sagemaker.d.ts 580 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881
import {Request} from '../lib/request';
import {Response} from '../lib/response';
import {AWSError} from '../lib/error';
import {Service} from '../lib/service';
import {WaiterConfiguration} from '../lib/service';
import {ServiceConfigurationOptions} from '../lib/service';
import {ConfigBase as Config} from '../lib/config-base';
interface Blob {}
declare class SageMaker extends Service {
  /**
   * Constructs a service object. This object has one method for each API operation.
   */
  constructor(options?: SageMaker.Types.ClientConfiguration)
  config: Config & SageMaker.Types.ClientConfiguration;
  /**
   * Adds or overwrites one or more tags for the specified Amazon SageMaker resource. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more information about tags, see For more information, see AWS Tagging Strategies.  Tags that you add to a hyperparameter tuning job by calling this API are also added to any training jobs that the hyperparameter tuning job launches after you call this API, but not to training jobs that the hyperparameter tuning job launched before you called this API. To make sure that the tags associated with a hyperparameter tuning job are also added to all training jobs that the hyperparameter tuning job launches, add the tags when you first create the tuning job by specifying them in the Tags parameter of CreateHyperParameterTuningJob  
   */
  addTags(params: SageMaker.Types.AddTagsInput, callback?: (err: AWSError, data: SageMaker.Types.AddTagsOutput) => void): Request<SageMaker.Types.AddTagsOutput, AWSError>;
  /**
   * Adds or overwrites one or more tags for the specified Amazon SageMaker resource. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more information about tags, see For more information, see AWS Tagging Strategies.  Tags that you add to a hyperparameter tuning job by calling this API are also added to any training jobs that the hyperparameter tuning job launches after you call this API, but not to training jobs that the hyperparameter tuning job launched before you called this API. To make sure that the tags associated with a hyperparameter tuning job are also added to all training jobs that the hyperparameter tuning job launches, add the tags when you first create the tuning job by specifying them in the Tags parameter of CreateHyperParameterTuningJob  
   */
  addTags(callback?: (err: AWSError, data: SageMaker.Types.AddTagsOutput) => void): Request<SageMaker.Types.AddTagsOutput, AWSError>;
  /**
   * Associates a trial component with a trial. A trial component can be associated with multiple trials. To disassociate a trial component from a trial, call the DisassociateTrialComponent API.
   */
  associateTrialComponent(params: SageMaker.Types.AssociateTrialComponentRequest, callback?: (err: AWSError, data: SageMaker.Types.AssociateTrialComponentResponse) => void): Request<SageMaker.Types.AssociateTrialComponentResponse, AWSError>;
  /**
   * Associates a trial component with a trial. A trial component can be associated with multiple trials. To disassociate a trial component from a trial, call the DisassociateTrialComponent API.
   */
  associateTrialComponent(callback?: (err: AWSError, data: SageMaker.Types.AssociateTrialComponentResponse) => void): Request<SageMaker.Types.AssociateTrialComponentResponse, AWSError>;
  /**
   * Create a machine learning algorithm that you can use in Amazon SageMaker and list in the AWS Marketplace.
   */
  createAlgorithm(params: SageMaker.Types.CreateAlgorithmInput, callback?: (err: AWSError, data: SageMaker.Types.CreateAlgorithmOutput) => void): Request<SageMaker.Types.CreateAlgorithmOutput, AWSError>;
  /**
   * Create a machine learning algorithm that you can use in Amazon SageMaker and list in the AWS Marketplace.
   */
  createAlgorithm(callback?: (err: AWSError, data: SageMaker.Types.CreateAlgorithmOutput) => void): Request<SageMaker.Types.CreateAlgorithmOutput, AWSError>;
  /**
   * Creates a running App for the specified UserProfile. Supported Apps are JupyterServer and KernelGateway. This operation is automatically invoked by Amazon SageMaker Studio upon access to the associated Domain, and when new kernel configurations are selected by the user. A user may have multiple Apps active simultaneously.
   */
  createApp(params: SageMaker.Types.CreateAppRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateAppResponse) => void): Request<SageMaker.Types.CreateAppResponse, AWSError>;
  /**
   * Creates a running App for the specified UserProfile. Supported Apps are JupyterServer and KernelGateway. This operation is automatically invoked by Amazon SageMaker Studio upon access to the associated Domain, and when new kernel configurations are selected by the user. A user may have multiple Apps active simultaneously.
   */
  createApp(callback?: (err: AWSError, data: SageMaker.Types.CreateAppResponse) => void): Request<SageMaker.Types.CreateAppResponse, AWSError>;
  /**
   * Creates an Autopilot job. Find the best performing model after you run an Autopilot job by calling . Deploy that model by following the steps described in Step 6.1: Deploy the Model to Amazon SageMaker Hosting Services. For information about how to use Autopilot, see  Automate Model Development with Amazon SageMaker Autopilot.
   */
  createAutoMLJob(params: SageMaker.Types.CreateAutoMLJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobResponse) => void): Request<SageMaker.Types.CreateAutoMLJobResponse, AWSError>;
  /**
   * Creates an Autopilot job. Find the best performing model after you run an Autopilot job by calling . Deploy that model by following the steps described in Step 6.1: Deploy the Model to Amazon SageMaker Hosting Services. For information about how to use Autopilot, see  Automate Model Development with Amazon SageMaker Autopilot.
   */
  createAutoMLJob(callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobResponse) => void): Request<SageMaker.Types.CreateAutoMLJobResponse, AWSError>;
  /**
   * Creates a Git repository as a resource in your Amazon SageMaker account. You can associate the repository with notebook instances so that you can use Git source control for the notebooks you create. The Git repository is a resource in your Amazon SageMaker account, so it can be associated with more than one notebook instance, and it persists independently from the lifecycle of any notebook instances it is associated with. The repository can be hosted either in AWS CodeCommit or in any other Git repository.
   */
  createCodeRepository(params: SageMaker.Types.CreateCodeRepositoryInput, callback?: (err: AWSError, data: SageMaker.Types.CreateCodeRepositoryOutput) => void): Request<SageMaker.Types.CreateCodeRepositoryOutput, AWSError>;
  /**
   * Creates a Git repository as a resource in your Amazon SageMaker account. You can associate the repository with notebook instances so that you can use Git source control for the notebooks you create. The Git repository is a resource in your Amazon SageMaker account, so it can be associated with more than one notebook instance, and it persists independently from the lifecycle of any notebook instances it is associated with. The repository can be hosted either in AWS CodeCommit or in any other Git repository.
   */
  createCodeRepository(callback?: (err: AWSError, data: SageMaker.Types.CreateCodeRepositoryOutput) => void): Request<SageMaker.Types.CreateCodeRepositoryOutput, AWSError>;
  /**
   * Starts a model compilation job. After the model has been compiled, Amazon SageMaker saves the resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify.  If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts with AWS IoT Greengrass. In that case, deploy them as an ML resource. In the request body, you provide the following:   A name for the compilation job    Information about the input model artifacts    The output location for the compiled model and the device (target) that the model runs on    The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker assumes to perform the model compilation job.    You can also provide a Tag to track the model compilation job's resource use and costs. The response body contains the CompilationJobArn for the compiled job. To stop a model compilation job, use StopCompilationJob. To get information about a particular model compilation job, use DescribeCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.
   */
  createCompilationJob(params: SageMaker.Types.CreateCompilationJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateCompilationJobResponse) => void): Request<SageMaker.Types.CreateCompilationJobResponse, AWSError>;
  /**
   * Starts a model compilation job. After the model has been compiled, Amazon SageMaker saves the resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify.  If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts with AWS IoT Greengrass. In that case, deploy them as an ML resource. In the request body, you provide the following:   A name for the compilation job    Information about the input model artifacts    The output location for the compiled model and the device (target) that the model runs on    The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker assumes to perform the model compilation job.    You can also provide a Tag to track the model compilation job's resource use and costs. The response body contains the CompilationJobArn for the compiled job. To stop a model compilation job, use StopCompilationJob. To get information about a particular model compilation job, use DescribeCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.
   */
  createCompilationJob(callback?: (err: AWSError, data: SageMaker.Types.CreateCompilationJobResponse) => void): Request<SageMaker.Types.CreateCompilationJobResponse, AWSError>;
  /**
   * Creates a Domain used by Amazon SageMaker Studio. A domain consists of an associated Amazon Elastic File System (EFS) volume, a list of authorized users, and a variety of security, application, policy, and Amazon Virtual Private Cloud (VPC) configurations. An AWS account is limited to one domain per region. Users within a domain can share notebook files and other artifacts with each other. When a domain is created, an EFS volume is created for use by all of the users within the domain. Each user receives a private home directory within the EFS volume for notebooks, Git repositories, and data files.  VPC configuration  All SageMaker Studio traffic between the domain and the EFS volume is through the specified VPC and subnets. For other Studio traffic, you can specify the AppNetworkAccessType parameter. AppNetworkAccessType corresponds to the network access type that you choose when you onboard to Studio. The following options are available:    PublicInternetOnly - Non-EFS traffic goes through a VPC managed by Amazon SageMaker, which allows internet access. This is the default value.    VpcOnly - All Studio traffic is through the specified VPC and subnets. Internet access is disabled by default. To allow internet access, you must specify a NAT gateway. When internet access is disabled, you won't be able to train or host models unless your VPC has an interface endpoint (PrivateLink) or a NAT gateway and your security groups allow outbound connections.     VpcOnly network access type  When you choose VpcOnly, you must specify the following:   Security group inbound and outbound rules to allow NFS traffic over TCP on port 2049 between the domain and the EFS volume   Security group inbound and outbound rules to allow traffic between the JupyterServer app and the KernelGateway apps   Interface endpoints to access the SageMaker API and SageMaker runtime   For more information, see:    Security groups for your VPC     VPC with public and private subnets (NAT)     Connect to SageMaker through a VPC interface endpoint   
   */
  createDomain(params: SageMaker.Types.CreateDomainRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateDomainResponse) => void): Request<SageMaker.Types.CreateDomainResponse, AWSError>;
  /**
   * Creates a Domain used by Amazon SageMaker Studio. A domain consists of an associated Amazon Elastic File System (EFS) volume, a list of authorized users, and a variety of security, application, policy, and Amazon Virtual Private Cloud (VPC) configurations. An AWS account is limited to one domain per region. Users within a domain can share notebook files and other artifacts with each other. When a domain is created, an EFS volume is created for use by all of the users within the domain. Each user receives a private home directory within the EFS volume for notebooks, Git repositories, and data files.  VPC configuration  All SageMaker Studio traffic between the domain and the EFS volume is through the specified VPC and subnets. For other Studio traffic, you can specify the AppNetworkAccessType parameter. AppNetworkAccessType corresponds to the network access type that you choose when you onboard to Studio. The following options are available:    PublicInternetOnly - Non-EFS traffic goes through a VPC managed by Amazon SageMaker, which allows internet access. This is the default value.    VpcOnly - All Studio traffic is through the specified VPC and subnets. Internet access is disabled by default. To allow internet access, you must specify a NAT gateway. When internet access is disabled, you won't be able to train or host models unless your VPC has an interface endpoint (PrivateLink) or a NAT gateway and your security groups allow outbound connections.     VpcOnly network access type  When you choose VpcOnly, you must specify the following:   Security group inbound and outbound rules to allow NFS traffic over TCP on port 2049 between the domain and the EFS volume   Security group inbound and outbound rules to allow traffic between the JupyterServer app and the KernelGateway apps   Interface endpoints to access the SageMaker API and SageMaker runtime   For more information, see:    Security groups for your VPC     VPC with public and private subnets (NAT)     Connect to SageMaker through a VPC interface endpoint   
   */
  createDomain(callback?: (err: AWSError, data: SageMaker.Types.CreateDomainResponse) => void): Request<SageMaker.Types.CreateDomainResponse, AWSError>;
  /**
   * Creates an endpoint using the endpoint configuration specified in the request. Amazon SageMaker uses the endpoint to provision resources and deploy models. You create the endpoint configuration with the CreateEndpointConfig API.   Use this API to deploy models using Amazon SageMaker hosting services.  For an example that calls this method when deploying a model to Amazon SageMaker hosting services, see Deploy the Model to Amazon SageMaker Hosting Services (AWS SDK for Python (Boto 3)).    You must not delete an EndpointConfig that is in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To update an endpoint, you must create a new EndpointConfig.  The endpoint name must be unique within an AWS Region in your AWS account.  When it receives the request, Amazon SageMaker creates the endpoint, launches the resources (ML compute instances), and deploys the model(s) on them.   When you call CreateEndpoint, a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supporting  Eventually Consistent Reads , the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call DescribeEndpointConfig before calling CreateEndpoint to minimize the potential impact of a DynamoDB eventually consistent read.  When Amazon SageMaker receives the request, it sets the endpoint status to Creating. After it creates the endpoint, it sets the status to InService. Amazon SageMaker can then process incoming requests for inferences. To check the status of an endpoint, use the DescribeEndpoint API. If any of the models hosted at this endpoint get model data from an Amazon S3 location, Amazon SageMaker uses AWS Security Token Service to download model artifacts from the S3 path you provided. AWS STS is activated in your IAM user account by default. If you previously deactivated AWS STS for a region, you need to reactivate AWS STS for that region. For more information, see Activating and Deactivating AWS STS in an AWS Region in the AWS Identity and Access Management User Guide.
   */
  createEndpoint(params: SageMaker.Types.CreateEndpointInput, callback?: (err: AWSError, data: SageMaker.Types.CreateEndpointOutput) => void): Request<SageMaker.Types.CreateEndpointOutput, AWSError>;
  /**
   * Creates an endpoint using the endpoint configuration specified in the request. Amazon SageMaker uses the endpoint to provision resources and deploy models. You create the endpoint configuration with the CreateEndpointConfig API.   Use this API to deploy models using Amazon SageMaker hosting services.  For an example that calls this method when deploying a model to Amazon SageMaker hosting services, see Deploy the Model to Amazon SageMaker Hosting Services (AWS SDK for Python (Boto 3)).    You must not delete an EndpointConfig that is in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To update an endpoint, you must create a new EndpointConfig.  The endpoint name must be unique within an AWS Region in your AWS account.  When it receives the request, Amazon SageMaker creates the endpoint, launches the resources (ML compute instances), and deploys the model(s) on them.   When you call CreateEndpoint, a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supporting  Eventually Consistent Reads , the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call DescribeEndpointConfig before calling CreateEndpoint to minimize the potential impact of a DynamoDB eventually consistent read.  When Amazon SageMaker receives the request, it sets the endpoint status to Creating. After it creates the endpoint, it sets the status to InService. Amazon SageMaker can then process incoming requests for inferences. To check the status of an endpoint, use the DescribeEndpoint API. If any of the models hosted at this endpoint get model data from an Amazon S3 location, Amazon SageMaker uses AWS Security Token Service to download model artifacts from the S3 path you provided. AWS STS is activated in your IAM user account by default. If you previously deactivated AWS STS for a region, you need to reactivate AWS STS for that region. For more information, see Activating and Deactivating AWS STS in an AWS Region in the AWS Identity and Access Management User Guide.
   */
  createEndpoint(callback?: (err: AWSError, data: SageMaker.Types.CreateEndpointOutput) => void): Request<SageMaker.Types.CreateEndpointOutput, AWSError>;
  /**
   * Creates an endpoint configuration that Amazon SageMaker hosting services uses to deploy models. In the configuration, you identify one or more models, created using the CreateModel API, to deploy and the resources that you want Amazon SageMaker to provision. Then you call the CreateEndpoint API.   Use this API if you want to use Amazon SageMaker hosting services to deploy models into production.   In the request, you define a ProductionVariant, for each model that you want to deploy. Each ProductionVariant parameter also describes the resources that you want Amazon SageMaker to provision. This includes the number and type of ML compute instances to deploy.  If you are hosting multiple models, you also assign a VariantWeight to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. Amazon SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B.  For an example that calls this method when deploying a model to Amazon SageMaker hosting services, see Deploy the Model to Amazon SageMaker Hosting Services (AWS SDK for Python (Boto 3)).   When you call CreateEndpoint, a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supporting  Eventually Consistent Reads , the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call DescribeEndpointConfig before calling CreateEndpoint to minimize the potential impact of a DynamoDB eventually consistent read. 
   */
  createEndpointConfig(params: SageMaker.Types.CreateEndpointConfigInput, callback?: (err: AWSError, data: SageMaker.Types.CreateEndpointConfigOutput) => void): Request<SageMaker.Types.CreateEndpointConfigOutput, AWSError>;
  /**
   * Creates an endpoint configuration that Amazon SageMaker hosting services uses to deploy models. In the configuration, you identify one or more models, created using the CreateModel API, to deploy and the resources that you want Amazon SageMaker to provision. Then you call the CreateEndpoint API.   Use this API if you want to use Amazon SageMaker hosting services to deploy models into production.   In the request, you define a ProductionVariant, for each model that you want to deploy. Each ProductionVariant parameter also describes the resources that you want Amazon SageMaker to provision. This includes the number and type of ML compute instances to deploy.  If you are hosting multiple models, you also assign a VariantWeight to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. Amazon SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B.  For an example that calls this method when deploying a model to Amazon SageMaker hosting services, see Deploy the Model to Amazon SageMaker Hosting Services (AWS SDK for Python (Boto 3)).   When you call CreateEndpoint, a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supporting  Eventually Consistent Reads , the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call DescribeEndpointConfig before calling CreateEndpoint to minimize the potential impact of a DynamoDB eventually consistent read. 
   */
  createEndpointConfig(callback?: (err: AWSError, data: SageMaker.Types.CreateEndpointConfigOutput) => void): Request<SageMaker.Types.CreateEndpointConfigOutput, AWSError>;
  /**
   * Creates an SageMaker experiment. An experiment is a collection of trials that are observed, compared and evaluated as a group. A trial is a set of steps, called trial components, that produce a machine learning model. The goal of an experiment is to determine the components that produce the best model. Multiple trials are performed, each one isolating and measuring the impact of a change to one or more inputs, while keeping the remaining inputs constant. When you use Amazon SageMaker Studio or the Amazon SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the AWS SDK for Python (Boto), you must use the logging APIs provided by the SDK. You can add tags to experiments, trials, trial components and then use the Search API to search for the tags. To add a description to an experiment, specify the optional Description parameter. To add a description later, or to change the description, call the UpdateExperiment API. To get a list of all your experiments, call the ListExperiments API. To view an experiment's properties, call the DescribeExperiment API. To get a list of all the trials associated with an experiment, call the ListTrials API. To create a trial call the CreateTrial API.
   */
  createExperiment(params: SageMaker.Types.CreateExperimentRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateExperimentResponse) => void): Request<SageMaker.Types.CreateExperimentResponse, AWSError>;
  /**
   * Creates an SageMaker experiment. An experiment is a collection of trials that are observed, compared and evaluated as a group. A trial is a set of steps, called trial components, that produce a machine learning model. The goal of an experiment is to determine the components that produce the best model. Multiple trials are performed, each one isolating and measuring the impact of a change to one or more inputs, while keeping the remaining inputs constant. When you use Amazon SageMaker Studio or the Amazon SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the AWS SDK for Python (Boto), you must use the logging APIs provided by the SDK. You can add tags to experiments, trials, trial components and then use the Search API to search for the tags. To add a description to an experiment, specify the optional Description parameter. To add a description later, or to change the description, call the UpdateExperiment API. To get a list of all your experiments, call the ListExperiments API. To view an experiment's properties, call the DescribeExperiment API. To get a list of all the trials associated with an experiment, call the ListTrials API. To create a trial call the CreateTrial API.
   */
  createExperiment(callback?: (err: AWSError, data: SageMaker.Types.CreateExperimentResponse) => void): Request<SageMaker.Types.CreateExperimentResponse, AWSError>;
  /**
   * Creates a flow definition.
   */
  createFlowDefinition(params: SageMaker.Types.CreateFlowDefinitionRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateFlowDefinitionResponse) => void): Request<SageMaker.Types.CreateFlowDefinitionResponse, AWSError>;
  /**
   * Creates a flow definition.
   */
  createFlowDefinition(callback?: (err: AWSError, data: SageMaker.Types.CreateFlowDefinitionResponse) => void): Request<SageMaker.Types.CreateFlowDefinitionResponse, AWSError>;
  /**
   * Defines the settings you will use for the human review workflow user interface. Reviewers will see a three-panel interface with an instruction area, the item to review, and an input area.
   */
  createHumanTaskUi(params: SageMaker.Types.CreateHumanTaskUiRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateHumanTaskUiResponse) => void): Request<SageMaker.Types.CreateHumanTaskUiResponse, AWSError>;
  /**
   * Defines the settings you will use for the human review workflow user interface. Reviewers will see a three-panel interface with an instruction area, the item to review, and an input area.
   */
  createHumanTaskUi(callback?: (err: AWSError, data: SageMaker.Types.CreateHumanTaskUiResponse) => void): Request<SageMaker.Types.CreateHumanTaskUiResponse, AWSError>;
  /**
   * Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model by running many training jobs on your dataset using the algorithm you choose and values for hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in a model that performs the best, as measured by an objective metric that you choose.
   */
  createHyperParameterTuningJob(params: SageMaker.Types.CreateHyperParameterTuningJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.CreateHyperParameterTuningJobResponse, AWSError>;
  /**
   * Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model by running many training jobs on your dataset using the algorithm you choose and values for hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in a model that performs the best, as measured by an objective metric that you choose.
   */
  createHyperParameterTuningJob(callback?: (err: AWSError, data: SageMaker.Types.CreateHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.CreateHyperParameterTuningJobResponse, AWSError>;
  /**
   * Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled data to train machine learning models. You can select your workforce from one of three providers:   A private workforce that you create. It can include employees, contractors, and outside experts. Use a private workforce when want the data to stay within your organization or when a specific set of skills is required.   One or more vendors that you select from the AWS Marketplace. Vendors provide expertise in specific areas.    The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for public data or data that has been stripped of any personally identifiable information.   You can also use automated data labeling to reduce the number of data objects that need to be labeled by a human. Automated data labeling uses active learning to determine if a data object can be labeled by machine or if it needs to be sent to a human worker. For more information, see Using Automated Data Labeling. The data objects to be labeled are contained in an Amazon S3 bucket. You create a manifest file that describes the location of each object. For more information, see Using Input and Output Data. The output can be used as the manifest file for another labeling job or as training data for your machine learning models.
   */
  createLabelingJob(params: SageMaker.Types.CreateLabelingJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateLabelingJobResponse) => void): Request<SageMaker.Types.CreateLabelingJobResponse, AWSError>;
  /**
   * Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled data to train machine learning models. You can select your workforce from one of three providers:   A private workforce that you create. It can include employees, contractors, and outside experts. Use a private workforce when want the data to stay within your organization or when a specific set of skills is required.   One or more vendors that you select from the AWS Marketplace. Vendors provide expertise in specific areas.    The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for public data or data that has been stripped of any personally identifiable information.   You can also use automated data labeling to reduce the number of data objects that need to be labeled by a human. Automated data labeling uses active learning to determine if a data object can be labeled by machine or if it needs to be sent to a human worker. For more information, see Using Automated Data Labeling. The data objects to be labeled are contained in an Amazon S3 bucket. You create a manifest file that describes the location of each object. For more information, see Using Input and Output Data. The output can be used as the manifest file for another labeling job or as training data for your machine learning models.
   */
  createLabelingJob(callback?: (err: AWSError, data: SageMaker.Types.CreateLabelingJobResponse) => void): Request<SageMaker.Types.CreateLabelingJobResponse, AWSError>;
  /**
   * Creates a model in Amazon SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the Docker image that contains inference code, artifacts (from prior training), and a custom environment map that the inference code uses when you deploy the model for predictions. Use this API to create a model if you want to use Amazon SageMaker hosting services or run a batch transform job. To host your model, you create an endpoint configuration with the CreateEndpointConfig API, and then create an endpoint with the CreateEndpoint API. Amazon SageMaker then deploys all of the containers that you defined for the model in the hosting environment.  For an example that calls this method when deploying a model to Amazon SageMaker hosting services, see Deploy the Model to Amazon SageMaker Hosting Services (AWS SDK for Python (Boto 3)).  To run a batch transform using your model, you start a job with the CreateTransformJob API. Amazon SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location. In the CreateModel request, you must define a container with the PrimaryContainer parameter. In the request, you also provide an IAM role that Amazon SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other AWS resources, you grant necessary permissions via this role.
   */
  createModel(params: SageMaker.Types.CreateModelInput, callback?: (err: AWSError, data: SageMaker.Types.CreateModelOutput) => void): Request<SageMaker.Types.CreateModelOutput, AWSError>;
  /**
   * Creates a model in Amazon SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the Docker image that contains inference code, artifacts (from prior training), and a custom environment map that the inference code uses when you deploy the model for predictions. Use this API to create a model if you want to use Amazon SageMaker hosting services or run a batch transform job. To host your model, you create an endpoint configuration with the CreateEndpointConfig API, and then create an endpoint with the CreateEndpoint API. Amazon SageMaker then deploys all of the containers that you defined for the model in the hosting environment.  For an example that calls this method when deploying a model to Amazon SageMaker hosting services, see Deploy the Model to Amazon SageMaker Hosting Services (AWS SDK for Python (Boto 3)).  To run a batch transform using your model, you start a job with the CreateTransformJob API. Amazon SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location. In the CreateModel request, you must define a container with the PrimaryContainer parameter. In the request, you also provide an IAM role that Amazon SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other AWS resources, you grant necessary permissions via this role.
   */
  createModel(callback?: (err: AWSError, data: SageMaker.Types.CreateModelOutput) => void): Request<SageMaker.Types.CreateModelOutput, AWSError>;
  /**
   * Creates a model package that you can use to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker. To create a model package by specifying a Docker container that contains your inference code and the Amazon S3 location of your model artifacts, provide values for InferenceSpecification. To create a model from an algorithm resource that you created or subscribed to in AWS Marketplace, provide a value for SourceAlgorithmSpecification.
   */
  createModelPackage(params: SageMaker.Types.CreateModelPackageInput, callback?: (err: AWSError, data: SageMaker.Types.CreateModelPackageOutput) => void): Request<SageMaker.Types.CreateModelPackageOutput, AWSError>;
  /**
   * Creates a model package that you can use to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker. To create a model package by specifying a Docker container that contains your inference code and the Amazon S3 location of your model artifacts, provide values for InferenceSpecification. To create a model from an algorithm resource that you created or subscribed to in AWS Marketplace, provide a value for SourceAlgorithmSpecification.
   */
  createModelPackage(callback?: (err: AWSError, data: SageMaker.Types.CreateModelPackageOutput) => void): Request<SageMaker.Types.CreateModelPackageOutput, AWSError>;
  /**
   * Creates a schedule that regularly starts Amazon SageMaker Processing Jobs to monitor the data captured for an Amazon SageMaker Endoint.
   */
  createMonitoringSchedule(params: SageMaker.Types.CreateMonitoringScheduleRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateMonitoringScheduleResponse) => void): Request<SageMaker.Types.CreateMonitoringScheduleResponse, AWSError>;
  /**
   * Creates a schedule that regularly starts Amazon SageMaker Processing Jobs to monitor the data captured for an Amazon SageMaker Endoint.
   */
  createMonitoringSchedule(callback?: (err: AWSError, data: SageMaker.Types.CreateMonitoringScheduleResponse) => void): Request<SageMaker.Types.CreateMonitoringScheduleResponse, AWSError>;
  /**
   * Creates an Amazon SageMaker notebook instance. A notebook instance is a machine learning (ML) compute instance running on a Jupyter notebook.  In a CreateNotebookInstance request, specify the type of ML compute instance that you want to run. Amazon SageMaker launches the instance, installs common libraries that you can use to explore datasets for model training, and attaches an ML storage volume to the notebook instance.  Amazon SageMaker also provides a set of example notebooks. Each notebook demonstrates how to use Amazon SageMaker with a specific algorithm or with a machine learning framework.  After receiving the request, Amazon SageMaker does the following:   Creates a network interface in the Amazon SageMaker VPC.   (Option) If you specified SubnetId, Amazon SageMaker creates a network interface in your own VPC, which is inferred from the subnet ID that you provide in the input. When creating this network interface, Amazon SageMaker attaches the security group that you specified in the request to the network interface that it creates in your VPC.   Launches an EC2 instance of the type specified in the request in the Amazon SageMaker VPC. If you specified SubnetId of your VPC, Amazon SageMaker specifies both network interfaces when launching this instance. This enables inbound traffic from your own VPC to the notebook instance, assuming that the security groups allow it.   After creating the notebook instance, Amazon SageMaker returns its Amazon Resource Name (ARN). You can't change the name of a notebook instance after you create it. After Amazon SageMaker creates the notebook instance, you can connect to the Jupyter server and work in Jupyter notebooks. For example, you can write code to explore a dataset that you can use for model training, train a model, host models by creating Amazon SageMaker endpoints, and validate hosted models.  For more information, see How It Works. 
   */
  createNotebookInstance(params: SageMaker.Types.CreateNotebookInstanceInput, callback?: (err: AWSError, data: SageMaker.Types.CreateNotebookInstanceOutput) => void): Request<SageMaker.Types.CreateNotebookInstanceOutput, AWSError>;
  /**
   * Creates an Amazon SageMaker notebook instance. A notebook instance is a machine learning (ML) compute instance running on a Jupyter notebook.  In a CreateNotebookInstance request, specify the type of ML compute instance that you want to run. Amazon SageMaker launches the instance, installs common libraries that you can use to explore datasets for model training, and attaches an ML storage volume to the notebook instance.  Amazon SageMaker also provides a set of example notebooks. Each notebook demonstrates how to use Amazon SageMaker with a specific algorithm or with a machine learning framework.  After receiving the request, Amazon SageMaker does the following:   Creates a network interface in the Amazon SageMaker VPC.   (Option) If you specified SubnetId, Amazon SageMaker creates a network interface in your own VPC, which is inferred from the subnet ID that you provide in the input. When creating this network interface, Amazon SageMaker attaches the security group that you specified in the request to the network interface that it creates in your VPC.   Launches an EC2 instance of the type specified in the request in the Amazon SageMaker VPC. If you specified SubnetId of your VPC, Amazon SageMaker specifies both network interfaces when launching this instance. This enables inbound traffic from your own VPC to the notebook instance, assuming that the security groups allow it.   After creating the notebook instance, Amazon SageMaker returns its Amazon Resource Name (ARN). You can't change the name of a notebook instance after you create it. After Amazon SageMaker creates the notebook instance, you can connect to the Jupyter server and work in Jupyter notebooks. For example, you can write code to explore a dataset that you can use for model training, train a model, host models by creating Amazon SageMaker endpoints, and validate hosted models.  For more information, see How It Works. 
   */
  createNotebookInstance(callback?: (err: AWSError, data: SageMaker.Types.CreateNotebookInstanceOutput) => void): Request<SageMaker.Types.CreateNotebookInstanceOutput, AWSError>;
  /**
   * Creates a lifecycle configuration that you can associate with a notebook instance. A lifecycle configuration is a collection of shell scripts that run when you create or start a notebook instance. Each lifecycle configuration script has a limit of 16384 characters. The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/sbin:/usr/bin. View CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook]. Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
   */
  createNotebookInstanceLifecycleConfig(params: SageMaker.Types.CreateNotebookInstanceLifecycleConfigInput, callback?: (err: AWSError, data: SageMaker.Types.CreateNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.CreateNotebookInstanceLifecycleConfigOutput, AWSError>;
  /**
   * Creates a lifecycle configuration that you can associate with a notebook instance. A lifecycle configuration is a collection of shell scripts that run when you create or start a notebook instance. Each lifecycle configuration script has a limit of 16384 characters. The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/sbin:/usr/bin. View CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook]. Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
   */
  createNotebookInstanceLifecycleConfig(callback?: (err: AWSError, data: SageMaker.Types.CreateNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.CreateNotebookInstanceLifecycleConfigOutput, AWSError>;
  /**
   * Creates a URL for a specified UserProfile in a Domain. When accessed in a web browser, the user will be automatically signed in to Amazon SageMaker Studio, and granted access to all of the Apps and files associated with the Domain's Amazon Elastic File System (EFS) volume. This operation can only be called when the authentication mode equals IAM.   The URL that you get from a call to CreatePresignedDomainUrl is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the AWS console sign-in page. 
   */
  createPresignedDomainUrl(params: SageMaker.Types.CreatePresignedDomainUrlRequest, callback?: (err: AWSError, data: SageMaker.Types.CreatePresignedDomainUrlResponse) => void): Request<SageMaker.Types.CreatePresignedDomainUrlResponse, AWSError>;
  /**
   * Creates a URL for a specified UserProfile in a Domain. When accessed in a web browser, the user will be automatically signed in to Amazon SageMaker Studio, and granted access to all of the Apps and files associated with the Domain's Amazon Elastic File System (EFS) volume. This operation can only be called when the authentication mode equals IAM.   The URL that you get from a call to CreatePresignedDomainUrl is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the AWS console sign-in page. 
   */
  createPresignedDomainUrl(callback?: (err: AWSError, data: SageMaker.Types.CreatePresignedDomainUrlResponse) => void): Request<SageMaker.Types.CreatePresignedDomainUrlResponse, AWSError>;
  /**
   * Returns a URL that you can use to connect to the Jupyter server from a notebook instance. In the Amazon SageMaker console, when you choose Open next to a notebook instance, Amazon SageMaker opens a new tab showing the Jupyter server home page from the notebook instance. The console uses this API to get the URL and show the page.  The IAM role or user used to call this API defines the permissions to access the notebook instance. Once the presigned URL is created, no additional permission is required to access this URL. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the notebook instance. You can restrict access to this API and to the URL that it returns to a list of IP addresses that you specify. Use the NotIpAddress condition operator and the aws:SourceIP condition context key to specify the list of IP addresses that you want to have access to the notebook instance. For more information, see Limit Access to a Notebook Instance by IP Address.  The URL that you get from a call to CreatePresignedNotebookInstanceUrl is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the AWS console sign-in page. 
   */
  createPresignedNotebookInstanceUrl(params: SageMaker.Types.CreatePresignedNotebookInstanceUrlInput, callback?: (err: AWSError, data: SageMaker.Types.CreatePresignedNotebookInstanceUrlOutput) => void): Request<SageMaker.Types.CreatePresignedNotebookInstanceUrlOutput, AWSError>;
  /**
   * Returns a URL that you can use to connect to the Jupyter server from a notebook instance. In the Amazon SageMaker console, when you choose Open next to a notebook instance, Amazon SageMaker opens a new tab showing the Jupyter server home page from the notebook instance. The console uses this API to get the URL and show the page.  The IAM role or user used to call this API defines the permissions to access the notebook instance. Once the presigned URL is created, no additional permission is required to access this URL. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the notebook instance. You can restrict access to this API and to the URL that it returns to a list of IP addresses that you specify. Use the NotIpAddress condition operator and the aws:SourceIP condition context key to specify the list of IP addresses that you want to have access to the notebook instance. For more information, see Limit Access to a Notebook Instance by IP Address.  The URL that you get from a call to CreatePresignedNotebookInstanceUrl is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the AWS console sign-in page. 
   */
  createPresignedNotebookInstanceUrl(callback?: (err: AWSError, data: SageMaker.Types.CreatePresignedNotebookInstanceUrlOutput) => void): Request<SageMaker.Types.CreatePresignedNotebookInstanceUrlOutput, AWSError>;
  /**
   * Creates a processing job.
   */
  createProcessingJob(params: SageMaker.Types.CreateProcessingJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateProcessingJobResponse) => void): Request<SageMaker.Types.CreateProcessingJobResponse, AWSError>;
  /**
   * Creates a processing job.
   */
  createProcessingJob(callback?: (err: AWSError, data: SageMaker.Types.CreateProcessingJobResponse) => void): Request<SageMaker.Types.CreateProcessingJobResponse, AWSError>;
  /**
   * Starts a model training job. After training completes, Amazon SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify.  If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than Amazon SageMaker, provided that you know how to use them for inferences.  In the request body, you provide the following:     AlgorithmSpecification - Identifies the training algorithm to use.     HyperParameters - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see Algorithms.     InputDataConfig - Describes the training dataset and the Amazon S3, EFS, or FSx location where it is stored.    OutputDataConfig - Identifies the Amazon S3 bucket where you want Amazon SageMaker to save the results of model training.      ResourceConfig - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance.     EnableManagedSpotTraining - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training.     RoleARN - The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete model training.     StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a time limit for training. Use MaxWaitTimeInSeconds to specify how long you are willing to wait for a managed spot training job to complete.     For more information about Amazon SageMaker, see How It Works. 
   */
  createTrainingJob(params: SageMaker.Types.CreateTrainingJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateTrainingJobResponse) => void): Request<SageMaker.Types.CreateTrainingJobResponse, AWSError>;
  /**
   * Starts a model training job. After training completes, Amazon SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify.  If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than Amazon SageMaker, provided that you know how to use them for inferences.  In the request body, you provide the following:     AlgorithmSpecification - Identifies the training algorithm to use.     HyperParameters - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see Algorithms.     InputDataConfig - Describes the training dataset and the Amazon S3, EFS, or FSx location where it is stored.    OutputDataConfig - Identifies the Amazon S3 bucket where you want Amazon SageMaker to save the results of model training.      ResourceConfig - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance.     EnableManagedSpotTraining - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training.     RoleARN - The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete model training.     StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a time limit for training. Use MaxWaitTimeInSeconds to specify how long you are willing to wait for a managed spot training job to complete.     For more information about Amazon SageMaker, see How It Works. 
   */
  createTrainingJob(callback?: (err: AWSError, data: SageMaker.Types.CreateTrainingJobResponse) => void): Request<SageMaker.Types.CreateTrainingJobResponse, AWSError>;
  /**
   * Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify. To perform batch transformations, you create a transform job and use the data that you have readily available. In the request body, you provide the following:    TransformJobName - Identifies the transform job. The name must be unique within an AWS Region in an AWS account.    ModelName - Identifies the model to use. ModelName must be the name of an existing Amazon SageMaker model in the same AWS Region and AWS account. For information on creating a model, see CreateModel.    TransformInput - Describes the dataset to be transformed and the Amazon S3 location where it is stored.    TransformOutput - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.    TransformResources - Identifies the ML compute instances for the transform job.   For more information about how batch transformation works, see Batch Transform.
   */
  createTransformJob(params: SageMaker.Types.CreateTransformJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateTransformJobResponse) => void): Request<SageMaker.Types.CreateTransformJobResponse, AWSError>;
  /**
   * Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify. To perform batch transformations, you create a transform job and use the data that you have readily available. In the request body, you provide the following:    TransformJobName - Identifies the transform job. The name must be unique within an AWS Region in an AWS account.    ModelName - Identifies the model to use. ModelName must be the name of an existing Amazon SageMaker model in the same AWS Region and AWS account. For information on creating a model, see CreateModel.    TransformInput - Describes the dataset to be transformed and the Amazon S3 location where it is stored.    TransformOutput - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.    TransformResources - Identifies the ML compute instances for the transform job.   For more information about how batch transformation works, see Batch Transform.
   */
  createTransformJob(callback?: (err: AWSError, data: SageMaker.Types.CreateTransformJobResponse) => void): Request<SageMaker.Types.CreateTransformJobResponse, AWSError>;
  /**
   * Creates an Amazon SageMaker trial. A trial is a set of steps called trial components that produce a machine learning model. A trial is part of a single Amazon SageMaker experiment. When you use Amazon SageMaker Studio or the Amazon SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the AWS SDK for Python (Boto), you must use the logging APIs provided by the SDK. You can add tags to a trial and then use the Search API to search for the tags. To get a list of all your trials, call the ListTrials API. To view a trial's properties, call the DescribeTrial API. To create a trial component, call the CreateTrialComponent API.
   */
  createTrial(params: SageMaker.Types.CreateTrialRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateTrialResponse) => void): Request<SageMaker.Types.CreateTrialResponse, AWSError>;
  /**
   * Creates an Amazon SageMaker trial. A trial is a set of steps called trial components that produce a machine learning model. A trial is part of a single Amazon SageMaker experiment. When you use Amazon SageMaker Studio or the Amazon SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the AWS SDK for Python (Boto), you must use the logging APIs provided by the SDK. You can add tags to a trial and then use the Search API to search for the tags. To get a list of all your trials, call the ListTrials API. To view a trial's properties, call the DescribeTrial API. To create a trial component, call the CreateTrialComponent API.
   */
  createTrial(callback?: (err: AWSError, data: SageMaker.Types.CreateTrialResponse) => void): Request<SageMaker.Types.CreateTrialResponse, AWSError>;
  /**
   * Creates a trial component, which is a stage of a machine learning trial. A trial is composed of one or more trial components. A trial component can be used in multiple trials. Trial components include pre-processing jobs, training jobs, and batch transform jobs. When you use Amazon SageMaker Studio or the Amazon SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the AWS SDK for Python (Boto), you must use the logging APIs provided by the SDK. You can add tags to a trial component and then use the Search API to search for the tags.   CreateTrialComponent can only be invoked from within an Amazon SageMaker managed environment. This includes Amazon SageMaker training jobs, processing jobs, transform jobs, and Amazon SageMaker notebooks. A call to CreateTrialComponent from outside one of these environments results in an error. 
   */
  createTrialComponent(params: SageMaker.Types.CreateTrialComponentRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateTrialComponentResponse) => void): Request<SageMaker.Types.CreateTrialComponentResponse, AWSError>;
  /**
   * Creates a trial component, which is a stage of a machine learning trial. A trial is composed of one or more trial components. A trial component can be used in multiple trials. Trial components include pre-processing jobs, training jobs, and batch transform jobs. When you use Amazon SageMaker Studio or the Amazon SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the AWS SDK for Python (Boto), you must use the logging APIs provided by the SDK. You can add tags to a trial component and then use the Search API to search for the tags.   CreateTrialComponent can only be invoked from within an Amazon SageMaker managed environment. This includes Amazon SageMaker training jobs, processing jobs, transform jobs, and Amazon SageMaker notebooks. A call to CreateTrialComponent from outside one of these environments results in an error. 
