occurred.
*/
RetryableError?: TrainingJobStatusCounter;
/**
* The number of training jobs that failed and can't be retried. A failed training job can't be retried if it failed because a client error occurred.
*/
NonRetryableError?: TrainingJobStatusCounter;
/**
* The number of training jobs launched by a hyperparameter tuning job that were manually stopped.
*/
Stopped?: TrainingJobStatusCounter;
}
export type TrainingJobSummaries = TrainingJobSummary[];
export interface TrainingJobSummary {
/**
* The name of the training job that you want a summary for.
*/
TrainingJobName: TrainingJobName;
/**
* The Amazon Resource Name (ARN) of the training job.
*/
TrainingJobArn: TrainingJobArn;
/**
* A timestamp that shows when the training job was created.
*/
CreationTime: Timestamp;
/**
* A timestamp that shows when the training job ended. This field is set only if the training job has one of the terminal statuses (Completed, Failed, or Stopped).
*/
TrainingEndTime?: Timestamp;
/**
* Timestamp when the training job was last modified.
*/
LastModifiedTime?: Timestamp;
/**
* The status of the training job.
*/
TrainingJobStatus: TrainingJobStatus;
}
export interface TrainingSpecification {
/**
* The Amazon ECR registry path of the Docker image that contains the training algorithm.
*/
TrainingImage: ContainerImage;
/**
* An MD5 hash of the training algorithm that identifies the Docker image used for training.
*/
TrainingImageDigest?: ImageDigest;
/**
* A list of the HyperParameterSpecification objects, that define the supported hyperparameters. This is required if the algorithm supports automatic model tuning.>
*/
SupportedHyperParameters?: HyperParameterSpecifications;
/**
* A list of the instance types that this algorithm can use for training.
*/
SupportedTrainingInstanceTypes: TrainingInstanceTypes;
/**
* Indicates whether the algorithm supports distributed training. If set to false, buyers can't request more than one instance during training.
*/
SupportsDistributedTraining?: Boolean;
/**
* A list of MetricDefinition objects, which are used for parsing metrics generated by the algorithm.
*/
MetricDefinitions?: MetricDefinitionList;
/**
* A list of ChannelSpecification objects, which specify the input sources to be used by the algorithm.
*/
TrainingChannels: ChannelSpecifications;
/**
* A list of the metrics that the algorithm emits that can be used as the objective metric in a hyperparameter tuning job.
*/
SupportedTuningJobObjectiveMetrics?: HyperParameterTuningJobObjectives;
}
export type TrainingTimeInSeconds = number;
export interface TransformDataSource {
/**
* The S3 location of the data source that is associated with a channel.
*/
S3DataSource: TransformS3DataSource;
}
export type TransformEnvironmentKey = string;
export type TransformEnvironmentMap = {[key: string]: TransformEnvironmentValue};
export type TransformEnvironmentValue = string;
export interface TransformInput {
/**
* Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.
*/
DataSource: TransformDataSource;
/**
* The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.
*/
ContentType?: ContentType;
/**
* If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None.
*/
CompressionType?: CompressionType;
/**
* The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None, which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats. Currently, the supported record formats are: RecordIO TFRecord When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord, Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord, Amazon SageMaker sends individual records in each request. Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy is set to SingleRecord. Padding is not removed if the value of BatchStrategy is set to MultiRecord. For more information about RecordIO, see Create a Dataset Using RecordIO in the MXNet documentation. For more information about TFRecord, see Consuming TFRecord data in the TensorFlow documentation.
*/
SplitType?: SplitType;
}
export type TransformInstanceCount = number;
export type TransformInstanceType = "ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|string;
export type TransformInstanceTypes = TransformInstanceType[];
export interface TransformJob {
/**
* The name of the transform job.
*/
TransformJobName?: TransformJobName;
/**
* The Amazon Resource Name (ARN) of the transform job.
*/
TransformJobArn?: TransformJobArn;
/**
* The status of the transform job. Transform job statuses are: InProgress - The job is in progress. Completed - The job has completed. Failed - The transform job has failed. To see the reason for the failure, see the FailureReason field in the response to a DescribeTransformJob call. Stopping - The transform job is stopping. Stopped - The transform job has stopped.
*/
TransformJobStatus?: TransformJobStatus;
/**
* If the transform job failed, the reason it failed.
*/
FailureReason?: FailureReason;
/**
* The name of the model associated with the transform job.
*/
ModelName?: ModelName;
/**
* The maximum number of parallel requests that can be sent to each instance in a transform job. If MaxConcurrentTransforms is set to 0 or left unset, SageMaker checks the optional execution-parameters to determine the settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is 1. For built-in algorithms, you don't need to set a value for MaxConcurrentTransforms.