   */
  createTrialComponent(callback?: (err: AWSError, data: SageMaker.Types.CreateTrialComponentResponse) => void): Request<SageMaker.Types.CreateTrialComponentResponse, AWSError>;
  /**
   * Creates a user profile. A user profile represents a single user within a domain, and is the main way to reference a "person" for the purposes of sharing, reporting, and other user-oriented features. This entity is created when a user onboards to Amazon SageMaker Studio. If an administrator invites a person by email or imports them from SSO, a user profile is automatically created. A user profile is the primary holder of settings for an individual user and has a reference to the user's private Amazon Elastic File System (EFS) home directory. 
   */
  createUserProfile(params: SageMaker.Types.CreateUserProfileRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateUserProfileResponse) => void): Request<SageMaker.Types.CreateUserProfileResponse, AWSError>;
  /**
   * Creates a user profile. A user profile represents a single user within a domain, and is the main way to reference a "person" for the purposes of sharing, reporting, and other user-oriented features. This entity is created when a user onboards to Amazon SageMaker Studio. If an administrator invites a person by email or imports them from SSO, a user profile is automatically created. A user profile is the primary holder of settings for an individual user and has a reference to the user's private Amazon Elastic File System (EFS) home directory. 
   */
  createUserProfile(callback?: (err: AWSError, data: SageMaker.Types.CreateUserProfileResponse) => void): Request<SageMaker.Types.CreateUserProfileResponse, AWSError>;
  /**
   * Use this operation to create a workforce. This operation will return an error if a workforce already exists in the AWS Region that you specify. You can only create one workforce in each AWS Region per AWS account. If you want to create a new workforce in an AWS Region where a workforce already exists, use the API operation to delete the existing workforce and then use CreateWorkforce to create a new workforce. To create a private workforce using Amazon Cognito, you must specify a Cognito user pool in CognitoConfig. You can also create an Amazon Cognito workforce using the Amazon SageMaker console. For more information, see  Create a Private Workforce (Amazon Cognito). To create a private workforce using your own OIDC Identity Provider (IdP), specify your IdP configuration in OidcConfig. Your OIDC IdP must support groups because groups are used by Ground Truth and Amazon A2I to create work teams. For more information, see  Create a Private Workforce (OIDC IdP).
   */
  createWorkforce(params: SageMaker.Types.CreateWorkforceRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateWorkforceResponse) => void): Request<SageMaker.Types.CreateWorkforceResponse, AWSError>;
  /**
   * Use this operation to create a workforce. This operation will return an error if a workforce already exists in the AWS Region that you specify. You can only create one workforce in each AWS Region per AWS account. If you want to create a new workforce in an AWS Region where a workforce already exists, use the API operation to delete the existing workforce and then use CreateWorkforce to create a new workforce. To create a private workforce using Amazon Cognito, you must specify a Cognito user pool in CognitoConfig. You can also create an Amazon Cognito workforce using the Amazon SageMaker console. For more information, see  Create a Private Workforce (Amazon Cognito). To create a private workforce using your own OIDC Identity Provider (IdP), specify your IdP configuration in OidcConfig. Your OIDC IdP must support groups because groups are used by Ground Truth and Amazon A2I to create work teams. For more information, see  Create a Private Workforce (OIDC IdP).
   */
  createWorkforce(callback?: (err: AWSError, data: SageMaker.Types.CreateWorkforceResponse) => void): Request<SageMaker.Types.CreateWorkforceResponse, AWSError>;
  /**
   * Creates a new work team for labeling your data. A work team is defined by one or more Amazon Cognito user pools. You must first create the user pools before you can create a work team. You cannot create more than 25 work teams in an account and region.
   */
  createWorkteam(params: SageMaker.Types.CreateWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateWorkteamResponse) => void): Request<SageMaker.Types.CreateWorkteamResponse, AWSError>;
  /**
   * Creates a new work team for labeling your data. A work team is defined by one or more Amazon Cognito user pools. You must first create the user pools before you can create a work team. You cannot create more than 25 work teams in an account and region.
   */
  createWorkteam(callback?: (err: AWSError, data: SageMaker.Types.CreateWorkteamResponse) => void): Request<SageMaker.Types.CreateWorkteamResponse, AWSError>;
  /**
   * Removes the specified algorithm from your account.
   */
  deleteAlgorithm(params: SageMaker.Types.DeleteAlgorithmInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Removes the specified algorithm from your account.
   */
  deleteAlgorithm(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Used to stop and delete an app.
   */
  deleteApp(params: SageMaker.Types.DeleteAppRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Used to stop and delete an app.
   */
  deleteApp(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes the specified Git repository from your account.
   */
  deleteCodeRepository(params: SageMaker.Types.DeleteCodeRepositoryInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes the specified Git repository from your account.
   */
  deleteCodeRepository(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Used to delete a domain. If you onboarded with IAM mode, you will need to delete your domain to onboard again using SSO. Use with caution. All of the members of the domain will lose access to their EFS volume, including data, notebooks, and other artifacts. 
   */
  deleteDomain(params: SageMaker.Types.DeleteDomainRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Used to delete a domain. If you onboarded with IAM mode, you will need to delete your domain to onboard again using SSO. Use with caution. All of the members of the domain will lose access to their EFS volume, including data, notebooks, and other artifacts. 
   */
  deleteDomain(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes an endpoint. Amazon SageMaker frees up all of the resources that were deployed when the endpoint was created.  Amazon SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don't need to use the RevokeGrant API call.
   */
  deleteEndpoint(params: SageMaker.Types.DeleteEndpointInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes an endpoint. Amazon SageMaker frees up all of the resources that were deployed when the endpoint was created.  Amazon SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don't need to use the RevokeGrant API call.
   */
  deleteEndpoint(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes an endpoint configuration. The DeleteEndpointConfig API deletes only the specified configuration. It does not delete endpoints created using the configuration.  You must not delete an EndpointConfig in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. If you delete the EndpointConfig of an endpoint that is active or being created or updated you may lose visibility into the instance type the endpoint is using. The endpoint must be deleted in order to stop incurring charges.
   */
  deleteEndpointConfig(params: SageMaker.Types.DeleteEndpointConfigInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes an endpoint configuration. The DeleteEndpointConfig API deletes only the specified configuration. It does not delete endpoints created using the configuration.  You must not delete an EndpointConfig in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. If you delete the EndpointConfig of an endpoint that is active or being created or updated you may lose visibility into the instance type the endpoint is using. The endpoint must be deleted in order to stop incurring charges.
   */
  deleteEndpointConfig(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes an Amazon SageMaker experiment. All trials associated with the experiment must be deleted first. Use the ListTrials API to get a list of the trials associated with the experiment.
   */
  deleteExperiment(params: SageMaker.Types.DeleteExperimentRequest, callback?: (err: AWSError, data: SageMaker.Types.DeleteExperimentResponse) => void): Request<SageMaker.Types.DeleteExperimentResponse, AWSError>;
  /**
   * Deletes an Amazon SageMaker experiment. All trials associated with the experiment must be deleted first. Use the ListTrials API to get a list of the trials associated with the experiment.
   */
  deleteExperiment(callback?: (err: AWSError, data: SageMaker.Types.DeleteExperimentResponse) => void): Request<SageMaker.Types.DeleteExperimentResponse, AWSError>;
  /**
   * Deletes the specified flow definition.
   */
  deleteFlowDefinition(params: SageMaker.Types.DeleteFlowDefinitionRequest, callback?: (err: AWSError, data: SageMaker.Types.DeleteFlowDefinitionResponse) => void): Request<SageMaker.Types.DeleteFlowDefinitionResponse, AWSError>;
  /**
   * Deletes the specified flow definition.
   */
  deleteFlowDefinition(callback?: (err: AWSError, data: SageMaker.Types.DeleteFlowDefinitionResponse) => void): Request<SageMaker.Types.DeleteFlowDefinitionResponse, AWSError>;
  /**
   * Use this operation to delete a human task user interface (worker task template).  To see a list of human task user interfaces (work task templates) in your account, use . When you delete a worker task template, it no longer appears when you call ListHumanTaskUis.
   */
  deleteHumanTaskUi(params: SageMaker.Types.DeleteHumanTaskUiRequest, callback?: (err: AWSError, data: SageMaker.Types.DeleteHumanTaskUiResponse) => void): Request<SageMaker.Types.DeleteHumanTaskUiResponse, AWSError>;
  /**
   * Use this operation to delete a human task user interface (worker task template).  To see a list of human task user interfaces (work task templates) in your account, use . When you delete a worker task template, it no longer appears when you call ListHumanTaskUis.
   */
  deleteHumanTaskUi(callback?: (err: AWSError, data: SageMaker.Types.DeleteHumanTaskUiResponse) => void): Request<SageMaker.Types.DeleteHumanTaskUiResponse, AWSError>;
  /**
   * Deletes a model. The DeleteModel API deletes only the model entry that was created in Amazon SageMaker when you called the CreateModel API. It does not delete model artifacts, inference code, or the IAM role that you specified when creating the model. 
   */
  deleteModel(params: SageMaker.Types.DeleteModelInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes a model. The DeleteModel API deletes only the model entry that was created in Amazon SageMaker when you called the CreateModel API. It does not delete model artifacts, inference code, or the IAM role that you specified when creating the model. 
   */
  deleteModel(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes a model package. A model package is used to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker.
   */
  deleteModelPackage(params: SageMaker.Types.DeleteModelPackageInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes a model package. A model package is used to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker.
   */
  deleteModelPackage(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes a monitoring schedule. Also stops the schedule had not already been stopped. This does not delete the job execution history of the monitoring schedule. 
   */
  deleteMonitoringSchedule(params: SageMaker.Types.DeleteMonitoringScheduleRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes a monitoring schedule. Also stops the schedule had not already been stopped. This does not delete the job execution history of the monitoring schedule. 
   */
  deleteMonitoringSchedule(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   *  Deletes an Amazon SageMaker notebook instance. Before you can delete a notebook instance, you must call the StopNotebookInstance API.   When you delete a notebook instance, you lose all of your data. Amazon SageMaker removes the ML compute instance, and deletes the ML storage volume and the network interface associated with the notebook instance.  
   */
  deleteNotebookInstance(params: SageMaker.Types.DeleteNotebookInstanceInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   *  Deletes an Amazon SageMaker notebook instance. Before you can delete a notebook instance, you must call the StopNotebookInstance API.   When you delete a notebook instance, you lose all of your data. Amazon SageMaker removes the ML compute instance, and deletes the ML storage volume and the network interface associated with the notebook instance.  
   */
  deleteNotebookInstance(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes a notebook instance lifecycle configuration.
   */
  deleteNotebookInstanceLifecycleConfig(params: SageMaker.Types.DeleteNotebookInstanceLifecycleConfigInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes a notebook instance lifecycle configuration.
   */
  deleteNotebookInstanceLifecycleConfig(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes the specified tags from an Amazon SageMaker resource. To list a resource's tags, use the ListTags API.   When you call this API to delete tags from a hyperparameter tuning job, the deleted tags are not removed from training jobs that the hyperparameter tuning job launched before you called this API. 
   */
  deleteTags(params: SageMaker.Types.DeleteTagsInput, callback?: (err: AWSError, data: SageMaker.Types.DeleteTagsOutput) => void): Request<SageMaker.Types.DeleteTagsOutput, AWSError>;
  /**
   * Deletes the specified tags from an Amazon SageMaker resource. To list a resource's tags, use the ListTags API.   When you call this API to delete tags from a hyperparameter tuning job, the deleted tags are not removed from training jobs that the hyperparameter tuning job launched before you called this API. 
   */
  deleteTags(callback?: (err: AWSError, data: SageMaker.Types.DeleteTagsOutput) => void): Request<SageMaker.Types.DeleteTagsOutput, AWSError>;
  /**
   * Deletes the specified trial. All trial components that make up the trial must be deleted first. Use the DescribeTrialComponent API to get the list of trial components.
   */
  deleteTrial(params: SageMaker.Types.DeleteTrialRequest, callback?: (err: AWSError, data: SageMaker.Types.DeleteTrialResponse) => void): Request<SageMaker.Types.DeleteTrialResponse, AWSError>;
  /**
   * Deletes the specified trial. All trial components that make up the trial must be deleted first. Use the DescribeTrialComponent API to get the list of trial components.
   */
  deleteTrial(callback?: (err: AWSError, data: SageMaker.Types.DeleteTrialResponse) => void): Request<SageMaker.Types.DeleteTrialResponse, AWSError>;
  /**
   * Deletes the specified trial component. A trial component must be disassociated from all trials before the trial component can be deleted. To disassociate a trial component from a trial, call the DisassociateTrialComponent API.
   */
  deleteTrialComponent(params: SageMaker.Types.DeleteTrialComponentRequest, callback?: (err: AWSError, data: SageMaker.Types.DeleteTrialComponentResponse) => void): Request<SageMaker.Types.DeleteTrialComponentResponse, AWSError>;
  /**
   * Deletes the specified trial component. A trial component must be disassociated from all trials before the trial component can be deleted. To disassociate a trial component from a trial, call the DisassociateTrialComponent API.
   */
  deleteTrialComponent(callback?: (err: AWSError, data: SageMaker.Types.DeleteTrialComponentResponse) => void): Request<SageMaker.Types.DeleteTrialComponentResponse, AWSError>;
  /**
   * Deletes a user profile. When a user profile is deleted, the user loses access to their EFS volume, including data, notebooks, and other artifacts.
   */
  deleteUserProfile(params: SageMaker.Types.DeleteUserProfileRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Deletes a user profile. When a user profile is deleted, the user loses access to their EFS volume, including data, notebooks, and other artifacts.
   */
  deleteUserProfile(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Use this operation to delete a workforce. If you want to create a new workforce in an AWS Region where a workforce already exists, use this operation to delete the existing workforce and then use to create a new workforce.  If a private workforce contains one or more work teams, you must use the operation to delete all work teams before you delete the workforce. If you try to delete a workforce that contains one or more work teams, you will recieve a ResourceInUse error. 
   */
  deleteWorkforce(params: SageMaker.Types.DeleteWorkforceRequest, callback?: (err: AWSError, data: SageMaker.Types.DeleteWorkforceResponse) => void): Request<SageMaker.Types.DeleteWorkforceResponse, AWSError>;
  /**
   * Use this operation to delete a workforce. If you want to create a new workforce in an AWS Region where a workforce already exists, use this operation to delete the existing workforce and then use to create a new workforce.  If a private workforce contains one or more work teams, you must use the operation to delete all work teams before you delete the workforce. If you try to delete a workforce that contains one or more work teams, you will recieve a ResourceInUse error. 
   */
  deleteWorkforce(callback?: (err: AWSError, data: SageMaker.Types.DeleteWorkforceResponse) => void): Request<SageMaker.Types.DeleteWorkforceResponse, AWSError>;
  /**
   * Deletes an existing work team. This operation can't be undone.
   */
  deleteWorkteam(params: SageMaker.Types.DeleteWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.DeleteWorkteamResponse) => void): Request<SageMaker.Types.DeleteWorkteamResponse, AWSError>;
  /**
   * Deletes an existing work team. This operation can't be undone.
   */
  deleteWorkteam(callback?: (err: AWSError, data: SageMaker.Types.DeleteWorkteamResponse) => void): Request<SageMaker.Types.DeleteWorkteamResponse, AWSError>;
  /**
   * Returns a description of the specified algorithm that is in your account.
   */
  describeAlgorithm(params: SageMaker.Types.DescribeAlgorithmInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeAlgorithmOutput) => void): Request<SageMaker.Types.DescribeAlgorithmOutput, AWSError>;
  /**
   * Returns a description of the specified algorithm that is in your account.
   */
  describeAlgorithm(callback?: (err: AWSError, data: SageMaker.Types.DescribeAlgorithmOutput) => void): Request<SageMaker.Types.DescribeAlgorithmOutput, AWSError>;
  /**
   * Describes the app.
   */
  describeApp(params: SageMaker.Types.DescribeAppRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeAppResponse) => void): Request<SageMaker.Types.DescribeAppResponse, AWSError>;
  /**
   * Describes the app.
   */
  describeApp(callback?: (err: AWSError, data: SageMaker.Types.DescribeAppResponse) => void): Request<SageMaker.Types.DescribeAppResponse, AWSError>;
  /**
   * Returns information about an Amazon SageMaker job.
   */
  describeAutoMLJob(params: SageMaker.Types.DescribeAutoMLJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeAutoMLJobResponse) => void): Request<SageMaker.Types.DescribeAutoMLJobResponse, AWSError>;
  /**
   * Returns information about an Amazon SageMaker job.
   */
  describeAutoMLJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeAutoMLJobResponse) => void): Request<SageMaker.Types.DescribeAutoMLJobResponse, AWSError>;
  /**
   * Gets details about the specified Git repository.
   */
  describeCodeRepository(params: SageMaker.Types.DescribeCodeRepositoryInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeCodeRepositoryOutput) => void): Request<SageMaker.Types.DescribeCodeRepositoryOutput, AWSError>;
  /**
   * Gets details about the specified Git repository.
   */
  describeCodeRepository(callback?: (err: AWSError, data: SageMaker.Types.DescribeCodeRepositoryOutput) => void): Request<SageMaker.Types.DescribeCodeRepositoryOutput, AWSError>;
  /**
   * Returns information about a model compilation job. To create a model compilation job, use CreateCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.
   */
  describeCompilationJob(params: SageMaker.Types.DescribeCompilationJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeCompilationJobResponse) => void): Request<SageMaker.Types.DescribeCompilationJobResponse, AWSError>;
  /**
   * Returns information about a model compilation job. To create a model compilation job, use CreateCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.
   */
  describeCompilationJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeCompilationJobResponse) => void): Request<SageMaker.Types.DescribeCompilationJobResponse, AWSError>;
  /**
   * The description of the domain.
   */
  describeDomain(params: SageMaker.Types.DescribeDomainRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeDomainResponse) => void): Request<SageMaker.Types.DescribeDomainResponse, AWSError>;
  /**
   * The description of the domain.
   */
  describeDomain(callback?: (err: AWSError, data: SageMaker.Types.DescribeDomainResponse) => void): Request<SageMaker.Types.DescribeDomainResponse, AWSError>;
  /**
   * Returns the description of an endpoint.
   */
  describeEndpoint(params: SageMaker.Types.DescribeEndpointInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointOutput) => void): Request<SageMaker.Types.DescribeEndpointOutput, AWSError>;
  /**
   * Returns the description of an endpoint.
   */
  describeEndpoint(callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointOutput) => void): Request<SageMaker.Types.DescribeEndpointOutput, AWSError>;
  /**
   * Returns the description of an endpoint configuration created using the CreateEndpointConfig API.
   */
  describeEndpointConfig(params: SageMaker.Types.DescribeEndpointConfigInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointConfigOutput) => void): Request<SageMaker.Types.DescribeEndpointConfigOutput, AWSError>;
  /**
   * Returns the description of an endpoint configuration created using the CreateEndpointConfig API.
   */
  describeEndpointConfig(callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointConfigOutput) => void): Request<SageMaker.Types.DescribeEndpointConfigOutput, AWSError>;
  /**
   * Provides a list of an experiment's properties.
   */
  describeExperiment(params: SageMaker.Types.DescribeExperimentRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeExperimentResponse) => void): Request<SageMaker.Types.DescribeExperimentResponse, AWSError>;
  /**
   * Provides a list of an experiment's properties.
   */
  describeExperiment(callback?: (err: AWSError, data: SageMaker.Types.DescribeExperimentResponse) => void): Request<SageMaker.Types.DescribeExperimentResponse, AWSError>;
  /**
   * Returns information about the specified flow definition.
   */
  describeFlowDefinition(params: SageMaker.Types.DescribeFlowDefinitionRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeFlowDefinitionResponse) => void): Request<SageMaker.Types.DescribeFlowDefinitionResponse, AWSError>;
  /**
   * Returns information about the specified flow definition.
   */
  describeFlowDefinition(callback?: (err: AWSError, data: SageMaker.Types.DescribeFlowDefinitionResponse) => void): Request<SageMaker.Types.DescribeFlowDefinitionResponse, AWSError>;
  /**
   * Returns information about the requested human task user interface (worker task template).
   */
  describeHumanTaskUi(params: SageMaker.Types.DescribeHumanTaskUiRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeHumanTaskUiResponse) => void): Request<SageMaker.Types.DescribeHumanTaskUiResponse, AWSError>;
  /**
   * Returns information about the requested human task user interface (worker task template).
   */
  describeHumanTaskUi(callback?: (err: AWSError, data: SageMaker.Types.DescribeHumanTaskUiResponse) => void): Request<SageMaker.Types.DescribeHumanTaskUiResponse, AWSError>;
  /**
   * Gets a description of a hyperparameter tuning job.
   */
  describeHyperParameterTuningJob(params: SageMaker.Types.DescribeHyperParameterTuningJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.DescribeHyperParameterTuningJobResponse, AWSError>;
  /**
   * Gets a description of a hyperparameter tuning job.
   */
  describeHyperParameterTuningJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.DescribeHyperParameterTuningJobResponse, AWSError>;
  /**
   * Gets information about a labeling job.
   */
  describeLabelingJob(params: SageMaker.Types.DescribeLabelingJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeLabelingJobResponse) => void): Request<SageMaker.Types.DescribeLabelingJobResponse, AWSError>;
  /**
   * Gets information about a labeling job.
   */
  describeLabelingJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeLabelingJobResponse) => void): Request<SageMaker.Types.DescribeLabelingJobResponse, AWSError>;
  /**
   * Describes a model that you created using the CreateModel API.
   */
  describeModel(params: SageMaker.Types.DescribeModelInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeModelOutput) => void): Request<SageMaker.Types.DescribeModelOutput, AWSError>;
  /**
   * Describes a model that you created using the CreateModel API.
   */
  describeModel(callback?: (err: AWSError, data: SageMaker.Types.DescribeModelOutput) => void): Request<SageMaker.Types.DescribeModelOutput, AWSError>;
  /**
   * Returns a description of the specified model package, which is used to create Amazon SageMaker models or list them on AWS Marketplace. To create models in Amazon SageMaker, buyers can subscribe to model packages listed on AWS Marketplace.
   */
  describeModelPackage(params: SageMaker.Types.DescribeModelPackageInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeModelPackageOutput) => void): Request<SageMaker.Types.DescribeModelPackageOutput, AWSError>;
  /**
   * Returns a description of the specified model package, which is used to create Amazon SageMaker models or list them on AWS Marketplace. To create models in Amazon SageMaker, buyers can subscribe to model packages listed on AWS Marketplace.
   */
  describeModelPackage(callback?: (err: AWSError, data: SageMaker.Types.DescribeModelPackageOutput) => void): Request<SageMaker.Types.DescribeModelPackageOutput, AWSError>;
  /**
   * Describes the schedule for a monitoring job.
   */
  describeMonitoringSchedule(params: SageMaker.Types.DescribeMonitoringScheduleRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeMonitoringScheduleResponse) => void): Request<SageMaker.Types.DescribeMonitoringScheduleResponse, AWSError>;
  /**
   * Describes the schedule for a monitoring job.
   */
  describeMonitoringSchedule(callback?: (err: AWSError, data: SageMaker.Types.DescribeMonitoringScheduleResponse) => void): Request<SageMaker.Types.DescribeMonitoringScheduleResponse, AWSError>;
  /**
   * Returns information about a notebook instance.
   */
  describeNotebookInstance(params: SageMaker.Types.DescribeNotebookInstanceInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
  /**
   * Returns information about a notebook instance.
   */
  describeNotebookInstance(callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
  /**
   * Returns a description of a notebook instance lifecycle configuration. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
   */
  describeNotebookInstanceLifecycleConfig(params: SageMaker.Types.DescribeNotebookInstanceLifecycleConfigInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceLifecycleConfigOutput, AWSError>;
  /**
   * Returns a description of a notebook instance lifecycle configuration. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
   */
  describeNotebookInstanceLifecycleConfig(callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceLifecycleConfigOutput, AWSError>;
  /**
   * Returns a description of a processing job.
   */
  describeProcessingJob(params: SageMaker.Types.DescribeProcessingJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeProcessingJobResponse) => void): Request<SageMaker.Types.DescribeProcessingJobResponse, AWSError>;
  /**
   * Returns a description of a processing job.
   */
  describeProcessingJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeProcessingJobResponse) => void): Request<SageMaker.Types.DescribeProcessingJobResponse, AWSError>;
  /**
   * Gets information about a work team provided by a vendor. It returns details about the subscription with a vendor in the AWS Marketplace.
   */
  describeSubscribedWorkteam(params: SageMaker.Types.DescribeSubscribedWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeSubscribedWorkteamResponse) => void): Request<SageMaker.Types.DescribeSubscribedWorkteamResponse, AWSError>;
  /**
   * Gets information about a work team provided by a vendor. It returns details about the subscription with a vendor in the AWS Marketplace.
   */
  describeSubscribedWorkteam(callback?: (err: AWSError, data: SageMaker.Types.DescribeSubscribedWorkteamResponse) => void): Request<SageMaker.Types.DescribeSubscribedWorkteamResponse, AWSError>;
  /**
   * Returns information about a training job.
   */
  describeTrainingJob(params: SageMaker.Types.DescribeTrainingJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeTrainingJobResponse) => void): Request<SageMaker.Types.DescribeTrainingJobResponse, AWSError>;
  /**
   * Returns information about a training job.
   */
  describeTrainingJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeTrainingJobResponse) => void): Request<SageMaker.Types.DescribeTrainingJobResponse, AWSError>;
  /**
   * Returns information about a transform job.
   */
  describeTransformJob(params: SageMaker.Types.DescribeTransformJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeTransformJobResponse) => void): Request<SageMaker.Types.DescribeTransformJobResponse, AWSError>;
  /**
   * Returns information about a transform job.
   */
  describeTransformJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeTransformJobResponse) => void): Request<SageMaker.Types.DescribeTransformJobResponse, AWSError>;
  /**
   * Provides a list of a trial's properties.
   */
  describeTrial(params: SageMaker.Types.DescribeTrialRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeTrialResponse) => void): Request<SageMaker.Types.DescribeTrialResponse, AWSError>;
  /**
   * Provides a list of a trial's properties.
   */
  describeTrial(callback?: (err: AWSError, data: SageMaker.Types.DescribeTrialResponse) => void): Request<SageMaker.Types.DescribeTrialResponse, AWSError>;
  /**
   * Provides a list of a trials component's properties.
   */
  describeTrialComponent(params: SageMaker.Types.DescribeTrialComponentRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeTrialComponentResponse) => void): Request<SageMaker.Types.DescribeTrialComponentResponse, AWSError>;
  /**
   * Provides a list of a trials component's properties.
   */
  describeTrialComponent(callback?: (err: AWSError, data: SageMaker.Types.DescribeTrialComponentResponse) => void): Request<SageMaker.Types.DescribeTrialComponentResponse, AWSError>;
  /**
   * Describes a user profile. For more information, see CreateUserProfile.
   */
  describeUserProfile(params: SageMaker.Types.DescribeUserProfileRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeUserProfileResponse) => void): Request<SageMaker.Types.DescribeUserProfileResponse, AWSError>;
  /**
   * Describes a user profile. For more information, see CreateUserProfile.
   */
  describeUserProfile(callback?: (err: AWSError, data: SageMaker.Types.DescribeUserProfileResponse) => void): Request<SageMaker.Types.DescribeUserProfileResponse, AWSError>;
  /**
   * Lists private workforce information, including workforce name, Amazon Resource Name (ARN), and, if applicable, allowed IP address ranges (CIDRs). Allowable IP address ranges are the IP addresses that workers can use to access tasks.   This operation applies only to private workforces. 
   */
  describeWorkforce(params: SageMaker.Types.DescribeWorkforceRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeWorkforceResponse) => void): Request<SageMaker.Types.DescribeWorkforceResponse, AWSError>;
  /**
   * Lists private workforce information, including workforce name, Amazon Resource Name (ARN), and, if applicable, allowed IP address ranges (CIDRs). Allowable IP address ranges are the IP addresses that workers can use to access tasks.   This operation applies only to private workforces. 
   */
  describeWorkforce(callback?: (err: AWSError, data: SageMaker.Types.DescribeWorkforceResponse) => void): Request<SageMaker.Types.DescribeWorkforceResponse, AWSError>;
  /**
   * Gets information about a specific work team. You can see information such as the create date, the last updated date, membership information, and the work team's Amazon Resource Name (ARN).
   */
  describeWorkteam(params: SageMaker.Types.DescribeWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeWorkteamResponse) => void): Request<SageMaker.Types.DescribeWorkteamResponse, AWSError>;
  /**
   * Gets information about a specific work team. You can see information such as the create date, the last updated date, membership information, and the work team's Amazon Resource Name (ARN).
   */
  describeWorkteam(callback?: (err: AWSError, data: SageMaker.Types.DescribeWorkteamResponse) => void): Request<SageMaker.Types.DescribeWorkteamResponse, AWSError>;
  /**
   * Disassociates a trial component from a trial. This doesn't effect other trials the component is associated with. Before you can delete a component, you must disassociate the component from all trials it is associated with. To associate a trial component with a trial, call the AssociateTrialComponent API. To get a list of the trials a component is associated with, use the Search API. Specify ExperimentTrialComponent for the Resource parameter. The list appears in the response under Results.TrialComponent.Parents.
   */
  disassociateTrialComponent(params: SageMaker.Types.DisassociateTrialComponentRequest, callback?: (err: AWSError, data: SageMaker.Types.DisassociateTrialComponentResponse) => void): Request<SageMaker.Types.DisassociateTrialComponentResponse, AWSError>;
  /**
   * Disassociates a trial component from a trial. This doesn't effect other trials the component is associated with. Before you can delete a component, you must disassociate the component from all trials it is associated with. To associate a trial component with a trial, call the AssociateTrialComponent API. To get a list of the trials a component is associated with, use the Search API. Specify ExperimentTrialComponent for the Resource parameter. The list appears in the response under Results.TrialComponent.Parents.
   */
  disassociateTrialComponent(callback?: (err: AWSError, data: SageMaker.Types.DisassociateTrialComponentResponse) => void): Request<SageMaker.Types.DisassociateTrialComponentResponse, AWSError>;
  /**
   * An auto-complete API for the search functionality in the Amazon SageMaker console. It returns suggestions of possible matches for the property name to use in Search queries. Provides suggestions for HyperParameters, Tags, and Metrics.
   */
  getSearchSuggestions(params: SageMaker.Types.GetSearchSuggestionsRequest, callback?: (err: AWSError, data: SageMaker.Types.GetSearchSuggestionsResponse) => void): Request<SageMaker.Types.GetSearchSuggestionsResponse, AWSError>;
  /**
   * An auto-complete API for the search functionality in the Amazon SageMaker console. It returns suggestions of possible matches for the property name to use in Search queries. Provides suggestions for HyperParameters, Tags, and Metrics.
   */
  getSearchSuggestions(callback?: (err: AWSError, data: SageMaker.Types.GetSearchSuggestionsResponse) => void): Request<SageMaker.Types.GetSearchSuggestionsResponse, AWSError>;
  /**
   * Lists the machine learning algorithms that have been created.
   */
  listAlgorithms(params: SageMaker.Types.ListAlgorithmsInput, callback?: (err: AWSError, data: SageMaker.Types.ListAlgorithmsOutput) => void): Request<SageMaker.Types.ListAlgorithmsOutput, AWSError>;
  /**
   * Lists the machine learning algorithms that have been created.
   */
  listAlgorithms(callback?: (err: AWSError, data: SageMaker.Types.ListAlgorithmsOutput) => void): Request<SageMaker.Types.ListAlgorithmsOutput, AWSError>;
  /**
   * Lists apps.
   */
  listApps(params: SageMaker.Types.ListAppsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListAppsResponse) => void): Request<SageMaker.Types.ListAppsResponse, AWSError>;
  /**
   * Lists apps.
   */
  listApps(callback?: (err: AWSError, data: SageMaker.Types.ListAppsResponse) => void): Request<SageMaker.Types.ListAppsResponse, AWSError>;
  /**
   * Request a list of jobs.
   */
  listAutoMLJobs(params: SageMaker.Types.ListAutoMLJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListAutoMLJobsResponse) => void): Request<SageMaker.Types.ListAutoMLJobsResponse, AWSError>;
  /**
   * Request a list of jobs.
   */
  listAutoMLJobs(callback?: (err: AWSError, data: SageMaker.Types.ListAutoMLJobsResponse) => void): Request<SageMaker.Types.ListAutoMLJobsResponse, AWSError>;
  /**
   * List the Candidates created for the job.
   */
  listCandidatesForAutoMLJob(params: SageMaker.Types.ListCandidatesForAutoMLJobRequest, callback?: (err: AWSError, data: SageMaker.Types.ListCandidatesForAutoMLJobResponse) => void): Request<SageMaker.Types.ListCandidatesForAutoMLJobResponse, AWSError>;
  /**
   * List the Candidates created for the job.
   */
  listCandidatesForAutoMLJob(callback?: (err: AWSError, data: SageMaker.Types.ListCandidatesForAutoMLJobResponse) => void): Request<SageMaker.Types.ListCandidatesForAutoMLJobResponse, AWSError>;
  /**
   * Gets a list of the Git repositories in your account.
   */
  listCodeRepositories(params: SageMaker.Types.ListCodeRepositoriesInput, callback?: (err: AWSError, data: SageMaker.Types.ListCodeRepositoriesOutput) => void): Request<SageMaker.Types.ListCodeRepositoriesOutput, AWSError>;
  /**
   * Gets a list of the Git repositories in your account.
   */
  listCodeRepositories(callback?: (err: AWSError, data: SageMaker.Types.ListCodeRepositoriesOutput) => void): Request<SageMaker.Types.ListCodeRepositoriesOutput, AWSError>;
  /**
   * Lists model compilation jobs that satisfy various filters. To create a model compilation job, use CreateCompilationJob. To get information about a particular model compilation job you have created, use DescribeCompilationJob.
   */
  listCompilationJobs(params: SageMaker.Types.ListCompilationJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListCompilationJobsResponse) => void): Request<SageMaker.Types.ListCompilationJobsResponse, AWSError>;
  /**
   * Lists model compilation jobs that satisfy various filters. To create a model compilation job, use CreateCompilationJob. To get information about a particular model compilation job you have created, use DescribeCompilationJob.
   */
  listCompilationJobs(callback?: (err: AWSError, data: SageMaker.Types.ListCompilationJobsResponse) => void): Request<SageMaker.Types.ListCompilationJobsResponse, AWSError>;
  /**
   * Lists the domains.
   */
  listDomains(params: SageMaker.Types.ListDomainsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListDomainsResponse) => void): Request<SageMaker.Types.ListDomainsResponse, AWSError>;
  /**
   * Lists the domains.
   */
  listDomains(callback?: (err: AWSError, data: SageMaker.Types.ListDomainsResponse) => void): Request<SageMaker.Types.ListDomainsResponse, AWSError>;
  /**
   * Lists endpoint configurations.
   */
  listEndpointConfigs(params: SageMaker.Types.ListEndpointConfigsInput, callback?: (err: AWSError, data: SageMaker.Types.ListEndpointConfigsOutput) => void): Request<SageMaker.Types.ListEndpointConfigsOutput, AWSError>;
  /**
   * Lists endpoint configurations.
   */
  listEndpointConfigs(callback?: (err: AWSError, data: SageMaker.Types.ListEndpointConfigsOutput) => void): Request<SageMaker.Types.ListEndpointConfigsOutput, AWSError>;
  /**
   * Lists endpoints.
   */
  listEndpoints(params: SageMaker.Types.ListEndpointsInput, callback?: (err: AWSError, data: SageMaker.Types.ListEndpointsOutput) => void): Request<SageMaker.Types.ListEndpointsOutput, AWSError>;
  /**
   * Lists endpoints.
   */
  listEndpoints(callback?: (err: AWSError, data: SageMaker.Types.ListEndpointsOutput) => void): Request<SageMaker.Types.ListEndpointsOutput, AWSError>;
  /**
   * Lists all the experiments in your account. The list can be filtered to show only experiments that were created in a specific time range. The list can be sorted by experiment name or creation time.
   */
  listExperiments(params: SageMaker.Types.ListExperimentsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListExperimentsResponse) => void): Request<SageMaker.Types.ListExperimentsResponse, AWSError>;
  /**
   * Lists all the experiments in your account. The list can be filtered to show only experiments that were created in a specific time range. The list can be sorted by experiment name or creation time.
   */
  listExperiments(callback?: (err: AWSError, data: SageMaker.Types.ListExperimentsResponse) => void): Request<SageMaker.Types.ListExperimentsResponse, AWSError>;
  /**
   * Returns information about the flow definitions in your account.
   */
  listFlowDefinitions(params: SageMaker.Types.ListFlowDefinitionsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListFlowDefinitionsResponse) => void): Request<SageMaker.Types.ListFlowDefinitionsResponse, AWSError>;
  /**
   * Returns information about the flow definitions in your account.
   */
  listFlowDefinitions(callback?: (err: AWSError, data: SageMaker.Types.ListFlowDefinitionsResponse) => void): Request<SageMaker.Types.ListFlowDefinitionsResponse, AWSError>;
  /**
   * Returns information about the human task user interfaces in your account.
   */
  listHumanTaskUis(params: SageMaker.Types.ListHumanTaskUisRequest, callback?: (err: AWSError, data: SageMaker.Types.ListHumanTaskUisResponse) => void): Request<SageMaker.Types.ListHumanTaskUisResponse, AWSError>;
  /**
   * Returns information about the human task user interfaces in your account.
   */
  listHumanTaskUis(callback?: (err: AWSError, data: SageMaker.Types.ListHumanTaskUisResponse) => void): Request<SageMaker.Types.ListHumanTaskUisResponse, AWSError>;
  /**
   * Gets a list of HyperParameterTuningJobSummary objects that describe the hyperparameter tuning jobs launched in your account.
   */
  listHyperParameterTuningJobs(params: SageMaker.Types.ListHyperParameterTuningJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListHyperParameterTuningJobsResponse) => void): Request<SageMaker.Types.ListHyperParameterTuningJobsResponse, AWSError>;
  /**
   * Gets a list of HyperParameterTuningJobSummary objects that describe the hyperparameter tuning jobs launched in your account.
   */
  listHyperParameterTuningJobs(callback?: (err: AWSError, data: SageMaker.Types.ListHyperParameterTuningJobsResponse) => void): Request<SageMaker.Types.ListHyperParameterTuningJobsResponse, AWSError>;
  /**
   * Gets a list of labeling jobs.
   */
  listLabelingJobs(params: SageMaker.Types.ListLabelingJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListLabelingJobsResponse) => void): Request<SageMaker.Types.ListLabelingJobsResponse, AWSError>;
  /**
   * Gets a list of labeling jobs.
   */
  listLabelingJobs(callback?: (err: AWSError, data: SageMaker.Types.ListLabelingJobsResponse) => void): Request<SageMaker.Types.ListLabelingJobsResponse, AWSError>;
  /**
   * Gets a list of labeling jobs assigned to a specified work team.
   */
  listLabelingJobsForWorkteam(params: SageMaker.Types.ListLabelingJobsForWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.ListLabelingJobsForWorkteamResponse) => void): Request<SageMaker.Types.ListLabelingJobsForWorkteamResponse, AWSError>;
  /**
   * Gets a list of labeling jobs assigned to a specified work team.
   */
  listLabelingJobsForWorkteam(callback?: (err: AWSError, data: SageMaker.Types.ListLabelingJobsForWorkteamResponse) => void): Request<SageMaker.Types.ListLabelingJobsForWorkteamResponse, AWSError>;
  /**
   * Lists the model packages that have been created.
   */
  listModelPackages(params: SageMaker.Types.ListModelPackagesInput, callback?: (err: AWSError, data: SageMaker.Types.ListModelPackagesOutput) => void): Request<SageMaker.Types.ListModelPackagesOutput, AWSError>;
  /**
   * Lists the model packages that have been created.
   */
  listModelPackages(callback?: (err: AWSError, data: SageMaker.Types.ListModelPackagesOutput) => void): Request<SageMaker.Types.ListModelPackagesOutput, AWSError>;
  /**
   * Lists models created with the CreateModel API.
   */
  listModels(params: SageMaker.Types.ListModelsInput, callback?: (err: AWSError, data: SageMaker.Types.ListModelsOutput) => void): Request<SageMaker.Types.ListModelsOutput, AWSError>;
  /**
   * Lists models created with the CreateModel API.
   */
  listModels(callback?: (err: AWSError, data: SageMaker.Types.ListModelsOutput) => void): Request<SageMaker.Types.ListModelsOutput, AWSError>;
  /**
   * Returns list of all monitoring job executions.
   */
  listMonitoringExecutions(params: SageMaker.Types.ListMonitoringExecutionsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListMonitoringExecutionsResponse) => void): Request<SageMaker.Types.ListMonitoringExecutionsResponse, AWSError>;
  /**
   * Returns list of all monitoring job executions.
   */
  listMonitoringExecutions(callback?: (err: AWSError, data: SageMaker.Types.ListMonitoringExecutionsResponse) => void): Request<SageMaker.Types.ListMonitoringExecutionsResponse, AWSError>;
  /**
   * Returns list of all monitoring schedules.
   */
  listMonitoringSchedules(params: SageMaker.Types.ListMonitoringSchedulesRequest, callback?: (err: AWSError, data: SageMaker.Types.ListMonitoringSchedulesResponse) => void): Request<SageMaker.Types.ListMonitoringSchedulesResponse, AWSError>;
  /**
   * Returns list of all monitoring schedules.
   */
  listMonitoringSchedules(callback?: (err: AWSError, data: SageMaker.Types.ListMonitoringSchedulesResponse) => void): Request<SageMaker.Types.ListMonitoringSchedulesResponse, AWSError>;
  /**
   * Lists notebook instance lifestyle configurations created with the CreateNotebookInstanceLifecycleConfig API.
   */
  listNotebookInstanceLifecycleConfigs(params: SageMaker.Types.ListNotebookInstanceLifecycleConfigsInput, callback?: (err: AWSError, data: SageMaker.Types.ListNotebookInstanceLifecycleConfigsOutput) => void): Request<SageMaker.Types.ListNotebookInstanceLifecycleConfigsOutput, AWSError>;
  /**
   * Lists notebook instance lifestyle configurations created with the CreateNotebookInstanceLifecycleConfig API.
   */
  listNotebookInstanceLifecycleConfigs(callback?: (err: AWSError, data: SageMaker.Types.ListNotebookInstanceLifecycleConfigsOutput) => void): Request<SageMaker.Types.ListNotebookInstanceLifecycleConfigsOutput, AWSError>;
  /**
   * Returns a list of the Amazon SageMaker notebook instances in the requester's account in an AWS Region. 
   */
  listNotebookInstances(params: SageMaker.Types.ListNotebookInstancesInput, callback?: (err: AWSError, data: SageMaker.Types.ListNotebookInstancesOutput) => void): Request<SageMaker.Types.ListNotebookInstancesOutput, AWSError>;
  /**
   * Returns a list of the Amazon SageMaker notebook instances in the requester's account in an AWS Region. 
   */
  listNotebookInstances(callback?: (err: AWSError, data: SageMaker.Types.ListNotebookInstancesOutput) => void): Request<SageMaker.Types.ListNotebookInstancesOutput, AWSError>;
  /**
   * Lists processing jobs that satisfy various filters.
   */
  listProcessingJobs(params: SageMaker.Types.ListProcessingJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListProcessingJobsResponse) => void): Request<SageMaker.Types.ListProcessingJobsResponse, AWSError>;
  /**
   * Lists processing jobs that satisfy various filters.
   */
  listProcessingJobs(callback?: (err: AWSError, data: SageMaker.Types.ListProcessingJobsResponse) => void): Request<SageMaker.Types.ListProcessingJobsResponse, AWSError>;
  /**
   * Gets a list of the work teams that you are subscribed to in the AWS Marketplace. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.
   */
  listSubscribedWorkteams(params: SageMaker.Types.ListSubscribedWorkteamsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListSubscribedWorkteamsResponse) => void): Request<SageMaker.Types.ListSubscribedWorkteamsResponse, AWSError>;
  /**
   * Gets a list of the work teams that you are subscribed to in the AWS Marketplace. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.
   */
  listSubscribedWorkteams(callback?: (err: AWSError, data: SageMaker.Types.ListSubscribedWorkteamsResponse) => void): Request<SageMaker.Types.ListSubscribedWorkteamsResponse, AWSError>;
  /**
   * Returns the tags for the specified Amazon SageMaker resource.
   */
  listTags(params: SageMaker.Types.ListTagsInput, callback?: (err: AWSError, data: SageMaker.Types.ListTagsOutput) => void): Request<SageMaker.Types.ListTagsOutput, AWSError>;
  /**
   * Returns the tags for the specified Amazon SageMaker resource.
   */
  listTags(callback?: (err: AWSError, data: SageMaker.Types.ListTagsOutput) => void): Request<SageMaker.Types.ListTagsOutput, AWSError>;
  /**
   * Lists training jobs.
   */
  listTrainingJobs(params: SageMaker.Types.ListTrainingJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListTrainingJobsResponse) => void): Request<SageMaker.Types.ListTrainingJobsResponse, AWSError>;
  /**
   * Lists training jobs.
   */
  listTrainingJobs(callback?: (err: AWSError, data: SageMaker.Types.ListTrainingJobsResponse) => void): Request<SageMaker.Types.ListTrainingJobsResponse, AWSError>;
  /**
   * Gets a list of TrainingJobSummary objects that describe the training jobs that a hyperparameter tuning job launched.
   */
  listTrainingJobsForHyperParameterTuningJob(params: SageMaker.Types.ListTrainingJobsForHyperParameterTuningJobRequest, callback?: (err: AWSError, data: SageMaker.Types.ListTrainingJobsForHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.ListTrainingJobsForHyperParameterTuningJobResponse, AWSError>;
  /**
   * Gets a list of TrainingJobSummary objects that describe the training jobs that a hyperparameter tuning job launched.
   */
  listTrainingJobsForHyperParameterTuningJob(callback?: (err: AWSError, data: SageMaker.Types.ListTrainingJobsForHyperParameterTuningJobResponse) => void): Request<SageMaker.Types.ListTrainingJobsForHyperParameterTuningJobResponse, AWSError>;
  /**
   * Lists transform jobs.
   */
  listTransformJobs(params: SageMaker.Types.ListTransformJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListTransformJobsResponse) => void): Request<SageMaker.Types.ListTransformJobsResponse, AWSError>;
  /**
   * Lists transform jobs.
   */
  listTransformJobs(callback?: (err: AWSError, data: SageMaker.Types.ListTransformJobsResponse) => void): Request<SageMaker.Types.ListTransformJobsResponse, AWSError>;
  /**
   * Lists the trial components in your account. You can sort the list by trial component name or creation time. You can filter the list to show only components that were created in a specific time range. You can also filter on one of the following:    ExperimentName     SourceArn     TrialName   
   */
  listTrialComponents(params: SageMaker.Types.ListTrialComponentsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListTrialComponentsResponse) => void): Request<SageMaker.Types.ListTrialComponentsResponse, AWSError>;
  /**
   * Lists the trial components in your account. You can sort the list by trial component name or creation time. You can filter the list to show only components that were created in a specific time range. You can also filter on one of the following:    ExperimentName     SourceArn     TrialName   
   */
  listTrialComponents(callback?: (err: AWSError, data: SageMaker.Types.ListTrialComponentsResponse) => void): Request<SageMaker.Types.ListTrialComponentsResponse, AWSError>;
  /**
   * Lists the trials in your account. Specify an experiment name to limit the list to the trials that are part of that experiment. Specify a trial component name to limit the list to the trials that associated with that trial component. The list can be filtered to show only trials that were created in a specific time range. The list can be sorted by trial name or creation time.
   */
  listTrials(params: SageMaker.Types.ListTrialsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListTrialsResponse) => void): Request<SageMaker.Types.ListTrialsResponse, AWSError>;
  /**
   * Lists the trials in your account. Specify an experiment name to limit the list to the trials that are part of that experiment. Specify a trial component name to limit the list to the trials that associated with that trial component. The list can be filtered to show only trials that were created in a specific time range. The list can be sorted by trial name or creation time.
   */
  listTrials(callback?: (err: AWSError, data: SageMaker.Types.ListTrialsResponse) => void): Request<SageMaker.Types.ListTrialsResponse, AWSError>;
  /**
   * Lists user profiles.
   */
  listUserProfiles(params: SageMaker.Types.ListUserProfilesRequest, callback?: (err: AWSError, data: SageMaker.Types.ListUserProfilesResponse) => void): Request<SageMaker.Types.ListUserProfilesResponse, AWSError>;
  /**
   * Lists user profiles.
   */
  listUserProfiles(callback?: (err: AWSError, data: SageMaker.Types.ListUserProfilesResponse) => void): Request<SageMaker.Types.ListUserProfilesResponse, AWSError>;
  /**
   * Use this operation to list all private and vendor workforces in an AWS Region. Note that you can only have one private workforce per AWS Region.
   */
  listWorkforces(params: SageMaker.Types.ListWorkforcesRequest, callback?: (err: AWSError, data: SageMaker.Types.ListWorkforcesResponse) => void): Request<SageMaker.Types.ListWorkforcesResponse, AWSError>;
  /**
   * Use this operation to list all private and vendor workforces in an AWS Region. Note that you can only have one private workforce per AWS Region.
   */
  listWorkforces(callback?: (err: AWSError, data: SageMaker.Types.ListWorkforcesResponse) => void): Request<SageMaker.Types.ListWorkforcesResponse, AWSError>;
  /**
   * Gets a list of private work teams that you have defined in a region. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.
   */
  listWorkteams(params: SageMaker.Types.ListWorkteamsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListWorkteamsResponse) => void): Request<SageMaker.Types.ListWorkteamsResponse, AWSError>;
  /**
   * Gets a list of private work teams that you have defined in a region. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.
   */
  listWorkteams(callback?: (err: AWSError, data: SageMaker.Types.ListWorkteamsResponse) => void): Request<SageMaker.Types.ListWorkteamsResponse, AWSError>;
  /**
   * Renders the UI template so that you can preview the worker's experience. 
   */
  renderUiTemplate(params: SageMaker.Types.RenderUiTemplateRequest, callback?: (err: AWSError, data: SageMaker.Types.RenderUiTemplateResponse) => void): Request<SageMaker.Types.RenderUiTemplateResponse, AWSError>;
  /**
   * Renders the UI template so that you can preview the worker's experience. 
   */
  renderUiTemplate(callback?: (err: AWSError, data: SageMaker.Types.RenderUiTemplateResponse) => void): Request<SageMaker.Types.RenderUiTemplateResponse, AWSError>;
  /**
   * Finds Amazon SageMaker resources that match a search query. Matching resources are returned as a list of SearchRecord objects in the response. You can sort the search results by any resource property in a ascending or descending order. You can query against the following value types: numeric, text, Boolean, and timestamp.
   */
  search(params: SageMaker.Types.SearchRequest, callback?: (err: AWSError, data: SageMaker.Types.SearchResponse) => void): Request<SageMaker.Types.SearchResponse, AWSError>;
  /**
   * Finds Amazon SageMaker resources that match a search query. Matching resources are returned as a list of SearchRecord objects in the response. You can sort the search results by any resource property in a ascending or descending order. You can query against the following value types: numeric, text, Boolean, and timestamp.
   */
  search(callback?: (err: AWSError, data: SageMaker.Types.SearchResponse) => void): Request<SageMaker.Types.SearchResponse, AWSError>;
  /**
   * Starts a previously stopped monitoring schedule.  New monitoring schedules are immediately started after creation. 
   */
  startMonitoringSchedule(params: SageMaker.Types.StartMonitoringScheduleRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Starts a previously stopped monitoring schedule.  New monitoring schedules are immediately started after creation. 
   */
  startMonitoringSchedule(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Launches an ML compute instance with the latest version of the libraries and attaches your ML storage volume. After configuring the notebook instance, Amazon SageMaker sets the notebook instance status to InService. A notebook instance's status must be InService before you can connect to your Jupyter notebook. 
   */
  startNotebookInstance(params: SageMaker.Types.StartNotebookInstanceInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Launches an ML compute instance with the latest version of the libraries and attaches your ML storage volume. After configuring the notebook instance, Amazon SageMaker sets the notebook instance status to InService. A notebook instance's status must be InService before you can connect to your Jupyter notebook. 
   */
  startNotebookInstance(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * A method for forcing the termination of a running job.
   */
  stopAutoMLJob(params: SageMaker.Types.StopAutoMLJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * A method for forcing the termination of a running job.
   */
  stopAutoMLJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Stops a model compilation job.  To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the job down. If the job hasn't stopped, it sends the SIGKILL signal. When it receives a StopCompilationJob request, Amazon SageMaker changes the CompilationJobSummary$CompilationJobStatus of the job to Stopping. After Amazon SageMaker stops the job, it sets the CompilationJobSummary$CompilationJobStatus to Stopped. 
   */
  stopCompilationJob(params: SageMaker.Types.StopCompilationJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Stops a model compilation job.  To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the job down. If the job hasn't stopped, it sends the SIGKILL signal. When it receives a StopCompilationJob request, Amazon SageMaker changes the CompilationJobSummary$CompilationJobStatus of the job to Stopping. After Amazon SageMaker stops the job, it sets the CompilationJobSummary$CompilationJobStatus to Stopped. 
   */
  stopCompilationJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Stops a running hyperparameter tuning job and all running training jobs that the tuning job launched. All model artifacts output from the training jobs are stored in Amazon Simple Storage Service (Amazon S3). All data that the training jobs write to Amazon CloudWatch Logs are still available in CloudWatch. After the tuning job moves to the Stopped state, it releases all reserved resources for the tuning job.
   */
  stopHyperParameterTuningJob(params: SageMaker.Types.StopHyperParameterTuningJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Stops a running hyperparameter tuning job and all running training jobs that the tuning job launched. All model artifacts output from the training jobs are stored in Amazon Simple Storage Service (Amazon S3). All data that the training jobs write to Amazon CloudWatch Logs are still available in CloudWatch. After the tuning job moves to the Stopped state, it releases all reserved resources for the tuning job.
   */
  stopHyperParameterTuningJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Stops a running labeling job. A job that is stopped cannot be restarted. Any results obtained before the job is stopped are placed in the Amazon S3 output bucket.
   */
  stopLabelingJob(params: SageMaker.Types.StopLabelingJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Stops a running labeling job. A job that is stopped cannot be restarted. Any results obtained before the job is stopped are placed in the Amazon S3 output bucket.
   */
  stopLabelingJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Stops a previously started monitoring schedule.
   */
  stopMonitoringSchedule(params: SageMaker.Types.StopMonitoringScheduleRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Stops a previously started monitoring schedule.
   */
  stopMonitoringSchedule(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Terminates the ML compute instance. Before terminating the instance, Amazon SageMaker disconnects the ML storage volume from it. Amazon SageMaker preserves the ML storage volume. Amazon SageMaker stops charging you for the ML compute instance when you call StopNotebookInstance. To access data on the ML storage volume for a notebook instance that has been terminated, call the StartNotebookInstance API. StartNotebookInstance launches another ML compute instance, configures it, and attaches the preserved ML storage volume so you can continue your work. 
   */
  stopNotebookInstance(params: SageMaker.Types.StopNotebookInstanceInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Terminates the ML compute instance. Before terminating the instance, Amazon SageMaker disconnects the ML storage volume from it. Amazon SageMaker preserves the ML storage volume. Amazon SageMaker stops charging you for the ML compute instance when you call StopNotebookInstance. To access data on the ML storage volume for a notebook instance that has been terminated, call the StartNotebookInstance API. StartNotebookInstance launches another ML compute instance, configures it, and attaches the preserved ML storage volume so you can continue your work. 
   */
  stopNotebookInstance(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Stops a processing job.
   */
  stopProcessingJob(params: SageMaker.Types.StopProcessingJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Stops a processing job.
   */
  stopProcessingJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Stops a training job. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model artifacts, so the results of the training is not lost.  When it receives a StopTrainingJob request, Amazon SageMaker changes the status of the job to Stopping. After Amazon SageMaker stops the job, it sets the status to Stopped.
   */
  stopTrainingJob(params: SageMaker.Types.StopTrainingJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Stops a training job. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model artifacts, so the results of the training is not lost.  When it receives a StopTrainingJob request, Amazon SageMaker changes the status of the job to Stopping. After Amazon SageMaker stops the job, it sets the status to Stopped.
   */
  stopTrainingJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Stops a transform job. When Amazon SageMaker receives a StopTransformJob request, the status of the job changes to Stopping. After Amazon SageMaker stops the job, the status is set to Stopped. When you stop a transform job before it is completed, Amazon SageMaker doesn't store the job's output in Amazon S3.
   */
  stopTransformJob(params: SageMaker.Types.StopTransformJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Stops a transform job. When Amazon SageMaker receives a StopTransformJob request, the status of the job changes to Stopping. After Amazon SageMaker stops the job, the status is set to Stopped. When you stop a transform job before it is completed, Amazon SageMaker doesn't store the job's output in Amazon S3.
   */
  stopTransformJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
  /**
   * Updates the specified Git repository with the specified values.
   */
  updateCodeRepository(params: SageMaker.Types.UpdateCodeRepositoryInput, callback?: (err: AWSError, data: SageMaker.Types.UpdateCodeRepositoryOutput) => void): Request<SageMaker.Types.UpdateCodeRepositoryOutput, AWSError>;
  /**
   * Updates the specified Git repository with the specified values.
   */
  updateCodeRepository(callback?: (err: AWSError, data: SageMaker.Types.UpdateCodeRepositoryOutput) => void): Request<SageMaker.Types.UpdateCodeRepositoryOutput, AWSError>;
  /**
   * Updates the default settings for new user profiles in the domain.
   */
  updateDomain(params: SageMaker.Types.UpdateDomainRequest, callback?: (err: AWSError, data: SageMaker.Types.UpdateDomainResponse) => void): Request<SageMaker.Types.UpdateDomainResponse, AWSError>;
  /**
   * Updates the default settings for new user profiles in the domain.
   */
  updateDomain(callback?: (err: AWSError, data: SageMaker.Types.UpdateDomainResponse) => void): Request<SageMaker.Types.UpdateDomainResponse, AWSError>;
  /**
   * Deploys the new EndpointConfig specified in the request, switches to using newly created endpoint, and then deletes resources provisioned for the endpoint using the previous EndpointConfig (there is no availability loss).  When Amazon SageMaker receives the request, it sets the endpoint status to Updating. After updating the endpoint, it sets the status to InService. To check the status of an endpoint, use the DescribeEndpoint API.   You must not delete an EndpointConfig in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To update an endpoint, you must create a new EndpointConfig. If you delete the EndpointConfig of an endpoint that is active or being created or updated you may lose visibility into the instance type the endpoint is using. The endpoint must be deleted in order to stop incurring charges. 
   */
  updateEndpoint(params: SageMaker.Types.UpdateEndpointInput, callback?: (err: AWSError, data: SageMaker.Types.UpdateEndpointOutput) => void): Request<SageMaker.Types.UpdateEndpointOutput, AWSError>;
  /**
   * Deploys the new EndpointConfig specified in the request, switches to using newly created endpoint, and then deletes resources provisioned for the endpoint using the previous EndpointConfig (there is no availability loss).  When Amazon SageMaker receives the request, it sets the endpoint status to Updating. After updating the endpoint, it sets the status to InService. To check the status of an endpoint, use the DescribeEndpoint API.   You must not delete an EndpointConfig in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To update an endpoint, you must create a new EndpointConfig. If you delete the EndpointConfig of an endpoint that is active or being created or updated you may lose visibility into the instance type the endpoint is using. The endpoint must be deleted in order to stop incurring charges. 
   */
  updateEndpoint(callback?: (err: AWSError, data: SageMaker.Types.UpdateEndpointOutput) => void): Request<SageMaker.Types.UpdateEndpointOutput, AWSError>;
  /**
   * Updates variant weight of one or more variants associated with an existing endpoint, or capacity of one variant associated with an existing endpoint. When it receives the request, Amazon SageMaker sets the endpoint status to Updating. After updating the endpoint, it sets the status to InService. To check the status of an endpoint, use the DescribeEndpoint API. 
   */
  updateEndpointWeightsAndCapacities(params: SageMaker.Types.UpdateEndpointWeightsAndCapacitiesInput, callback?: (err: AWSError, data: SageMaker.Types.UpdateEndpointWeightsAndCapacitiesOutput) => void): Request<SageMaker.Types.UpdateEndpointWeightsAndCapacitiesOutput, AWSError>;
  /**
   * Updates variant weight of one or more variants associated with an existing endpoint, or capacity of one variant associated with an existing endpoint. When it receives the request, Amazon SageMaker sets the endpoint status to Updating. After updating the endpoint, it sets the status to InService. To check the status of an endpoint, use the DescribeEndpoint API. 
   */
  updateEndpointWeightsAndCapacities(callback?: (err: AWSError, data: SageMaker.Types.UpdateEndpointWeightsAndCapacitiesOutput) => void): Request<SageMaker.Types.UpdateEndpointWeightsAndCapacitiesOutput, AWSError>;
  /**
   * Adds, updates, or removes the description of an experiment. Updates the display name of an experiment.
   */
  updateExperiment(params: SageMaker.Types.UpdateExperimentRequest, callback?: (err: AWSError, data: SageMaker.Types.UpdateExperimentResponse) => void): Request<SageMaker.Types.UpdateExperimentResponse, AWSError>;
  /**
   * Adds, updates, or removes the description of an experiment. Updates the display name of an experiment.
   */
  updateExperiment(callback?: (err: AWSError, data: SageMaker.Types.UpdateExperimentResponse) => void): Request<SageMaker.Types.UpdateExperimentResponse, AWSError>;
  /**
   * Updates a previously created schedule.
   */
  updateMonitoringSchedule(params: SageMaker.Types.UpdateMonitoringScheduleRequest, callback?: (err: AWSError, data: SageMaker.Types.UpdateMonitoringScheduleResponse) => void): Request<SageMaker.Types.UpdateMonitoringScheduleResponse, AWSError>;
  /**
   * Updates a previously created schedule.
   */
  updateMonitoringSchedule(callback?: (err: AWSError, data: SageMaker.Types.UpdateMonitoringScheduleResponse) => void): Request<SageMaker.Types.UpdateMonitoringScheduleResponse, AWSError>;
  /**
   * Updates a notebook instance. NotebookInstance updates include upgrading or downgrading the ML compute instance used for your notebook instance to accommodate changes in your workload requirements.
   */
  updateNotebookInstance(params: SageMaker.Types.UpdateNotebookInstanceInput, callback?: (err: AWSError, data: SageMaker.Types.UpdateNotebookInstanceOutput) => void): Request<SageMaker.Types.UpdateNotebookInstanceOutput, AWSError>;
  /**
   * Updates a notebook instance. NotebookInstance updates include upgrading or downgrading the ML compute instance used for your notebook instance to accommodate changes in your workload requirements.
   */
  updateNotebookInstance(callback?: (err: AWSError, data: SageMaker.Types.UpdateNotebookInstanceOutput) => void): Request<SageMaker.Types.UpdateNotebookInstanceOutput, AWSError>;
  /**
   * Updates a notebook instance lifecycle configuration created with the CreateNotebookInstanceLifecycleConfig API.
   */
  updateNotebookInstanceLifecycleConfig(params: SageMaker.Types.UpdateNotebookInstanceLifecycleConfigInput, callback?: (err: AWSError, data: SageMaker.Types.UpdateNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.UpdateNotebookInstanceLifecycleConfigOutput, AWSError>;
  /**
   * Updates a notebook instance lifecycle configuration created with the CreateNotebookInstanceLifecycleConfig API.
   */
  updateNotebookInstanceLifecycleConfig(callback?: (err: AWSError, data: SageMaker.Types.UpdateNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.UpdateNotebookInstanceLifecycleConfigOutput, AWSError>;
  /**
   * Updates the display name of a trial.
   */
  updateTrial(params: SageMaker.Types.UpdateTrialRequest, callback?: (err: AWSError, data: SageMaker.Types.UpdateTrialResponse) => void): Request<SageMaker.Types.UpdateTrialResponse, AWSError>;
  /**
   * Updates the display name of a trial.
   */
  updateTrial(callback?: (err: AWSError, data: SageMaker.Types.UpdateTrialResponse) => void): Request<SageMaker.Types.UpdateTrialResponse, AWSError>;
  /**
   * Updates one or more properties of a trial component.
   */
  updateTrialComponent(params: SageMaker.Types.UpdateTrialComponentRequest, callback?: (err: AWSError, data: SageMaker.Types.UpdateTrialComponentResponse) => void): Request<SageMaker.Types.UpdateTrialComponentResponse, AWSError>;
  /**
   * Updates one or more properties of a trial component.
   */
  updateTrialComponent(callback?: (err: AWSError, data: SageMaker.Types.UpdateTrialComponentResponse) => void): Request<SageMaker.Types.UpdateTrialComponentResponse, AWSError>;
  /**
   * Updates a user profile.
   */
  updateUserProfile(params: SageMaker.Types.UpdateUserProfileRequest, callback?: (err: AWSError, data: SageMaker.Types.UpdateUserProfileResponse) => void): Request<SageMaker.Types.UpdateUserProfileResponse, AWSError>;
  /**
   * Updates a user profile.
   */
  updateUserProfile(callback?: (err: AWSError, data: SageMaker.Types.UpdateUserProfileResponse) => void): Request<SageMaker.Types.UpdateUserProfileResponse, AWSError>;
  /**
   * Use this operation to update your workforce. You can use this operation to require that workers use specific IP addresses to work on tasks and to update your OpenID Connect (OIDC) Identity Provider (IdP) workforce configuration.  Use SourceIpConfig to restrict worker access to tasks to a specific range of IP addresses. You specify allowed IP addresses by creating a list of up to ten CIDRs. By default, a workforce isn't restricted to specific IP addresses. If you specify a range of IP addresses, workers who attempt to access tasks using any IP address outside the specified range are denied and get a Not Found error message on the worker portal. Use OidcConfig to update the configuration of a workforce created using your own OIDC IdP.   You can only update your OIDC IdP configuration when there are no work teams associated with your workforce. You can delete work teams using the operation.  After restricting access to a range of IP addresses or updating your OIDC IdP configuration with this operation, you can view details about your update workforce using the operation.  This operation only applies to private workforces. 
   */
  updateWorkforce(params: SageMaker.Types.UpdateWorkforceRequest, callback?: (err: AWSError, data: SageMaker.Types.UpdateWorkforceResponse) => void): Request<SageMaker.Types.UpdateWorkforceResponse, AWSError>;
  /**
   * Use this operation to update your workforce. You can use this operation to require that workers use specific IP addresses to work on tasks and to update your OpenID Connect (OIDC) Identity Provider (IdP) workforce configuration.  Use SourceIpConfig to restrict worker access to tasks to a specific range of IP addresses. You specify allowed IP addresses by creating a list of up to ten CIDRs. By default, a workforce isn't restricted to specific IP addresses. If you specify a range of IP addresses, workers who attempt to access tasks using any IP address outside the specified range are denied and get a Not Found error message on the worker portal. Use OidcConfig to update the configuration of a workforce created using your own OIDC IdP.   You can only update your OIDC IdP configuration when there are no work teams associated with your workforce. You can delete work teams using the operation.  After restricting access to a range of IP addresses or updating your OIDC IdP configuration with this operation, you can view details about your update workforce using the operation.  This operation only applies to private workforces. 
   */
  updateWorkforce(callback?: (err: AWSError, data: SageMaker.Types.UpdateWorkforceResponse) => void): Request<SageMaker.Types.UpdateWorkforceResponse, AWSError>;
  /**
   * Updates an existing work team with new member definitions or description.
   */
  updateWorkteam(params: SageMaker.Types.UpdateWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.UpdateWorkteamResponse) => void): Request<SageMaker.Types.UpdateWorkteamResponse, AWSError>;
  /**
   * Updates an existing work team with new member definitions or description.
   */
  updateWorkteam(callback?: (err: AWSError, data: SageMaker.Types.UpdateWorkteamResponse) => void): Request<SageMaker.Types.UpdateWorkteamResponse, AWSError>;
  /**
   * Waits for the notebookInstanceInService state by periodically calling the underlying SageMaker.describeNotebookInstanceoperation every 30 seconds (at most 60 times).
   */
  waitFor(state: "notebookInstanceInService", params: SageMaker.Types.DescribeNotebookInstanceInput & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
  /**
   * Waits for the notebookInstanceInService state by periodically calling the underlying SageMaker.describeNotebookInstanceoperation every 30 seconds (at most 60 times).
   */
  waitFor(state: "notebookInstanceInService", callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
  /**
   * Waits for the notebookInstanceStopped state by periodically calling the underlying SageMaker.describeNotebookInstanceoperation every 30 seconds (at most 60 times).
   */
  waitFor(state: "notebookInstanceStopped", params: SageMaker.Types.DescribeNotebookInstanceInput & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
  /**
   * Waits for the notebookInstanceStopped state by periodically calling the underlying SageMaker.describeNotebookInstanceoperation every 30 seconds (at most 60 times).
   */
  waitFor(state: "notebookInstanceStopped", callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
  /**
   * Waits for the notebookInstanceDeleted state by periodically calling the underlying SageMaker.describeNotebookInstanceoperation every 30 seconds (at most 60 times).
   */
  waitFor(state: "notebookInstanceDeleted", params: SageMaker.Types.DescribeNotebookInstanceInput & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
  /**
   * Waits for the notebookInstanceDeleted state by periodically calling the underlying SageMaker.describeNotebookInstanceoperation every 30 seconds (at most 60 times).
   */
  waitFor(state: "notebookInstanceDeleted", callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceOutput, AWSError>;
  /**
   * Waits for the trainingJobCompletedOrStopped state by periodically calling the underlying SageMaker.describeTrainingJoboperation every 120 seconds (at most 180 times).
   */
  waitFor(state: "trainingJobCompletedOrStopped", params: SageMaker.Types.DescribeTrainingJobRequest & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeTrainingJobResponse) => void): Request<SageMaker.Types.DescribeTrainingJobResponse, AWSError>;
  /**
   * Waits for the trainingJobCompletedOrStopped state by periodically calling the underlying SageMaker.describeTrainingJoboperation every 120 seconds (at most 180 times).
   */
  waitFor(state: "trainingJobCompletedOrStopped", callback?: (err: AWSError, data: SageMaker.Types.DescribeTrainingJobResponse) => void): Request<SageMaker.Types.DescribeTrainingJobResponse, AWSError>;
  /**
   * Waits for the endpointInService state by periodically calling the underlying SageMaker.describeEndpointoperation every 30 seconds (at most 120 times).
   */
  waitFor(state: "endpointInService", params: SageMaker.Types.DescribeEndpointInput & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointOutput) => void): Request<SageMaker.Types.DescribeEndpointOutput, AWSError>;
  /**
   * Waits for the endpointInService state by periodically calling the underlying SageMaker.describeEndpointoperation every 30 seconds (at most 120 times).
   */
  waitFor(state: "endpointInService", callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointOutput) => void): Request<SageMaker.Types.DescribeEndpointOutput, AWSError>;
  /**
   * Waits for the endpointDeleted state by periodically calling the underlying SageMaker.describeEndpointoperation every 30 seconds (at most 60 times).
   */
  waitFor(state: "endpointDeleted", params: SageMaker.Types.DescribeEndpointInput & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointOutput) => void): Request<SageMaker.Types.DescribeEndpointOutput, AWSError>;
  /**
   * Waits for the endpointDeleted state by periodically calling the underlying SageMaker.describeEndpointoperation every 30 seconds (at most 60 times).
   */
  waitFor(state: "endpointDeleted", callback?: (err: AWSError, data: SageMaker.Types.DescribeEndpointOutput) => void): Request<SageMaker.Types.DescribeEndpointOutput, AWSError>;
  /**
   * Waits for the transformJobCompletedOrStopped state by periodically calling the underlying SageMaker.describeTransformJoboperation every 60 seconds (at most 60 times).
   */
  waitFor(state: "transformJobCompletedOrStopped", params: SageMaker.Types.DescribeTransformJobRequest & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeTransformJobResponse) => void): Request<SageMaker.Types.DescribeTransformJobResponse, AWSError>;
  /**
   * Waits for the transformJobCompletedOrStopped state by periodically calling the underlying SageMaker.describeTransformJoboperation every 60 seconds (at most 60 times).
   */
  waitFor(state: "transformJobCompletedOrStopped", callback?: (err: AWSError, data: SageMaker.Types.DescribeTransformJobResponse) => void): Request<SageMaker.Types.DescribeTransformJobResponse, AWSError>;
  /**
   * Waits for the processingJobCompletedOrStopped state by periodically calling the underlying SageMaker.describeProcessingJoboperation every 60 seconds (at most 60 times).
   */
  waitFor(state: "processingJobCompletedOrStopped", params: SageMaker.Types.DescribeProcessingJobRequest & {$waiter?: WaiterConfiguration}, callback?: (err: AWSError, data: SageMaker.Types.DescribeProcessingJobResponse) => void): Request<SageMaker.Types.DescribeProcessingJobResponse, AWSError>;
  /**
   * Waits for the processingJobCompletedOrStopped state by periodically calling the underlying SageMaker.describeProcessingJoboperation every 60 seconds (at most 60 times).
   */
  waitFor(state: "processingJobCompletedOrStopped", callback?: (err: AWSError, data: SageMaker.Types.DescribeProcessingJobResponse) => void): Request<SageMaker.Types.DescribeProcessingJobResponse, AWSError>;
}
declare namespace SageMaker {
  export type Accept = string;
  export type AccountId = string;
  export interface AddTagsInput {
    /**
     * The Amazon Resource Name (ARN) of the resource that you want to tag.
     */
    ResourceArn: ResourceArn;
    /**
     * An array of Tag objects. Each tag is a key-value pair. Only the key parameter is required. If you don't specify a value, Amazon SageMaker sets the value to an empty string. 
     */
    Tags: TagList;
  }
  export interface AddTagsOutput {
    /**
     * A list of tags associated with the Amazon SageMaker resource.
     */
    Tags?: TagList;
  }
  export type AdditionalCodeRepositoryNamesOrUrls = CodeRepositoryNameOrUrl[];
  export type AlgorithmArn = string;
  export type AlgorithmImage = string;
  export type AlgorithmSortBy = "Name"|"CreationTime"|string;
  export interface AlgorithmSpecification {
    /**
     * The registry path of the Docker image that contains the training algorithm. For information about docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
     */
    TrainingImage?: AlgorithmImage;
    /**
     * The name of the algorithm resource to use for the training job. This must be an algorithm resource that you created or subscribe to on AWS Marketplace. If you specify a value for this parameter, you can't specify a value for TrainingImage.
     */
    AlgorithmName?: ArnOrName;
    /**
     * The input mode that the algorithm supports. For the input modes that Amazon SageMaker algorithms support, see Algorithms. If an algorithm supports the File input mode, Amazon SageMaker downloads the training data from S3 to the provisioned ML storage Volume, and mounts the directory to docker volume for training container. If an algorithm supports the Pipe input mode, Amazon SageMaker streams data directly from S3 to the container.   In File mode, make sure you provision ML storage volume with sufficient capacity to accommodate the data download from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container use ML storage volume to also store intermediate information, if any.   For distributed algorithms using File mode, training data is distributed uniformly, and your training duration is predictable if the input data objects size is approximately same. Amazon SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed where one host in a training cluster is overloaded, thus becoming bottleneck in training. 
     */
    TrainingInputMode: TrainingInputMode;
    /**
     * A list of metric definition objects. Each object specifies the metric name and regular expressions used to parse algorithm logs. Amazon SageMaker publishes each metric to Amazon CloudWatch.
     */
    MetricDefinitions?: MetricDefinitionList;
    /**
     * To generate and save time-series metrics during training, set to true. The default is false and time-series metrics aren't generated except in the following cases:   You use one of the Amazon SageMaker built-in algorithms   You use one of the following Prebuilt Amazon SageMaker Docker Images:   Tensorflow (version &gt;= 1.15)   MXNet (version &gt;= 1.6)   PyTorch (version &gt;= 1.3)     You specify at least one MetricDefinition   
     */
    EnableSageMakerMetricsTimeSeries?: Boolean;
  }
  export type AlgorithmStatus = "Pending"|"InProgress"|"Completed"|"Failed"|"Deleting"|string;
  export interface AlgorithmStatusDetails {
    /**
     * The status of algorithm validation.
     */
    ValidationStatuses?: AlgorithmStatusItemList;
    /**
     * The status of the scan of the algorithm's Docker image container.
     */
    ImageScanStatuses?: AlgorithmStatusItemList;
  }
  export interface AlgorithmStatusItem {
    /**
     * The name of the algorithm for which the overall status is being reported.
     */
    Name: EntityName;
    /**
     * The current status.
     */
    Status: DetailedAlgorithmStatus;
    /**
     * if the overall status is Failed, the reason for the failure.
     */
    FailureReason?: String;
  }
  export type AlgorithmStatusItemList = AlgorithmStatusItem[];
  export interface AlgorithmSummary {
    /**
     * The name of the algorithm that is described by the summary.
     */
    AlgorithmName: EntityName;
    /**
     * The Amazon Resource Name (ARN) of the algorithm.
     */
    AlgorithmArn: AlgorithmArn;
    /**
     * A brief description of the algorithm.
     */
    AlgorithmDescription?: EntityDescription;
    /**
     * A timestamp that shows when the algorithm was created.
     */
    CreationTime: CreationTime;
    /**
     * The overall status of the algorithm.
     */
    AlgorithmStatus: AlgorithmStatus;
  }
  export type AlgorithmSummaryList = AlgorithmSummary[];
  export interface AlgorithmValidationProfile {
    /**
     * The name of the profile for the algorithm. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
     */
    ProfileName: EntityName;
    /**
     * The TrainingJobDefinition object that describes the training job that Amazon SageMaker runs to validate your algorithm.
     */
    TrainingJobDefinition: TrainingJobDefinition;
    /**
     * The TransformJobDefinition object that describes the transform job that Amazon SageMaker runs to validate your algorithm.
     */
    TransformJobDefinition?: TransformJobDefinition;
  }
  export type AlgorithmValidationProfiles = AlgorithmValidationProfile[];
  export interface AlgorithmValidationSpecification {
    /**
     * The IAM roles that Amazon SageMaker uses to run the training jobs.
     */
    ValidationRole: RoleArn;
    /**
     * An array of AlgorithmValidationProfile objects, each of which specifies a training job and batch transform job that Amazon SageMaker runs to validate your algorithm.
     */
    ValidationProfiles: AlgorithmValidationProfiles;
  }
  export interface AnnotationConsolidationConfig {
    /**
     * The Amazon Resource Name (ARN) of a Lambda function implements the logic for annotation consolidation and to process output data. This parameter is required for all labeling jobs. For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for AnnotationConsolidationLambdaArn. For custom labeling workflows, see Post-annotation Lambda.   Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes.    arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBox   arn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBox   arn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBox   arn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBox   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBox   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBox   arn:aws:lambda:ap-south-1:565803892007:function:ACS-BoundingBox   arn:aws:lambda:eu-central-1:203001061592:function:ACS-BoundingBox   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-BoundingBox   arn:aws:lambda:eu-west-2:487402164563:function:ACS-BoundingBox   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-BoundingBox   arn:aws:lambda:ca-central-1:918755190332:function:ACS-BoundingBox     Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers.    arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClass   arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClass   arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClass   arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClass   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClass   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClass   arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClass   arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClass   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClass   arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClass   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClass   arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClass     Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers.    arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClassMultiLabel   arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClassMultiLabel   arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClassMultiLabel   arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClassMultiLabel   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClassMultiLabel   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClassMultiLabel   arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClassMultiLabel   arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClassMultiLabel   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClassMultiLabel   arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClassMultiLabel   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClassMultiLabel   arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClassMultiLabel     Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label.    arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentation   arn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentation   arn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentation   arn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentation   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-SemanticSegmentation   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-SemanticSegmentation   arn:aws:lambda:ap-south-1:565803892007:function:ACS-SemanticSegmentation   arn:aws:lambda:eu-central-1:203001061592:function:ACS-SemanticSegmentation   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-SemanticSegmentation   arn:aws:lambda:eu-west-2:487402164563:function:ACS-SemanticSegmentation   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-SemanticSegmentation   arn:aws:lambda:ca-central-1:918755190332:function:ACS-SemanticSegmentation     Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers.    arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass   arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass   arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClass   arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClass   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClass   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass   arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClass   arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClass   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClass   arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClass   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClass   arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClass     Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers.    arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClassMultiLabel   arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClassMultiLabel   arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClassMultiLabel   arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClassMultiLabel   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClassMultiLabel   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClassMultiLabel   arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClassMultiLabel   arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClassMultiLabel   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClassMultiLabel   arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClassMultiLabel   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClassMultiLabel   arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClassMultiLabel     Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label.    arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition   arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition   arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition   arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition   arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition   arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition   arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition   arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition     Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label.    arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition   arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition   arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition   arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition   arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition   arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition   arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition   arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition     Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video.    arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoMultiClass   arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoMultiClass   arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoMultiClass   arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoMultiClass   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoMultiClass   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoMultiClass   arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoMultiClass   arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoMultiClass   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoMultiClass   arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoMultiClass   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoMultiClass   arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoMultiClass     Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians.    arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectDetection   arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectDetection   arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectDetection   arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectDetection   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectDetection   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectDetection   arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectDetection   arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectDetection   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectDetection   arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectDetection   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectDetection   arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectDetection     Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians.     arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectTracking   arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectTracking   arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectTracking   arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectTracking   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectTracking   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectTracking   arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectTracking   arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectTracking   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectTracking   arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectTracking   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectTracking   arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectTracking     3D point cloud object detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians.    arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectDetection   arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectDetection   arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectDetection   arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectDetection   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectDetection   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectDetection   arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectDetection   arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectDetection   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectDetection   arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectDetection   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectDetection   arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectDetection     3D point cloud object tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames.     arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectTracking   arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectTracking   arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectTracking   arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectTracking   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectTracking   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectTracking   arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectTracking   arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectTracking   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectTracking   arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectTracking   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectTracking   arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectTracking     3D point cloud semantic segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify.    arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation   arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudSemanticSegmentation   arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudSemanticSegmentation   arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudSemanticSegmentation   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudSemanticSegmentation   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudSemanticSegmentation   arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudSemanticSegmentation   arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudSemanticSegmentation   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudSemanticSegmentation   arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudSemanticSegmentation   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudSemanticSegmentation   arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudSemanticSegmentation     Use the following ARNs for Label Verification and Adjustment Jobs  Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels .  Semantic segmentation adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label.    arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation   arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation   arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation   arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation   arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation   arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation   arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation   arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation     Semantic segmentation verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers.    arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationSemanticSegmentation   arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationSemanticSegmentation   arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationSemanticSegmentation   arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationSemanticSegmentation   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationSemanticSegmentation   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationSemanticSegmentation   arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationSemanticSegmentation   arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationSemanticSegmentation   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationSemanticSegmentation   arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationSemanticSegmentation   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationSemanticSegmentation   arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationSemanticSegmentation     Bounding box verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers.    arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox   arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox   arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox   arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox   arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox   arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox   arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox   arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox     Bounding box adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations.    arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentBoundingBox   arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentBoundingBox   arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentBoundingBox   arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentBoundingBox   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentBoundingBox   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentBoundingBox   arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentBoundingBox   arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentBoundingBox   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentBoundingBox   arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentBoundingBox   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentBoundingBox   arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox     Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames.    arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectDetection   arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectDetection   arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectDetection   arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectDetection   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectDetection   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectDetection   arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectDetection   arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectDetection   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectDetection   arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectDetection   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectDetection   arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectDetection     Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames.    arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectTracking   arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectTracking   arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectTracking   arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectTracking   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectTracking   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectTracking   arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectTracking   arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectTracking   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectTracking   arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectTracking   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectTracking   arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectTracking     3D point cloud object detection adjustment - Use this task type when you want workers to adjust 3D cuboids around objects in a 3D point cloud.     arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetection   arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection   arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection   arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection   arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection   arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection   arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection   arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection     3D point cloud object tracking adjustment - Use this task type when you want workers to adjust 3D cuboids around objects that appear in a sequence of 3D point cloud frames.    arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectTracking   arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectTracking   arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectTracking   arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectTracking   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectTracking   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectTracking   arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectTracking   arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectTracking   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectTracking   arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectTracking   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectTracking   arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectTracking     3D point cloud semantic segmentation adjustment - Use this task type when you want workers to adjust a point-level semantic segmentation masks using a paint tool.    arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudSemanticSegmentation   arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudSemanticSegmentation   arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudSemanticSegmentation   arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudSemanticSegmentation   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudSemanticSegmentation   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudSemanticSegmentation   arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudSemanticSegmentation   arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudSemanticSegmentation   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudSemanticSegmentation   arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudSemanticSegmentation   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudSemanticSegmentation   arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudSemanticSegmentation   
     */
    AnnotationConsolidationLambdaArn: LambdaFunctionArn;
  }
  export type AppArn = string;
  export interface AppDetails {
    /**
     * The domain ID.