*/
MaxConcurrentTransforms?: MaxConcurrentTransforms;
ModelClientConfig?: ModelClientConfig;
/**
* The maximum allowed size of the payload, in MB. A payload is the data portion of a record (without metadata). The value in MaxPayloadInMB must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is 6 MB. For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to 0. This feature works only in supported algorithms. Currently, SageMaker built-in algorithms do not support HTTP chunked encoding.
*/
MaxPayloadInMB?: MaxPayloadInMB;
/**
* Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.
*/
BatchStrategy?: BatchStrategy;
/**
* The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
*/
Environment?: TransformEnvironmentMap;
TransformInput?: TransformInput;
TransformOutput?: TransformOutput;
TransformResources?: TransformResources;
/**
* A timestamp that shows when the transform Job was created.
*/
CreationTime?: Timestamp;
/**
* Indicates when the transform job starts on ML instances. You are billed for the time interval between this time and the value of TransformEndTime.
*/
TransformStartTime?: Timestamp;
/**
* Indicates when the transform job has been completed, or has stopped or failed. You are billed for the time interval between this time and the value of TransformStartTime.
*/
TransformEndTime?: Timestamp;
/**
* The Amazon Resource Name (ARN) of the labeling job that created the transform job.
*/
LabelingJobArn?: LabelingJobArn;
/**
* The Amazon Resource Name (ARN) of the AutoML job that created the transform job.
*/
AutoMLJobArn?: AutoMLJobArn;
DataProcessing?: DataProcessing;
ExperimentConfig?: ExperimentConfig;
/**
* A list of tags associated with the transform job.
*/
Tags?: TagList;
}
export type TransformJobArn = string;
export interface TransformJobDefinition {
/**
* The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.
*/
MaxConcurrentTransforms?: MaxConcurrentTransforms;
/**
* The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).
*/
MaxPayloadInMB?: MaxPayloadInMB;
/**
* A string that determines the number of records included in a single mini-batch. SingleRecord means only one record is used per mini-batch. MultiRecord means a mini-batch is set to contain as many records that can fit within the MaxPayloadInMB limit.
*/
BatchStrategy?: BatchStrategy;
/**
* The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
*/
Environment?: TransformEnvironmentMap;
/**
* A description of the input source and the way the transform job consumes it.
*/
TransformInput: TransformInput;
/**
* Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.
*/
TransformOutput: TransformOutput;
/**
* Identifies the ML compute instances for the transform job.
*/
TransformResources: TransformResources;
}
export type TransformJobName = string;
export type TransformJobStatus = "InProgress"|"Completed"|"Failed"|"Stopping"|"Stopped"|string;
export type TransformJobSummaries = TransformJobSummary[];
export interface TransformJobSummary {
/**
* The name of the transform job.
*/
TransformJobName: TransformJobName;
/**
* The Amazon Resource Name (ARN) of the transform job.
*/
TransformJobArn: TransformJobArn;
/**
* A timestamp that shows when the transform Job was created.
*/
CreationTime: Timestamp;
/**
* Indicates when the transform job ends on compute instances. For successful jobs and stopped jobs, this is the exact time recorded after the results are uploaded. For failed jobs, this is when Amazon SageMaker detected that the job failed.
*/
TransformEndTime?: Timestamp;
/**
* Indicates when the transform job was last modified.
*/
LastModifiedTime?: Timestamp;
/**
* The status of the transform job.
*/
TransformJobStatus: TransformJobStatus;
/**
* If the transform job failed, the reason it failed.
*/
FailureReason?: FailureReason;
}
export interface TransformOutput {
/**
* The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix. For every S3 object used as input for the transform job, batch transform stores the transformed data with an .out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv, batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out. Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an .out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.
*/
S3OutputPath: S3Uri;
/**
* The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.
*/
Accept?: Accept;
/**
* Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None. To add a newline character at the end of every transformed record, specify Line.
*/
AssembleWith?: AssemblyType;
/**
* The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide. The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide.
*/
KmsKeyId?: KmsKeyId;
}
export interface TransformResources {
/**
* The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.large instance types.
*/
InstanceType: TransformInstanceType;
/**
* The number of ML compute instances to use in the transform job. For distributed transform jobs, specify a value greater than 1. The default value is 1.
*/
InstanceCount: TransformInstanceCount;
/**
* The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job. The VolumeKmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
*/
VolumeKmsKeyId?: KmsKeyId;
}
export interface TransformS3DataSource {
/**
* If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform. If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform. The following values are compatible: ManifestFile, S3Prefix The following value is not compatible: AugmentedManifestFile
*/
S3DataType: S3DataType;
/**
* Depending on the value specified for the S3DataType, identifies either a key name prefix or a manifest. For example: A key name prefix might look like this: s3://bucketname/exampleprefix. A manifest might look like this: s3://bucketname/example.manifest The manifest is an S3 object which is a JSON file with the following format: [ {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1", "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding JSON matches the following S3Uris: s3://customer_bucket/some/prefix/relative/path/to/custdata-1 s3://customer_bucket/some/prefix/relative/path/custdata-2 ... s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.
*/
S3Uri: S3Uri;
}
export interface Trial {
/**
* The name of the trial.
*/
TrialName?: ExperimentEntityName;
/**
* The Amazon Resource Name (ARN) of the trial.
*/
TrialArn?: TrialArn;
/**
* The name of the trial as displayed. If DisplayName isn't specified, TrialName is displayed.
*/
DisplayName?: ExperimentEntityName;
/**
* The name of the experiment the trial is part of.
*/
ExperimentName?: ExperimentEntityName;
Source?: TrialSource;
/**
* When the trial was created.
*/
CreationTime?: Timestamp;
CreatedBy?: UserContext;
/**
* Who last modified the trial.
*/
LastModifiedTime?: Timestamp;
LastModifiedBy?: UserContext;
/**
* The list of tags that are associated with the trial. You can use Search API to search on the tags.
*/
Tags?: TagList;
/**
* A list of the components associated with the trial. For each component, a summary of the component's properties is included.
*/
TrialComponentSummaries?: TrialComponentSimpleSummaries;
}
export type TrialArn = string;
export interface TrialComponent {
/**
* The name of the trial component.
*/
TrialComponentName?: ExperimentEntityName;
/**
* The name of the component as displayed. If DisplayName isn't specified, TrialComponentName is displayed.
*/
DisplayName?: ExperimentEntityName;
/**
* The Amazon Resource Name (ARN) of the trial component.
*/
TrialComponentArn?: TrialComponentArn;
/**
* The Amazon Resource Name (ARN) and job type of the source of the component.
*/
Source?: TrialComponentSource;
Status?: TrialComponentStatus;
/**
* When the component started.
*/
StartTime?: Timestamp;
/**
* When the component ended.
*/
EndTime?: Timestamp;
/**
* When the component was created.
*/
CreationTime?: Timestamp;
CreatedBy?: UserContext;
/**
* When the component was last modified.
*/
LastModifiedTime?: Timestamp;
LastModifiedBy?: UserContext;
/**
* The hyperparameters of the component.
*/
Parameters?: TrialComponentParameters;
/**
* The input artifacts of the component.
*/
InputArtifacts?: TrialComponentArtifacts;
/**
* The output artifacts of the component.
*/
OutputArtifacts?: TrialComponentArtifacts;
/**
* The metrics for the component.
*/
Metrics?: TrialComponentMetricSummaries;
/**
* Details of the source of the component.
*/
SourceDetail?: TrialComponentSourceDetail;
/**
* The list of tags that are associated with the component. You can use Search API to search on the tags.
*/
Tags?: TagList;
/**
* An array of the parents of the component. A parent is a trial the component is associated with and the experiment the trial is part of. A component might not have any parents.
*/
Parents?: Parents;
}
export type TrialComponentArn = string;
export interface TrialComponentArtifact {
/**
* The media type of the artifact, which indicates the type of data in the artifact file. The media type consists of a type and a subtype concatenated with a slash (/) character, for example, text/csv, image/jpeg, and s3/uri. The type specifies the category of the media. The subtype specifies the kind of data.
*/
MediaType?: MediaType;
/**
* The location of the artifact.
*/
Value: TrialComponentArtifactValue;
}
export type TrialComponentArtifactValue = string;
export type TrialComponentArtifacts = {[key: string]: TrialComponentArtifact};
export type TrialComponentKey256 = string;
export type TrialComponentKey64 = string;
export type TrialComponentMetricSummaries = TrialComponentMetricSummary[];
export interface TrialComponentMetricSummary {
/**
* The name of the metric.
*/
MetricName?: MetricName;
/**
* The Amazon Resource Name (ARN) of the source.
*/
SourceArn?: TrialComponentSourceArn;
/**
* When the metric was last updated.
*/
TimeStamp?: Timestamp;
/**
* The maximum value of the metric.
*/
Max?: OptionalDouble;
/**
* The minimum value of the metric.
*/
Min?: OptionalDouble;
/**
* The most recent value of the metric.
*/
Last?: OptionalDouble;
/**
* The number of samples used to generate the metric.
*/
Count?: OptionalInteger;
/**
* The average value of the metric.
*/
Avg?: OptionalDouble;
/**
* The standard deviation of the metric.
*/
StdDev?: OptionalDouble;
}
export interface TrialComponentParameterValue {
/**
* The string value of a categorical hyperparameter. If you specify a value for this parameter, you can't specify the NumberValue parameter.
*/
StringValue?: StringParameterValue;
/**
* The numeric value of a numeric hyperparameter. If you specify a value for this parameter, you can't specify the StringValue parameter.