     */
    DomainId?: DomainId;
    /**
     * The user profile name.
     */
    UserProfileName?: UserProfileName;
    /**
     * The type of app.
     */
    AppType?: AppType;
    /**
     * The name of the app.
     */
    AppName?: AppName;
    /**
     * The status.
     */
    Status?: AppStatus;
    /**
     * The creation time.
     */
    CreationTime?: CreationTime;
  }
  export type AppInstanceType = "system"|"ml.t3.micro"|"ml.t3.small"|"ml.t3.medium"|"ml.t3.large"|"ml.t3.xlarge"|"ml.t3.2xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.8xlarge"|"ml.m5.12xlarge"|"ml.m5.16xlarge"|"ml.m5.24xlarge"|"ml.c5.large"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.12xlarge"|"ml.c5.18xlarge"|"ml.c5.24xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|string;
  export type AppList = AppDetails[];
  export type AppName = string;
  export type AppNetworkAccessType = "PublicInternetOnly"|"VpcOnly"|string;
  export type AppSortKey = "CreationTime"|string;
  export interface AppSpecification {
    /**
     * The container image to be run by the processing job.
     */
    ImageUri: ImageUri;
    /**
     * The entrypoint for a container used to run a processing job.
     */
    ContainerEntrypoint?: ContainerEntrypoint;
    /**
     * The arguments for a container used to run a processing job.
     */
    ContainerArguments?: ContainerArguments;
  }
  export type AppStatus = "Deleted"|"Deleting"|"Failed"|"InService"|"Pending"|string;
  export type AppType = "JupyterServer"|"KernelGateway"|"TensorBoard"|string;
  export type ArnOrName = string;
  export type AssemblyType = "None"|"Line"|string;
  export interface AssociateTrialComponentRequest {
    /**
     * The name of the component to associated with the trial.
     */
    TrialComponentName: ExperimentEntityName;
    /**
     * The name of the trial to associate with.
     */
    TrialName: ExperimentEntityName;
  }
  export interface AssociateTrialComponentResponse {
    /**
     * The ARN of the trial component.
     */
    TrialComponentArn?: TrialComponentArn;
    /**
     * The Amazon Resource Name (ARN) of the trial.
     */
    TrialArn?: TrialArn;
  }
  export type AttributeName = string;
  export type AttributeNames = AttributeName[];
  export type AuthMode = "SSO"|"IAM"|string;
  export interface AutoMLCandidate {
    /**
     * The candidate name.
     */
    CandidateName: CandidateName;
    FinalAutoMLJobObjectiveMetric?: FinalAutoMLJobObjectiveMetric;
    /**
     * The objective status.
     */
    ObjectiveStatus: ObjectiveStatus;
    /**
     * The candidate's steps.
     */
    CandidateSteps: CandidateSteps;
    /**
     * The candidate's status.
     */
    CandidateStatus: CandidateStatus;
    /**
     * The inference containers.
     */
    InferenceContainers?: AutoMLContainerDefinitions;
    /**
     * The creation time.
     */
    CreationTime: Timestamp;
    /**
     * The end time.
     */
    EndTime?: Timestamp;
    /**
     * The last modified time.
     */
    LastModifiedTime: Timestamp;
    /**
     * The failure reason.
     */
    FailureReason?: AutoMLFailureReason;
  }
  export interface AutoMLCandidateStep {
    /**
     * Whether the Candidate is at the transform, training, or processing step.
     */
    CandidateStepType: CandidateStepType;
    /**
     * The ARN for the Candidate's step.
     */
    CandidateStepArn: CandidateStepArn;
    /**
     * The name for the Candidate's step.
     */
    CandidateStepName: CandidateStepName;
  }
  export type AutoMLCandidates = AutoMLCandidate[];
  export interface AutoMLChannel {
    /**
     * The data source.
     */
    DataSource: AutoMLDataSource;
    /**
     * You can use Gzip or None. The default value is None.
     */
    CompressionType?: CompressionType;
    /**
     * The name of the target variable in supervised learning, a.k.a. 'y'.
     */
    TargetAttributeName: TargetAttributeName;
  }
  export interface AutoMLContainerDefinition {
    /**
     * The ECR path of the container. Refer to ContainerDefinition for more details.
     */
    Image: ContainerImage;
    /**
     * The location of the model artifacts. Refer to ContainerDefinition for more details.
     */
    ModelDataUrl: Url;
    /**
     * Environment variables to set in the container. Refer to ContainerDefinition for more details.
     */
    Environment?: EnvironmentMap;
  }
  export type AutoMLContainerDefinitions = AutoMLContainerDefinition[];
  export interface AutoMLDataSource {
    /**
     * The Amazon S3 location of the input data.  The input data must be in CSV format and contain at least 500 rows. 
     */
    S3DataSource: AutoMLS3DataSource;
  }
  export type AutoMLFailureReason = string;
  export type AutoMLInputDataConfig = AutoMLChannel[];
  export type AutoMLJobArn = string;
  export interface AutoMLJobArtifacts {
    /**
     * The URL to the notebook location.
     */
    CandidateDefinitionNotebookLocation?: CandidateDefinitionNotebookLocation;
    /**
     * The URL to the notebook location.
     */
    DataExplorationNotebookLocation?: DataExplorationNotebookLocation;
  }
  export interface AutoMLJobCompletionCriteria {
    /**
     * The maximum number of times a training job is allowed to run.
     */
    MaxCandidates?: MaxCandidates;
    /**
     * The maximum time, in seconds, a job is allowed to run.
     */
    MaxRuntimePerTrainingJobInSeconds?: MaxRuntimePerTrainingJobInSeconds;
    /**
     * The maximum time, in seconds, an AutoML job is allowed to wait for a trial to complete. It must be equal to or greater than MaxRuntimePerTrainingJobInSeconds.
     */
    MaxAutoMLJobRuntimeInSeconds?: MaxAutoMLJobRuntimeInSeconds;
  }
  export interface AutoMLJobConfig {
    /**
     * How long a job is allowed to run, or how many candidates a job is allowed to generate.
     */
    CompletionCriteria?: AutoMLJobCompletionCriteria;
    /**
     * Security configuration for traffic encryption or Amazon VPC settings.
     */
    SecurityConfig?: AutoMLSecurityConfig;
  }
  export type AutoMLJobName = string;
  export interface AutoMLJobObjective {
    /**
     * The name of the objective metric used to measure the predictive quality of a machine learning system. This metric is optimized during training to provide the best estimate for model parameter values from data. Here are the options:    MSE: The mean squared error (MSE) is the average of the squared differences between the predicted and actual values. It is used for regression. MSE values are always positive, the better a model is at predicting the actual values the smaller the MSE value. When the data contains outliers, they tend to dominate the MSE which might cause subpar prediction performance.    Accuracy: The ratio of the number correctly classified items to the total number (correctly and incorrectly) classified. It is used for binary and multiclass classification. Measures how close the predicted class values are to the actual values. Accuracy values vary between zero and one, one being perfect accuracy and zero perfect inaccuracy.    F1: The F1 score is the harmonic mean of the precision and recall. It is used for binary classification into classes traditionally referred to as positive and negative. Predictions are said to be true when they match their actual (correct) class; false when they do not. Precision is the ratio of the true positive predictions to all positive predictions (including the false positives) in a data set and measures the quality of the prediction when it predicts the positive class. Recall (or sensitivity) is the ratio of the true positive predictions to all actual positive instances and measures how completely a model predicts the actual class members in a data set. The standard F1 score weighs precision and recall equally. But which metric is paramount typically depends on specific aspects of a problem. F1 scores vary between zero and one, one being the best possible performance and zero the worst.    AUC: The area under the curve (AUC) metric is used to compare and evaluate binary classification by algorithms such as logistic regression that return probabilities. A threshold is needed to map the probabilities into classifications. The relevant curve is the receiver operating characteristic curve that plots the true positive rate (TPR) of predictions (or recall) against the false positive rate (FPR) as a function of the threshold value, above which a prediction is considered positive. Increasing the threshold results in fewer false positives but more false negatives. AUC is the area under this receiver operating characteristic curve and so provides an aggregated measure of the model performance across all possible classification thresholds. The AUC score can also be interpreted as the probability that a randomly selected positive data point is more likely to be predicted positive than a randomly selected negative example. AUC scores vary between zero and one, one being perfect accuracy and one half not better than a random classifier. Values less that one half predict worse than a random predictor and such consistently bad predictors can be inverted to obtain better than random predictors.    F1macro: The F1macro score applies F1 scoring to multiclass classification. In this context, you have multiple classes to predict. You just calculate the precision and recall for each class as you did for the positive class in binary classification. Then used these values to calculate the F1 score for each class and average them to obtain the F1macro score. F1macro scores vary between zero and one, one being the best possible performance and zero the worst.   If you do not specify a metric explicitly, the default behavior is to automatically use:    MSE: for regression.    F1: for binary classification    Accuracy: for multiclass classification.  
     */
    MetricName: AutoMLMetricEnum;
  }
  export type AutoMLJobObjectiveType = "Maximize"|"Minimize"|string;
  export type AutoMLJobSecondaryStatus = "Starting"|"AnalyzingData"|"FeatureEngineering"|"ModelTuning"|"MaxCandidatesReached"|"Failed"|"Stopped"|"MaxAutoMLJobRuntimeReached"|"Stopping"|"CandidateDefinitionsGenerated"|string;
  export type AutoMLJobStatus = "Completed"|"InProgress"|"Failed"|"Stopped"|"Stopping"|string;
  export type AutoMLJobSummaries = AutoMLJobSummary[];
  export interface AutoMLJobSummary {
    /**
     * The name of the object you are requesting.
     */
    AutoMLJobName: AutoMLJobName;
    /**
     * The ARN of the job.
     */
    AutoMLJobArn: AutoMLJobArn;
    /**
     * The job's status.
     */
    AutoMLJobStatus: AutoMLJobStatus;
    /**
     * The job's secondary status.
     */
    AutoMLJobSecondaryStatus: AutoMLJobSecondaryStatus;
    /**
     * When the job was created.
     */
    CreationTime: Timestamp;
    /**
     * The end time of an AutoML job.
     */
    EndTime?: Timestamp;
    /**
     * When the job was last modified.
     */
    LastModifiedTime: Timestamp;
    /**
     * The failure reason of a job.
     */
    FailureReason?: AutoMLFailureReason;
  }
  export type AutoMLMaxResults = number;
  export type AutoMLMetricEnum = "Accuracy"|"MSE"|"F1"|"F1macro"|"AUC"|string;
  export type AutoMLNameContains = string;
  export interface AutoMLOutputDataConfig {
    /**
     * The AWS KMS encryption key ID.
     */
    KmsKeyId?: KmsKeyId;
    /**
     * The Amazon S3 output path. Must be 128 characters or less.
     */
    S3OutputPath: S3Uri;
  }
  export interface AutoMLS3DataSource {
    /**
     * The data type.
     */
    S3DataType: AutoMLS3DataType;
    /**
     * The URL to the Amazon S3 data source.
     */
    S3Uri: S3Uri;
  }
  export type AutoMLS3DataType = "ManifestFile"|"S3Prefix"|string;
  export interface AutoMLSecurityConfig {
    /**
     * The key used to encrypt stored data.
     */
    VolumeKmsKeyId?: KmsKeyId;
    /**
     * Whether to use traffic encryption between the container layers.
     */
    EnableInterContainerTrafficEncryption?: Boolean;
    /**
     * VPC configuration.
     */
    VpcConfig?: VpcConfig;
  }
  export type AutoMLSortBy = "Name"|"CreationTime"|"Status"|string;
  export type AutoMLSortOrder = "Ascending"|"Descending"|string;
  export type AwsManagedHumanLoopRequestSource = "AWS/Rekognition/DetectModerationLabels/Image/V3"|"AWS/Textract/AnalyzeDocument/Forms/V1"|string;
  export type BatchStrategy = "MultiRecord"|"SingleRecord"|string;
  export type BillableTimeInSeconds = number;
  export type Boolean = boolean;
  export type BooleanOperator = "And"|"Or"|string;
  export type Branch = string;
  export type CandidateDefinitionNotebookLocation = string;
  export type CandidateName = string;
  export type CandidateSortBy = "CreationTime"|"Status"|"FinalObjectiveMetricValue"|string;
  export type CandidateStatus = "Completed"|"InProgress"|"Failed"|"Stopped"|"Stopping"|string;
  export type CandidateStepArn = string;
  export type CandidateStepName = string;
  export type CandidateStepType = "AWS::SageMaker::TrainingJob"|"AWS::SageMaker::TransformJob"|"AWS::SageMaker::ProcessingJob"|string;
  export type CandidateSteps = AutoMLCandidateStep[];
  export interface CaptureContentTypeHeader {
    /**
     * 
     */
    CsvContentTypes?: CsvContentTypes;
    /**
     * 
     */
    JsonContentTypes?: JsonContentTypes;
  }
  export type CaptureMode = "Input"|"Output"|string;
  export interface CaptureOption {
    /**
     * 
     */
    CaptureMode: CaptureMode;
  }
  export type CaptureOptionList = CaptureOption[];
  export type CaptureStatus = "Started"|"Stopped"|string;
  export interface CategoricalParameterRange {
    /**
     * The name of the categorical hyperparameter to tune.
     */
    Name: ParameterKey;
    /**
     * A list of the categories for the hyperparameter.
     */
    Values: ParameterValues;
  }
  export interface CategoricalParameterRangeSpecification {
    /**
     * The allowed categories for the hyperparameter.
     */
    Values: ParameterValues;
  }
  export type CategoricalParameterRanges = CategoricalParameterRange[];
  export type Cents = number;
  export type CertifyForMarketplace = boolean;
  export interface Channel {
    /**
     * The name of the channel. 
     */
    ChannelName: ChannelName;
    /**
     * The location of the channel data.
     */
    DataSource: DataSource;
    /**
     * The MIME type of the data.
     */
    ContentType?: ContentType;
    /**
     * If training data is compressed, the compression type. The default value is None. CompressionType is used only in Pipe input mode. In File mode, leave this field unset or set it to None.
     */
    CompressionType?: CompressionType;
    /**
     *  Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, Amazon SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.  In File mode, leave this field unset or set it to None.
     */
    RecordWrapperType?: RecordWrapper;
    /**
     * (Optional) The input mode to use for the data channel in a training job. If you don't set a value for InputMode, Amazon SageMaker uses the value set for TrainingInputMode. Use this parameter to override the TrainingInputMode setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use File input mode. To stream data directly from Amazon S3 to the container, choose Pipe input mode. To use a model for incremental training, choose File input model.
     */
    InputMode?: TrainingInputMode;
    /**
     * A configuration for a shuffle option for input data in a channel. If you use S3Prefix for S3DataType, this shuffles the results of the S3 key prefix matches. If you use ManifestFile, the order of the S3 object references in the ManifestFile is shuffled. If you use AugmentedManifestFile, the order of the JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is determined using the Seed value. For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key, the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.
     */
    ShuffleConfig?: ShuffleConfig;
  }
  export type ChannelName = string;
  export interface ChannelSpecification {
    /**
     * The name of the channel.
     */
    Name: ChannelName;
    /**
     * A brief description of the channel.
     */
    Description?: EntityDescription;
    /**
     * Indicates whether the channel is required by the algorithm.
     */
    IsRequired?: Boolean;
    /**
     * The supported MIME types for the data.
     */
    SupportedContentTypes: ContentTypes;
    /**
     * The allowed compression types, if data compression is used.
     */
    SupportedCompressionTypes?: CompressionTypes;
    /**
     * The allowed input mode, either FILE or PIPE. In FILE mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode. In PIPE mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.
     */
    SupportedInputModes: InputModes;
  }
  export type ChannelSpecifications = ChannelSpecification[];
  export interface CheckpointConfig {
    /**
     * Identifies the S3 path where you want Amazon SageMaker to store checkpoints. For example, s3://bucket-name/key-name-prefix.
     */
    S3Uri: S3Uri;
    /**
     * (Optional) The local directory where checkpoints are written. The default directory is /opt/ml/checkpoints/. 
     */
    LocalPath?: DirectoryPath;
  }
  export type Cidr = string;
  export type Cidrs = Cidr[];
  export type ClientId = string;
  export type ClientSecret = string;
  export type CodeRepositoryArn = string;
  export type CodeRepositoryContains = string;
  export type CodeRepositoryNameContains = string;
  export type CodeRepositoryNameOrUrl = string;
  export type CodeRepositorySortBy = "Name"|"CreationTime"|"LastModifiedTime"|string;
  export type CodeRepositorySortOrder = "Ascending"|"Descending"|string;
  export interface CodeRepositorySummary {
    /**
     * The name of the Git repository.
     */
    CodeRepositoryName: EntityName;
    /**
     * The Amazon Resource Name (ARN) of the Git repository.
     */
    CodeRepositoryArn: CodeRepositoryArn;
    /**
     * The date and time that the Git repository was created.
     */
    CreationTime: CreationTime;
    /**
     * The date and time that the Git repository was last modified.
     */
    LastModifiedTime: LastModifiedTime;
    /**
     * Configuration details for the Git repository, including the URL where it is located and the ARN of the AWS Secrets Manager secret that contains the credentials used to access the repository.
     */
    GitConfig?: GitConfig;
  }
  export type CodeRepositorySummaryList = CodeRepositorySummary[];
  export interface CognitoConfig {
    /**
     * A  user pool is a user directory in Amazon Cognito. With a user pool, your users can sign in to your web or mobile app through Amazon Cognito. Your users can also sign in through social identity providers like Google, Facebook, Amazon, or Apple, and through SAML identity providers.
     */
    UserPool: CognitoUserPool;
    /**
     * The client ID for your Amazon Cognito user pool.
     */
    ClientId: ClientId;
  }
  export interface CognitoMemberDefinition {
    /**
     * An identifier for a user pool. The user pool must be in the same region as the service that you are calling.
     */
    UserPool: CognitoUserPool;
    /**
     * An identifier for a user group.
     */
    UserGroup: CognitoUserGroup;
    /**
     * An identifier for an application client. You must create the app client ID using Amazon Cognito.
     */
    ClientId: ClientId;
  }
  export type CognitoUserGroup = string;
  export type CognitoUserPool = string;
  export interface CollectionConfiguration {
    /**
     * The name of the tensor collection. The name must be unique relative to other rule configuration names.
     */
    CollectionName?: CollectionName;
    /**
     * Parameter values for the tensor collection. The allowed parameters are "name", "include_regex", "reduction_config", "save_config", "tensor_names", and "save_histogram".
     */
    CollectionParameters?: CollectionParameters;
  }
  export type CollectionConfigurations = CollectionConfiguration[];
  export type CollectionName = string;
  export type CollectionParameters = {[key: string]: ConfigValue};
  export type CompilationJobArn = string;
  export type CompilationJobStatus = "INPROGRESS"|"COMPLETED"|"FAILED"|"STARTING"|"STOPPING"|"STOPPED"|string;
  export type CompilationJobSummaries = CompilationJobSummary[];
  export interface CompilationJobSummary {
    /**
     * The name of the model compilation job that you want a summary for.
     */
    CompilationJobName: EntityName;
    /**
     * The Amazon Resource Name (ARN) of the model compilation job.
     */
    CompilationJobArn: CompilationJobArn;
    /**
     * The time when the model compilation job was created.
     */
    CreationTime: CreationTime;
    /**
     * The time when the model compilation job started.
     */
    CompilationStartTime?: Timestamp;
    /**
     * The time when the model compilation job completed.
     */
    CompilationEndTime?: Timestamp;
    /**
     * The type of device that the model will run on after the compilation job has completed.
     */
    CompilationTargetDevice?: TargetDevice;
    /**
     * The type of OS that the model will run on after the compilation job has completed.
     */
    CompilationTargetPlatformOs?: TargetPlatformOs;
    /**
     * The type of architecture that the model will run on after the compilation job has completed.
     */
    CompilationTargetPlatformArch?: TargetPlatformArch;
    /**
     * The type of accelerator that the model will run on after the compilation job has completed.
     */
    CompilationTargetPlatformAccelerator?: TargetPlatformAccelerator;
    /**
     * The time when the model compilation job was last modified.
     */
    LastModifiedTime?: LastModifiedTime;
    /**
     * The status of the model compilation job.
     */
    CompilationJobStatus: CompilationJobStatus;
  }
  export type CompilerOptions = string;
  export type CompressionType = "None"|"Gzip"|string;
  export type CompressionTypes = CompressionType[];
  export type ConfigKey = string;
  export type ConfigValue = string;
  export type ContainerArgument = string;
  export type ContainerArguments = ContainerArgument[];
  export interface ContainerDefinition {
    /**
     * This parameter is ignored for models that contain only a PrimaryContainer. When a ContainerDefinition is part of an inference pipeline, the value of the parameter uniquely identifies the container for the purposes of logging and metrics. For information, see Use Logs and Metrics to Monitor an Inference Pipeline. If you don't specify a value for this parameter for a ContainerDefinition that is part of an inference pipeline, a unique name is automatically assigned based on the position of the ContainerDefinition in the pipeline. If you specify a value for the ContainerHostName for any ContainerDefinition that is part of an inference pipeline, you must specify a value for the ContainerHostName parameter of every ContainerDefinition in that pipeline.
     */
    ContainerHostname?: ContainerHostname;
    /**
     * The path where inference code is stored. This can be either in Amazon EC2 Container Registry or in a Docker registry that is accessible from the same VPC that you configure for your endpoint. If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker, the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker 
     */
    Image?: ContainerImage;
    /**
     * Specifies whether the model container is in Amazon ECR or a private Docker registry accessible from your Amazon Virtual Private Cloud (VPC). For information about storing containers in a private Docker registry, see Use a Private Docker Registry for Real-Time Inference Containers 
     */
    ImageConfig?: ImageConfig;
    /**
     * Whether the container hosts a single model or multiple models.
     */
    Mode?: ContainerMode;
    /**
     * The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The S3 path is required for Amazon SageMaker built-in algorithms, but not if you use your own algorithms. For more information on built-in algorithms, see Common Parameters.   The model artifacts must be in an S3 bucket that is in the same region as the model or endpoint you are creating.  If you provide a value for this parameter, Amazon SageMaker uses AWS Security Token Service to download model artifacts from the S3 path you provide. AWS STS is activated in your IAM user account by default. If you previously deactivated AWS STS for a region, you need to reactivate AWS STS for that region. For more information, see Activating and Deactivating AWS STS in an AWS Region in the AWS Identity and Access Management User Guide.  If you use a built-in algorithm to create a model, Amazon SageMaker requires that you provide a S3 path to the model artifacts in ModelDataUrl. 
     */
    ModelDataUrl?: Url;
    /**
     * The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map. 
     */
    Environment?: EnvironmentMap;
    /**
     * The name or Amazon Resource Name (ARN) of the model package to use to create the model.
     */
    ModelPackageName?: ArnOrName;
  }
  export type ContainerDefinitionList = ContainerDefinition[];
  export type ContainerEntrypoint = ContainerEntrypointString[];
  export type ContainerEntrypointString = string;
  export type ContainerHostname = string;
  export type ContainerImage = string;
  export type ContainerMode = "SingleModel"|"MultiModel"|string;
  export type ContentClassifier = "FreeOfPersonallyIdentifiableInformation"|"FreeOfAdultContent"|string;
  export type ContentClassifiers = ContentClassifier[];
  export type ContentType = string;
  export type ContentTypes = ContentType[];
  export interface ContinuousParameterRange {
    /**
     * The name of the continuous hyperparameter to tune.
     */
    Name: ParameterKey;
    /**
     * The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and MaxValuefor tuning.
     */
    MinValue: ParameterValue;
    /**
     * The maximum value for the hyperparameter. The tuning job uses floating-point values between MinValue value and this value for tuning.
     */
    MaxValue: ParameterValue;
    /**
     * The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:  Auto  Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.  Linear  Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.  Logarithmic  Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. Logarithmic scaling works only for ranges that have only values greater than 0.  ReverseLogarithmic  Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale. Reverse logarithmic scaling works only for ranges that are entirely within the range 0&lt;=x&lt;1.0.  
     */
    ScalingType?: HyperParameterScalingType;
  }
  export interface ContinuousParameterRangeSpecification {
    /**
     * The minimum floating-point value allowed.
     */
    MinValue: ParameterValue;
    /**
     * The maximum floating-point value allowed.
     */
    MaxValue: ParameterValue;
  }
  export type ContinuousParameterRanges = ContinuousParameterRange[];
  export interface CreateAlgorithmInput {
    /**
     * The name of the algorithm.
     */
    AlgorithmName: EntityName;
    /**
     * A description of the algorithm.
     */
    AlgorithmDescription?: EntityDescription;
    /**
     * Specifies details about training jobs run by this algorithm, including the following:   The Amazon ECR path of the container and the version digest of the algorithm.   The hyperparameters that the algorithm supports.   The instance types that the algorithm supports for training.   Whether the algorithm supports distributed training.   The metrics that the algorithm emits to Amazon CloudWatch.   Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs.   The input channels that the algorithm supports for training data. For example, an algorithm might support train, validation, and test channels.  
     */
    TrainingSpecification: TrainingSpecification;
    /**
     * Specifies details about inference jobs that the algorithm runs, including the following:   The Amazon ECR paths of containers that contain the inference code and model artifacts.   The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference.   The input and output content formats that the algorithm supports for inference.  
     */
    InferenceSpecification?: InferenceSpecification;
    /**
     * Specifies configurations for one or more training jobs and that Amazon SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that Amazon SageMaker runs to test the algorithm's inference code.
     */
    ValidationSpecification?: AlgorithmValidationSpecification;
    /**
     * Whether to certify the algorithm so that it can be listed in AWS Marketplace.
     */
    CertifyForMarketplace?: CertifyForMarketplace;
  }
  export interface CreateAlgorithmOutput {
    /**
     * The Amazon Resource Name (ARN) of the new algorithm.
     */
    AlgorithmArn: AlgorithmArn;
  }
  export interface CreateAppRequest {
    /**
     * The domain ID.
     */
    DomainId: DomainId;
    /**
     * The user profile name.
     */
    UserProfileName: UserProfileName;
    /**
     * The type of app.
     */
    AppType: AppType;
    /**
     * The name of the app.
     */
    AppName: AppName;
    /**
     * Each tag consists of a key and an optional value. Tag keys must be unique per resource.
     */
    Tags?: TagList;
    /**
     * The instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
     */
    ResourceSpec?: ResourceSpec;
  }
  export interface CreateAppResponse {
    /**
     * The App's Amazon Resource Name (ARN).
     */
    AppArn?: AppArn;
  }
  export interface CreateAutoMLJobRequest {
    /**
     * Identifies an Autopilot job. Must be unique to your account and is case-insensitive.
     */
    AutoMLJobName: AutoMLJobName;
    /**
     * Similar to InputDataConfig supported by Tuning. Format(s) supported: CSV. Minimum of 500 rows.
     */
    InputDataConfig: AutoMLInputDataConfig;
    /**
     * Similar to OutputDataConfig supported by Tuning. Format(s) supported: CSV.
     */
    OutputDataConfig: AutoMLOutputDataConfig;
    /**
     * Defines the kind of preprocessing and algorithms intended for the candidates. Options include: BinaryClassification, MulticlassClassification, and Regression.
     */
    ProblemType?: ProblemType;
    /**
     * Defines the objective of a an AutoML job. You provide a AutoMLJobObjective$MetricName and Autopilot infers whether to minimize or maximize it. If a metric is not specified, the most commonly used ObjectiveMetric for problem type is automaically selected.
     */
    AutoMLJobObjective?: AutoMLJobObjective;
    /**
     * Contains CompletionCriteria and SecurityConfig.
     */
    AutoMLJobConfig?: AutoMLJobConfig;
    /**
     * The ARN of the role that is used to access the data.
     */
    RoleArn: RoleArn;
    /**
     * Generates possible candidates without training a model. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
     */
    GenerateCandidateDefinitionsOnly?: GenerateCandidateDefinitionsOnly;
    /**
     * Each tag consists of a key and an optional value. Tag keys must be unique per resource.
     */
    Tags?: TagList;
  }
  export interface CreateAutoMLJobResponse {
    /**
     * When a job is created, it is assigned a unique ARN.
     */
    AutoMLJobArn: AutoMLJobArn;
  }
  export interface CreateCodeRepositoryInput {
    /**
     * The name of the Git repository. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
     */
    CodeRepositoryName: EntityName;
    /**
     * Specifies details about the repository, including the URL where the repository is located, the default branch, and credentials to use to access the repository.
     */
    GitConfig: GitConfig;
  }
  export interface CreateCodeRepositoryOutput {
    /**
     * The Amazon Resource Name (ARN) of the new repository.
     */
    CodeRepositoryArn: CodeRepositoryArn;
  }
  export interface CreateCompilationJobRequest {
    /**
     * A name for the model compilation job. The name must be unique within the AWS Region and within your AWS account. 
     */
    CompilationJobName: EntityName;
    /**
     * The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf.  During model compilation, Amazon SageMaker needs your permission to:   Read input data from an S3 bucket   Write model artifacts to an S3 bucket   Write logs to Amazon CloudWatch Logs   Publish metrics to Amazon CloudWatch   You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission. For more information, see Amazon SageMaker Roles. 
     */
    RoleArn: RoleArn;
    /**
     * Provides information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
     */
    InputConfig: InputConfig;
    /**
     * Provides information about the output location for the compiled model and the target device the model runs on.
     */
    OutputConfig: OutputConfig;
    /**
     * Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker ends the compilation job. Use this API to cap model training costs.
     */
    StoppingCondition: StoppingCondition;
  }
  export interface CreateCompilationJobResponse {
    /**
     * If the action is successful, the service sends back an HTTP 200 response. Amazon SageMaker returns the following data in JSON format:    CompilationJobArn: The Amazon Resource Name (ARN) of the compiled job.  
     */
    CompilationJobArn: CompilationJobArn;
  }
  export interface CreateDomainRequest {
    /**
     * A name for the domain.
     */
    DomainName: DomainName;
    /**
     * The mode of authentication that members use to access the domain.
     */
    AuthMode: AuthMode;
    /**
     * The default user settings.
     */
    DefaultUserSettings: UserSettings;
    /**
     * The VPC subnets that Studio uses for communication.
     */
    SubnetIds: Subnets;
    /**
     * The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses for communication.
     */
    VpcId: VpcId;
    /**
     * Tags to associated with the Domain. Each tag consists of a key and an optional value. Tag keys must be unique per resource. Tags are searchable using the Search API.
     */
    Tags?: TagList;
    /**
     * The AWS Key Management Service (KMS) encryption key ID. Encryption with a customer master key (CMK) is not supported.
     */
    HomeEfsFileSystemKmsKeyId?: KmsKeyId;
    /**
     * Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly.    PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker, which allows direct internet access    VpcOnly - All Studio traffic is through the specified VPC and subnets  
     */
    AppNetworkAccessType?: AppNetworkAccessType;
  }
  export interface CreateDomainResponse {
    /**
     * The Amazon Resource Name (ARN) of the created domain.
     */
    DomainArn?: DomainArn;
    /**
     * The URL to the created domain.
     */
    Url?: String1024;
  }
  export interface CreateEndpointConfigInput {
    /**
     * The name of the endpoint configuration. You specify this name in a CreateEndpoint request. 
     */
    EndpointConfigName: EndpointConfigName;
    /**
     * An list of ProductionVariant objects, one for each model that you want to host at this endpoint.
     */
    ProductionVariants: ProductionVariantList;
    DataCaptureConfig?: DataCaptureConfig;
    /**
     * A list of key-value pairs. For more information, see Using Cost Allocation Tags in the  AWS Billing and Cost Management User Guide. 
     */
    Tags?: TagList;
    /**
     * The Amazon Resource Name (ARN) of a AWS Key Management Service key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. The KmsKeyId can be any of the following formats:    Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab    Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab    Alias name: alias/ExampleAlias    Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias    The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint, UpdateEndpoint requests. For more information, refer to the AWS Key Management Service section Using Key Policies in AWS KMS    Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a KmsKeyId when using an instance type with local storage. If any of the models that you specify in the ProductionVariants parameter use nitro-based instances with local storage, do not specify a value for the KmsKeyId parameter. If you specify a value for KmsKeyId when using any nitro-based instances with local storage, the call to CreateEndpointConfig fails. For a list of instance types that support local instance storage, see Instance Store Volumes. For more information about local instance storage encryption, see SSD Instance Store Volumes. 
     */
    KmsKeyId?: KmsKeyId;
  }
  export interface CreateEndpointConfigOutput {
    /**
     * The Amazon Resource Name (ARN) of the endpoint configuration. 
     */
    EndpointConfigArn: EndpointConfigArn;
  }
  export interface CreateEndpointInput {
    /**
     * The name of the endpoint. The name must be unique within an AWS Region in your AWS account.
     */
    EndpointName: EndpointName;
    /**
     * The name of an endpoint configuration. For more information, see CreateEndpointConfig. 
     */
    EndpointConfigName: EndpointConfigName;
    /**
     * An array of key-value pairs. For more information, see Using Cost Allocation Tagsin the AWS Billing and Cost Management User Guide. 
     */
    Tags?: TagList;
  }
  export interface CreateEndpointOutput {
    /**
     * The Amazon Resource Name (ARN) of the endpoint.
     */
    EndpointArn: EndpointArn;
  }
  export interface CreateExperimentRequest {
    /**
     * The name of the experiment. The name must be unique in your AWS account and is not case-sensitive.
     */
    ExperimentName: ExperimentEntityName;
    /**
     * The name of the experiment as displayed. The name doesn't need to be unique. If you don't specify DisplayName, the value in ExperimentName is displayed.
     */
    DisplayName?: ExperimentEntityName;
    /**
     * The description of the experiment.
     */
    Description?: ExperimentDescription;
    /**
     * A list of tags to associate with the experiment. You can use Search API to search on the tags.
     */
    Tags?: TagList;
  }
  export interface CreateExperimentResponse {
    /**
     * The Amazon Resource Name (ARN) of the experiment.
     */
    ExperimentArn?: ExperimentArn;
  }
  export interface CreateFlowDefinitionRequest {
    /**
     * The name of your flow definition.
     */
    FlowDefinitionName: FlowDefinitionName;
    /**
     * Container for configuring the source of human task requests. Use to specify if Amazon Rekognition or Amazon Textract is used as an integration source.
     */
    HumanLoopRequestSource?: HumanLoopRequestSource;
    /**
     * An object containing information about the events that trigger a human workflow.
     */
    HumanLoopActivationConfig?: HumanLoopActivationConfig;
    /**
     * An object containing information about the tasks the human reviewers will perform.
     */
    HumanLoopConfig: HumanLoopConfig;
    /**
     * An object containing information about where the human review results will be uploaded.
     */
    OutputConfig: FlowDefinitionOutputConfig;
    /**
     * The Amazon Resource Name (ARN) of the role needed to call other services on your behalf. For example, arn:aws:iam::1234567890:role/service-role/AmazonSageMaker-ExecutionRole-20180111T151298.
     */
    RoleArn: RoleArn;
    /**
     * An array of key-value pairs that contain metadata to help you categorize and organize a flow definition. Each tag consists of a key and a value, both of which you define.
     */
    Tags?: TagList;
  }
  export interface CreateFlowDefinitionResponse {
    /**
     * The Amazon Resource Name (ARN) of the flow definition you create.
     */
    FlowDefinitionArn: FlowDefinitionArn;
  }
  export interface CreateHumanTaskUiRequest {
    /**
     * The name of the user interface you are creating.
     */
    HumanTaskUiName: HumanTaskUiName;
    UiTemplate: UiTemplate;
    /**
     * An array of key-value pairs that contain metadata to help you categorize and organize a human review workflow user interface. Each tag consists of a key and a value, both of which you define.
     */
    Tags?: TagList;
  }
  export interface CreateHumanTaskUiResponse {
    /**
     * The Amazon Resource Name (ARN) of the human review workflow user interface you create.
     */
    HumanTaskUiArn: HumanTaskUiArn;
  }
  export interface CreateHyperParameterTuningJobRequest {
    /**
     * The name of the tuning job. This name is the prefix for the names of all training jobs that this tuning job launches. The name must be unique within the same AWS account and AWS Region. The name must have { } to { } characters. Valid characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case sensitive.
     */
    HyperParameterTuningJobName: HyperParameterTuningJobName;
    /**
     * The HyperParameterTuningJobConfig object that describes the tuning job, including the search strategy, the objective metric used to evaluate training jobs, ranges of parameters to search, and resource limits for the tuning job. For more information, see How Hyperparameter Tuning Works.
     */
    HyperParameterTuningJobConfig: HyperParameterTuningJobConfig;
    /**
     * The HyperParameterTrainingJobDefinition object that describes the training jobs that this tuning job launches, including static hyperparameters, input data configuration, output data configuration, resource configuration, and stopping condition.
     */
    TrainingJobDefinition?: HyperParameterTrainingJobDefinition;
    /**
     * A list of the HyperParameterTrainingJobDefinition objects launched for this tuning job.
     */
    TrainingJobDefinitions?: HyperParameterTrainingJobDefinitions;
    /**
     * Specifies the configuration for starting the hyperparameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job. All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric. If you specify IDENTICAL_DATA_AND_ALGORITHM as the WarmStartType value for the warm start configuration, the training job that performs the best in the new tuning job is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job.  All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job. 
     */
    WarmStartConfig?: HyperParameterTuningJobWarmStartConfig;
    /**
     * An array of key-value pairs. You can use tags to categorize your AWS resources in different ways, for example, by purpose, owner, or environment. For more information, see AWS Tagging Strategies. Tags that you specify for the tuning job are also added to all training jobs that the tuning job launches.
     */
    Tags?: TagList;
  }
  export interface CreateHyperParameterTuningJobResponse {
    /**
     * The Amazon Resource Name (ARN) of the tuning job. Amazon SageMaker assigns an ARN to a hyperparameter tuning job when you create it.
     */
    HyperParameterTuningJobArn: HyperParameterTuningJobArn;
  }
  export interface CreateLabelingJobRequest {
    /**
     * The name of the labeling job. This name is used to identify the job in a list of labeling jobs.
     */
    LabelingJobName: LabelingJobName;
    /**
     * The attribute name to use for the label in the output manifest file. This is the key for the key/value pair formed with the label that a worker assigns to the object. The name can't end with "-metadata". If you are running a semantic segmentation labeling job, the attribute name must end with "-ref". If you are running any other kind of labeling job, the attribute name must not end with "-ref".
     */
    LabelAttributeName: LabelAttributeName;
    /**
     * Input data for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.
     */
    InputConfig: LabelingJobInputConfig;
    /**
     * The location of the output data and the AWS Key Management Service key ID for the key used to encrypt the output data, if any.
     */
    OutputConfig: LabelingJobOutputConfig;
    /**
     * The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete data labeling.
     */
    RoleArn: RoleArn;
    /**
     * The S3 URL of the file that defines the categories used to label the data objects. For 3D point cloud task types, see Create a Labeling Category Configuration File for 3D Point Cloud Labeling Jobs.  For all other built-in task types and custom tasks, your label category configuration file must be a JSON file in the following format. Identify the labels you want to use by replacing label_1, label_2,...,label_n with your label categories.  {    "document-version": "2018-11-28"    "labels": [    {    "label": "label_1"    },    {    "label": "label_2"    },    ...    {    "label": "label_n"    }    ]   } 
     */
    LabelCategoryConfigS3Uri?: S3Uri;
    /**
     * A set of conditions for stopping the labeling job. If any of the conditions are met, the job is automatically stopped. You can use these conditions to control the cost of data labeling.