*/
NumberValue?: DoubleParameterValue;
}
export type TrialComponentParameters = {[key: string]: TrialComponentParameterValue};
export type TrialComponentPrimaryStatus = "InProgress"|"Completed"|"Failed"|"Stopping"|"Stopped"|string;
export type TrialComponentSimpleSummaries = TrialComponentSimpleSummary[];
export interface TrialComponentSimpleSummary {
/**
* The name of the trial component.
*/
TrialComponentName?: ExperimentEntityName;
/**
* The Amazon Resource Name (ARN) of the trial component.
*/
TrialComponentArn?: TrialComponentArn;
TrialComponentSource?: TrialComponentSource;
/**
* When the component was created.
*/
CreationTime?: Timestamp;
CreatedBy?: UserContext;
}
export interface TrialComponentSource {
/**
* The source ARN.
*/
SourceArn: TrialComponentSourceArn;
/**
* The source job type.
*/
SourceType?: SourceType;
}
export type TrialComponentSourceArn = string;
export interface TrialComponentSourceDetail {
/**
* The Amazon Resource Name (ARN) of the source.
*/
SourceArn?: TrialComponentSourceArn;
/**
* Information about a training job that's the source of a trial component.
*/
TrainingJob?: TrainingJob;
/**
* Information about a processing job that's the source of a trial component.
*/
ProcessingJob?: ProcessingJob;
/**
* Information about a transform job that's the source of a trial component.
*/
TransformJob?: TransformJob;
}
export interface TrialComponentStatus {
/**
* The status of the trial component.
*/
PrimaryStatus?: TrialComponentPrimaryStatus;
/**
* If the component failed, a message describing why.
*/
Message?: TrialComponentStatusMessage;
}
export type TrialComponentStatusMessage = string;
export type TrialComponentSummaries = TrialComponentSummary[];
export interface TrialComponentSummary {
/**
* The name of the trial component.
*/
TrialComponentName?: ExperimentEntityName;
/**
* The ARN of the trial component.
*/
TrialComponentArn?: TrialComponentArn;
/**
* The name of the component as displayed. If DisplayName isn't specified, TrialComponentName is displayed.
*/
DisplayName?: ExperimentEntityName;
TrialComponentSource?: TrialComponentSource;
/**
* The status of the component. States include: InProgress Completed Failed
*/
Status?: TrialComponentStatus;
/**
* When the component started.
*/
StartTime?: Timestamp;
/**
* When the component ended.
*/
EndTime?: Timestamp;
/**
* When the component was created.
*/
CreationTime?: Timestamp;
/**
* Who created the component.
*/
CreatedBy?: UserContext;
/**
* When the component was last modified.
*/
LastModifiedTime?: Timestamp;
/**
* Who last modified the component.
*/
LastModifiedBy?: UserContext;
}
export interface TrialSource {
/**
* The Amazon Resource Name (ARN) of the source.
*/
SourceArn: TrialSourceArn;
/**
* The source job type.
*/
SourceType?: SourceType;
}
export type TrialSourceArn = string;
export type TrialSummaries = TrialSummary[];
export interface TrialSummary {
/**
* The Amazon Resource Name (ARN) of the trial.
*/
TrialArn?: TrialArn;
/**
* The name of the trial.
*/
TrialName?: ExperimentEntityName;
/**
* The name of the trial as displayed. If DisplayName isn't specified, TrialName is displayed.
*/
DisplayName?: ExperimentEntityName;
TrialSource?: TrialSource;
/**
* When the trial was created.
*/
CreationTime?: Timestamp;
/**
* When the trial was last modified.
*/
LastModifiedTime?: Timestamp;
}
export interface TuningJobCompletionCriteria {
/**
* The value of the objective metric.
*/
TargetObjectiveMetricValue: TargetObjectiveMetricValue;
}
export interface USD {
/**
* The whole number of dollars in the amount.
*/
Dollars?: Dollars;
/**
* The fractional portion, in cents, of the amount.
*/
Cents?: Cents;
/**
* Fractions of a cent, in tenths.
*/
TenthFractionsOfACent?: TenthFractionsOfACent;
}
export interface UiConfig {
/**
* The Amazon S3 bucket location of the UI template, or worker task template. This is the template used to render the worker UI and tools for labeling job tasks. For more information about the contents of a UI template, see Creating Your Custom Labeling Task Template.