     */
    StoppingConditions?: LabelingJobStoppingConditions;
    /**
     * Configures the information required to perform automated data labeling.
     */
    LabelingJobAlgorithmsConfig?: LabelingJobAlgorithmsConfig;
    /**
     * Configures the labeling task and how it is presented to workers; including, but not limited to price, keywords, and batch size (task count).
     */
    HumanTaskConfig: HumanTaskConfig;
    /**
     * An array of key/value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
     */
    Tags?: TagList;
  }
  export interface CreateLabelingJobResponse {
    /**
     * The Amazon Resource Name (ARN) of the labeling job. You use this ARN to identify the labeling job.
     */
    LabelingJobArn: LabelingJobArn;
  }
  export interface CreateModelInput {
    /**
     * The name of the new model.
     */
    ModelName: ModelName;
    /**
     * The location of the primary docker image containing inference code, associated artifacts, and custom environment map that the inference code uses when the model is deployed for predictions. 
     */
    PrimaryContainer?: ContainerDefinition;
    /**
     * Specifies the containers in the inference pipeline.
     */
    Containers?: ContainerDefinitionList;
    /**
     * The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker can assume to access model artifacts and docker image for deployment on ML compute instances or for batch transform jobs. Deploying on ML compute instances is part of model hosting. For more information, see Amazon SageMaker Roles.   To be able to pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission. 
     */
    ExecutionRoleArn: RoleArn;
    /**
     * An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide. 
     */
    Tags?: TagList;
    /**
     * A VpcConfig object that specifies the VPC that you want your model to connect to. Control access to and from your model container by configuring the VPC. VpcConfig is used in hosting services and in batch transform. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Data in Batch Transform Jobs by Using an Amazon Virtual Private Cloud.
     */
    VpcConfig?: VpcConfig;
    /**
     * Isolates the model container. No inbound or outbound network calls can be made to or from the model container.
     */
    EnableNetworkIsolation?: Boolean;
  }
  export interface CreateModelOutput {
    /**
     * The ARN of the model created in Amazon SageMaker.
     */
    ModelArn: ModelArn;
  }
  export interface CreateModelPackageInput {
    /**
     * The name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
     */
    ModelPackageName: EntityName;
    /**
     * A description of the model package.
     */
    ModelPackageDescription?: EntityDescription;
    /**
     * Specifies details about inference jobs that can be run with models based on this model package, including the following:   The Amazon ECR paths of containers that contain the inference code and model artifacts.   The instance types that the model package supports for transform jobs and real-time endpoints used for inference.   The input and output content formats that the model package supports for inference.  
     */
    InferenceSpecification?: InferenceSpecification;
    /**
     * Specifies configurations for one or more transform jobs that Amazon SageMaker runs to test the model package.
     */
    ValidationSpecification?: ModelPackageValidationSpecification;
    /**
     * Details about the algorithm that was used to create the model package.
     */
    SourceAlgorithmSpecification?: SourceAlgorithmSpecification;
    /**
     * Whether to certify the model package for listing on AWS Marketplace.
     */
    CertifyForMarketplace?: CertifyForMarketplace;
  }
  export interface CreateModelPackageOutput {
    /**
     * The Amazon Resource Name (ARN) of the new model package.
     */
    ModelPackageArn: ModelPackageArn;
  }
  export interface CreateMonitoringScheduleRequest {
    /**
     * The name of the monitoring schedule. The name must be unique within an AWS Region within an AWS account.
     */
    MonitoringScheduleName: MonitoringScheduleName;
    /**
     * The configuration object that specifies the monitoring schedule and defines the monitoring job.
     */
    MonitoringScheduleConfig: MonitoringScheduleConfig;
    /**
     * (Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
     */
    Tags?: TagList;
  }
  export interface CreateMonitoringScheduleResponse {
    /**
     * The Amazon Resource Name (ARN) of the monitoring schedule.
     */
    MonitoringScheduleArn: MonitoringScheduleArn;
  }
  export interface CreateNotebookInstanceInput {
    /**
     * The name of the new notebook instance.
     */
    NotebookInstanceName: NotebookInstanceName;
    /**
     * The type of ML compute instance to launch for the notebook instance.
     */
    InstanceType: InstanceType;
    /**
     * The ID of the subnet in a VPC to which you would like to have a connectivity from your ML compute instance. 
     */
    SubnetId?: SubnetId;
    /**
     * The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet. 
     */
    SecurityGroupIds?: SecurityGroupIds;
    /**
     *  When you send any requests to AWS resources from the notebook instance, Amazon SageMaker assumes this role to perform tasks on your behalf. You must grant this role necessary permissions so Amazon SageMaker can perform these tasks. The policy must allow the Amazon SageMaker service principal (sagemaker.amazonaws.com) permissions to assume this role. For more information, see Amazon SageMaker Roles.   To be able to pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission. 
     */
    RoleArn: RoleArn;
    /**
     * The Amazon Resource Name (ARN) of a AWS Key Management Service key that Amazon SageMaker uses to encrypt data on the storage volume attached to your notebook instance. The KMS key you provide must be enabled. For information, see Enabling and Disabling Keys in the AWS Key Management Service Developer Guide.
     */
    KmsKeyId?: KmsKeyId;
    /**
     * A list of tags to associate with the notebook instance. You can add tags later by using the CreateTags API.
     */
    Tags?: TagList;
    /**
     * The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
     */
    LifecycleConfigName?: NotebookInstanceLifecycleConfigName;
    /**
     * Sets whether Amazon SageMaker provides internet access to the notebook instance. If you set this to Disabled this notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker training and endpoint services unless your configure a NAT Gateway in your VPC. For more information, see Notebook Instances Are Internet-Enabled by Default. You can set the value of this parameter to Disabled only if you set a value for the SubnetId parameter.
     */
    DirectInternetAccess?: DirectInternetAccess;
    /**
     * The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.
     */
    VolumeSizeInGB?: NotebookInstanceVolumeSizeInGB;
    /**
     * A list of Elastic Inference (EI) instance types to associate with this notebook instance. Currently, only one instance type can be associated with a notebook instance. For more information, see Using Elastic Inference in Amazon SageMaker.
     */
    AcceleratorTypes?: NotebookInstanceAcceleratorTypes;
    /**
     * A Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
     */
    DefaultCodeRepository?: CodeRepositoryNameOrUrl;
    /**
     * An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
     */
    AdditionalCodeRepositories?: AdditionalCodeRepositoryNamesOrUrls;
    /**
     * Whether root access is enabled or disabled for users of the notebook instance. The default value is Enabled.  Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users. 
     */
    RootAccess?: RootAccess;
  }
  export interface CreateNotebookInstanceLifecycleConfigInput {
    /**
     * The name of the lifecycle configuration.
     */
    NotebookInstanceLifecycleConfigName: NotebookInstanceLifecycleConfigName;
    /**
     * A shell script that runs only once, when you create a notebook instance. The shell script must be a base64-encoded string.
     */
    OnCreate?: NotebookInstanceLifecycleConfigList;
    /**
     * A shell script that runs every time you start a notebook instance, including when you create the notebook instance. The shell script must be a base64-encoded string.
     */
    OnStart?: NotebookInstanceLifecycleConfigList;
  }
  export interface CreateNotebookInstanceLifecycleConfigOutput {
    /**
     * The Amazon Resource Name (ARN) of the lifecycle configuration.
     */
    NotebookInstanceLifecycleConfigArn?: NotebookInstanceLifecycleConfigArn;
  }
  export interface CreateNotebookInstanceOutput {
    /**
     * The Amazon Resource Name (ARN) of the notebook instance. 
     */
    NotebookInstanceArn?: NotebookInstanceArn;
  }
  export interface CreatePresignedDomainUrlRequest {
    /**
     * The domain ID.
     */
    DomainId: DomainId;
    /**
     * The name of the UserProfile to sign-in as.
     */
    UserProfileName: UserProfileName;
    /**
     * The session expiration duration in seconds.
     */
    SessionExpirationDurationInSeconds?: SessionExpirationDurationInSeconds;
  }
  export interface CreatePresignedDomainUrlResponse {
    /**
     * The presigned URL.
     */
    AuthorizedUrl?: PresignedDomainUrl;
  }
  export interface CreatePresignedNotebookInstanceUrlInput {
    /**
     * The name of the notebook instance.
     */
    NotebookInstanceName: NotebookInstanceName;
    /**
     * The duration of the session, in seconds. The default is 12 hours.
     */
    SessionExpirationDurationInSeconds?: SessionExpirationDurationInSeconds;
  }
  export interface CreatePresignedNotebookInstanceUrlOutput {
    /**
     * A JSON object that contains the URL string. 
     */
    AuthorizedUrl?: NotebookInstanceUrl;
  }
  export interface CreateProcessingJobRequest {
    /**
     * For each input, data is downloaded from S3 into the processing container before the processing job begins running if "S3InputMode" is set to File.
     */
    ProcessingInputs?: ProcessingInputs;
    /**
     * Output configuration for the processing job.
     */
    ProcessingOutputConfig?: ProcessingOutputConfig;
    /**
     *  The name of the processing job. The name must be unique within an AWS Region in the AWS account.
     */
    ProcessingJobName: ProcessingJobName;
    /**
     * Identifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job. In distributed training, you specify more than one instance.
     */
    ProcessingResources: ProcessingResources;
    /**
     * The time limit for how long the processing job is allowed to run.
     */
    StoppingCondition?: ProcessingStoppingCondition;
    /**
     * Configures the processing job to run a specified Docker container image.
     */
    AppSpecification: AppSpecification;
    /**
     * Sets the environment variables in the Docker container.
     */
    Environment?: ProcessingEnvironmentMap;
    /**
     * Networking options for a processing job.
     */
    NetworkConfig?: NetworkConfig;
    /**
     * The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
     */
    RoleArn: RoleArn;
    /**
     * (Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
     */
    Tags?: TagList;
    ExperimentConfig?: ExperimentConfig;
  }
  export interface CreateProcessingJobResponse {
    /**
     * The Amazon Resource Name (ARN) of the processing job.
     */
    ProcessingJobArn: ProcessingJobArn;
  }
  export interface CreateTrainingJobRequest {
    /**
     * The name of the training job. The name must be unique within an AWS Region in an AWS account. 
     */
    TrainingJobName: TrainingJobName;
    /**
     * Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see Algorithms.  You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the Length Constraint. 
     */
    HyperParameters?: HyperParameters;
    /**
     * The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by Amazon SageMaker, see Algorithms. For information about providing your own algorithms, see Using Your Own Algorithms with Amazon SageMaker. 
     */
    AlgorithmSpecification: AlgorithmSpecification;
    /**
     * The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.  During model training, Amazon SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see Amazon SageMaker Roles.   To be able to pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission. 
     */
    RoleArn: RoleArn;
    /**
     * An array of Channel objects. Each channel is a named input source. InputDataConfig describes the input data and its location.  Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, training_data and validation_data. The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format.  Depending on the input mode that the algorithm supports, Amazon SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files will be made available as input streams. They do not need to be downloaded.
     */
    InputDataConfig?: InputDataConfig;
    /**
     * Specifies the path to the S3 location where you want to store model artifacts. Amazon SageMaker creates subfolders for the artifacts. 
     */
    OutputDataConfig: OutputDataConfig;
    /**
     * The resources, including the ML compute instances and ML storage volumes, to use for model training.  ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want Amazon SageMaker to use the ML storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.
     */
    ResourceConfig: ResourceConfig;
    /**
     * A VpcConfig object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
     */
    VpcConfig?: VpcConfig;
    /**
     * Specifies a limit to how long a model training job can run. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost. 
     */
    StoppingCondition: StoppingCondition;
    /**
     * An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide. 
     */
    Tags?: TagList;
    /**
     * Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.
     */
    EnableNetworkIsolation?: Boolean;
    /**
     * To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see Protect Communications Between ML Compute Instances in a Distributed Training Job.
     */
    EnableInterContainerTrafficEncryption?: Boolean;
    /**
     * To train models using managed spot training, choose True. Managed spot training provides a fully managed and scalable infrastructure for training machine learning models. this option is useful when training jobs can be interrupted and when there is flexibility when the training job is run.  The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed. 
     */
    EnableManagedSpotTraining?: Boolean;
    /**
     * Contains information about the output location for managed spot training checkpoint data.
     */
    CheckpointConfig?: CheckpointConfig;
    DebugHookConfig?: DebugHookConfig;
    /**
     * Configuration information for debugging rules.
     */
    DebugRuleConfigurations?: DebugRuleConfigurations;
    TensorBoardOutputConfig?: TensorBoardOutputConfig;
    ExperimentConfig?: ExperimentConfig;
  }
  export interface CreateTrainingJobResponse {
    /**
     * The Amazon Resource Name (ARN) of the training job.
     */
    TrainingJobArn: TrainingJobArn;
  }
  export interface CreateTransformJobRequest {
    /**
     * The name of the transform job. The name must be unique within an AWS Region in an AWS account. 
     */
    TransformJobName: TransformJobName;
    /**
     * The name of the model that you want to use for the transform job. ModelName must be the name of an existing Amazon SageMaker model within an AWS Region in an AWS account.
     */
    ModelName: ModelName;
    /**
     * The maximum number of parallel requests that can be sent to each instance in a transform job. If MaxConcurrentTransforms is set to 0 or left unset, Amazon SageMaker checks the optional execution-parameters to determine the settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is 1. For more information on execution-parameters, see How Containers Serve Requests. For built-in algorithms, you don't need to set a value for MaxConcurrentTransforms.
     */
    MaxConcurrentTransforms?: MaxConcurrentTransforms;
    /**
     * Configures the timeout and maximum number of retries for processing a transform job invocation.
     */
    ModelClientConfig?: ModelClientConfig;
    /**
     * The maximum allowed size of the payload, in MB. A payload is the data portion of a record (without metadata). The value in MaxPayloadInMB must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is 6 MB.  For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to 0. This feature works only in supported algorithms. Currently, Amazon SageMaker built-in algorithms do not support HTTP chunked encoding.
     */
    MaxPayloadInMB?: MaxPayloadInMB;
    /**
     * Specifies the number of records to include in a mini-batch for an HTTP inference request. A record  is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.  To enable the batch strategy, you must set the SplitType property to Line, RecordIO, or TFRecord. To use only one record when making an HTTP invocation request to a container, set BatchStrategy to SingleRecord and SplitType to Line. To fit as many records in a mini-batch as can fit within the MaxPayloadInMB limit, set BatchStrategy to MultiRecord and SplitType to Line.
     */
    BatchStrategy?: BatchStrategy;
    /**
     * The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
     */
    Environment?: TransformEnvironmentMap;
    /**
     * Describes the input source and the way the transform job consumes it.
     */
    TransformInput: TransformInput;
    /**
     * Describes the results of the transform job.
     */
    TransformOutput: TransformOutput;
    /**
     * Describes the resources, including ML instance types and ML instance count, to use for the transform job.
     */
    TransformResources: TransformResources;
    /**
     * The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records.
     */
    DataProcessing?: DataProcessing;
    /**
     * (Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
     */
    Tags?: TagList;
    ExperimentConfig?: ExperimentConfig;
  }
  export interface CreateTransformJobResponse {
    /**
     * The Amazon Resource Name (ARN) of the transform job.
     */
    TransformJobArn: TransformJobArn;
  }
  export interface CreateTrialComponentRequest {
    /**
     * The name of the component. The name must be unique in your AWS account and is not case-sensitive.
     */
    TrialComponentName: ExperimentEntityName;
    /**
     * The name of the component as displayed. The name doesn't need to be unique. If DisplayName isn't specified, TrialComponentName is displayed.
     */
    DisplayName?: ExperimentEntityName;
    /**
     * The status of the component. States include:   InProgress   Completed   Failed  
     */
    Status?: TrialComponentStatus;
    /**
     * When the component started.
     */
    StartTime?: Timestamp;
    /**
     * When the component ended.
     */
    EndTime?: Timestamp;
    /**
     * The hyperparameters for the component.
     */
    Parameters?: TrialComponentParameters;
    /**
     * The input artifacts for the component. Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types.
     */
    InputArtifacts?: TrialComponentArtifacts;
    /**
     * The output artifacts for the component. Examples of output artifacts are metrics, snapshots, logs, and images.
     */
    OutputArtifacts?: TrialComponentArtifacts;
    /**
     * A list of tags to associate with the component. You can use Search API to search on the tags.
     */
    Tags?: TagList;
  }
  export interface CreateTrialComponentResponse {
    /**
     * The Amazon Resource Name (ARN) of the trial component.
     */
    TrialComponentArn?: TrialComponentArn;
  }
  export interface CreateTrialRequest {
    /**
     * The name of the trial. The name must be unique in your AWS account and is not case-sensitive.
     */
    TrialName: ExperimentEntityName;
    /**
     * The name of the trial as displayed. The name doesn't need to be unique. If DisplayName isn't specified, TrialName is displayed.
     */
    DisplayName?: ExperimentEntityName;
    /**
     * The name of the experiment to associate the trial with.
     */
    ExperimentName: ExperimentEntityName;
    /**
     * A list of tags to associate with the trial. You can use Search API to search on the tags.
     */
    Tags?: TagList;
  }
  export interface CreateTrialResponse {
    /**
     * The Amazon Resource Name (ARN) of the trial.
     */
    TrialArn?: TrialArn;
  }
  export interface CreateUserProfileRequest {
    /**
     * The ID of the associated Domain.
     */
    DomainId: DomainId;
    /**
     * A name for the UserProfile.
     */
    UserProfileName: UserProfileName;
    /**
     * A specifier for the type of value specified in SingleSignOnUserValue. Currently, the only supported value is "UserName". If the Domain's AuthMode is SSO, this field is required. If the Domain's AuthMode is not SSO, this field cannot be specified. 
     */
    SingleSignOnUserIdentifier?: SingleSignOnUserIdentifier;
    /**
     * The username of the associated AWS Single Sign-On User for this UserProfile. If the Domain's AuthMode is SSO, this field is required, and must match a valid username of a user in your directory. If the Domain's AuthMode is not SSO, this field cannot be specified. 
     */
    SingleSignOnUserValue?: String256;
    /**
     * Each tag consists of a key and an optional value. Tag keys must be unique per resource.
     */
    Tags?: TagList;
    /**
     * A collection of settings.
     */
    UserSettings?: UserSettings;
  }
  export interface CreateUserProfileResponse {
    /**
     * The user profile Amazon Resource Name (ARN).
     */
    UserProfileArn?: UserProfileArn;
  }
  export interface CreateWorkforceRequest {
    /**
     * Use this parameter to configure an Amazon Cognito private workforce. A single Cognito workforce is created using and corresponds to a single  Amazon Cognito user pool. Do not use OidcConfig if you specify values for CognitoConfig.
     */
    CognitoConfig?: CognitoConfig;
    /**
     * Use this parameter to configure a private workforce using your own OIDC Identity Provider. Do not use CognitoConfig if you specify values for OidcConfig.
     */
    OidcConfig?: OidcConfig;
    SourceIpConfig?: SourceIpConfig;
    /**
     * The name of the private workforce.
     */
    WorkforceName: WorkforceName;
    /**
     * An array of key-value pairs that contain metadata to help you categorize and organize our workforce. Each tag consists of a key and a value, both of which you define.
     */
    Tags?: TagList;
  }
  export interface CreateWorkforceResponse {
    /**
     * The Amazon Resource Name (ARN) of the workforce.
     */
    WorkforceArn: WorkforceArn;
  }
  export interface CreateWorkteamRequest {
    /**
     * The name of the work team. Use this name to identify the work team.
     */
    WorkteamName: WorkteamName;
    /**
     * The name of the workforce.
     */
    WorkforceName?: WorkforceName;
    /**
     * A list of MemberDefinition objects that contains objects that identify the workers that make up the work team.  Workforces can be created using Amazon Cognito or your own OIDC Identity Provider (IdP). For private workforces created using Amazon Cognito use CognitoMemberDefinition. For workforces created using your own OIDC identity provider (IdP) use OidcMemberDefinition. Do not provide input for both of these parameters in a single request. For workforces created using Amazon Cognito, private work teams correspond to Amazon Cognito user groups within the user pool used to create a workforce. All of the CognitoMemberDefinition objects that make up the member definition must have the same ClientId and UserPool values. To add a Amazon Cognito user group to an existing worker pool, see Adding groups to a User Pool. For more information about user pools, see Amazon Cognito User Pools. For workforces created using your own OIDC IdP, specify the user groups that you want to include in your private work team in OidcMemberDefinition by listing those groups in Groups.
     */
    MemberDefinitions: MemberDefinitions;
    /**
     * A description of the work team.
     */
    Description: String200;
    /**
     * Configures notification of workers regarding available or expiring work items.
     */
    NotificationConfiguration?: NotificationConfiguration;
    /**
     * An array of key-value pairs. For more information, see Resource Tag and Using Cost Allocation Tags in the  AWS Billing and Cost Management User Guide.
     */
    Tags?: TagList;
  }
  export interface CreateWorkteamResponse {
    /**
     * The Amazon Resource Name (ARN) of the work team. You can use this ARN to identify the work team.
     */
    WorkteamArn?: WorkteamArn;
  }
  export type CreationTime = Date;
  export type CsvContentType = string;
  export type CsvContentTypes = CsvContentType[];
  export interface DataCaptureConfig {
    /**
     * 
     */
    EnableCapture?: EnableCapture;
    /**
     * 
     */
    InitialSamplingPercentage: SamplingPercentage;
    /**
     * 
     */
    DestinationS3Uri: DestinationS3Uri;
    /**
     * 
     */
    KmsKeyId?: KmsKeyId;
    /**
     * 
     */
    CaptureOptions: CaptureOptionList;
    /**
     * 
     */
    CaptureContentTypeHeader?: CaptureContentTypeHeader;
  }
  export interface DataCaptureConfigSummary {
    /**
     * 
     */
    EnableCapture: EnableCapture;
    /**
     * 
     */
    CaptureStatus: CaptureStatus;
    /**
     * 
     */
    CurrentSamplingPercentage: SamplingPercentage;
    /**
     * 
     */
    DestinationS3Uri: DestinationS3Uri;
    /**
     * 
     */
    KmsKeyId: KmsKeyId;
  }
  export type DataExplorationNotebookLocation = string;
  export type DataInputConfig = string;
  export interface DataProcessing {
    /**
     * A JSONPath expression used to select a portion of the input data to pass to the algorithm. Use the InputFilter parameter to exclude fields, such as an ID column, from the input. If you want Amazon SageMaker to pass the entire input dataset to the algorithm, accept the default value $. Examples: "$", "$[1:]", "$.features" 
     */
    InputFilter?: JsonPath;
    /**
     * A JSONPath expression used to select a portion of the joined dataset to save in the output file for a batch transform job. If you want Amazon SageMaker to store the entire input dataset in the output file, leave the default value, $. If you specify indexes that aren't within the dimension size of the joined dataset, you get an error. Examples: "$", "$[0,5:]", "$['id','SageMakerOutput']" 
     */
    OutputFilter?: JsonPath;
    /**
     * Specifies the source of the data to join with the transformed data. The valid values are None and Input. The default value is None, which specifies not to join the input with the transformed data. If you want the batch transform job to join the original input data with the transformed data, set JoinSource to Input.  For JSON or JSONLines objects, such as a JSON array, Amazon SageMaker adds the transformed data to the input JSON object in an attribute called SageMakerOutput. The joined result for JSON must be a key-value pair object. If the input is not a key-value pair object, Amazon SageMaker creates a new JSON file. In the new JSON file, and the input data is stored under the SageMakerInput key and the results are stored in SageMakerOutput. For CSV files, Amazon SageMaker combines the transformed data with the input data at the end of the input data and stores it in the output file. The joined data has the joined input data followed by the transformed data and the output is a CSV file. 
     */
    JoinSource?: JoinSource;
  }
  export interface DataSource {
    /**
     * The S3 location of the data source that is associated with a channel.
     */
    S3DataSource?: S3DataSource;
    /**
     * The file system that is associated with a channel.
     */
    FileSystemDataSource?: FileSystemDataSource;
  }
  export interface DebugHookConfig {
    /**
     * Path to local storage location for tensors. Defaults to /opt/ml/output/tensors/.
     */
    LocalPath?: DirectoryPath;
    /**
     * Path to Amazon S3 storage location for tensors.
     */
    S3OutputPath: S3Uri;
    /**
     * Configuration information for the debug hook parameters.
     */
    HookParameters?: HookParameters;
    /**
     * Configuration information for tensor collections.
     */
    CollectionConfigurations?: CollectionConfigurations;
  }
  export interface DebugRuleConfiguration {
    /**
     * The name of the rule configuration. It must be unique relative to other rule configuration names.
     */
    RuleConfigurationName: RuleConfigurationName;
    /**
     * Path to local storage location for output of rules. Defaults to /opt/ml/processing/output/rule/.
     */
    LocalPath?: DirectoryPath;
    /**
     * Path to Amazon S3 storage location for rules.
     */
    S3OutputPath?: S3Uri;
    /**
     * The Amazon Elastic Container (ECR) Image for the managed rule evaluation.
     */
    RuleEvaluatorImage: AlgorithmImage;
    /**
     * The instance type to deploy for a training job.
     */
    InstanceType?: ProcessingInstanceType;
    /**
     * The size, in GB, of the ML storage volume attached to the processing instance.
     */
    VolumeSizeInGB?: OptionalVolumeSizeInGB;
    /**
     *  Runtime configuration for rule container.
     */
    RuleParameters?: RuleParameters;
  }
  export type DebugRuleConfigurations = DebugRuleConfiguration[];
  export interface DebugRuleEvaluationStatus {
    /**
     * The name of the rule configuration
     */
    RuleConfigurationName?: RuleConfigurationName;
    /**
     * The Amazon Resource Name (ARN) of the rule evaluation job.
     */
    RuleEvaluationJobArn?: ProcessingJobArn;
    /**
     * Status of the rule evaluation.
     */
    RuleEvaluationStatus?: RuleEvaluationStatus;
    /**
     * Details from the rule evaluation.
     */
    StatusDetails?: StatusDetails;
    /**
     * Timestamp when the rule evaluation status was last modified.
     */
    LastModifiedTime?: Timestamp;
  }
  export type DebugRuleEvaluationStatuses = DebugRuleEvaluationStatus[];
  export interface DeleteAlgorithmInput {
    /**
     * The name of the algorithm to delete.
     */
    AlgorithmName: EntityName;
  }
  export interface DeleteAppRequest {
    /**
     * The domain ID.
     */
    DomainId: DomainId;
    /**
     * The user profile name.
     */
    UserProfileName: UserProfileName;
    /**
     * The type of app.
     */
    AppType: AppType;
    /**
     * The name of the app.
     */
    AppName: AppName;
  }
  export interface DeleteCodeRepositoryInput {
    /**
     * The name of the Git repository to delete.
     */
    CodeRepositoryName: EntityName;
  }
  export interface DeleteDomainRequest {
    /**
     * The domain ID.
     */
    DomainId: DomainId;
    /**
     * The retention policy for this domain, which specifies whether resources will be retained after the Domain is deleted. By default, all resources are retained (not automatically deleted). 
     */
    RetentionPolicy?: RetentionPolicy;
  }
  export interface DeleteEndpointConfigInput {
    /**
     * The name of the endpoint configuration that you want to delete.
     */
    EndpointConfigName: EndpointConfigName;
  }
  export interface DeleteEndpointInput {
    /**
     * The name of the endpoint that you want to delete.
     */
    EndpointName: EndpointName;
  }
  export interface DeleteExperimentRequest {
    /**
     * The name of the experiment to delete.
     */
    ExperimentName: ExperimentEntityName;
  }
  export interface DeleteExperimentResponse {
    /**
     * The Amazon Resource Name (ARN) of the experiment that is being deleted.
     */
    ExperimentArn?: ExperimentArn;
  }
  export interface DeleteFlowDefinitionRequest {
    /**
     * The name of the flow definition you are deleting.
     */
    FlowDefinitionName: FlowDefinitionName;
  }
  export interface DeleteFlowDefinitionResponse {
  }
  export interface DeleteHumanTaskUiRequest {
    /**
     * The name of the human task user interface (work task template) you want to delete.
     */
    HumanTaskUiName: HumanTaskUiName;
  }
  export interface DeleteHumanTaskUiResponse {
  }
  export interface DeleteModelInput {
    /**
     * The name of the model to delete.
     */
    ModelName: ModelName;
  }
  export interface DeleteModelPackageInput {
    /**
     * The name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
     */
    ModelPackageName: EntityName;
  }
  export interface DeleteMonitoringScheduleRequest {
    /**
     * The name of the monitoring schedule to delete.
     */
    MonitoringScheduleName: MonitoringScheduleName;
  }
  export interface DeleteNotebookInstanceInput {
    /**
     * The name of the Amazon SageMaker notebook instance to delete.
     */
    NotebookInstanceName: NotebookInstanceName;
  }
  export interface DeleteNotebookInstanceLifecycleConfigInput {
    /**
     * The name of the lifecycle configuration to delete.
     */
    NotebookInstanceLifecycleConfigName: NotebookInstanceLifecycleConfigName;
  }
  export interface DeleteTagsInput {
    /**
     * The Amazon Resource Name (ARN) of the resource whose tags you want to delete.
     */
    ResourceArn: ResourceArn;
    /**
     * An array or one or more tag keys to delete.
     */
    TagKeys: TagKeyList;
  }
  export interface DeleteTagsOutput {
  }
  export interface DeleteTrialComponentRequest {
    /**
     * The name of the component to delete.
     */
    TrialComponentName: ExperimentEntityName;
  }
  export interface DeleteTrialComponentResponse {
    /**
     * The Amazon Resource Name (ARN) of the component is being deleted.
     */
    TrialComponentArn?: TrialComponentArn;
  }
  export interface DeleteTrialRequest {
    /**
     * The name of the trial to delete.
     */
    TrialName: ExperimentEntityName;
  }
  export interface DeleteTrialResponse {
    /**
     * The Amazon Resource Name (ARN) of the trial that is being deleted.
     */
    TrialArn?: TrialArn;
  }
  export interface DeleteUserProfileRequest {
    /**
     * The domain ID.
     */
    DomainId: DomainId;
    /**
     * The user profile name.
     */
    UserProfileName: UserProfileName;
  }
  export interface DeleteWorkforceRequest {
    /**
     * The name of the workforce.
     */
    WorkforceName: WorkforceName;
  }
  export interface DeleteWorkforceResponse {
  }
  export interface DeleteWorkteamRequest {
    /**
     * The name of the work team to delete.
     */
    WorkteamName: WorkteamName;
  }
  export interface DeleteWorkteamResponse {
    /**
     * Returns true if the work team was successfully deleted; otherwise, returns false.
     */
    Success: Success;
  }
  export interface DeployedImage {
    /**
     * The image path you specified when you created the model.
     */
    SpecifiedImage?: ContainerImage;
    /**
     * The specific digest path of the image hosted in this ProductionVariant.
     */
    ResolvedImage?: ContainerImage;
    /**
     * The date and time when the image path for the model resolved to the ResolvedImage 
     */
    ResolutionTime?: Timestamp;
  }
  export type DeployedImages = DeployedImage[];
  export interface DescribeAlgorithmInput {
    /**
     * The name of the algorithm to describe.
     */
    AlgorithmName: ArnOrName;
  }
  export interface DescribeAlgorithmOutput {
    /**
     * The name of the algorithm being described.
     */
    AlgorithmName: EntityName;
    /**
     * The Amazon Resource Name (ARN) of the algorithm.
     */
    AlgorithmArn: AlgorithmArn;
    /**
     * A brief summary about the algorithm.
     */
    AlgorithmDescription?: EntityDescription;
    /**
     * A timestamp specifying when the algorithm was created.
     */
    CreationTime: CreationTime;
    /**
     * Details about training jobs run by this algorithm.
     */
    TrainingSpecification: TrainingSpecification;
    /**
     * Details about inference jobs that the algorithm runs.
     */
    InferenceSpecification?: InferenceSpecification;
    /**
     * Details about configurations for one or more training jobs that Amazon SageMaker runs to test the algorithm.
     */
    ValidationSpecification?: AlgorithmValidationSpecification;
    /**
     * The current status of the algorithm.
     */
    AlgorithmStatus: AlgorithmStatus;
    /**
     * Details about the current status of the algorithm.
     */
    AlgorithmStatusDetails: AlgorithmStatusDetails;
    /**
     * The product identifier of the algorithm.
     */
    ProductId?: ProductId;
    /**
     * Whether the algorithm is certified to be listed in AWS Marketplace.
     */
    CertifyForMarketplace?: CertifyForMarketplace;
  }
  export interface DescribeAppRequest {
    /**
     * The domain ID.
     */
    DomainId: DomainId;
    /**
     * The user profile name.
     */
    UserProfileName: UserProfileName;
    /**
     * The type of app.
     */
    AppType: AppType;
    /**
     * The name of the app.
     */
    AppName: AppName;
  }
  export interface DescribeAppResponse {
    /**
     * The app's Amazon Resource Name (ARN).
     */
    AppArn?: AppArn;
    /**
     * The type of app.
     */
    AppType?: AppType;
    /**
     * The name of the app.
     */
    AppName?: AppName;
    /**
     * The domain ID.
     */
    DomainId?: DomainId;
    /**
     * The user profile name.
     */
    UserProfileName?: UserProfileName;
    /**
     * The status.
     */
    Status?: AppStatus;
    /**
     * The timestamp of the last health check.
     */
    LastHealthCheckTimestamp?: Timestamp;
    /**
     * The timestamp of the last user's activity.
     */
    LastUserActivityTimestamp?: Timestamp;
    /**
     * The creation time.
     */
    CreationTime?: CreationTime;
    /**
     * The failure reason.
     */
    FailureReason?: FailureReason;
    /**
     * The instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
     */
    ResourceSpec?: ResourceSpec;
  }
  export interface DescribeAutoMLJobRequest {
    /**
     * Request information about a job using that job's unique name.
     */
    AutoMLJobName: AutoMLJobName;
  }
  export interface DescribeAutoMLJobResponse {
    /**
     * Returns the name of a job.
     */
    AutoMLJobName: AutoMLJobName;
    /**
     * Returns the job's ARN.
     */
    AutoMLJobArn: AutoMLJobArn;
    /**
     * Returns the job's input data config.
     */
    InputDataConfig: AutoMLInputDataConfig;
    /**
     * Returns the job's output data config.
     */
    OutputDataConfig: AutoMLOutputDataConfig;
    /**
     * The Amazon Resource Name (ARN) of the AWS Identity and Access Management (IAM) role that has read permission to the input data location and write permission to the output data location in Amazon S3.
     */
    RoleArn: RoleArn;
    /**
     * Returns the job's objective.
     */
    AutoMLJobObjective?: AutoMLJobObjective;
    /**
     * Returns the job's problem type.
     */
    ProblemType?: ProblemType;
    /**
     * Returns the job's config.
     */
    AutoMLJobConfig?: AutoMLJobConfig;
    /**
     * Returns the job's creation time.
     */
    CreationTime: Timestamp;
    /**
     * Returns the job's end time.
     */
    EndTime?: Timestamp;
    /**
     * Returns the job's last modified time.
     */
    LastModifiedTime: Timestamp;
    /**
     * Returns the job's FailureReason.
     */
    FailureReason?: AutoMLFailureReason;
    /**
     * Returns the job's BestCandidate.
     */
    BestCandidate?: AutoMLCandidate;
    /**
     * Returns the job's AutoMLJobStatus.
     */
    AutoMLJobStatus: AutoMLJobStatus;
    /**
     * Returns the job's AutoMLJobSecondaryStatus.
     */
    AutoMLJobSecondaryStatus: AutoMLJobSecondaryStatus;
    /**
     * Returns the job's output from GenerateCandidateDefinitionsOnly.
     */
    GenerateCandidateDefinitionsOnly?: GenerateCandidateDefinitionsOnly;
    /**
     * Returns information on the job's artifacts found in AutoMLJobArtifacts.
     */
    AutoMLJobArtifacts?: AutoMLJobArtifacts;
    /**
     * This contains ProblemType, AutoMLJobObjective and CompletionCriteria. They're auto-inferred values, if not provided by you. If you do provide them, then they'll be the same as provided.
     */
    ResolvedAttributes?: ResolvedAttributes;
  }
  export interface DescribeCodeRepositoryInput {
    /**
     * The name of the Git repository to describe.
     */
    CodeRepositoryName: EntityName;
  }
  export interface DescribeCodeRepositoryOutput {
    /**
     * The name of the Git repository.
     */
    CodeRepositoryName: EntityName;
    /**
     * The Amazon Resource Name (ARN) of the Git repository.
     */
    CodeRepositoryArn: CodeRepositoryArn;
    /**
     * The date and time that the repository was created.
     */
    CreationTime: CreationTime;
    /**
     * The date and time that the repository was last changed.
     */
    LastModifiedTime: LastModifiedTime;
    /**
     * Configuration details about the repository, including the URL where the repository is located, the default branch, and the Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the repository.
     */
    GitConfig?: GitConfig;
  }
  export interface DescribeCompilationJobRequest {
    /**
     * The name of the model compilation job that you want information about.
     */
    CompilationJobName: EntityName;
  }
  export interface DescribeCompilationJobResponse {
    /**
     * The name of the model compilation job.
     */
    CompilationJobName: EntityName;
    /**
     * The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker assumes to perform the model compilation job.
     */
    CompilationJobArn: CompilationJobArn;
    /**
     * The status of the model compilation job.
     */
    CompilationJobStatus: CompilationJobStatus;
    /**
     * The time when the model compilation job started the CompilationJob instances.  You are billed for the time between this timestamp and the timestamp in the DescribeCompilationJobResponse$CompilationEndTime field. In Amazon CloudWatch Logs, the start time might be later than this time. That's because it takes time to download the compilation job, which depends on the size of the compilation job container. 
     */
    CompilationStartTime?: Timestamp;
    /**
     * The time when the model compilation job on a compilation job instance ended. For a successful or stopped job, this is when the job's model artifacts have finished uploading. For a failed job, this is when Amazon SageMaker detected that the job failed. 
     */
    CompilationEndTime?: Timestamp;
    /**
     * Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker ends the compilation job. Use this API to cap model training costs.
     */
    StoppingCondition: StoppingCondition;
    /**
     * The time that the model compilation job was created.
     */
    CreationTime: CreationTime;
    /**
     * The time that the status of the model compilation job was last modified.
     */
    LastModifiedTime: LastModifiedTime;
    /**
     * If a model compilation job failed, the reason it failed. 
     */
    FailureReason: FailureReason;
    /**
     * Information about the location in Amazon S3 that has been configured for storing the model artifacts used in the compilation job.
     */
    ModelArtifacts: ModelArtifacts;
    /**
     * The Amazon Resource Name (ARN) of the model compilation job.
     */
    RoleArn: RoleArn;
    /**
     * Information about the location in Amazon S3 of the input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
     */
    InputConfig: InputConfig;
    /**
     * Information about the output location for the compiled model and the target device that the model runs on.
     */
    OutputConfig: OutputConfig;
  }
  export interface DescribeDomainRequest {
    /**
     * The domain ID.
     */
    DomainId: DomainId;
  }
  export interface DescribeDomainResponse {
    /**
     * The domain's Amazon Resource Name (ARN).
     */
    DomainArn?: DomainArn;
    /**
     * The domain ID.
     */
    DomainId?: DomainId;
    /**
     * The domain name.
     */
    DomainName?: DomainName;
    /**
     * The ID of the Amazon Elastic File System (EFS) managed by this Domain.
     */
    HomeEfsFileSystemId?: ResourceId;
    /**
     * The SSO managed application instance ID.
     */
    SingleSignOnManagedApplicationInstanceId?: String256;
    /**
     * The status.
     */
    Status?: DomainStatus;
    /**
     * The creation time.
     */
    CreationTime?: CreationTime;
    /**
     * The last modified time.
     */
    LastModifiedTime?: LastModifiedTime;
    /**
     * The failure reason.
     */
    FailureReason?: FailureReason;
    /**
     * The domain's authentication mode.
     */
    AuthMode?: AuthMode;
    /**
     * Settings which are applied to all UserProfile in this domain, if settings are not explicitly specified in a given UserProfile. 
     */
    DefaultUserSettings?: UserSettings;
    /**
     * The AWS Key Management Service encryption key ID.
     */
    HomeEfsFileSystemKmsKeyId?: KmsKeyId;
    /**
     * The VPC subnets that Studio uses for communication.
     */
    SubnetIds?: Subnets;
    /**
     * The domain's URL.
     */
    Url?: String1024;
    /**
     * The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses for communication.
     */
    VpcId?: VpcId;
    /**
     * Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly.    PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker, which allows direct internet access    VpcOnly - All Studio traffic is through the specified VPC and subnets  
     */
    AppNetworkAccessType?: AppNetworkAccessType;
  }
  export interface DescribeEndpointConfigInput {
    /**
     * The name of the endpoint configuration.
     */
    EndpointConfigName: EndpointConfigName;
  }
  export interface DescribeEndpointConfigOutput {
    /**
     * Name of the Amazon SageMaker endpoint configuration.
     */
    EndpointConfigName: EndpointConfigName;
    /**
     * The Amazon Resource Name (ARN) of the endpoint configuration.
     */
    EndpointConfigArn: EndpointConfigArn;
    /**
     * An array of ProductionVariant objects, one for each model that you want to host at this endpoint.
     */
    ProductionVariants: ProductionVariantList;
    DataCaptureConfig?: DataCaptureConfig;
    /**
     * AWS KMS key ID Amazon SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance.
     */
    KmsKeyId?: KmsKeyId;
    /**
     * A timestamp that shows when the endpoint configuration was created.
     */
    CreationTime: Timestamp;
  }
  export interface DescribeEndpointInput {
    /**
     * The name of the endpoint.
     */
    EndpointName: EndpointName;
  }
  export interface DescribeEndpointOutput {
    /**
     * Name of the endpoint.
     */
    EndpointName: EndpointName;
    /**
     * The Amazon Resource Name (ARN) of the endpoint.
     */
    EndpointArn: EndpointArn;
    /**
     * The name of the endpoint configuration associated with this endpoint.
     */
    EndpointConfigName: EndpointConfigName;
    /**
     *  An array of ProductionVariantSummary objects, one for each model hosted behind this endpoint. 
     */
    ProductionVariants?: ProductionVariantSummaryList;
    DataCaptureConfig?: DataCaptureConfigSummary;
    /**
     * The status of the endpoint.    OutOfService: Endpoint is not available to take incoming requests.    Creating: CreateEndpoint is executing.    Updating: UpdateEndpoint or UpdateEndpointWeightsAndCapacities is executing.    SystemUpdating: Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count.    RollingBack: Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an InService status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an UpdateEndpointWeightsAndCapacities call or when the UpdateEndpointWeightsAndCapacities operation is called explicitly.    InService: Endpoint is available to process incoming requests.    Deleting: DeleteEndpoint is executing.    Failed: Endpoint could not be created, updated, or re-scaled. Use DescribeEndpointOutput$FailureReason for information about the failure. DeleteEndpoint is the only operation that can be performed on a failed endpoint.  
     */
    EndpointStatus: EndpointStatus;
    /**
     * If the status of the endpoint is Failed, the reason why it failed. 
     */
    FailureReason?: FailureReason;
    /**
     * A timestamp that shows when the endpoint was created.
     */
    CreationTime: Timestamp;
    /**
     * A timestamp that shows when the endpoint was last modified.
     */
    LastModifiedTime: Timestamp;
  }
  export interface DescribeExperimentRequest {
    /**
     * The name of the experiment to describe.
     */
    ExperimentName: ExperimentEntityName;
  }
  export interface DescribeExperimentResponse {
    /**
     * The name of the experiment.
     */
    ExperimentName?: ExperimentEntityName;
    /**
     * The Amazon Resource Name (ARN) of the experiment.
     */
    ExperimentArn?: ExperimentArn;
    /**
     * The name of the experiment as displayed. If DisplayName isn't specified, ExperimentName is displayed.
     */
    DisplayName?: ExperimentEntityName;
    /**
     * The ARN of the source and, optionally, the type.
     */
    Source?: ExperimentSource;
    /**
     * The description of the experiment.
     */
    Description?: ExperimentDescription;
    /**
     * When the experiment was created.
     */
    CreationTime?: Timestamp;
    /**
     * Who created the experiment.
     */
    CreatedBy?: UserContext;
    /**
     * When the experiment was last modified.
     */
    LastModifiedTime?: Timestamp;
    /**
     * Who last modified the experiment.
     */
    LastModifiedBy?: UserContext;
  }
  export interface DescribeFlowDefinitionRequest {
    /**
     * The name of the flow definition.
     */
    FlowDefinitionName: FlowDefinitionName;
  }
  export interface DescribeFlowDefinitionResponse {
    /**
     * The Amazon Resource Name (ARN) of the flow defintion.
     */
    FlowDefinitionArn: FlowDefinitionArn;
    /**
     * The Amazon Resource Name (ARN) of the flow definition.
     */
    FlowDefinitionName: FlowDefinitionName;
    /**
     * The status of the flow definition. Valid values are listed below.
     */
    FlowDefinitionStatus: FlowDefinitionStatus;
    /**
     * The timestamp when the flow definition was created.
     */
    CreationTime: Timestamp;
    /**
     * Container for configuring the source of human task requests. Used to specify if Amazon Rekognition or Amazon Textract is used as an integration source.
     */
    HumanLoopRequestSource?: HumanLoopRequestSource;
    /**
     * An object containing information about what triggers a human review workflow.
     */
    HumanLoopActivationConfig?: HumanLoopActivationConfig;
    /**
     * An object containing information about who works on the task, the workforce task price, and other task details.
     */
    HumanLoopConfig: HumanLoopConfig;
    /**
     * An object containing information about the output file.
     */
    OutputConfig: FlowDefinitionOutputConfig;
    /**
     * The Amazon Resource Name (ARN) of the AWS Identity and Access Management (IAM) execution role for the flow definition.
     */
    RoleArn: RoleArn;
    /**
     * The reason your flow definition failed.
     */
    FailureReason?: FailureReason;
  }
  export interface DescribeHumanTaskUiRequest {
    /**
     * The name of the human task user interface (worker task template) you want information about.
     */
    HumanTaskUiName: HumanTaskUiName;
  }
  export interface DescribeHumanTaskUiResponse {
    /**
     * The Amazon Resource Name (ARN) of the human task user interface (worker task template).
     */
    HumanTaskUiArn: HumanTaskUiArn;
    /**
     * The name of the human task user interface (worker task template).
     */
    HumanTaskUiName: HumanTaskUiName;
    /**
     * The status of the human task user interface (worker task template). Valid values are listed below.
     */
    HumanTaskUiStatus?: HumanTaskUiStatus;
    /**
     * The timestamp when the human task user interface was created.
     */
    CreationTime: Timestamp;
    UiTemplate: UiTemplateInfo;
  }
  export interface DescribeHyperParameterTuningJobRequest {
    /**
     * The name of the tuning job.
     */
    HyperParameterTuningJobName: HyperParameterTuningJobName;
  }
  export interface DescribeHyperParameterTuningJobResponse {
    /**
     * The name of the tuning job.
     */
    HyperParameterTuningJobName: HyperParameterTuningJobName;
    /**
     * The Amazon Resource Name (ARN) of the tuning job.
     */
    HyperParameterTuningJobArn: HyperParameterTuningJobArn;
    /**
     * The HyperParameterTuningJobConfig object that specifies the configuration of the tuning job.
     */
    HyperParameterTuningJobConfig: HyperParameterTuningJobConfig;
    /**
     * The HyperParameterTrainingJobDefinition object that specifies the definition of the training jobs that this tuning job launches.
     */
    TrainingJobDefinition?: HyperParameterTrainingJobDefinition;
    /**
     * A list of the HyperParameterTrainingJobDefinition objects launched for this tuning job.
     */
    TrainingJobDefinitions?: HyperParameterTrainingJobDefinitions;
    /**
     * The status of the tuning job: InProgress, Completed, Failed, Stopping, or Stopped.
     */
    HyperParameterTuningJobStatus: HyperParameterTuningJobStatus;
    /**
     * The date and time that the tuning job started.
     */
    CreationTime: Timestamp;
    /**
     * The date and time that the tuning job ended.
     */
    HyperParameterTuningEndTime?: Timestamp;
    /**
     * The date and time that the status of the tuning job was modified. 
     */
    LastModifiedTime?: Timestamp;
    /**
     * The TrainingJobStatusCounters object that specifies the number of training jobs, categorized by status, that this tuning job launched.
     */
    TrainingJobStatusCounters: TrainingJobStatusCounters;
    /**
     * The ObjectiveStatusCounters object that specifies the number of training jobs, categorized by the status of their final objective metric, that this tuning job launched.
     */
    ObjectiveStatusCounters: ObjectiveStatusCounters;
    /**
     * A TrainingJobSummary object that describes the training job that completed with the best current HyperParameterTuningJobObjective.
     */
    BestTrainingJob?: HyperParameterTrainingJobSummary;
    /**
     * If the hyperparameter tuning job is an warm start tuning job with a WarmStartType of IDENTICAL_DATA_AND_ALGORITHM, this is the TrainingJobSummary for the training job with the best objective metric value of all training jobs launched by this tuning job and all parent jobs specified for the warm start tuning job.
     */
    OverallBestTrainingJob?: HyperParameterTrainingJobSummary;
    /**
     * The configuration for starting the hyperparameter parameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.
     */
    WarmStartConfig?: HyperParameterTuningJobWarmStartConfig;
    /**
     * If the tuning job failed, the reason it failed.
     */
    FailureReason?: FailureReason;
  }
  export interface DescribeLabelingJobRequest {
    /**
     * The name of the labeling job to return information for.
     */
    LabelingJobName: LabelingJobName;
  }
  export interface DescribeLabelingJobResponse {
    /**
     * The processing status of the labeling job. 
     */
    LabelingJobStatus: LabelingJobStatus;
    /**
     * Provides a breakdown of the number of data objects labeled by humans, the number of objects labeled by machine, the number of objects than couldn't be labeled, and the total number of objects labeled. 
     */
    LabelCounters: LabelCounters;
    /**
     * If the job failed, the reason that it failed. 
     */
    FailureReason?: FailureReason;
    /**
     * The date and time that the labeling job was created.
     */
    CreationTime: Timestamp;
    /**
     * The date and time that the labeling job was last updated.
     */
    LastModifiedTime: Timestamp;
    /**
     * A unique identifier for work done as part of a labeling job.
     */
    JobReferenceCode: JobReferenceCode;
    /**
     * The name assigned to the labeling job when it was created.
     */
    LabelingJobName: LabelingJobName;
    /**
     * The Amazon Resource Name (ARN) of the labeling job.
     */
    LabelingJobArn: LabelingJobArn;
    /**
     * The attribute used as the label in the output manifest file.
     */
    LabelAttributeName?: LabelAttributeName;
    /**
     * Input configuration information for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.
     */
    InputConfig: LabelingJobInputConfig;
    /**
     * The location of the job's output data and the AWS Key Management Service key ID for the key used to encrypt the output data, if any.
     */
    OutputConfig: LabelingJobOutputConfig;
    /**
     * The Amazon Resource Name (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling.
     */
    RoleArn: RoleArn;
    /**
     * The S3 location of the JSON file that defines the categories used to label data objects. Please note the following label-category limits:   Semantic segmentation labeling jobs using automated labeling: 20 labels   Box bounding labeling jobs (all): 10 labels   The file is a JSON structure in the following format:  {    "document-version": "2018-11-28"    "labels": [    {    "label": "label 1"    },    {    "label": "label 2"    },    ...    {    "label": "label n"    }    ]   } 
     */
    LabelCategoryConfigS3Uri?: S3Uri;
    /**
     * A set of conditions for stopping a labeling job. If any of the conditions are met, the job is automatically stopped.
     */
    StoppingConditions?: LabelingJobStoppingConditions;
    /**
     * Configuration information for automated data labeling.
     */
    LabelingJobAlgorithmsConfig?: LabelingJobAlgorithmsConfig;
    /**
     * Configuration information required for human workers to complete a labeling task.
     */
    HumanTaskConfig: HumanTaskConfig;
    /**
     * An array of key/value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
     */
    Tags?: TagList;
    /**
     * The location of the output produced by the labeling job.
     */
    LabelingJobOutput?: LabelingJobOutput;
  }
  export interface DescribeModelInput {
    /**
     * The name of the model.
     */
    ModelName: ModelName;
  }
  export interface DescribeModelOutput {
    /**
     * Name of the Amazon SageMaker model.
     */
    ModelName: ModelName;
    /**
     * The location of the primary inference code, associated artifacts, and custom environment map that the inference code uses when it is deployed in production. 
     */
    PrimaryContainer?: ContainerDefinition;
    /**
     * The containers in the inference pipeline.
     */
    Containers?: ContainerDefinitionList;
    /**
     * The Amazon Resource Name (ARN) of the IAM role that you specified for the model.
     */
    ExecutionRoleArn: RoleArn;
    /**
     * A VpcConfig object that specifies the VPC that this model has access to. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud 
     */
    VpcConfig?: VpcConfig;
    /**
     * A timestamp that shows when the model was created.
     */
    CreationTime: Timestamp;
    /**
     * The Amazon Resource Name (ARN) of the model.
     */
    ModelArn: ModelArn;
    /**
     * If True, no inbound or outbound network calls can be made to or from the model container.
     */
    EnableNetworkIsolation?: Boolean;
  }
  export interface DescribeModelPackageInput {
    /**
     * The name of the model package to describe.
     */
    ModelPackageName: ArnOrName;
  }
  export interface DescribeModelPackageOutput {
    /**
     * The name of the model package being described.
     */
    ModelPackageName: EntityName;
    /**
     * The Amazon Resource Name (ARN) of the model package.
     */
    ModelPackageArn: ModelPackageArn;
    /**
     * A brief summary of the model package.
     */
    ModelPackageDescription?: EntityDescription;
    /**
     * A timestamp specifying when the model package was created.
     */
    CreationTime: CreationTime;
    /**
     * Details about inference jobs that can be run with models based on this model package.
     */
    InferenceSpecification?: InferenceSpecification;
    /**
     * Details about the algorithm that was used to create the model package.
     */
    SourceAlgorithmSpecification?: SourceAlgorithmSpecification;
    /**
     * Configurations for one or more transform jobs that Amazon SageMaker runs to test the model package.
     */
    ValidationSpecification?: ModelPackageValidationSpecification;
    /**
     * The current status of the model package.
     */
    ModelPackageStatus: ModelPackageStatus;
    /**
     * Details about the current status of the model package.
     */
    ModelPackageStatusDetails: ModelPackageStatusDetails;
    /**
     * Whether the model package is certified for listing on AWS Marketplace.
     */
    CertifyForMarketplace?: CertifyForMarketplace;
  }
  export interface DescribeMonitoringScheduleRequest {
    /**
     * Name of a previously created monitoring schedule.
     */
    MonitoringScheduleName: MonitoringScheduleName;
  }
  export interface DescribeMonitoringScheduleResponse {
    /**
     * The Amazon Resource Name (ARN) of the monitoring schedule.
     */
    MonitoringScheduleArn: MonitoringScheduleArn;
    /**
     * Name of the monitoring schedule.
     */
    MonitoringScheduleName: MonitoringScheduleName;
    /**
     * The status of an monitoring job.
     */
    MonitoringScheduleStatus: ScheduleStatus;
    /**
     * A string, up to one KB in size, that contains the reason a monitoring job failed, if it failed.
     */
    FailureReason?: FailureReason;
    /**
     * The time at which the monitoring job was created.
     */
    CreationTime: Timestamp;
    /**
     * The time at which the monitoring job was last modified.
     */
    LastModifiedTime: Timestamp;
    /**
     * The configuration object that specifies the monitoring schedule and defines the monitoring job.
     */
    MonitoringScheduleConfig: MonitoringScheduleConfig;
    /**
     *  The name of the endpoint for the monitoring job.
     */
    EndpointName?: EndpointName;
    /**
     * Describes metadata on the last execution to run, if there was one.
     */
    LastMonitoringExecutionSummary?: MonitoringExecutionSummary;
  }
  export interface DescribeNotebookInstanceInput {
    /**
     * The name of the notebook instance that you want information about.
     */
    NotebookInstanceName: NotebookInstanceName;
  }
  export interface DescribeNotebookInstanceLifecycleConfigInput {
    /**
     * The name of the lifecycle configuration to describe.
     */
    NotebookInstanceLifecycleConfigName: NotebookInstanceLifecycleConfigName;
  }
  export interface DescribeNotebookInstanceLifecycleConfigOutput {
    /**
     * The Amazon Resource Name (ARN) of the lifecycle configuration.
     */
    NotebookInstanceLifecycleConfigArn?: NotebookInstanceLifecycleConfigArn;
    /**
     * The name of the lifecycle configuration.
     */
    NotebookInstanceLifecycleConfigName?: NotebookInstanceLifecycleConfigName;
    /**
     * The shell script that runs only once, when you create a notebook instance.
     */
    OnCreate?: NotebookInstanceLifecycleConfigList;
    /**
     * The shell script that runs every time you start a notebook instance, including when you create the notebook instance.
     */
    OnStart?: NotebookInstanceLifecycleConfigList;
    /**
     * A timestamp that tells when the lifecycle configuration was last modified.
     */
    LastModifiedTime?: LastModifiedTime;
    /**
     * A timestamp that tells when the lifecycle configuration was created.
     */
    CreationTime?: CreationTime;
  }
  export interface DescribeNotebookInstanceOutput {
    /**
     * The Amazon Resource Name (ARN) of the notebook instance.
     */
    NotebookInstanceArn?: NotebookInstanceArn;
    /**
     * The name of the Amazon SageMaker notebook instance. 
     */
    NotebookInstanceName?: NotebookInstanceName;
    /**
     * The status of the notebook instance.
     */
    NotebookInstanceStatus?: NotebookInstanceStatus;
    /**
     * If status is Failed, the reason it failed.
     */
    FailureReason?: FailureReason;
    /**
     * The URL that you use to connect to the Jupyter notebook that is running in your notebook instance. 
     */
    Url?: NotebookInstanceUrl;
    /**
     * The type of ML compute instance running on the notebook instance.
     */
    InstanceType?: InstanceType;
    /**
     * The ID of the VPC subnet.
     */
    SubnetId?: SubnetId;
    /**
     * The IDs of the VPC security groups.
     */
    SecurityGroups?: SecurityGroupIds;
    /**
     * The Amazon Resource Name (ARN) of the IAM role associated with the instance. 
     */
    RoleArn?: RoleArn;
    /**
     * The AWS KMS key ID Amazon SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance. 
     */
    KmsKeyId?: KmsKeyId;
    /**
     * The network interface IDs that Amazon SageMaker created at the time of creating the instance. 
     */
    NetworkInterfaceId?: NetworkInterfaceId;
    /**
     * A timestamp. Use this parameter to retrieve the time when the notebook instance was last modified. 
     */
    LastModifiedTime?: LastModifiedTime;
    /**
     * A timestamp. Use this parameter to return the time when the notebook instance was created
     */
    CreationTime?: CreationTime;
    /**
     * Returns the name of a notebook instance lifecycle configuration. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance 
     */
    NotebookInstanceLifecycleConfigName?: NotebookInstanceLifecycleConfigName;
    /**
     * Describes whether Amazon SageMaker provides internet access to the notebook instance. If this value is set to Disabled, the notebook instance does not have internet access, and cannot connect to Amazon SageMaker training and endpoint services. For more information, see Notebook Instances Are Internet-Enabled by Default.
     */
    DirectInternetAccess?: DirectInternetAccess;
    /**
     * The size, in GB, of the ML storage volume attached to the notebook instance.
     */
    VolumeSizeInGB?: NotebookInstanceVolumeSizeInGB;
    /**
     * A list of the Elastic Inference (EI) instance types associated with this notebook instance. Currently only one EI instance type can be associated with a notebook instance. For more information, see Using Elastic Inference in Amazon SageMaker.
     */
    AcceleratorTypes?: NotebookInstanceAcceleratorTypes;
    /**
     * The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
     */
    DefaultCodeRepository?: CodeRepositoryNameOrUrl;
    /**
     * An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
     */
    AdditionalCodeRepositories?: AdditionalCodeRepositoryNamesOrUrls;
    /**
     * Whether root access is enabled or disabled for users of the notebook instance.  Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users. 
     */
    RootAccess?: RootAccess;
  }
  export interface DescribeProcessingJobRequest {
    /**
     * The name of the processing job. The name must be unique within an AWS Region in the AWS account.
     */
    ProcessingJobName: ProcessingJobName;
  }
  export interface DescribeProcessingJobResponse {
    /**
     * The inputs for a processing job.
     */
    ProcessingInputs?: ProcessingInputs;
    /**
     * Output configuration for the processing job.
     */
    ProcessingOutputConfig?: ProcessingOutputConfig;
    /**
     * The name of the processing job. The name must be unique within an AWS Region in the AWS account.
     */
    ProcessingJobName: ProcessingJobName;
    /**
     * Identifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job. In distributed training, you specify more than one instance.
     */
    ProcessingResources: ProcessingResources;
    /**
     * The time limit for how long the processing job is allowed to run.
     */
    StoppingCondition?: ProcessingStoppingCondition;
    /**
     * Configures the processing job to run a specified container image.
     */
    AppSpecification: AppSpecification;
    /**
     * The environment variables set in the Docker container.
     */
    Environment?: ProcessingEnvironmentMap;
    /**
     * Networking options for a processing job.
     */
    NetworkConfig?: NetworkConfig;
    /**
     * The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
     */
    RoleArn?: RoleArn;
    /**
     * The configuration information used to create an experiment.
     */
    ExperimentConfig?: ExperimentConfig;
    /**
     * The Amazon Resource Name (ARN) of the processing job.
     */
    ProcessingJobArn: ProcessingJobArn;
    /**
     * Provides the status of a processing job.
     */
    ProcessingJobStatus: ProcessingJobStatus;
    /**
     * An optional string, up to one KB in size, that contains metadata from the processing container when the processing job exits.
     */
    ExitMessage?: ExitMessage;
    /**
     * A string, up to one KB in size, that contains the reason a processing job failed, if it failed.
     */
    FailureReason?: FailureReason;
    /**
     * The time at which the processing job completed.
     */
    ProcessingEndTime?: Timestamp;
    /**
     * The time at which the processing job started.
     */
    ProcessingStartTime?: Timestamp;
    /**
     * The time at which the processing job was last modified.
     */
    LastModifiedTime?: Timestamp;
    /**
     * The time at which the processing job was created.
     */
    CreationTime: Timestamp;
    /**
     * The ARN of a monitoring schedule for an endpoint associated with this processing job.
     */
    MonitoringScheduleArn?: MonitoringScheduleArn;
    /**
     * The ARN of an AutoML job associated with this processing job.
     */
    AutoMLJobArn?: AutoMLJobArn;
    /**
     * The ARN of a training job associated with this processing job.
     */
    TrainingJobArn?: TrainingJobArn;
  }
  export interface DescribeSubscribedWorkteamRequest {
    /**
     * The Amazon Resource Name (ARN) of the subscribed work team to describe.
     */
    WorkteamArn: WorkteamArn;
  }
  export interface DescribeSubscribedWorkteamResponse {
    /**
     * A Workteam instance that contains information about the work team.
     */
    SubscribedWorkteam: SubscribedWorkteam;
  }
  export interface DescribeTrainingJobRequest {
    /**
     * The name of the training job.
     */
    TrainingJobName: TrainingJobName;
  }
  export interface DescribeTrainingJobResponse {
    /**
     *  Name of the model training job. 
     */
    TrainingJobName: TrainingJobName;
    /**
     * The Amazon Resource Name (ARN) of the training job.
     */
    TrainingJobArn: TrainingJobArn;
    /**
     * The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.
     */
    TuningJobArn?: HyperParameterTuningJobArn;
    /**
     * The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or training job.
     */
    LabelingJobArn?: LabelingJobArn;
    /**
     * The Amazon Resource Name (ARN) of an AutoML job.
     */
    AutoMLJobArn?: AutoMLJobArn;
    /**
     * Information about the Amazon S3 location that is configured for storing model artifacts. 
     */
    ModelArtifacts: ModelArtifacts;
    /**
     * The status of the training job. Amazon SageMaker provides the following training job statuses:    InProgress - The training is in progress.    Completed - The training job has completed.    Failed - The training job has failed. To see the reason for the failure, see the FailureReason field in the response to a DescribeTrainingJobResponse call.    Stopping - The training job is stopping.    Stopped - The training job has stopped.   For more detailed information, see SecondaryStatus. 
     */
    TrainingJobStatus: TrainingJobStatus;
    /**
     *  Provides detailed information about the state of the training job. For detailed information on the secondary status of the training job, see StatusMessage under SecondaryStatusTransition. Amazon SageMaker provides primary statuses and secondary statuses that apply to each of them:  InProgress     Starting - Starting the training job.    Downloading - An optional stage for algorithms that support File training input mode. It indicates that data is being downloaded to the ML storage volumes.    Training - Training is in progress.    Interrupted - The job stopped because the managed spot training instances were interrupted.     Uploading - Training is complete and the model artifacts are being uploaded to the S3 location.    Completed     Completed - The training job has completed.    Failed     Failed - The training job has failed. The reason for the failure is returned in the FailureReason field of DescribeTrainingJobResponse.    Stopped     MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed runtime.    MaxWaitTimeExceeded - The job stopped because it exceeded the maximum allowed wait time.    Stopped - The training job has stopped.    Stopping     Stopping - Stopping the training job.      Valid values for SecondaryStatus are subject to change.   We no longer support the following secondary statuses:    LaunchingMLInstances     PreparingTrainingStack     DownloadingTrainingImage   
     */
    SecondaryStatus: SecondaryStatus;
    /**
     * If the training job failed, the reason it failed. 
     */
    FailureReason?: FailureReason;
    /**
     * Algorithm-specific parameters. 
     */
    HyperParameters?: HyperParameters;
    /**
     * Information about the algorithm used for training, and algorithm metadata. 
     */
    AlgorithmSpecification: AlgorithmSpecification;
    /**
     * The AWS Identity and Access Management (IAM) role configured for the training job. 
     */
    RoleArn?: RoleArn;
    /**
     * An array of Channel objects that describes each data input channel. 
     */
    InputDataConfig?: InputDataConfig;
    /**
     * The S3 path where model artifacts that you configured when creating the job are stored. Amazon SageMaker creates subfolders for model artifacts. 
     */
    OutputDataConfig?: OutputDataConfig;
    /**
     * Resources, including ML compute instances and ML storage volumes, that are configured for model training. 
     */
    ResourceConfig: ResourceConfig;
    /**
     * A VpcConfig object that specifies the VPC that this training job has access to. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
     */
    VpcConfig?: VpcConfig;
    /**
     * Specifies a limit to how long a model training job can run. It also specifies the maximum time to wait for a spot instance. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost. 
     */
    StoppingCondition: StoppingCondition;
    /**
     * A timestamp that indicates when the training job was created.
     */
    CreationTime: Timestamp;
    /**
     * Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of TrainingEndTime. The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.
     */
    TrainingStartTime?: Timestamp;
    /**
     * Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.
     */
    TrainingEndTime?: Timestamp;
    /**
     * A timestamp that indicates when the status of the training job was last modified.
     */
    LastModifiedTime?: Timestamp;
    /**
     * A history of all of the secondary statuses that the training job has transitioned through.
     */
    SecondaryStatusTransitions?: SecondaryStatusTransitions;
    /**
     * A collection of MetricData objects that specify the names, values, and dates and times that the training algorithm emitted to Amazon CloudWatch.
     */
    FinalMetricDataList?: FinalMetricDataList;
    /**
     * If you want to allow inbound or outbound network calls, except for calls between peers within a training cluster for distributed training, choose True. If you enable network isolation for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.
     */
    EnableNetworkIsolation?: Boolean;
    /**
     * To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithms in distributed training.
     */
    EnableInterContainerTrafficEncryption?: Boolean;
    /**
     * A Boolean indicating whether managed spot training is enabled (True) or not (False).
     */
    EnableManagedSpotTraining?: Boolean;
    CheckpointConfig?: CheckpointConfig;
    /**
     * The training time in seconds.
     */
    TrainingTimeInSeconds?: TrainingTimeInSeconds;
    /**
     * The billable time in seconds. You can calculate the savings from using managed spot training using the formula (1 - BillableTimeInSeconds / TrainingTimeInSeconds) * 100. For example, if BillableTimeInSeconds is 100 and TrainingTimeInSeconds is 500, the savings is 80%.
     */
    BillableTimeInSeconds?: BillableTimeInSeconds;
    DebugHookConfig?: DebugHookConfig;
    ExperimentConfig?: ExperimentConfig;
    /**
     * Configuration information for debugging rules.
     */
    DebugRuleConfigurations?: DebugRuleConfigurations;
    TensorBoardOutputConfig?: TensorBoardOutputConfig;
    /**
     * Status about the debug rule evaluation.
     */
    DebugRuleEvaluationStatuses?: DebugRuleEvaluationStatuses;
  }
  export interface DescribeTransformJobRequest {
    /**
     * The name of the transform job that you want to view details of.
     */
    TransformJobName: TransformJobName;
  }
  export interface DescribeTransformJobResponse {
    /**
     * The name of the transform job.
     */
    TransformJobName: TransformJobName;
    /**
     * The Amazon Resource Name (ARN) of the transform job.
     */
    TransformJobArn: TransformJobArn;
    /**
     * The status of the transform job. If the transform job failed, the reason is returned in the FailureReason field.
     */
    TransformJobStatus: TransformJobStatus;
    /**
     * If the transform job failed, FailureReason describes why it failed. A transform job creates a log file, which includes error messages, and stores it as an Amazon S3 object. For more information, see Log Amazon SageMaker Events with Amazon CloudWatch.
     */
    FailureReason?: FailureReason;
    /**
     * The name of the model used in the transform job.
     */
    ModelName: ModelName;
    /**
     * The maximum number of parallel requests on each instance node that can be launched in a transform job. The default value is 1.
     */
    MaxConcurrentTransforms?: MaxConcurrentTransforms;
    /**
     * The timeout and maximum number of retries for processing a transform job invocation.
     */
    ModelClientConfig?: ModelClientConfig;
    /**
     * The maximum payload size, in MB, used in the transform job.
     */
    MaxPayloadInMB?: MaxPayloadInMB;
    /**
     * Specifies the number of records to include in a mini-batch for an HTTP inference request. A record  is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.  To enable the batch strategy, you must set SplitType to Line, RecordIO, or TFRecord.
     */
    BatchStrategy?: BatchStrategy;
    /**
     * The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
     */
    Environment?: TransformEnvironmentMap;
    /**
     * Describes the dataset to be transformed and the Amazon S3 location where it is stored.
     */
    TransformInput: TransformInput;
    /**
     * Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.
     */
    TransformOutput?: TransformOutput;
    /**
     * Describes the resources, including ML instance types and ML instance count, to use for the transform job.
     */
    TransformResources: TransformResources;
    /**
     * A timestamp that shows when the transform Job was created.
     */
    CreationTime: Timestamp;
    /**
     * Indicates when the transform job starts on ML instances. You are billed for the time interval between this time and the value of TransformEndTime.
     */
    TransformStartTime?: Timestamp;
    /**
     * Indicates when the transform job has been completed, or has stopped or failed. You are billed for the time interval between this time and the value of TransformStartTime.
     */
    TransformEndTime?: Timestamp;
    /**
     * The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or training job.
     */
    LabelingJobArn?: LabelingJobArn;
    /**
     * The Amazon Resource Name (ARN) of the AutoML transform job.
     */
    AutoMLJobArn?: AutoMLJobArn;
    DataProcessing?: DataProcessing;
    ExperimentConfig?: ExperimentConfig;
  }
  export interface DescribeTrialComponentRequest {
    /**
     * The name of the trial component to describe.
     */
    TrialComponentName: ExperimentEntityName;
  }
  export interface DescribeTrialComponentResponse {
    /**
     * The name of the trial component.
     */
    TrialComponentName?: ExperimentEntityName;
    /**
     * The Amazon Resource Name (ARN) of the trial component.
     */
    TrialComponentArn?: TrialComponentArn;
    /**
     * The name of the component as displayed. If DisplayName isn't specified, TrialComponentName is displayed.
     */
    DisplayName?: ExperimentEntityName;
    /**
     * The Amazon Resource Name (ARN) of the source and, optionally, the job type.
     */
    Source?: TrialComponentSource;
    /**
     * The status of the component. States include:   InProgress   Completed   Failed  
     */
    Status?: TrialComponentStatus;
    /**
     * When the component started.
     */
    StartTime?: Timestamp;
    /**
     * When the component ended.
     */
    EndTime?: Timestamp;
    /**
     * When the component was created.
     */
    CreationTime?: Timestamp;
    /**
     * Who created the component.
     */
    CreatedBy?: UserContext;
    /**
     * When the component was last modified.
     */
    LastModifiedTime?: Timestamp;
    /**
     * Who last modified the component.
     */
    LastModifiedBy?: UserContext;
    /**
     * The hyperparameters of the component.
     */
    Parameters?: TrialComponentParameters;
    /**
     * The input artifacts of the component.
     */
    InputArtifacts?: TrialComponentArtifacts;
    /**
     * The output artifacts of the component.
     */
    OutputArtifacts?: TrialComponentArtifacts;
    /**
     * The metrics for the component.
     */
    Metrics?: TrialComponentMetricSummaries;
  }
  export interface DescribeTrialRequest {
    /**
     * The name of the trial to describe.
     */
    TrialName: ExperimentEntityName;
  }
  export interface DescribeTrialResponse {
    /**
     * The name of the trial.
     */
    TrialName?: ExperimentEntityName;
    /**
     * The Amazon Resource Name (ARN) of the trial.
     */
    TrialArn?: TrialArn;
    /**
     * The name of the trial as displayed. If DisplayName isn't specified, TrialName is displayed.
     */
    DisplayName?: ExperimentEntityName;
    /**
     * The name of the experiment the trial is part of.
     */
    ExperimentName?: ExperimentEntityName;
    /**
     * The Amazon Resource Name (ARN) of the source and, optionally, the job type.
     */
    Source?: TrialSource;
    /**
     * When the trial was created.
     */
    CreationTime?: Timestamp;
    /**
     * Who created the trial.
     */
    CreatedBy?: UserContext;
    /**
     * When the trial was last modified.
     */
    LastModifiedTime?: Timestamp;
    /**
     * Who last modified the trial.
     */
    LastModifiedBy?: UserContext;
  }
  export interface DescribeUserProfileRequest {
    /**
     * The domain ID.
     */
    DomainId: DomainId;
    /**
     * The user profile name.
     */
    UserProfileName: UserProfileName;
  }
  export interface DescribeUserProfileResponse {
    /**
     * The ID of the domain that contains the profile.
     */
    DomainId?: DomainId;
    /**
     * The user profile Amazon Resource Name (ARN).
     */
    UserProfileArn?: UserProfileArn;
    /**
     * The user profile name.
     */
    UserProfileName?: UserProfileName;
    /**
     * The ID of the user's profile in the Amazon Elastic File System (EFS) volume.
     */
    HomeEfsFileSystemUid?: EfsUid;
    /**
     * The status.
     */
    Status?: UserProfileStatus;
    /**
     * The last modified time.
     */
    LastModifiedTime?: LastModifiedTime;
    /**
     * The creation time.
     */
    CreationTime?: CreationTime;
    /**
     * The failure reason.
     */
    FailureReason?: FailureReason;
    /**
     * The SSO user identifier.
     */
    SingleSignOnUserIdentifier?: SingleSignOnUserIdentifier;
    /**
     * The SSO user value.
     */
    SingleSignOnUserValue?: String256;
    /**
     * A collection of settings.
     */
    UserSettings?: UserSettings;
  }
  export interface DescribeWorkforceRequest {
    /**
     * The name of the private workforce whose access you want to restrict. WorkforceName is automatically set to default when a workforce is created and cannot be modified. 
     */
    WorkforceName: WorkforceName;
  }
  export interface DescribeWorkforceResponse {
    /**
     * A single private workforce, which is automatically created when you create your first private work team. You can create one private work force in each AWS Region. By default, any workforce-related API operation used in a specific region will apply to the workforce created in that region. To learn how to create a private workforce, see Create a Private Workforce.
     */
    Workforce: Workforce;
  }
  export interface DescribeWorkteamRequest {
    /**
     * The name of the work team to return a description of.
     */
    WorkteamName: WorkteamName;
  }
  export interface DescribeWorkteamResponse {
    /**
     * A Workteam instance that contains information about the work team. 
     */
    Workteam: Workteam;
  }
  export interface DesiredWeightAndCapacity {
    /**
     * The name of the variant to update.
     */
    VariantName: VariantName;
    /**
     * The variant's weight.
     */
    DesiredWeight?: VariantWeight;
    /**
     * The variant's capacity.
     */
    DesiredInstanceCount?: TaskCount;
  }
  export type DesiredWeightAndCapacityList = DesiredWeightAndCapacity[];
  export type DestinationS3Uri = string;
  export type DetailedAlgorithmStatus = "NotStarted"|"InProgress"|"Completed"|"Failed"|string;
  export type DetailedModelPackageStatus = "NotStarted"|"InProgress"|"Completed"|"Failed"|string;
  export type DirectInternetAccess = "Enabled"|"Disabled"|string;
  export type DirectoryPath = string;
  export type DisassociateAdditionalCodeRepositories = boolean;
  export type DisassociateDefaultCodeRepository = boolean;
  export type DisassociateNotebookInstanceAcceleratorTypes = boolean;
  export type DisassociateNotebookInstanceLifecycleConfig = boolean;
  export interface DisassociateTrialComponentRequest {
    /**
     * The name of the component to disassociate from the trial.
     */
    TrialComponentName: ExperimentEntityName;
    /**
     * The name of the trial to disassociate from.
     */
    TrialName: ExperimentEntityName;
  }
  export interface DisassociateTrialComponentResponse {
    /**
     * The ARN of the trial component.
     */
    TrialComponentArn?: TrialComponentArn;
    /**
     * The Amazon Resource Name (ARN) of the trial.
     */
    TrialArn?: TrialArn;
  }
  export type Dollars = number;
  export type DomainArn = string;
  export interface DomainDetails {
    /**
     * The domain's Amazon Resource Name (ARN).
     */
    DomainArn?: DomainArn;
    /**
     * The domain ID.
     */
    DomainId?: DomainId;
    /**
     * The domain name.
     */
    DomainName?: DomainName;
    /**
     * The status.
     */
    Status?: DomainStatus;
    /**
     * The creation time.
     */
    CreationTime?: CreationTime;
    /**
     * The last modified time.
     */
    LastModifiedTime?: LastModifiedTime;
    /**
     * The domain's URL.
     */
    Url?: String1024;
  }
  export type DomainId = string;
  export type DomainList = DomainDetails[];
  export type DomainName = string;
  export type DomainStatus = "Deleting"|"Failed"|"InService"|"Pending"|string;
  export type DoubleParameterValue = number;
  export type EfsUid = string;
  export type EnableCapture = boolean;
  export type EndpointArn = string;
  export type EndpointConfigArn = string;
  export type EndpointConfigName = string;
  export type EndpointConfigNameContains = string;
  export type EndpointConfigSortKey = "Name"|"CreationTime"|string;
  export interface EndpointConfigSummary {
    /**
     * The name of the endpoint configuration.
     */
    EndpointConfigName: EndpointConfigName;
    /**
     * The Amazon Resource Name (ARN) of the endpoint configuration.
     */
    EndpointConfigArn: EndpointConfigArn;
    /**
     * A timestamp that shows when the endpoint configuration was created.
     */
    CreationTime: Timestamp;
  }
  export type EndpointConfigSummaryList = EndpointConfigSummary[];
  export interface EndpointInput {
    /**
     * An endpoint in customer's account which has enabled DataCaptureConfig enabled.
     */
    EndpointName: EndpointName;
    /**
     * Path to the filesystem where the endpoint data is available to the container.
     */
    LocalPath: ProcessingLocalPath;
    /**
     * Whether the Pipe or File is used as the input mode for transfering data for the monitoring job. Pipe mode is recommended for large datasets. File mode is useful for small files that fit in memory. Defaults to File.
     */
    S3InputMode?: ProcessingS3InputMode;
    /**
     * Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defauts to FullyReplicated 
     */
    S3DataDistributionType?: ProcessingS3DataDistributionType;
  }
  export type EndpointName = string;
  export type EndpointNameContains = string;
  export type EndpointSortKey = "Name"|"CreationTime"|"Status"|string;
  export type EndpointStatus = "OutOfService"|"Creating"|"Updating"|"SystemUpdating"|"RollingBack"|"InService"|"Deleting"|"Failed"|string;
  export interface EndpointSummary {
    /**
     * The name of the endpoint.
     */
    EndpointName: EndpointName;
    /**
     * The Amazon Resource Name (ARN) of the endpoint.
     */
    EndpointArn: EndpointArn;
    /**
     * A timestamp that shows when the endpoint was created.
     */
    CreationTime: Timestamp;
    /**
     * A timestamp that shows when the endpoint was last modified.
     */
    LastModifiedTime: Timestamp;
    /**
     * The status of the endpoint.    OutOfService: Endpoint is not available to take incoming requests.    Creating: CreateEndpoint is executing.    Updating: UpdateEndpoint or UpdateEndpointWeightsAndCapacities is executing.    SystemUpdating: Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count.    RollingBack: Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an InService status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an UpdateEndpointWeightsAndCapacities call or when the UpdateEndpointWeightsAndCapacities operation is called explicitly.    InService: Endpoint is available to process incoming requests.    Deleting: DeleteEndpoint is executing.    Failed: Endpoint could not be created, updated, or re-scaled. Use DescribeEndpointOutput$FailureReason for information about the failure. DeleteEndpoint is the only operation that can be performed on a failed endpoint.   To get a list of endpoints with a specified status, use the ListEndpointsInput$StatusEquals filter.
     */
    EndpointStatus: EndpointStatus;
  }
  export type EndpointSummaryList = EndpointSummary[];
  export type EntityDescription = string;
  export type EntityName = string;
  export type EnvironmentKey = string;
  export type EnvironmentMap = {[key: string]: EnvironmentValue};
  export type EnvironmentValue = string;
  export type ExecutionStatus = "Pending"|"Completed"|"CompletedWithViolations"|"InProgress"|"Failed"|"Stopping"|"Stopped"|string;
  export type ExitMessage = string;
  export interface Experiment {
    /**
     * The name of the experiment.
     */
    ExperimentName?: ExperimentEntityName;
    /**
     * The Amazon Resource Name (ARN) of the experiment.
     */
    ExperimentArn?: ExperimentArn;
    /**
     * The name of the experiment as displayed. If DisplayName isn't specified, ExperimentName is displayed.
     */
    DisplayName?: ExperimentEntityName;
    Source?: ExperimentSource;
    /**
     * The description of the experiment.
     */
    Description?: ExperimentDescription;
    /**
     * When the experiment was created.
     */
    CreationTime?: Timestamp;
    CreatedBy?: UserContext;
    /**
     * When the experiment was last modified.
     */
    LastModifiedTime?: Timestamp;
    LastModifiedBy?: UserContext;
    /**
     * The list of tags that are associated with the experiment. You can use Search API to search on the tags.
     */
    Tags?: TagList;
  }
  export type ExperimentArn = string;
  export interface ExperimentConfig {
    /**
     * The name of an existing experiment to associate the trial component with.
     */
    ExperimentName?: ExperimentEntityName;
    /**
     * The name of an existing trial to associate the trial component with. If not specified, a new trial is created.
     */
    TrialName?: ExperimentEntityName;
    /**
     * The display name for the trial component. If this key isn't specified, the display name is the trial component name.