*/
UiTemplateS3Uri?: S3Uri;
/**
* The ARN of the worker task template used to render the worker UI and tools for labeling job tasks. Use this parameter when you are creating a labeling job for 3D point cloud and video fram labeling jobs. Use your labeling job task type to select one of the following ARN's and use it with this parameter when you create a labeling job. Replace aws-region with the AWS region you are creating your labeling job in. 3D Point Cloud HumanTaskUiArns Use this HumanTaskUiArn for 3D point cloud object detection and 3D point cloud object detection adjustment labeling jobs. arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectDetection Use this HumanTaskUiArn for 3D point cloud object tracking and 3D point cloud object tracking adjustment labeling jobs. arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectTracking Use this HumanTaskUiArn for 3D point cloud semantic segmentation and 3D point cloud semantic segmentation adjustment labeling jobs. arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudSemanticSegmentation Video Frame HumanTaskUiArns Use this HumanTaskUiArn for video frame object detection and video frame object detection adjustment labeling jobs. arn:aws:sagemaker:region:394669845002:human-task-ui/VideoObjectDetection Use this HumanTaskUiArn for video frame object tracking and video frame object tracking adjustment labeling jobs. arn:aws:sagemaker:aws-region:394669845002:human-task-ui/VideoObjectTracking
*/
HumanTaskUiArn?: HumanTaskUiArn;
}
export interface UiTemplate {
/**
* The content of the Liquid template for the worker user interface.
*/
Content: TemplateContent;
}
export interface UiTemplateInfo {
/**
* The URL for the user interface template.
*/
Url?: TemplateUrl;
/**
* The SHA-256 digest of the contents of the template.
*/
ContentSha256?: TemplateContentSha256;
}
export interface UpdateCodeRepositoryInput {
/**
* The name of the Git repository to update.
*/
CodeRepositoryName: EntityName;
/**
* The configuration of the git repository, including the URL and the Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the repository. The secret must have a staging label of AWSCURRENT and must be in the following format: {"username": UserName, "password": Password}
*/
GitConfig?: GitConfigForUpdate;
}
export interface UpdateCodeRepositoryOutput {
/**
* The ARN of the Git repository.
*/
CodeRepositoryArn: CodeRepositoryArn;
}
export interface UpdateDomainRequest {
/**
* The ID of the domain to be updated.
*/
DomainId: DomainId;
/**
* A collection of settings.
*/
DefaultUserSettings?: UserSettings;
}
export interface UpdateDomainResponse {
/**
* The Amazon Resource Name (ARN) of the domain.
*/
DomainArn?: DomainArn;
}
export interface UpdateEndpointInput {
/**
* The name of the endpoint whose configuration you want to update.
*/
EndpointName: EndpointName;
/**
* The name of the new endpoint configuration.
*/
EndpointConfigName: EndpointConfigName;
/**
* When updating endpoint resources, enables or disables the retention of variant properties, such as the instance count or the variant weight. To retain the variant properties of an endpoint when updating it, set RetainAllVariantProperties to true. To use the variant properties specified in a new EndpointConfig call when updating an endpoint, set RetainAllVariantProperties to false.
*/
RetainAllVariantProperties?: Boolean;
/**
* When you are updating endpoint resources with UpdateEndpointInput$RetainAllVariantProperties, whose value is set to true, ExcludeRetainedVariantProperties specifies the list of type VariantProperty to override with the values provided by EndpointConfig. If you don't specify a value for ExcludeAllVariantProperties, no variant properties are overridden.
*/
ExcludeRetainedVariantProperties?: VariantPropertyList;
}
export interface UpdateEndpointOutput {
/**
* The Amazon Resource Name (ARN) of the endpoint.
*/
EndpointArn: EndpointArn;
}
export interface UpdateEndpointWeightsAndCapacitiesInput {
/**
* The name of an existing Amazon SageMaker endpoint.
*/
EndpointName: EndpointName;
/**
* An object that provides new capacity and weight values for a variant.
*/
DesiredWeightsAndCapacities: DesiredWeightAndCapacityList;
}
export interface UpdateEndpointWeightsAndCapacitiesOutput {
/**
* The Amazon Resource Name (ARN) of the updated endpoint.
*/
EndpointArn: EndpointArn;
}
export interface UpdateExperimentRequest {
/**
* The name of the experiment to update.
*/
ExperimentName: ExperimentEntityName;
/**
* The name of the experiment as displayed. The name doesn't need to be unique. If DisplayName isn't specified, ExperimentName is displayed.
*/
DisplayName?: ExperimentEntityName;
/**
* The description of the experiment.
*/
Description?: ExperimentDescription;
}
export interface UpdateExperimentResponse {
/**
* The Amazon Resource Name (ARN) of the experiment.
*/
ExperimentArn?: ExperimentArn;
}
export interface UpdateMonitoringScheduleRequest {
/**
* The name of the monitoring schedule. The name must be unique within an AWS Region within an AWS account.
*/
MonitoringScheduleName: MonitoringScheduleName;
/**
* The configuration object that specifies the monitoring schedule and defines the monitoring job.