     */
    TrialComponentDisplayName?: ExperimentEntityName;
  }
  export type ExperimentDescription = string;
  export type ExperimentEntityName = string;
  export interface ExperimentSource {
    /**
     * The Amazon Resource Name (ARN) of the source.
     */
    SourceArn: ExperimentSourceArn;
    /**
     * The source type.
     */
    SourceType?: SourceType;
  }
  export type ExperimentSourceArn = string;
  export type ExperimentSummaries = ExperimentSummary[];
  export interface ExperimentSummary {
    /**
     * The Amazon Resource Name (ARN) of the experiment.
     */
    ExperimentArn?: ExperimentArn;
    /**
     * The name of the experiment.
     */
    ExperimentName?: ExperimentEntityName;
    /**
     * The name of the experiment as displayed. If DisplayName isn't specified, ExperimentName is displayed.
     */
    DisplayName?: ExperimentEntityName;
    ExperimentSource?: ExperimentSource;
    /**
     * When the experiment was created.
     */
    CreationTime?: Timestamp;
    /**
     * When the experiment was last modified.
     */
    LastModifiedTime?: Timestamp;
  }
  export type FailureReason = string;
  export type FileSystemAccessMode = "rw"|"ro"|string;
  export interface FileSystemDataSource {
    /**
     * The file system id.
     */
    FileSystemId: FileSystemId;
    /**
     * The access mode of the mount of the directory associated with the channel. A directory can be mounted either in ro (read-only) or rw (read-write) mode.
     */
    FileSystemAccessMode: FileSystemAccessMode;
    /**
     * The file system type. 
     */
    FileSystemType: FileSystemType;
    /**
     * The full path to the directory to associate with the channel.
     */
    DirectoryPath: DirectoryPath;
  }
  export type FileSystemId = string;
  export type FileSystemType = "EFS"|"FSxLustre"|string;
  export interface Filter {
    /**
     * A resource property name. For example, TrainingJobName. For valid property names, see SearchRecord. You must specify a valid property for the resource.
     */
    Name: ResourcePropertyName;
    /**
     * A Boolean binary operator that is used to evaluate the filter. The operator field contains one of the following values:  Equals  The value of Name equals Value.  NotEquals  The value of Name doesn't equal Value.  Exists  The Name property exists.  NotExists  The Name property does not exist.  GreaterThan  The value of Name is greater than Value. Not supported for text properties.  GreaterThanOrEqualTo  The value of Name is greater than or equal to Value. Not supported for text properties.  LessThan  The value of Name is less than Value. Not supported for text properties.  LessThanOrEqualTo  The value of Name is less than or equal to Value. Not supported for text properties.  In  The value of Name is one of the comma delimited strings in Value. Only supported for text properties.  Contains  The value of Name contains the string Value. Only supported for text properties. A SearchExpression can include the Contains operator multiple times when the value of Name is one of the following:    Experiment.DisplayName     Experiment.ExperimentName     Experiment.Tags     Trial.DisplayName     Trial.TrialName     Trial.Tags     TrialComponent.DisplayName     TrialComponent.TrialComponentName     TrialComponent.Tags     TrialComponent.InputArtifacts     TrialComponent.OutputArtifacts    A SearchExpression can include only one Contains operator for all other values of Name. In these cases, if you include multiple Contains operators in the SearchExpression, the result is the following error message: "'CONTAINS' operator usage limit of 1 exceeded."  
     */
    Operator?: Operator;
    /**
     * A value used with Name and Operator to determine which resources satisfy the filter's condition. For numerical properties, Value must be an integer or floating-point decimal. For timestamp properties, Value must be an ISO 8601 date-time string of the following format: YYYY-mm-dd'T'HH:MM:SS.
     */
    Value?: FilterValue;
  }
  export type FilterList = Filter[];
  export type FilterValue = string;
  export interface FinalAutoMLJobObjectiveMetric {
    /**
     * The type of metric with the best result.
     */
    Type?: AutoMLJobObjectiveType;
    /**
     * The name of the metric with the best result. For a description of the possible objective metrics, see AutoMLJobObjective$MetricName.
     */
    MetricName: AutoMLMetricEnum;
    /**
     * The value of the metric with the best result.
     */
    Value: MetricValue;
  }
  export interface FinalHyperParameterTuningJobObjectiveMetric {
    /**
     * Whether to minimize or maximize the objective metric. Valid values are Minimize and Maximize.
     */
    Type?: HyperParameterTuningJobObjectiveType;
    /**
     * The name of the objective metric.
     */
    MetricName: MetricName;
    /**
     * The value of the objective metric.
     */
    Value: MetricValue;
  }
  export type FinalMetricDataList = MetricData[];
  export type Float = number;
  export type FlowDefinitionArn = string;
  export type FlowDefinitionName = string;
  export interface FlowDefinitionOutputConfig {
    /**
     * The Amazon S3 path where the object containing human output will be made available.
     */
    S3OutputPath: S3Uri;
    /**
     * The Amazon Key Management Service (KMS) key ID for server-side encryption.
     */
    KmsKeyId?: KmsKeyId;
  }
  export type FlowDefinitionStatus = "Initializing"|"Active"|"Failed"|"Deleting"|string;
  export type FlowDefinitionSummaries = FlowDefinitionSummary[];
  export interface FlowDefinitionSummary {
    /**
     * The name of the flow definition.
     */
    FlowDefinitionName: FlowDefinitionName;
    /**
     * The Amazon Resource Name (ARN) of the flow definition.
     */
    FlowDefinitionArn: FlowDefinitionArn;
    /**
     * The status of the flow definition. Valid values:
     */
    FlowDefinitionStatus: FlowDefinitionStatus;
    /**
     * The timestamp when SageMaker created the flow definition.
     */
    CreationTime: Timestamp;
    /**
     * The reason why the flow definition creation failed. A failure reason is returned only when the flow definition status is Failed.
     */
    FailureReason?: FailureReason;
  }
  export type FlowDefinitionTaskAvailabilityLifetimeInSeconds = number;
  export type FlowDefinitionTaskCount = number;
  export type FlowDefinitionTaskDescription = string;
  export type FlowDefinitionTaskKeyword = string;
  export type FlowDefinitionTaskKeywords = FlowDefinitionTaskKeyword[];
  export type FlowDefinitionTaskTimeLimitInSeconds = number;
  export type FlowDefinitionTaskTitle = string;
  export type Framework = "TENSORFLOW"|"KERAS"|"MXNET"|"ONNX"|"PYTORCH"|"XGBOOST"|"TFLITE"|string;
  export type GenerateCandidateDefinitionsOnly = boolean;
  export interface GetSearchSuggestionsRequest {
    /**
     * The name of the Amazon SageMaker resource to search for.
     */
    Resource: ResourceType;
    /**
     * Limits the property names that are included in the response.
     */
    SuggestionQuery?: SuggestionQuery;
  }
  export interface GetSearchSuggestionsResponse {
    /**
     * A list of property names for a Resource that match a SuggestionQuery.
     */
    PropertyNameSuggestions?: PropertyNameSuggestionList;
  }
  export interface GitConfig {
    /**
     * The URL where the Git repository is located.
     */
    RepositoryUrl: GitConfigUrl;
    /**
     * The default branch for the Git repository.
     */
    Branch?: Branch;
    /**
     * The Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the git repository. The secret must have a staging label of AWSCURRENT and must be in the following format:  {"username": UserName, "password": Password} 
     */
    SecretArn?: SecretArn;
  }
  export interface GitConfigForUpdate {
    /**
     * The Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the git repository. The secret must have a staging label of AWSCURRENT and must be in the following format:  {"username": UserName, "password": Password} 
     */
    SecretArn?: SecretArn;
  }
  export type GitConfigUrl = string;
  export type Group = string;
  export type Groups = Group[];
  export type HookParameters = {[key: string]: ConfigValue};
  export type HumanLoopActivationConditions = string;
  export interface HumanLoopActivationConditionsConfig {
    /**
     * JSON expressing use-case specific conditions declaratively. If any condition is matched, atomic tasks are created against the configured work team. The set of conditions is different for Rekognition and Textract. For more information about how to structure the JSON, see JSON Schema for Human Loop Activation Conditions in Amazon Augmented AI in the Amazon SageMaker Developer Guide.
     */
    HumanLoopActivationConditions: HumanLoopActivationConditions;
  }
  export interface HumanLoopActivationConfig {
    /**
     * Container structure for defining under what conditions SageMaker creates a human loop.
     */
    HumanLoopActivationConditionsConfig: HumanLoopActivationConditionsConfig;
  }
  export interface HumanLoopConfig {
    /**
     * Amazon Resource Name (ARN) of a team of workers.
     */
    WorkteamArn: WorkteamArn;
    /**
     * The Amazon Resource Name (ARN) of the human task user interface.
     */
    HumanTaskUiArn: HumanTaskUiArn;
    /**
     * A title for the human worker task.
     */
    TaskTitle: FlowDefinitionTaskTitle;
    /**
     * A description for the human worker task.
     */
    TaskDescription: FlowDefinitionTaskDescription;
    /**
     * The number of distinct workers who will perform the same task on each object. For example, if TaskCount is set to 3 for an image classification labeling job, three workers will classify each input image. Increasing TaskCount can improve label accuracy.
     */
    TaskCount: FlowDefinitionTaskCount;
    /**
     * The length of time that a task remains available for review by human workers.
     */
    TaskAvailabilityLifetimeInSeconds?: FlowDefinitionTaskAvailabilityLifetimeInSeconds;
    /**
     * The amount of time that a worker has to complete a task. The default value is 3,600 seconds (1 hour)
     */
    TaskTimeLimitInSeconds?: FlowDefinitionTaskTimeLimitInSeconds;
    /**
     * Keywords used to describe the task so that workers can discover the task.
     */
    TaskKeywords?: FlowDefinitionTaskKeywords;
    PublicWorkforceTaskPrice?: PublicWorkforceTaskPrice;
  }
  export interface HumanLoopRequestSource {
    /**
     * Specifies whether Amazon Rekognition or Amazon Textract are used as the integration source. The default field settings and JSON parsing rules are different based on the integration source. Valid values:
     */
    AwsManagedHumanLoopRequestSource: AwsManagedHumanLoopRequestSource;
  }
  export interface HumanTaskConfig {
    /**
     * The Amazon Resource Name (ARN) of the work team assigned to complete the tasks.
     */
    WorkteamArn: WorkteamArn;
    /**
     * Information about the user interface that workers use to complete the labeling task.
     */
    UiConfig: UiConfig;
    /**
     * The Amazon Resource Name (ARN) of a Lambda function that is run before a data object is sent to a human worker. Use this function to provide input to a custom labeling job. For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for PreHumanTaskLambdaArn. For custom labeling workflows, see Pre-annotation Lambda.   Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes.    arn:aws:lambda:us-east-1:432418664414:function:PRE-BoundingBox     arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox     arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox     arn:aws:lambda:ca-central-1:918755190332:function:PRE-BoundingBox     arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox     arn:aws:lambda:eu-west-2:487402164563:function:PRE-BoundingBox     arn:aws:lambda:eu-central-1:203001061592:function:PRE-BoundingBox     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox     arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-BoundingBox     arn:aws:lambda:ap-south-1:565803892007:function:PRE-BoundingBox     arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-BoundingBox     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox     Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers.    arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClass     arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClass     arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClass     arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClass     arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClass     arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClass     arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClass     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClass     arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClass     arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClass     arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClass     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClass     Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers.    arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClassMultiLabel     arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClassMultiLabel     arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClassMultiLabel     arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClassMultiLabel     arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClassMultiLabel     arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClassMultiLabel     arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClassMultiLabel     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClassMultiLabel     arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClassMultiLabel     arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClassMultiLabel     arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClassMultiLabel     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClassMultiLabel     Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label.    arn:aws:lambda:us-east-1:432418664414:function:PRE-SemanticSegmentation     arn:aws:lambda:us-east-2:266458841044:function:PRE-SemanticSegmentation     arn:aws:lambda:us-west-2:081040173940:function:PRE-SemanticSegmentation     arn:aws:lambda:ca-central-1:918755190332:function:PRE-SemanticSegmentation     arn:aws:lambda:eu-west-1:568282634449:function:PRE-SemanticSegmentation     arn:aws:lambda:eu-west-2:487402164563:function:PRE-SemanticSegmentation     arn:aws:lambda:eu-central-1:203001061592:function:PRE-SemanticSegmentation     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-SemanticSegmentation     arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-SemanticSegmentation     arn:aws:lambda:ap-south-1:565803892007:function:PRE-SemanticSegmentation     arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-SemanticSegmentation     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-SemanticSegmentation     Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers.    arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass     arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass     arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass     arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClass     arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass     arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClass     arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClass     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass     arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClass     arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClass     arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClass     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass     Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers.    arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClassMultiLabel     arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClassMultiLabel     arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClassMultiLabel     arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClassMultiLabel     arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClassMultiLabel     arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClassMultiLabel     arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClassMultiLabel     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClassMultiLabel     arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClassMultiLabel     arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClassMultiLabel     arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClassMultiLabel     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClassMultiLabel     Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label.    arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition     arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition     arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition     arn:aws:lambda:ca-central-1:918755190332:function:PRE-NamedEntityRecognition     arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition     arn:aws:lambda:eu-west-2:487402164563:function:PRE-NamedEntityRecognition     arn:aws:lambda:eu-central-1:203001061592:function:PRE-NamedEntityRecognition     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-NamedEntityRecognition     arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-NamedEntityRecognition     arn:aws:lambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition     arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition     Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video.    arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoMultiClass     arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoMultiClass     arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoMultiClass     arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoMultiClass     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoMultiClass     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoMultiClass     arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoMultiClass     arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoMultiClass     arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoMultiClass     arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoMultiClass     arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoMultiClass     arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoMultiClass     Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians.    arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectDetection     arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectDetection     arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectDetection     arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectDetection     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectDetection     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectDetection     arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectDetection     arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectDetection     arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectDetection     arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectDetection     arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectDetection     arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectDetection     Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians.     arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectTracking     arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectTracking     arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectTracking     arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectTracking     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectTracking     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectTracking     arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectTracking     arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectTracking     arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectTracking     arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectTracking     arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectTracking     arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectTracking     3D Point Cloud Modalities  Use the following pre-annotation lambdas for 3D point cloud labeling modality tasks. See 3D Point Cloud Task types  to learn more.   3D Point Cloud Object Detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians.    arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectDetection     arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectDetection     arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectDetection     arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectDetection     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectDetection     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectDetection     arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectDetection     arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectDetection     arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectDetection     arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectDetection     arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectDetection     arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectDetection     3D Point Cloud Object Tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames.     arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectTracking     arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectTracking     arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectTracking     arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectTracking     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectTracking     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectTracking     arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectTracking     arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectTracking     arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectTracking     arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectTracking     arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectTracking     arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectTracking     3D Point Cloud Semantic Segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify.    arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudSemanticSegmentation     arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudSemanticSegmentation     arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudSemanticSegmentation     arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudSemanticSegmentation     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudSemanticSegmentation     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudSemanticSegmentation     arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudSemanticSegmentation     arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudSemanticSegmentation     arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudSemanticSegmentation     arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudSemanticSegmentation     arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudSemanticSegmentation     arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudSemanticSegmentation     Use the following ARNs for Label Verification and Adjustment Jobs  Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels .  Bounding box verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers.    arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking     arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking     arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking     arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking     arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking     arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking     arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking     arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking     arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking     arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking     Bounding box adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations.    arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentBoundingBox     arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentBoundingBox     arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentBoundingBox     arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentBoundingBox     arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentBoundingBox     arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentBoundingBox     arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentBoundingBox     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentBoundingBox     arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentBoundingBox     arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentBoundingBox     arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentBoundingBox     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentBoundingBox     Semantic segmentation verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers.    arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationSemanticSegmentation     arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationSemanticSegmentation     arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationSemanticSegmentation     arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationSemanticSegmentation     arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationSemanticSegmentation     arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationSemanticSegmentation     arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationSemanticSegmentation     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationSemanticSegmentation     arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationSemanticSegmentation     arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationSemanticSegmentation     arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationSemanticSegmentation     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationSemanticSegmentation     Semantic segmentation adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label.    arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentSemanticSegmentation     arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentSemanticSegmentation     arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentSemanticSegmentation     arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentSemanticSegmentation     arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentSemanticSegmentation     arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentSemanticSegmentation     arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentSemanticSegmentation     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentSemanticSegmentation     arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentSemanticSegmentation     arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentSemanticSegmentation     arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentSemanticSegmentation     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation     Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames.    arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectDetection     arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectDetection     arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectDetection     arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectDetection     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectDetection     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectDetection     arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectDetection     arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectDetection     arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectDetection     arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectDetection     arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectDetection     arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectDetection     Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames.    arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectTracking     arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectTracking     arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectTracking     arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectTracking     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectTracking     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectTracking     arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectTracking     arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectTracking     arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectTracking     arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectTracking     arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectTracking     arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectTracking     3D point cloud object detection adjustment - Adjust 3D cuboids in a point cloud frame.     arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectDetection     arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectDetection     arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectDetection     arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectDetection     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectDetection     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectDetection     arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectDetection     arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectDetection     arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectDetection     arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectDetection     arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectDetection     arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectDetection     3D point cloud object tracking adjustment - Adjust 3D cuboids across a sequence of point cloud frames.     arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking     arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking     arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking     arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking     arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking     arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking     arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking     arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking     arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking     arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking     3D point cloud semantic segmentation adjustment - Adjust semantic segmentation masks in a 3D point cloud.     arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudSemanticSegmentation     arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudSemanticSegmentation     arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudSemanticSegmentation     arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudSemanticSegmentation     arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudSemanticSegmentation     arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudSemanticSegmentation     arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudSemanticSegmentation     arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudSemanticSegmentation     arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudSemanticSegmentation     arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudSemanticSegmentation     arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudSemanticSegmentation     arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudSemanticSegmentation   
     */
    PreHumanTaskLambdaArn: LambdaFunctionArn;
    /**
     * Keywords used to describe the task so that workers on Amazon Mechanical Turk can discover the task.
     */
    TaskKeywords?: TaskKeywords;
    /**
     * A title for the task for your human workers.
     */
    TaskTitle: TaskTitle;
    /**
     * A description of the task for your human workers.
     */
    TaskDescription: TaskDescription;
    /**
     * The number of human workers that will label an object. 
     */
    NumberOfHumanWorkersPerDataObject: NumberOfHumanWorkersPerDataObject;
    /**
     * The amount of time that a worker has to complete a task.
     */
    TaskTimeLimitInSeconds: TaskTimeLimitInSeconds;
    /**
     * The length of time that a task remains available for labeling by human workers. If you choose the Amazon Mechanical Turk workforce, the maximum is 12 hours (43200). The default value is 864000 seconds (10 days). For private and vendor workforces, the maximum is as listed.
     */
    TaskAvailabilityLifetimeInSeconds?: TaskAvailabilityLifetimeInSeconds;
    /**
     * Defines the maximum number of data objects that can be labeled by human workers at the same time. Also referred to as batch size. Each object may have more than one worker at one time. The default value is 1000 objects.
     */
    MaxConcurrentTaskCount?: MaxConcurrentTaskCount;
    /**
     * Configures how labels are consolidated across human workers.
     */
    AnnotationConsolidationConfig: AnnotationConsolidationConfig;
    /**
     * The price that you pay for each task performed by an Amazon Mechanical Turk worker.
     */
    PublicWorkforceTaskPrice?: PublicWorkforceTaskPrice;
  }
  export type HumanTaskUiArn = string;
  export type HumanTaskUiName = string;
  export type HumanTaskUiStatus = "Active"|"Deleting"|string;
  export type HumanTaskUiSummaries = HumanTaskUiSummary[];
  export interface HumanTaskUiSummary {
    /**
     * The name of the human task user interface.
     */
    HumanTaskUiName: HumanTaskUiName;
    /**
     * The Amazon Resource Name (ARN) of the human task user interface.
     */
    HumanTaskUiArn: HumanTaskUiArn;
    /**
     * A timestamp when SageMaker created the human task user interface.
     */
    CreationTime: Timestamp;
  }
  export interface HyperParameterAlgorithmSpecification {
    /**
     *  The registry path of the Docker image that contains the training algorithm. For information about Docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
     */
    TrainingImage?: AlgorithmImage;
    /**
     * The input mode that the algorithm supports: File or Pipe. In File input mode, Amazon SageMaker downloads the training data from Amazon S3 to the storage volume that is attached to the training instance and mounts the directory to the Docker volume for the training container. In Pipe input mode, Amazon SageMaker streams data directly from Amazon S3 to the container.  If you specify File mode, make sure that you provision the storage volume that is attached to the training instance with enough capacity to accommodate the training data downloaded from Amazon S3, the model artifacts, and intermediate information.  For more information about input modes, see Algorithms. 
     */
    TrainingInputMode: TrainingInputMode;
    /**
     * The name of the resource algorithm to use for the hyperparameter tuning job. If you specify a value for this parameter, do not specify a value for TrainingImage.
     */
    AlgorithmName?: ArnOrName;
    /**
     * An array of MetricDefinition objects that specify the metrics that the algorithm emits.
     */
    MetricDefinitions?: MetricDefinitionList;
  }
  export type HyperParameterScalingType = "Auto"|"Linear"|"Logarithmic"|"ReverseLogarithmic"|string;
  export interface HyperParameterSpecification {
    /**
     * The name of this hyperparameter. The name must be unique.
     */
    Name: ParameterName;
    /**
     * A brief description of the hyperparameter.
     */
    Description?: EntityDescription;
    /**
     * The type of this hyperparameter. The valid types are Integer, Continuous, Categorical, and FreeText.
     */
    Type: ParameterType;
    /**
     * The allowed range for this hyperparameter.
     */
    Range?: ParameterRange;
    /**
     * Indicates whether this hyperparameter is tunable in a hyperparameter tuning job.
     */
    IsTunable?: Boolean;
    /**
     * Indicates whether this hyperparameter is required.
     */
    IsRequired?: Boolean;
    /**
     * The default value for this hyperparameter. If a default value is specified, a hyperparameter cannot be required.
     */
    DefaultValue?: ParameterValue;
  }
  export type HyperParameterSpecifications = HyperParameterSpecification[];
  export interface HyperParameterTrainingJobDefinition {
    /**
     * The job definition name.
     */
    DefinitionName?: HyperParameterTrainingJobDefinitionName;
    TuningObjective?: HyperParameterTuningJobObjective;
    HyperParameterRanges?: ParameterRanges;
    /**
     * Specifies the values of hyperparameters that do not change for the tuning job.
     */
    StaticHyperParameters?: HyperParameters;
    /**
     * The HyperParameterAlgorithmSpecification object that specifies the resource algorithm to use for the training jobs that the tuning job launches.
     */
    AlgorithmSpecification: HyperParameterAlgorithmSpecification;
    /**
     * The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning job launches.
     */
    RoleArn: RoleArn;
    /**
     * An array of Channel objects that specify the input for the training jobs that the tuning job launches.
     */
    InputDataConfig?: InputDataConfig;
    /**
     * The VpcConfig object that specifies the VPC that you want the training jobs that this hyperparameter tuning job launches to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
     */
    VpcConfig?: VpcConfig;
    /**
     * Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs that the tuning job launches.
     */
    OutputDataConfig: OutputDataConfig;
    /**
     * The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches. Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want Amazon SageMaker to use the storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.
     */
    ResourceConfig: ResourceConfig;
    /**
     * Specifies a limit to how long a model hyperparameter training job can run. It also specifies how long you are willing to wait for a managed spot training job to complete. When the job reaches the a limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.
     */
    StoppingCondition: StoppingCondition;
    /**
     * Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If network isolation is used for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.
     */
    EnableNetworkIsolation?: Boolean;
    /**
     * To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.
     */
    EnableInterContainerTrafficEncryption?: Boolean;
    /**
     * A Boolean indicating whether managed spot training is enabled (True) or not (False).
     */
    EnableManagedSpotTraining?: Boolean;
    CheckpointConfig?: CheckpointConfig;
  }
  export type HyperParameterTrainingJobDefinitionName = string;
  export type HyperParameterTrainingJobDefinitions = HyperParameterTrainingJobDefinition[];
  export type HyperParameterTrainingJobSummaries = HyperParameterTrainingJobSummary[];
  export interface HyperParameterTrainingJobSummary {
    /**
     * The training job definition name.
     */
    TrainingJobDefinitionName?: HyperParameterTrainingJobDefinitionName;
    /**
     * The name of the training job.
     */
    TrainingJobName: TrainingJobName;
    /**
     * The Amazon Resource Name (ARN) of the training job.
     */
    TrainingJobArn: TrainingJobArn;
    /**
     * The HyperParameter tuning job that launched the training job.
     */
    TuningJobName?: HyperParameterTuningJobName;
    /**
     * The date and time that the training job was created.
     */
    CreationTime: Timestamp;
    /**
     * The date and time that the training job started.
     */
    TrainingStartTime?: Timestamp;
    /**
     * Specifies the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.
     */
    TrainingEndTime?: Timestamp;
    /**
     * The status of the training job.
     */
    TrainingJobStatus: TrainingJobStatus;
    /**
     * A list of the hyperparameters for which you specified ranges to search.
     */
    TunedHyperParameters: HyperParameters;
    /**
     * The reason that the training job failed. 
     */
    FailureReason?: FailureReason;
    /**
     * The FinalHyperParameterTuningJobObjectiveMetric object that specifies the value of the objective metric of the tuning job that launched this training job.
     */
    FinalHyperParameterTuningJobObjectiveMetric?: FinalHyperParameterTuningJobObjectiveMetric;
    /**
     * The status of the objective metric for the training job:   Succeeded: The final objective metric for the training job was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process.     Pending: The training job is in progress and evaluation of its final objective metric is pending.     Failed: The final objective metric for the training job was not evaluated, and was not used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.  
     */
    ObjectiveStatus?: ObjectiveStatus;
  }
  export type HyperParameterTuningJobArn = string;
  export interface HyperParameterTuningJobConfig {
    /**
     * Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. To use the Bayesian search strategy, set this to Bayesian. To randomly search, set it to Random. For information about search strategies, see How Hyperparameter Tuning Works.
     */
    Strategy: HyperParameterTuningJobStrategyType;
    /**
     * The HyperParameterTuningJobObjective object that specifies the objective metric for this tuning job.
     */
    HyperParameterTuningJobObjective?: HyperParameterTuningJobObjective;
    /**
     * The ResourceLimits object that specifies the maximum number of training jobs and parallel training jobs for this tuning job.
     */
    ResourceLimits: ResourceLimits;
    /**
     * The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches.
     */
    ParameterRanges?: ParameterRanges;
    /**
     * Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. This can be one of the following values (the default value is OFF):  OFF  Training jobs launched by the hyperparameter tuning job do not use early stopping.  AUTO  Amazon SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.  
     */
    TrainingJobEarlyStoppingType?: TrainingJobEarlyStoppingType;
    /**
     * The tuning job's completion criteria.
     */
    TuningJobCompletionCriteria?: TuningJobCompletionCriteria;
  }
  export type HyperParameterTuningJobName = string;
  export interface HyperParameterTuningJobObjective {
    /**
     * Whether to minimize or maximize the objective metric.
     */
    Type: HyperParameterTuningJobObjectiveType;
    /**
     * The name of the metric to use for the objective metric.
     */
    MetricName: MetricName;
  }
  export type HyperParameterTuningJobObjectiveType = "Maximize"|"Minimize"|string;
  export type HyperParameterTuningJobObjectives = HyperParameterTuningJobObjective[];
  export type HyperParameterTuningJobSortByOptions = "Name"|"Status"|"CreationTime"|string;
  export type HyperParameterTuningJobStatus = "Completed"|"InProgress"|"Failed"|"Stopped"|"Stopping"|string;
  export type HyperParameterTuningJobStrategyType = "Bayesian"|"Random"|string;
  export type HyperParameterTuningJobSummaries = HyperParameterTuningJobSummary[];
  export interface HyperParameterTuningJobSummary {
    /**
     * The name of the tuning job.
     */
    HyperParameterTuningJobName: HyperParameterTuningJobName;
    /**
     * The Amazon Resource Name (ARN) of the tuning job.
     */
    HyperParameterTuningJobArn: HyperParameterTuningJobArn;
    /**
     * The status of the tuning job.
     */
    HyperParameterTuningJobStatus: HyperParameterTuningJobStatus;
    /**
     * Specifies the search strategy hyperparameter tuning uses to choose which hyperparameters to use for each iteration. Currently, the only valid value is Bayesian.
     */
    Strategy: HyperParameterTuningJobStrategyType;
    /**
     * The date and time that the tuning job was created.
     */
    CreationTime: Timestamp;
    /**
     * The date and time that the tuning job ended.
     */
    HyperParameterTuningEndTime?: Timestamp;
    /**
     * The date and time that the tuning job was modified.
     */
    LastModifiedTime?: Timestamp;
    /**
     * The TrainingJobStatusCounters object that specifies the numbers of training jobs, categorized by status, that this tuning job launched.
     */
    TrainingJobStatusCounters: TrainingJobStatusCounters;
    /**
     * The ObjectiveStatusCounters object that specifies the numbers of training jobs, categorized by objective metric status, that this tuning job launched.
     */
    ObjectiveStatusCounters: ObjectiveStatusCounters;
    /**
     * The ResourceLimits object that specifies the maximum number of training jobs and parallel training jobs allowed for this tuning job.
     */
    ResourceLimits?: ResourceLimits;
  }
  export interface HyperParameterTuningJobWarmStartConfig {
    /**
     * An array of hyperparameter tuning jobs that are used as the starting point for the new hyperparameter tuning job. For more information about warm starting a hyperparameter tuning job, see Using a Previous Hyperparameter Tuning Job as a Starting Point. Hyperparameter tuning jobs created before October 1, 2018 cannot be used as parent jobs for warm start tuning jobs.
     */
    ParentHyperParameterTuningJobs: ParentHyperParameterTuningJobs;
    /**
     * Specifies one of the following:  IDENTICAL_DATA_AND_ALGORITHM  The new hyperparameter tuning job uses the same input data and training image as the parent tuning jobs. You can change the hyperparameter ranges to search and the maximum number of training jobs that the hyperparameter tuning job launches. You cannot use a new version of the training algorithm, unless the changes in the new version do not affect the algorithm itself. For example, changes that improve logging or adding support for a different data format are allowed. You can also change hyperparameters from tunable to static, and from static to tunable, but the total number of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The objective metric for the new tuning job must be the same as for all parent jobs.  TRANSFER_LEARNING  The new hyperparameter tuning job can include input data, hyperparameter ranges, maximum number of concurrent training jobs, and maximum number of training jobs that are different than those of its parent hyperparameter tuning jobs. The training image can also be a different version from the version used in the parent hyperparameter tuning job. You can also change hyperparameters from tunable to static, and from static to tunable, but the total number of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The objective metric for the new tuning job must be the same as for all parent jobs.  
     */
    WarmStartType: HyperParameterTuningJobWarmStartType;
  }
  export type HyperParameterTuningJobWarmStartType = "IdenticalDataAndAlgorithm"|"TransferLearning"|string;
  export type HyperParameters = {[key: string]: ParameterValue};
  export type ImageArn = string;
  export interface ImageConfig {
    /**
     * Set this to one of the following values:    Platform - The model image is hosted in Amazon ECR.    Vpc - The model image is hosted in a private Docker registry in your VPC.  
     */
    RepositoryAccessMode: RepositoryAccessMode;
  }
  export type ImageDigest = string;
  export type ImageUri = string;
  export interface InferenceSpecification {
    /**
     * The Amazon ECR registry path of the Docker image that contains the inference code.
     */
    Containers: ModelPackageContainerDefinitionList;
    /**
     * A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.
     */
    SupportedTransformInstanceTypes: TransformInstanceTypes;
    /**
     * A list of the instance types that are used to generate inferences in real-time.
     */
    SupportedRealtimeInferenceInstanceTypes: RealtimeInferenceInstanceTypes;
    /**
     * The supported MIME types for the input data.
     */
    SupportedContentTypes: ContentTypes;
    /**
     * The supported MIME types for the output data.
     */
    SupportedResponseMIMETypes: ResponseMIMETypes;
  }
  export interface InputConfig {
    /**
     * The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
     */
    S3Uri: S3Uri;
    /**
     * Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific.     TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.   Examples for one input:   If using the console, {"input":[1,1024,1024,3]}    If using the CLI, {\"input\":[1,1024,1024,3]}      Examples for two inputs:   If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}    If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}         KERAS: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format, DataInputConfig should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.   Examples for one input:   If using the console, {"input_1":[1,3,224,224]}    If using the CLI, {\"input_1\":[1,3,224,224]}      Examples for two inputs:   If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}     If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}         MXNET/ONNX: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.   Examples for one input:   If using the console, {"data":[1,3,1024,1024]}    If using the CLI, {\"data\":[1,3,1024,1024]}      Examples for two inputs:   If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}     If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}         PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.   Examples for one input in dictionary format:   If using the console, {"input0":[1,3,224,224]}    If using the CLI, {\"input0\":[1,3,224,224]}      Example for one input in list format: [[1,3,224,224]]    Examples for two inputs in dictionary format:   If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}    If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}       Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]       XGBOOST: input data name and shape are not needed.    DataInputConfig supports the following parameters for CoreML OutputConfig$TargetDevice (ML Model format):    shape: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}. In addition to static input shapes, CoreML converter supports Flexible input shapes:   Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}}    Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example: {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}       default_shape: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}     type: Input type. Allowed values: Image and Tensor. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such as bias and scale.    bias: If the input type is an Image, you need to provide the bias vector.    scale: If the input type is an Image, you need to provide a scale factor.   CoreML ClassifierConfig parameters can be specified using OutputConfig$CompilerOptions. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:   Tensor type input:    "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}      Tensor type input without input name (PyTorch):    "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]      Image type input:    "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}     "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}      Image type input without input name (PyTorch):    "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]     "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}     
     */
    DataInputConfig: DataInputConfig;
    /**
     * Identifies the framework in which the model was trained. For example: TENSORFLOW.
     */
    Framework: Framework;
  }
  export type InputDataConfig = Channel[];
  export type InputModes = TrainingInputMode[];
  export type InstanceType = "ml.t2.medium"|"ml.t2.large"|"ml.t2.xlarge"|"ml.t2.2xlarge"|"ml.t3.medium"|"ml.t3.large"|"ml.t3.xlarge"|"ml.t3.2xlarge"|"ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5d.xlarge"|"ml.c5d.2xlarge"|"ml.c5d.4xlarge"|"ml.c5d.9xlarge"|"ml.c5d.18xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|string;
  export interface IntegerParameterRange {
    /**
     * The name of the hyperparameter to search.
     */
    Name: ParameterKey;
    /**
     * The minimum value of the hyperparameter to search.
     */
    MinValue: ParameterValue;
    /**
     * The maximum value of the hyperparameter to search.
     */
    MaxValue: ParameterValue;
    /**
     * The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:  Auto  Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.  Linear  Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.  Logarithmic  Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. Logarithmic scaling works only for ranges that have only values greater than 0.  
     */
    ScalingType?: HyperParameterScalingType;
  }
  export interface IntegerParameterRangeSpecification {
    /**
     * The minimum integer value allowed.
     */
    MinValue: ParameterValue;
    /**
     * The maximum integer value allowed.
     */
    MaxValue: ParameterValue;
  }
  export type IntegerParameterRanges = IntegerParameterRange[];
  export type InvocationsMaxRetries = number;
  export type InvocationsTimeoutInSeconds = number;
  export type JobReferenceCode = string;
  export type JobReferenceCodeContains = string;
  export type JoinSource = "Input"|"None"|string;
  export type JsonContentType = string;
  export type JsonContentTypes = JsonContentType[];
  export type JsonPath = string;
  export interface JupyterServerAppSettings {
    /**
     * The default instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
     */
    DefaultResourceSpec?: ResourceSpec;
  }
  export interface KernelGatewayAppSettings {
    /**
     * The default instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
     */
    DefaultResourceSpec?: ResourceSpec;
  }
  export type KmsKeyId = string;
  export type LabelAttributeName = string;
  export type LabelCounter = number;
  export interface LabelCounters {
    /**
     * The total number of objects labeled.
     */
    TotalLabeled?: LabelCounter;
    /**
     * The total number of objects labeled by a human worker.
     */
    HumanLabeled?: LabelCounter;
    /**
     * The total number of objects labeled by automated data labeling.
     */
    MachineLabeled?: LabelCounter;
    /**
     * The total number of objects that could not be labeled due to an error.
     */
    FailedNonRetryableError?: LabelCounter;
    /**
     * The total number of objects not yet labeled.
     */
    Unlabeled?: LabelCounter;
  }
  export interface LabelCountersForWorkteam {
    /**
     * The total number of data objects labeled by a human worker.
     */
    HumanLabeled?: LabelCounter;
    /**
     * The total number of data objects that need to be labeled by a human worker.
     */
    PendingHuman?: LabelCounter;
    /**
     * The total number of tasks in the labeling job.
     */
    Total?: LabelCounter;
  }
  export type LabelingJobAlgorithmSpecificationArn = string;
  export interface LabelingJobAlgorithmsConfig {
    /**
     * Specifies the Amazon Resource Name (ARN) of the algorithm used for auto-labeling. You must select one of the following ARNs:    Image classification   arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/image-classification     Text classification   arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/text-classification     Object detection   arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/object-detection     Semantic Segmentation   arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/semantic-segmentation   
     */
    LabelingJobAlgorithmSpecificationArn: LabelingJobAlgorithmSpecificationArn;
    /**
     * At the end of an auto-label job Ground Truth sends the Amazon Resource Name (ARN) of the final model used for auto-labeling. You can use this model as the starting point for subsequent similar jobs by providing the ARN of the model here. 
     */
    InitialActiveLearningModelArn?: ModelArn;
    /**
     * Provides configuration information for a labeling job.
     */
    LabelingJobResourceConfig?: LabelingJobResourceConfig;
  }
  export type LabelingJobArn = string;
  export interface LabelingJobDataAttributes {
    /**
     * Declares that your content is free of personally identifiable information or adult content. Amazon SageMaker may restrict the Amazon Mechanical Turk workers that can view your task based on this information.
     */
    ContentClassifiers?: ContentClassifiers;
  }
  export interface LabelingJobDataSource {
    /**
     * The Amazon S3 location of the input data objects.
     */
    S3DataSource?: LabelingJobS3DataSource;
    /**
     * An Amazon SNS data source used for streaming labeling jobs.
     */
    SnsDataSource?: LabelingJobSnsDataSource;
  }
  export interface LabelingJobForWorkteamSummary {
    /**
     * The name of the labeling job that the work team is assigned to.
     */
    LabelingJobName?: LabelingJobName;
    /**
     * A unique identifier for a labeling job. You can use this to refer to a specific labeling job.
     */
    JobReferenceCode: JobReferenceCode;
    /**
     * 
     */
    WorkRequesterAccountId: AccountId;
    /**
     * The date and time that the labeling job was created.
     */
    CreationTime: Timestamp;
    /**
     * Provides information about the progress of a labeling job.
     */
    LabelCounters?: LabelCountersForWorkteam;
    /**
     * The configured number of workers per data object.
     */
    NumberOfHumanWorkersPerDataObject?: NumberOfHumanWorkersPerDataObject;
  }
  export type LabelingJobForWorkteamSummaryList = LabelingJobForWorkteamSummary[];
  export interface LabelingJobInputConfig {
    /**
     * The location of the input data.
     */
    DataSource: LabelingJobDataSource;
    /**
     * Attributes of the data specified by the customer.
     */
    DataAttributes?: LabelingJobDataAttributes;
  }
  export type LabelingJobName = string;
  export interface LabelingJobOutput {
    /**
     * The Amazon S3 bucket location of the manifest file for labeled data. 
     */
    OutputDatasetS3Uri: S3Uri;
    /**
     * The Amazon Resource Name (ARN) for the most recent Amazon SageMaker model trained as part of automated data labeling. 
     */
    FinalActiveLearningModelArn?: ModelArn;
  }
  export interface LabelingJobOutputConfig {
    /**
     * The Amazon S3 location to write output data.
     */
    S3OutputPath: S3Uri;
    /**
     * The AWS Key Management Service ID of the key used to encrypt the output data, if any. If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS-managed keys for LabelingJobOutputConfig. If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms". For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.  The KMS key policy must grant permission to the IAM role that you specify in your CreateLabelingJob request. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide.
     */
    KmsKeyId?: KmsKeyId;
    /**
     * An Amazon Simple Notification Service (Amazon SNS) output topic ARN. When workers complete labeling tasks, Ground Truth will send labeling task output data to the SNS output topic you specify here. You must provide a value for this parameter if you provide an Amazon SNS input topic in SnsDataSource in InputConfig.
     */
    SnsTopicArn?: SnsTopicArn;
  }
  export interface LabelingJobResourceConfig {
    /**
     * The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job. The VolumeKmsKeyId can be any of the following formats:   // KMS Key ID  "1234abcd-12ab-34cd-56ef-1234567890ab"    // Amazon Resource Name (ARN) of a KMS Key  "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"   
     */
    VolumeKmsKeyId?: KmsKeyId;
  }
  export interface LabelingJobS3DataSource {
    /**
     * The Amazon S3 location of the manifest file that describes the input data objects.