*/
MonitoringScheduleConfig: MonitoringScheduleConfig;
}
export interface UpdateMonitoringScheduleResponse {
/**
* The Amazon Resource Name (ARN) of the monitoring schedule.
*/
MonitoringScheduleArn: MonitoringScheduleArn;
}
export interface UpdateNotebookInstanceInput {
/**
* The name of the notebook instance to update.
*/
NotebookInstanceName: NotebookInstanceName;
/**
* The Amazon ML compute instance type.
*/
InstanceType?: InstanceType;
/**
* The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker can assume to access the notebook instance. For more information, see Amazon SageMaker Roles. To be able to pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission.
*/
RoleArn?: RoleArn;
/**
* The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
*/
LifecycleConfigName?: NotebookInstanceLifecycleConfigName;
/**
* Set to true to remove the notebook instance lifecycle configuration currently associated with the notebook instance. This operation is idempotent. If you specify a lifecycle configuration that is not associated with the notebook instance when you call this method, it does not throw an error.
*/
DisassociateLifecycleConfig?: DisassociateNotebookInstanceLifecycleConfig;
/**
* The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB. ML storage volumes are encrypted, so Amazon SageMaker can't determine the amount of available free space on the volume. Because of this, you can increase the volume size when you update a notebook instance, but you can't decrease the volume size. If you want to decrease the size of the ML storage volume in use, create a new notebook instance with the desired size.
*/
VolumeSizeInGB?: NotebookInstanceVolumeSizeInGB;
/**
* The Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
*/
DefaultCodeRepository?: CodeRepositoryNameOrUrl;
/**
* An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
*/
AdditionalCodeRepositories?: AdditionalCodeRepositoryNamesOrUrls;
/**
* A list of the Elastic Inference (EI) instance types to associate with this notebook instance. Currently only one EI instance type can be associated with a notebook instance. For more information, see Using Elastic Inference in Amazon SageMaker.
*/
AcceleratorTypes?: NotebookInstanceAcceleratorTypes;
/**
* A list of the Elastic Inference (EI) instance types to remove from this notebook instance. This operation is idempotent. If you specify an accelerator type that is not associated with the notebook instance when you call this method, it does not throw an error.
*/
DisassociateAcceleratorTypes?: DisassociateNotebookInstanceAcceleratorTypes;
/**
* The name or URL of the default Git repository to remove from this notebook instance. This operation is idempotent. If you specify a Git repository that is not associated with the notebook instance when you call this method, it does not throw an error.
*/
DisassociateDefaultCodeRepository?: DisassociateDefaultCodeRepository;
/**
* A list of names or URLs of the default Git repositories to remove from this notebook instance. This operation is idempotent. If you specify a Git repository that is not associated with the notebook instance when you call this method, it does not throw an error.
*/
DisassociateAdditionalCodeRepositories?: DisassociateAdditionalCodeRepositories;
/**
* Whether root access is enabled or disabled for users of the notebook instance. The default value is Enabled. If you set this to Disabled, users don't have root access on the notebook instance, but lifecycle configuration scripts still run with root permissions.
*/
RootAccess?: RootAccess;
}
export interface UpdateNotebookInstanceLifecycleConfigInput {
/**
* The name of the lifecycle configuration.
*/
NotebookInstanceLifecycleConfigName: NotebookInstanceLifecycleConfigName;
/**
* The shell script that runs only once, when you create a notebook instance. The shell script must be a base64-encoded string.
*/
OnCreate?: NotebookInstanceLifecycleConfigList;
/**
* The shell script that runs every time you start a notebook instance, including when you create the notebook instance. The shell script must be a base64-encoded string.
*/
OnStart?: NotebookInstanceLifecycleConfigList;
}
export interface UpdateNotebookInstanceLifecycleConfigOutput {
}
export interface UpdateNotebookInstanceOutput {
}
export interface UpdateTrialComponentRequest {
/**
* The name of the component to update.
*/
TrialComponentName: ExperimentEntityName;
/**
* The name of the component as displayed. The name doesn't need to be unique. If DisplayName isn't specified, TrialComponentName is displayed.
*/
DisplayName?: ExperimentEntityName;
/**
* The new status of the component.
*/
Status?: TrialComponentStatus;
/**
* When the component started.
*/
StartTime?: Timestamp;
/**
* When the component ended.
*/
EndTime?: Timestamp;
/**
* Replaces all of the component's hyperparameters with the specified hyperparameters.
*/
Parameters?: TrialComponentParameters;
/**
* The hyperparameters to remove from the component.
*/
ParametersToRemove?: ListTrialComponentKey256;
/**
* Replaces all of the component's input artifacts with the specified artifacts.
*/
InputArtifacts?: TrialComponentArtifacts;
/**
* The input artifacts to remove from the component.
*/
InputArtifactsToRemove?: ListTrialComponentKey256;
/**
* Replaces all of the component's output artifacts with the specified artifacts.
*/
OutputArtifacts?: TrialComponentArtifacts;
/**
* The output artifacts to remove from the component.
*/
OutputArtifactsToRemove?: ListTrialComponentKey256;
}
export interface UpdateTrialComponentResponse {
/**
* The Amazon Resource Name (ARN) of the trial component.
*/
TrialComponentArn?: TrialComponentArn;
}
export interface UpdateTrialRequest {
/**
* The name of the trial to update.
*/
TrialName: ExperimentEntityName;
/**
* The name of the trial as displayed. The name doesn't need to be unique. If DisplayName isn't specified, TrialName is displayed.
*/
DisplayName?: ExperimentEntityName;
}
export interface UpdateTrialResponse {
/**
* The Amazon Resource Name (ARN) of the trial.
*/
TrialArn?: TrialArn;
}
export interface UpdateUserProfileRequest {
/**
* The domain ID.
*/
DomainId: DomainId;
/**
* The user profile name.
*/
UserProfileName: UserProfileName;
/**
* A collection of settings.
*/
UserSettings?: UserSettings;
}
export interface UpdateUserProfileResponse {
/**
* The user profile Amazon Resource Name (ARN).
*/
UserProfileArn?: UserProfileArn;
}
export interface UpdateWorkforceRequest {
/**
* The name of the private workforce that you want to update. You can find your workforce name by using the operation.
*/
WorkforceName: WorkforceName;
/**
* A list of one to ten worker IP address ranges (CIDRs) that can be used to access tasks assigned to this workforce. Maximum: Ten CIDR values
*/
SourceIpConfig?: SourceIpConfig;
/**
* Use this parameter to update your OIDC Identity Provider (IdP) configuration for a workforce made using your own IdP.
*/
OidcConfig?: OidcConfig;
}
export interface UpdateWorkforceResponse {
/**
* A single private workforce. You can create one private work force in each AWS Region. By default, any workforce-related API operation used in a specific region will apply to the workforce created in that region. To learn how to create a private workforce, see Create a Private Workforce.
*/
Workforce: Workforce;
}
export interface UpdateWorkteamRequest {
/**
* The name of the work team to update.
*/
WorkteamName: WorkteamName;
/**
* A list of MemberDefinition objects that contains objects that identify the workers that make up the work team. Workforces can be created using Amazon Cognito or your own OIDC Identity Provider (IdP). For private workforces created using Amazon Cognito use CognitoMemberDefinition. For workforces created using your own OIDC identity provider (IdP) use OidcMemberDefinition. You should not provide input for both of these parameters in a single request. For workforces created using Amazon Cognito, private work teams correspond to Amazon Cognito user groups within the user pool used to create a workforce. All of the CognitoMemberDefinition objects that make up the member definition must have the same ClientId and UserPool values. To add a Amazon Cognito user group to an existing worker pool, see Adding groups to a User Pool. For more information about user pools, see Amazon Cognito User Pools. For workforces created using your own OIDC IdP, specify the user groups that you want to include in your private work team in OidcMemberDefinition by listing those groups in Groups. Be aware that user groups that are already in the work team must also be listed in Groups when you make this request to remain on the work team. If you do not include these user groups, they will no longer be associated with the work team you update.
*/
MemberDefinitions?: MemberDefinitions;
/**
* An updated description for the work team.
*/
Description?: String200;
/**
* Configures SNS topic notifications for available or expiring work items
*/
NotificationConfiguration?: NotificationConfiguration;
}
export interface UpdateWorkteamResponse {
/**
* A Workteam object that describes the updated work team.
*/
Workteam: Workteam;
}
export type Url = string;
export interface UserContext {
/**
* The Amazon Resource Name (ARN) of the user's profile.
*/
UserProfileArn?: String;
/**
* The name of the user's profile.
*/
UserProfileName?: String;
/**
* The domain associated with the user.
*/
DomainId?: String;
}
export type UserProfileArn = string;
export interface UserProfileDetails {
/**
* The domain ID.
*/
DomainId?: DomainId;
/**
* The user profile name.
*/
UserProfileName?: UserProfileName;
/**
* The status.
*/
Status?: UserProfileStatus;
/**
* The creation time.
*/
CreationTime?: CreationTime;
/**
* The last modified time.
*/
LastModifiedTime?: LastModifiedTime;
}
export type UserProfileList = UserProfileDetails[];
export type UserProfileName = string;
export type UserProfileSortKey = "CreationTime"|"LastModifiedTime"|string;
export type UserProfileStatus = "Deleting"|"Failed"|"InService"|"Pending"|string;
export interface UserSettings {
/**
* The execution role for the user.
*/
ExecutionRole?: RoleArn;
/**
* The security groups.
*/
SecurityGroups?: SecurityGroupIds;
/**
* The sharing settings.
*/
SharingSettings?: SharingSettings;
/**
* The Jupyter server's app settings.
*/
JupyterServerAppSettings?: JupyterServerAppSettings;
/**
* The kernel gateway app settings.
*/
KernelGatewayAppSettings?: KernelGatewayAppSettings;
/**
* The TensorBoard app settings.
*/
TensorBoardAppSettings?: TensorBoardAppSettings;
}
export type VariantName = string;
export interface VariantProperty {
/**
* The type of variant property. The supported values are: DesiredInstanceCount: Overrides the existing variant instance counts using the ProductionVariant$InitialInstanceCount values in the CreateEndpointConfigInput$ProductionVariants. DesiredWeight: Overrides the existing variant weights using the ProductionVariant$InitialVariantWeight values in the CreateEndpointConfigInput$ProductionVariants. DataCaptureConfig: (Not currently supported.)
*/
VariantPropertyType: VariantPropertyType;
}
export type VariantPropertyList = VariantProperty[];
export type VariantPropertyType = "DesiredInstanceCount"|"DesiredWeight"|"DataCaptureConfig"|string;
export type VariantWeight = number;
export type VolumeSizeInGB = number;
export interface VpcConfig {
/**
* The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.
*/
SecurityGroupIds: VpcSecurityGroupIds;
/**
* The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.
*/
Subnets: Subnets;
}
export type VpcId = string;
export type VpcSecurityGroupIds = SecurityGroupId[];
export interface Workforce {
/**
* The name of the private workforce.
*/
WorkforceName: WorkforceName;
/**
* The Amazon Resource Name (ARN) of the private workforce.
*/
WorkforceArn: WorkforceArn;
/**
* The most recent date that was used to successfully add one or more IP address ranges (CIDRs) to a private workforce's allow list.
*/
LastUpdatedDate?: Timestamp;
/**
* A list of one to ten IP address ranges (CIDRs) to be added to the workforce allow list. By default, a workforce isn't restricted to specific IP addresses.
*/
SourceIpConfig?: SourceIpConfig;
/**
* The subdomain for your OIDC Identity Provider.
*/
SubDomain?: String;
/**
* The configuration of an Amazon Cognito workforce. A single Cognito workforce is created using and corresponds to a single Amazon Cognito user pool.
*/
CognitoConfig?: CognitoConfig;
/**
* The configuration of an OIDC Identity Provider (IdP) private workforce.
*/
OidcConfig?: OidcConfigForResponse;
/**
* The date that the workforce is created.
*/
CreateDate?: Timestamp;
}
export type WorkforceArn = string;
export type WorkforceName = string;
export type Workforces = Workforce[];
export interface Workteam {
/**
* The name of the work team.
*/
WorkteamName: WorkteamName;
/**
* A list of MemberDefinition objects that contains objects that identify the workers that make up the work team. Workforces can be created using Amazon Cognito or your own OIDC Identity Provider (IdP). For private workforces created using Amazon Cognito use CognitoMemberDefinition. For workforces created using your own OIDC identity provider (IdP) use OidcMemberDefinition.
*/
MemberDefinitions: MemberDefinitions;
/**
* The Amazon Resource Name (ARN) that identifies the work team.
*/
WorkteamArn: WorkteamArn;
/**
* The Amazon Resource Name (ARN) of the workforce.
*/
WorkforceArn?: WorkforceArn;
/**
* The Amazon Marketplace identifier for a vendor's work team.
*/
ProductListingIds?: ProductListings;
/**
* A description of the work team.
*/
Description: String200;
/**
* The URI of the labeling job's user interface. Workers open this URI to start labeling your data objects.
*/
SubDomain?: String;
/**
* The date and time that the work team was created (timestamp).
*/
CreateDate?: Timestamp;
/**
* The date and time that the work team was last updated (timestamp).
*/
LastUpdatedDate?: Timestamp;
/**
* Configures SNS notifications of available or expiring work items for work teams.
*/
NotificationConfiguration?: NotificationConfiguration;
}
export type WorkteamArn = string;
export type WorkteamName = string;
export type Workteams = Workteam[];
/**
* A string in YYYY-MM-DD format that represents the latest possible API version that can be used in this service. Specify 'latest' to use the latest possible version.
*/
export type apiVersion = "2017-07-24"|"latest"|string;
export interface ClientApiVersions {
/**
* A string in YYYY-MM-DD format that represents the latest possible API version that can be used in this service. Specify 'latest' to use the latest possible version.
*/
apiVersion?: apiVersion;
}
export type ClientConfiguration = ServiceConfigurationOptions & ClientApiVersions;
/**
* Contains interfaces for use with the SageMaker client.
*/
export import Types = SageMaker;
}
export = SageMaker;