     */
    ManifestS3Uri: S3Uri;
  }
  export interface LabelingJobSnsDataSource {
    /**
     * The Amazon SNS input topic Amazon Resource Name (ARN). Specify the ARN of the input topic you will use to send new data objects to a streaming labeling job. If you specify an input topic for SnsTopicArn in InputConfig, you must specify a value for SnsTopicArn in OutputConfig.
     */
    SnsTopicArn: SnsTopicArn;
  }
  export type LabelingJobStatus = "Initializing"|"InProgress"|"Completed"|"Failed"|"Stopping"|"Stopped"|string;
  export interface LabelingJobStoppingConditions {
    /**
     * The maximum number of objects that can be labeled by human workers.
     */
    MaxHumanLabeledObjectCount?: MaxHumanLabeledObjectCount;
    /**
     * The maximum number of input data objects that should be labeled.
     */
    MaxPercentageOfInputDatasetLabeled?: MaxPercentageOfInputDatasetLabeled;
  }
  export interface LabelingJobSummary {
    /**
     * The name of the labeling job.
     */
    LabelingJobName: LabelingJobName;
    /**
     * The Amazon Resource Name (ARN) assigned to the labeling job when it was created.
     */
    LabelingJobArn: LabelingJobArn;
    /**
     * The date and time that the job was created (timestamp).
     */
    CreationTime: Timestamp;
    /**
     * The date and time that the job was last modified (timestamp).
     */
    LastModifiedTime: Timestamp;
    /**
     * The current status of the labeling job. 
     */
    LabelingJobStatus: LabelingJobStatus;
    /**
     * Counts showing the progress of the labeling job.
     */
    LabelCounters: LabelCounters;
    /**
     * The Amazon Resource Name (ARN) of the work team assigned to the job.
     */
    WorkteamArn: WorkteamArn;
    /**
     * The Amazon Resource Name (ARN) of a Lambda function. The function is run before each data object is sent to a worker.
     */
    PreHumanTaskLambdaArn: LambdaFunctionArn;
    /**
     * The Amazon Resource Name (ARN) of the Lambda function used to consolidate the annotations from individual workers into a label for a data object. For more information, see Annotation Consolidation.
     */
    AnnotationConsolidationLambdaArn?: LambdaFunctionArn;
    /**
     * If the LabelingJobStatus field is Failed, this field contains a description of the error.
     */
    FailureReason?: FailureReason;
    /**
     * The location of the output produced by the labeling job.
     */
    LabelingJobOutput?: LabelingJobOutput;
    /**
     * Input configuration for the labeling job.
     */
    InputConfig?: LabelingJobInputConfig;
  }
  export type LabelingJobSummaryList = LabelingJobSummary[];
  export type LambdaFunctionArn = string;
  export type LastModifiedTime = Date;
  export interface ListAlgorithmsInput {
    /**
     * A filter that returns only algorithms created after the specified time (timestamp).
     */
    CreationTimeAfter?: CreationTime;
    /**
     * A filter that returns only algorithms created before the specified time (timestamp).
     */
    CreationTimeBefore?: CreationTime;
    /**
     * The maximum number of algorithms to return in the response.
     */
    MaxResults?: MaxResults;
    /**
     * A string in the algorithm name. This filter returns only algorithms whose name contains the specified string.
     */
    NameContains?: NameContains;
    /**
     * If the response to a previous ListAlgorithms request was truncated, the response includes a NextToken. To retrieve the next set of algorithms, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * The parameter by which to sort the results. The default is CreationTime.
     */
    SortBy?: AlgorithmSortBy;
    /**
     * The sort order for the results. The default is Ascending.
     */
    SortOrder?: SortOrder;
  }
  export interface ListAlgorithmsOutput {
    /**
     * &gt;An array of AlgorithmSummary objects, each of which lists an algorithm.
     */
    AlgorithmSummaryList: AlgorithmSummaryList;
    /**
     * If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of algorithms, use it in the subsequent request.
     */
    NextToken?: NextToken;
  }
  export interface ListAppsRequest {
    /**
     * If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
     */
    NextToken?: NextToken;
    /**
     * Returns a list up to a specified limit.
     */
    MaxResults?: MaxResults;
    /**
     * The sort order for the results. The default is Ascending.
     */
    SortOrder?: SortOrder;
    /**
     * The parameter by which to sort the results. The default is CreationTime.
     */
    SortBy?: AppSortKey;
    /**
     * A parameter to search for the domain ID.
     */
    DomainIdEquals?: DomainId;
    /**
     * A parameter to search by user profile name.
     */
    UserProfileNameEquals?: UserProfileName;
  }
  export interface ListAppsResponse {
    /**
     * The list of apps.
     */
    Apps?: AppList;
    /**
     * If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
     */
    NextToken?: NextToken;
  }
  export interface ListAutoMLJobsRequest {
    /**
     * Request a list of jobs, using a filter for time.
     */
    CreationTimeAfter?: Timestamp;
    /**
     * Request a list of jobs, using a filter for time.
     */
    CreationTimeBefore?: Timestamp;
    /**
     * Request a list of jobs, using a filter for time.
     */
    LastModifiedTimeAfter?: Timestamp;
    /**
     * Request a list of jobs, using a filter for time.
     */
    LastModifiedTimeBefore?: Timestamp;
    /**
     * Request a list of jobs, using a search filter for name.
     */
    NameContains?: AutoMLNameContains;
    /**
     * Request a list of jobs, using a filter for status.
     */
    StatusEquals?: AutoMLJobStatus;
    /**
     * The sort order for the results. The default is Descending.
     */
    SortOrder?: AutoMLSortOrder;
    /**
     * The parameter by which to sort the results. The default is AutoMLJobName.
     */
    SortBy?: AutoMLSortBy;
    /**
     * Request a list of jobs up to a specified limit.
     */
    MaxResults?: AutoMLMaxResults;
    /**
     * If the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.
     */
    NextToken?: NextToken;
  }
  export interface ListAutoMLJobsResponse {
    /**
     * Returns a summary list of jobs.
     */
    AutoMLJobSummaries: AutoMLJobSummaries;
    /**
     * If the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.
     */
    NextToken?: NextToken;
  }
  export interface ListCandidatesForAutoMLJobRequest {
    /**
     * List the Candidates created for the job by providing the job's name.
     */
    AutoMLJobName: AutoMLJobName;
    /**
     * List the Candidates for the job and filter by status.
     */
    StatusEquals?: CandidateStatus;
    /**
     * List the Candidates for the job and filter by candidate name.
     */
    CandidateNameEquals?: CandidateName;
    /**
     * The sort order for the results. The default is Ascending.
     */
    SortOrder?: AutoMLSortOrder;
    /**
     * The parameter by which to sort the results. The default is Descending.
     */
    SortBy?: CandidateSortBy;
    /**
     * List the job's Candidates up to a specified limit.
     */
    MaxResults?: AutoMLMaxResults;
    /**
     * If the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.
     */
    NextToken?: NextToken;
  }
  export interface ListCandidatesForAutoMLJobResponse {
    /**
     * Summaries about the Candidates.
     */
    Candidates: AutoMLCandidates;
    /**
     * If the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.
     */
    NextToken?: NextToken;
  }
  export interface ListCodeRepositoriesInput {
    /**
     * A filter that returns only Git repositories that were created after the specified time.
     */
    CreationTimeAfter?: CreationTime;
    /**
     * A filter that returns only Git repositories that were created before the specified time.
     */
    CreationTimeBefore?: CreationTime;
    /**
     * A filter that returns only Git repositories that were last modified after the specified time.
     */
    LastModifiedTimeAfter?: Timestamp;
    /**
     * A filter that returns only Git repositories that were last modified before the specified time.
     */
    LastModifiedTimeBefore?: Timestamp;
    /**
     * The maximum number of Git repositories to return in the response.
     */
    MaxResults?: MaxResults;
    /**
     * A string in the Git repositories name. This filter returns only repositories whose name contains the specified string.
     */
    NameContains?: CodeRepositoryNameContains;
    /**
     * If the result of a ListCodeRepositoriesOutput request was truncated, the response includes a NextToken. To get the next set of Git repositories, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * The field to sort results by. The default is Name.
     */
    SortBy?: CodeRepositorySortBy;
    /**
     * The sort order for results. The default is Ascending.
     */
    SortOrder?: CodeRepositorySortOrder;
  }
  export interface ListCodeRepositoriesOutput {
    /**
     * Gets a list of summaries of the Git repositories. Each summary specifies the following values for the repository:    Name   Amazon Resource Name (ARN)   Creation time   Last modified time   Configuration information, including the URL location of the repository and the ARN of the AWS Secrets Manager secret that contains the credentials used to access the repository.  
     */
    CodeRepositorySummaryList: CodeRepositorySummaryList;
    /**
     * If the result of a ListCodeRepositoriesOutput request was truncated, the response includes a NextToken. To get the next set of Git repositories, use the token in the next request.
     */
    NextToken?: NextToken;
  }
  export interface ListCompilationJobsRequest {
    /**
     * If the result of the previous ListCompilationJobs request was truncated, the response includes a NextToken. To retrieve the next set of model compilation jobs, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * The maximum number of model compilation jobs to return in the response.
     */
    MaxResults?: MaxResults;
    /**
     * A filter that returns the model compilation jobs that were created after a specified time. 
     */
    CreationTimeAfter?: CreationTime;
    /**
     * A filter that returns the model compilation jobs that were created before a specified time.
     */
    CreationTimeBefore?: CreationTime;
    /**
     * A filter that returns the model compilation jobs that were modified after a specified time.
     */
    LastModifiedTimeAfter?: LastModifiedTime;
    /**
     * A filter that returns the model compilation jobs that were modified before a specified time.
     */
    LastModifiedTimeBefore?: LastModifiedTime;
    /**
     * A filter that returns the model compilation jobs whose name contains a specified string.
     */
    NameContains?: NameContains;
    /**
     * A filter that retrieves model compilation jobs with a specific DescribeCompilationJobResponse$CompilationJobStatus status.
     */
    StatusEquals?: CompilationJobStatus;
    /**
     * The field by which to sort results. The default is CreationTime.
     */
    SortBy?: ListCompilationJobsSortBy;
    /**
     * The sort order for results. The default is Ascending.
     */
    SortOrder?: SortOrder;
  }
  export interface ListCompilationJobsResponse {
    /**
     * An array of CompilationJobSummary objects, each describing a model compilation job. 
     */
    CompilationJobSummaries: CompilationJobSummaries;
    /**
     * If the response is truncated, Amazon SageMaker returns this NextToken. To retrieve the next set of model compilation jobs, use this token in the next request.
     */
    NextToken?: NextToken;
  }
  export type ListCompilationJobsSortBy = "Name"|"CreationTime"|"Status"|string;
  export interface ListDomainsRequest {
    /**
     * If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
     */
    NextToken?: NextToken;
    /**
     * Returns a list up to a specified limit.
     */
    MaxResults?: MaxResults;
  }
  export interface ListDomainsResponse {
    /**
     * The list of domains.
     */
    Domains?: DomainList;
    /**
     * If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
     */
    NextToken?: NextToken;
  }
  export interface ListEndpointConfigsInput {
    /**
     * The field to sort results by. The default is CreationTime.
     */
    SortBy?: EndpointConfigSortKey;
    /**
     * The sort order for results. The default is Descending.
     */
    SortOrder?: OrderKey;
    /**
     * If the result of the previous ListEndpointConfig request was truncated, the response includes a NextToken. To retrieve the next set of endpoint configurations, use the token in the next request. 
     */
    NextToken?: PaginationToken;
    /**
     * The maximum number of training jobs to return in the response.
     */
    MaxResults?: MaxResults;
    /**
     * A string in the endpoint configuration name. This filter returns only endpoint configurations whose name contains the specified string. 
     */
    NameContains?: EndpointConfigNameContains;
    /**
     * A filter that returns only endpoint configurations created before the specified time (timestamp).
     */
    CreationTimeBefore?: Timestamp;
    /**
     * A filter that returns only endpoint configurations with a creation time greater than or equal to the specified time (timestamp).
     */
    CreationTimeAfter?: Timestamp;
  }
  export interface ListEndpointConfigsOutput {
    /**
     * An array of endpoint configurations.
     */
    EndpointConfigs: EndpointConfigSummaryList;
    /**
     *  If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of endpoint configurations, use it in the subsequent request 
     */
    NextToken?: PaginationToken;
  }
  export interface ListEndpointsInput {
    /**
     * Sorts the list of results. The default is CreationTime.
     */
    SortBy?: EndpointSortKey;
    /**
     * The sort order for results. The default is Descending.
     */
    SortOrder?: OrderKey;
    /**
     * If the result of a ListEndpoints request was truncated, the response includes a NextToken. To retrieve the next set of endpoints, use the token in the next request.
     */
    NextToken?: PaginationToken;
    /**
     * The maximum number of endpoints to return in the response.
     */
    MaxResults?: MaxResults;
    /**
     * A string in endpoint names. This filter returns only endpoints whose name contains the specified string.
     */
    NameContains?: EndpointNameContains;
    /**
     * A filter that returns only endpoints that were created before the specified time (timestamp).
     */
    CreationTimeBefore?: Timestamp;
    /**
     * A filter that returns only endpoints with a creation time greater than or equal to the specified time (timestamp).
     */
    CreationTimeAfter?: Timestamp;
    /**
     *  A filter that returns only endpoints that were modified before the specified timestamp. 
     */
    LastModifiedTimeBefore?: Timestamp;
    /**
     *  A filter that returns only endpoints that were modified after the specified timestamp. 
     */
    LastModifiedTimeAfter?: Timestamp;
    /**
     *  A filter that returns only endpoints with the specified status.
     */
    StatusEquals?: EndpointStatus;
  }
  export interface ListEndpointsOutput {
    /**
     *  An array or endpoint objects. 
     */
    Endpoints: EndpointSummaryList;
    /**
     *  If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of training jobs, use it in the subsequent request. 
     */
    NextToken?: PaginationToken;
  }
  export interface ListExperimentsRequest {
    /**
     * A filter that returns only experiments created after the specified time.
     */
    CreatedAfter?: Timestamp;
    /**
     * A filter that returns only experiments created before the specified time.
     */
    CreatedBefore?: Timestamp;
    /**
     * The property used to sort results. The default value is CreationTime.
     */
    SortBy?: SortExperimentsBy;
    /**
     * The sort order. The default value is Descending.
     */
    SortOrder?: SortOrder;
    /**
     * If the previous call to ListExperiments didn't return the full set of experiments, the call returns a token for getting the next set of experiments.
     */
    NextToken?: NextToken;
    /**
     * The maximum number of experiments to return in the response. The default value is 10.
     */
    MaxResults?: MaxResults;
  }
  export interface ListExperimentsResponse {
    /**
     * A list of the summaries of your experiments.
     */
    ExperimentSummaries?: ExperimentSummaries;
    /**
     * A token for getting the next set of experiments, if there are any.
     */
    NextToken?: NextToken;
  }
  export interface ListFlowDefinitionsRequest {
    /**
     * A filter that returns only flow definitions with a creation time greater than or equal to the specified timestamp.
     */
    CreationTimeAfter?: Timestamp;
    /**
     * A filter that returns only flow definitions that were created before the specified timestamp.
     */
    CreationTimeBefore?: Timestamp;
    /**
     * An optional value that specifies whether you want the results sorted in Ascending or Descending order.
     */
    SortOrder?: SortOrder;
    /**
     * A token to resume pagination.
     */
    NextToken?: NextToken;
    /**
     * The total number of items to return. If the total number of available items is more than the value specified in MaxResults, then a NextToken will be provided in the output that you can use to resume pagination.
     */
    MaxResults?: MaxResults;
  }
  export interface ListFlowDefinitionsResponse {
    /**
     * An array of objects describing the flow definitions.
     */
    FlowDefinitionSummaries: FlowDefinitionSummaries;
    /**
     * A token to resume pagination.
     */
    NextToken?: NextToken;
  }
  export interface ListHumanTaskUisRequest {
    /**
     * A filter that returns only human task user interfaces with a creation time greater than or equal to the specified timestamp.
     */
    CreationTimeAfter?: Timestamp;
    /**
     * A filter that returns only human task user interfaces that were created before the specified timestamp.
     */
    CreationTimeBefore?: Timestamp;
    /**
     * An optional value that specifies whether you want the results sorted in Ascending or Descending order.
     */
    SortOrder?: SortOrder;
    /**
     * A token to resume pagination.
     */
    NextToken?: NextToken;
    /**
     * The total number of items to return. If the total number of available items is more than the value specified in MaxResults, then a NextToken will be provided in the output that you can use to resume pagination.
     */
    MaxResults?: MaxResults;
  }
  export interface ListHumanTaskUisResponse {
    /**
     * An array of objects describing the human task user interfaces.
     */
    HumanTaskUiSummaries: HumanTaskUiSummaries;
    /**
     * A token to resume pagination.
     */
    NextToken?: NextToken;
  }
  export interface ListHyperParameterTuningJobsRequest {
    /**
     * If the result of the previous ListHyperParameterTuningJobs request was truncated, the response includes a NextToken. To retrieve the next set of tuning jobs, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * The maximum number of tuning jobs to return. The default value is 10.
     */
    MaxResults?: MaxResults;
    /**
     * The field to sort results by. The default is Name.
     */
    SortBy?: HyperParameterTuningJobSortByOptions;
    /**
     * The sort order for results. The default is Ascending.
     */
    SortOrder?: SortOrder;
    /**
     * A string in the tuning job name. This filter returns only tuning jobs whose name contains the specified string.
     */
    NameContains?: NameContains;
    /**
     * A filter that returns only tuning jobs that were created after the specified time.
     */
    CreationTimeAfter?: Timestamp;
    /**
     * A filter that returns only tuning jobs that were created before the specified time.
     */
    CreationTimeBefore?: Timestamp;
    /**
     * A filter that returns only tuning jobs that were modified after the specified time.
     */
    LastModifiedTimeAfter?: Timestamp;
    /**
     * A filter that returns only tuning jobs that were modified before the specified time.
     */
    LastModifiedTimeBefore?: Timestamp;
    /**
     * A filter that returns only tuning jobs with the specified status.
     */
    StatusEquals?: HyperParameterTuningJobStatus;
  }
  export interface ListHyperParameterTuningJobsResponse {
    /**
     * A list of HyperParameterTuningJobSummary objects that describe the tuning jobs that the ListHyperParameterTuningJobs request returned.
     */
    HyperParameterTuningJobSummaries: HyperParameterTuningJobSummaries;
    /**
     * If the result of this ListHyperParameterTuningJobs request was truncated, the response includes a NextToken. To retrieve the next set of tuning jobs, use the token in the next request.
     */
    NextToken?: NextToken;
  }
  export interface ListLabelingJobsForWorkteamRequest {
    /**
     * The Amazon Resource Name (ARN) of the work team for which you want to see labeling jobs for.
     */
    WorkteamArn: WorkteamArn;
    /**
     * The maximum number of labeling jobs to return in each page of the response.
     */
    MaxResults?: MaxResults;
    /**
     * If the result of the previous ListLabelingJobsForWorkteam request was truncated, the response includes a NextToken. To retrieve the next set of labeling jobs, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * A filter that returns only labeling jobs created after the specified time (timestamp).
     */
    CreationTimeAfter?: Timestamp;
    /**
     * A filter that returns only labeling jobs created before the specified time (timestamp).
     */
    CreationTimeBefore?: Timestamp;
    /**
     * A filter the limits jobs to only the ones whose job reference code contains the specified string.
     */
    JobReferenceCodeContains?: JobReferenceCodeContains;
    /**
     * The field to sort results by. The default is CreationTime.
     */
    SortBy?: ListLabelingJobsForWorkteamSortByOptions;
    /**
     * The sort order for results. The default is Ascending.
     */
    SortOrder?: SortOrder;
  }
  export interface ListLabelingJobsForWorkteamResponse {
    /**
     * An array of LabelingJobSummary objects, each describing a labeling job.
     */
    LabelingJobSummaryList: LabelingJobForWorkteamSummaryList;
    /**
     * If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of labeling jobs, use it in the subsequent request.
     */
    NextToken?: NextToken;
  }
  export type ListLabelingJobsForWorkteamSortByOptions = "CreationTime"|string;
  export interface ListLabelingJobsRequest {
    /**
     * A filter that returns only labeling jobs created after the specified time (timestamp).
     */
    CreationTimeAfter?: Timestamp;
    /**
     * A filter that returns only labeling jobs created before the specified time (timestamp).
     */
    CreationTimeBefore?: Timestamp;
    /**
     * A filter that returns only labeling jobs modified after the specified time (timestamp).
     */
    LastModifiedTimeAfter?: Timestamp;
    /**
     * A filter that returns only labeling jobs modified before the specified time (timestamp).
     */
    LastModifiedTimeBefore?: Timestamp;
    /**
     * The maximum number of labeling jobs to return in each page of the response.
     */
    MaxResults?: MaxResults;
    /**
     * If the result of the previous ListLabelingJobs request was truncated, the response includes a NextToken. To retrieve the next set of labeling jobs, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * A string in the labeling job name. This filter returns only labeling jobs whose name contains the specified string.
     */
    NameContains?: NameContains;
    /**
     * The field to sort results by. The default is CreationTime.
     */
    SortBy?: SortBy;
    /**
     * The sort order for results. The default is Ascending.
     */
    SortOrder?: SortOrder;
    /**
     * A filter that retrieves only labeling jobs with a specific status.
     */
    StatusEquals?: LabelingJobStatus;
  }
  export interface ListLabelingJobsResponse {
    /**
     * An array of LabelingJobSummary objects, each describing a labeling job.
     */
    LabelingJobSummaryList?: LabelingJobSummaryList;
    /**
     * If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of labeling jobs, use it in the subsequent request.
     */
    NextToken?: NextToken;
  }
  export interface ListModelPackagesInput {
    /**
     * A filter that returns only model packages created after the specified time (timestamp).
     */
    CreationTimeAfter?: CreationTime;
    /**
     * A filter that returns only model packages created before the specified time (timestamp).
     */
    CreationTimeBefore?: CreationTime;
    /**
     * The maximum number of model packages to return in the response.
     */
    MaxResults?: MaxResults;
    /**
     * A string in the model package name. This filter returns only model packages whose name contains the specified string.
     */
    NameContains?: NameContains;
    /**
     * If the response to a previous ListModelPackages request was truncated, the response includes a NextToken. To retrieve the next set of model packages, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * The parameter by which to sort the results. The default is CreationTime.
     */
    SortBy?: ModelPackageSortBy;
    /**
     * The sort order for the results. The default is Ascending.
     */
    SortOrder?: SortOrder;
  }
  export interface ListModelPackagesOutput {
    /**
     * An array of ModelPackageSummary objects, each of which lists a model package.
     */
    ModelPackageSummaryList: ModelPackageSummaryList;
    /**
     * If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of model packages, use it in the subsequent request.
     */
    NextToken?: NextToken;
  }
  export interface ListModelsInput {
    /**
     * Sorts the list of results. The default is CreationTime.
     */
    SortBy?: ModelSortKey;
    /**
     * The sort order for results. The default is Descending.
     */
    SortOrder?: OrderKey;
    /**
     * If the response to a previous ListModels request was truncated, the response includes a NextToken. To retrieve the next set of models, use the token in the next request.
     */
    NextToken?: PaginationToken;
    /**
     * The maximum number of models to return in the response.
     */
    MaxResults?: MaxResults;
    /**
     * A string in the training job name. This filter returns only models in the training job whose name contains the specified string.
     */
    NameContains?: ModelNameContains;
    /**
     * A filter that returns only models created before the specified time (timestamp).
     */
    CreationTimeBefore?: Timestamp;
    /**
     * A filter that returns only models with a creation time greater than or equal to the specified time (timestamp).
     */
    CreationTimeAfter?: Timestamp;
  }
  export interface ListModelsOutput {
    /**
     * An array of ModelSummary objects, each of which lists a model.
     */
    Models: ModelSummaryList;
    /**
     *  If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of models, use it in the subsequent request. 
     */
    NextToken?: PaginationToken;
  }
  export interface ListMonitoringExecutionsRequest {
    /**
     * Name of a specific schedule to fetch jobs for.
     */
    MonitoringScheduleName?: MonitoringScheduleName;
    /**
     * Name of a specific endpoint to fetch jobs for.
     */
    EndpointName?: EndpointName;
    /**
     * Whether to sort results by Status, CreationTime, ScheduledTime field. The default is CreationTime.
     */
    SortBy?: MonitoringExecutionSortKey;
    /**
     * Whether to sort the results in Ascending or Descending order. The default is Descending.
     */
    SortOrder?: SortOrder;
    /**
     * The token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.
     */
    NextToken?: NextToken;
    /**
     * The maximum number of jobs to return in the response. The default value is 10.
     */
    MaxResults?: MaxResults;
    /**
     * Filter for jobs scheduled before a specified time.
     */
    ScheduledTimeBefore?: Timestamp;
    /**
     * Filter for jobs scheduled after a specified time.
     */
    ScheduledTimeAfter?: Timestamp;
    /**
     * A filter that returns only jobs created before a specified time.
     */
    CreationTimeBefore?: Timestamp;
    /**
     * A filter that returns only jobs created after a specified time.
     */
    CreationTimeAfter?: Timestamp;
    /**
     * A filter that returns only jobs modified after a specified time.
     */
    LastModifiedTimeBefore?: Timestamp;
    /**
     * A filter that returns only jobs modified before a specified time.
     */
    LastModifiedTimeAfter?: Timestamp;
    /**
     * A filter that retrieves only jobs with a specific status.
     */
    StatusEquals?: ExecutionStatus;
  }
  export interface ListMonitoringExecutionsResponse {
    /**
     * A JSON array in which each element is a summary for a monitoring execution.
     */
    MonitoringExecutionSummaries: MonitoringExecutionSummaryList;
    /**
     * If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of jobs, use it in the subsequent reques
     */
    NextToken?: NextToken;
  }
  export interface ListMonitoringSchedulesRequest {
    /**
     * Name of a specific endpoint to fetch schedules for.
     */
    EndpointName?: EndpointName;
    /**
     * Whether to sort results by Status, CreationTime, ScheduledTime field. The default is CreationTime.
     */
    SortBy?: MonitoringScheduleSortKey;
    /**
     * Whether to sort the results in Ascending or Descending order. The default is Descending.
     */
    SortOrder?: SortOrder;
    /**
     * The token returned if the response is truncated. To retrieve the next set of job executions, use it in the next request.
     */
    NextToken?: NextToken;
    /**
     * The maximum number of jobs to return in the response. The default value is 10.
     */
    MaxResults?: MaxResults;
    /**
     * Filter for monitoring schedules whose name contains a specified string.
     */
    NameContains?: NameContains;
    /**
     * A filter that returns only monitoring schedules created before a specified time.
     */
    CreationTimeBefore?: Timestamp;
    /**
     * A filter that returns only monitoring schedules created after a specified time.
     */
    CreationTimeAfter?: Timestamp;
    /**
     * A filter that returns only monitoring schedules modified before a specified time.
     */
    LastModifiedTimeBefore?: Timestamp;
    /**
     * A filter that returns only monitoring schedules modified after a specified time.
     */
    LastModifiedTimeAfter?: Timestamp;
    /**
     * A filter that returns only monitoring schedules modified before a specified time.
     */
    StatusEquals?: ScheduleStatus;
  }
  export interface ListMonitoringSchedulesResponse {
    /**
     * A JSON array in which each element is a summary for a monitoring schedule.
     */
    MonitoringScheduleSummaries: MonitoringScheduleSummaryList;
    /**
     * If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of jobs, use it in the subsequent reques
     */
    NextToken?: NextToken;
  }
  export interface ListNotebookInstanceLifecycleConfigsInput {
    /**
     * If the result of a ListNotebookInstanceLifecycleConfigs request was truncated, the response includes a NextToken. To get the next set of lifecycle configurations, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * The maximum number of lifecycle configurations to return in the response.
     */
    MaxResults?: MaxResults;
    /**
     * Sorts the list of results. The default is CreationTime.
     */
    SortBy?: NotebookInstanceLifecycleConfigSortKey;
    /**
     * The sort order for results.
     */
    SortOrder?: NotebookInstanceLifecycleConfigSortOrder;
    /**
     * A string in the lifecycle configuration name. This filter returns only lifecycle configurations whose name contains the specified string.
     */
    NameContains?: NotebookInstanceLifecycleConfigNameContains;
    /**
     * A filter that returns only lifecycle configurations that were created before the specified time (timestamp).
     */
    CreationTimeBefore?: CreationTime;
    /**
     * A filter that returns only lifecycle configurations that were created after the specified time (timestamp).
     */
    CreationTimeAfter?: CreationTime;
    /**
     * A filter that returns only lifecycle configurations that were modified before the specified time (timestamp).
     */
    LastModifiedTimeBefore?: LastModifiedTime;
    /**
     * A filter that returns only lifecycle configurations that were modified after the specified time (timestamp).
     */
    LastModifiedTimeAfter?: LastModifiedTime;
  }
  export interface ListNotebookInstanceLifecycleConfigsOutput {
    /**
     * If the response is truncated, Amazon SageMaker returns this token. To get the next set of lifecycle configurations, use it in the next request. 
     */
    NextToken?: NextToken;
    /**
     * An array of NotebookInstanceLifecycleConfiguration objects, each listing a lifecycle configuration.
     */
    NotebookInstanceLifecycleConfigs?: NotebookInstanceLifecycleConfigSummaryList;
  }
  export interface ListNotebookInstancesInput {
    /**
     *  If the previous call to the ListNotebookInstances is truncated, the response includes a NextToken. You can use this token in your subsequent ListNotebookInstances request to fetch the next set of notebook instances.   You might specify a filter or a sort order in your request. When response is truncated, you must use the same values for the filer and sort order in the next request.  
     */
    NextToken?: NextToken;
    /**
     * The maximum number of notebook instances to return.
     */
    MaxResults?: MaxResults;
    /**
     * The field to sort results by. The default is Name.
     */
    SortBy?: NotebookInstanceSortKey;
    /**
     * The sort order for results. 
     */
    SortOrder?: NotebookInstanceSortOrder;
    /**
     * A string in the notebook instances' name. This filter returns only notebook instances whose name contains the specified string.
     */
    NameContains?: NotebookInstanceNameContains;
    /**
     * A filter that returns only notebook instances that were created before the specified time (timestamp). 
     */
    CreationTimeBefore?: CreationTime;
    /**
     * A filter that returns only notebook instances that were created after the specified time (timestamp).
     */
    CreationTimeAfter?: CreationTime;
    /**
     * A filter that returns only notebook instances that were modified before the specified time (timestamp).
     */
    LastModifiedTimeBefore?: LastModifiedTime;
    /**
     * A filter that returns only notebook instances that were modified after the specified time (timestamp).
     */
    LastModifiedTimeAfter?: LastModifiedTime;
    /**
     * A filter that returns only notebook instances with the specified status.
     */
    StatusEquals?: NotebookInstanceStatus;
    /**
     * A string in the name of a notebook instances lifecycle configuration associated with this notebook instance. This filter returns only notebook instances associated with a lifecycle configuration with a name that contains the specified string.
     */
    NotebookInstanceLifecycleConfigNameContains?: NotebookInstanceLifecycleConfigName;
    /**
     * A string in the name or URL of a Git repository associated with this notebook instance. This filter returns only notebook instances associated with a git repository with a name that contains the specified string.
     */
    DefaultCodeRepositoryContains?: CodeRepositoryContains;
    /**
     * A filter that returns only notebook instances with associated with the specified git repository.
     */
    AdditionalCodeRepositoryEquals?: CodeRepositoryNameOrUrl;
  }
  export interface ListNotebookInstancesOutput {
    /**
     * If the response to the previous ListNotebookInstances request was truncated, Amazon SageMaker returns this token. To retrieve the next set of notebook instances, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * An array of NotebookInstanceSummary objects, one for each notebook instance.
     */
    NotebookInstances?: NotebookInstanceSummaryList;
  }
  export interface ListProcessingJobsRequest {
    /**
     * A filter that returns only processing jobs created after the specified time.
     */
    CreationTimeAfter?: Timestamp;
    /**
     * A filter that returns only processing jobs created after the specified time.
     */
    CreationTimeBefore?: Timestamp;
    /**
     * A filter that returns only processing jobs modified after the specified time.
     */
    LastModifiedTimeAfter?: Timestamp;
    /**
     * A filter that returns only processing jobs modified before the specified time.
     */
    LastModifiedTimeBefore?: Timestamp;
    /**
     * A string in the processing job name. This filter returns only processing jobs whose name contains the specified string.
     */
    NameContains?: String;
    /**
     * A filter that retrieves only processing jobs with a specific status.
     */
    StatusEquals?: ProcessingJobStatus;
    /**
     * The field to sort results by. The default is CreationTime.
     */
    SortBy?: SortBy;
    /**
     * The sort order for results. The default is Ascending.
     */
    SortOrder?: SortOrder;
    /**
     * If the result of the previous ListProcessingJobs request was truncated, the response includes a NextToken. To retrieve the next set of processing jobs, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * The maximum number of processing jobs to return in the response.
     */
    MaxResults?: MaxResults;
  }
  export interface ListProcessingJobsResponse {
    /**
     * An array of ProcessingJobSummary objects, each listing a processing job.
     */
    ProcessingJobSummaries: ProcessingJobSummaries;
    /**
     * If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of processing jobs, use it in the subsequent request.
     */
    NextToken?: NextToken;
  }
  export interface ListSubscribedWorkteamsRequest {
    /**
     * A string in the work team name. This filter returns only work teams whose name contains the specified string.
     */
    NameContains?: WorkteamName;
    /**
     * If the result of the previous ListSubscribedWorkteams request was truncated, the response includes a NextToken. To retrieve the next set of labeling jobs, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * The maximum number of work teams to return in each page of the response.
     */
    MaxResults?: MaxResults;
  }
  export interface ListSubscribedWorkteamsResponse {
    /**
     * An array of Workteam objects, each describing a work team.
     */
    SubscribedWorkteams: SubscribedWorkteams;
    /**
     * If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of work teams, use it in the subsequent request.
     */
    NextToken?: NextToken;
  }
  export interface ListTagsInput {
    /**
     * The Amazon Resource Name (ARN) of the resource whose tags you want to retrieve.
     */
    ResourceArn: ResourceArn;
    /**
     *  If the response to the previous ListTags request is truncated, Amazon SageMaker returns this token. To retrieve the next set of tags, use it in the subsequent request. 
     */
    NextToken?: NextToken;
    /**
     * Maximum number of tags to return.
     */
    MaxResults?: ListTagsMaxResults;
  }
  export type ListTagsMaxResults = number;
  export interface ListTagsOutput {
    /**
     * An array of Tag objects, each with a tag key and a value.
     */
    Tags?: TagList;
    /**
     *  If response is truncated, Amazon SageMaker includes a token in the response. You can use this token in your subsequent request to fetch next set of tokens. 
     */
    NextToken?: NextToken;
  }
  export interface ListTrainingJobsForHyperParameterTuningJobRequest {
    /**
     * The name of the tuning job whose training jobs you want to list.
     */
    HyperParameterTuningJobName: HyperParameterTuningJobName;
    /**
     * If the result of the previous ListTrainingJobsForHyperParameterTuningJob request was truncated, the response includes a NextToken. To retrieve the next set of training jobs, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * The maximum number of training jobs to return. The default value is 10.
     */
    MaxResults?: MaxResults;
    /**
     * A filter that returns only training jobs with the specified status.
     */
    StatusEquals?: TrainingJobStatus;
    /**
     * The field to sort results by. The default is Name. If the value of this field is FinalObjectiveMetricValue, any training jobs that did not return an objective metric are not listed.
     */
    SortBy?: TrainingJobSortByOptions;
    /**
     * The sort order for results. The default is Ascending.
     */
    SortOrder?: SortOrder;
  }
  export interface ListTrainingJobsForHyperParameterTuningJobResponse {
    /**
     * A list of TrainingJobSummary objects that describe the training jobs that the ListTrainingJobsForHyperParameterTuningJob request returned.
     */
    TrainingJobSummaries: HyperParameterTrainingJobSummaries;
    /**
     * If the result of this ListTrainingJobsForHyperParameterTuningJob request was truncated, the response includes a NextToken. To retrieve the next set of training jobs, use the token in the next request.
     */
    NextToken?: NextToken;
  }
  export interface ListTrainingJobsRequest {
    /**
     * If the result of the previous ListTrainingJobs request was truncated, the response includes a NextToken. To retrieve the next set of training jobs, use the token in the next request. 
     */
    NextToken?: NextToken;
    /**
     * The maximum number of training jobs to return in the response.
     */
    MaxResults?: MaxResults;
    /**
     * A filter that returns only training jobs created after the specified time (timestamp).
     */
    CreationTimeAfter?: Timestamp;
    /**
     * A filter that returns only training jobs created before the specified time (timestamp).
     */
    CreationTimeBefore?: Timestamp;
    /**
     * A filter that returns only training jobs modified after the specified time (timestamp).
     */
    LastModifiedTimeAfter?: Timestamp;
    /**
     * A filter that returns only training jobs modified before the specified time (timestamp).
     */
    LastModifiedTimeBefore?: Timestamp;
    /**
     * A string in the training job name. This filter returns only training jobs whose name contains the specified string.
     */
    NameContains?: NameContains;
    /**
     * A filter that retrieves only training jobs with a specific status.
     */
    StatusEquals?: TrainingJobStatus;
    /**
     * The field to sort results by. The default is CreationTime.
     */
    SortBy?: SortBy;
    /**
     * The sort order for results. The default is Ascending.
     */
    SortOrder?: SortOrder;
  }
  export interface ListTrainingJobsResponse {
    /**
     * An array of TrainingJobSummary objects, each listing a training job.
     */
    TrainingJobSummaries: TrainingJobSummaries;
    /**
     * If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of training jobs, use it in the subsequent request.
     */
    NextToken?: NextToken;
  }
  export interface ListTransformJobsRequest {
    /**
     * A filter that returns only transform jobs created after the specified time.
     */
    CreationTimeAfter?: Timestamp;
    /**
     * A filter that returns only transform jobs created before the specified time.
     */
    CreationTimeBefore?: Timestamp;
    /**
     * A filter that returns only transform jobs modified after the specified time.
     */
    LastModifiedTimeAfter?: Timestamp;
    /**
     * A filter that returns only transform jobs modified before the specified time.
     */
    LastModifiedTimeBefore?: Timestamp;
    /**
     * A string in the transform job name. This filter returns only transform jobs whose name contains the specified string.
     */
    NameContains?: NameContains;
    /**
     * A filter that retrieves only transform jobs with a specific status.
     */
    StatusEquals?: TransformJobStatus;
    /**
     * The field to sort results by. The default is CreationTime.
     */
    SortBy?: SortBy;
    /**
     * The sort order for results. The default is Descending.
     */
    SortOrder?: SortOrder;
    /**
     * If the result of the previous ListTransformJobs request was truncated, the response includes a NextToken. To retrieve the next set of transform jobs, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * The maximum number of transform jobs to return in the response. The default value is 10.
     */
    MaxResults?: MaxResults;
  }
  export interface ListTransformJobsResponse {
    /**
     * An array of TransformJobSummary objects.
     */
    TransformJobSummaries: TransformJobSummaries;
    /**
     * If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of transform jobs, use it in the next request.
     */
    NextToken?: NextToken;
  }
  export type ListTrialComponentKey256 = TrialComponentKey256[];
  export interface ListTrialComponentsRequest {
    /**
     * A filter that returns only components that are part of the specified experiment. If you specify ExperimentName, you can't filter by SourceArn or TrialName.
     */
    ExperimentName?: ExperimentEntityName;
    /**
     * A filter that returns only components that are part of the specified trial. If you specify TrialName, you can't filter by ExperimentName or SourceArn.
     */
    TrialName?: ExperimentEntityName;
    /**
     * A filter that returns only components that have the specified source Amazon Resource Name (ARN). If you specify SourceArn, you can't filter by ExperimentName or TrialName.
     */
    SourceArn?: String256;
    /**
     * A filter that returns only components created after the specified time.
     */
    CreatedAfter?: Timestamp;
    /**
     * A filter that returns only components created before the specified time.
     */
    CreatedBefore?: Timestamp;
    /**
     * The property used to sort results. The default value is CreationTime.
     */
    SortBy?: SortTrialComponentsBy;
    /**
     * The sort order. The default value is Descending.
     */
    SortOrder?: SortOrder;
    /**
     * The maximum number of components to return in the response. The default value is 10.
     */
    MaxResults?: MaxResults;
    /**
     * If the previous call to ListTrialComponents didn't return the full set of components, the call returns a token for getting the next set of components.
     */
    NextToken?: NextToken;
  }
  export interface ListTrialComponentsResponse {
    /**
     * A list of the summaries of your trial components.
     */
    TrialComponentSummaries?: TrialComponentSummaries;
    /**
     * A token for getting the next set of components, if there are any.
     */
    NextToken?: NextToken;
  }
  export interface ListTrialsRequest {
    /**
     * A filter that returns only trials that are part of the specified experiment.
     */
    ExperimentName?: ExperimentEntityName;
    /**
     * A filter that returns only trials that are associated with the specified trial component.
     */
    TrialComponentName?: ExperimentEntityName;
    /**
     * A filter that returns only trials created after the specified time.
     */
    CreatedAfter?: Timestamp;
    /**
     * A filter that returns only trials created before the specified time.
     */
    CreatedBefore?: Timestamp;
    /**
     * The property used to sort results. The default value is CreationTime.
     */
    SortBy?: SortTrialsBy;
    /**
     * The sort order. The default value is Descending.
     */
    SortOrder?: SortOrder;
    /**
     * The maximum number of trials to return in the response. The default value is 10.
     */
    MaxResults?: MaxResults;
    /**
     * If the previous call to ListTrials didn't return the full set of trials, the call returns a token for getting the next set of trials.
     */
    NextToken?: NextToken;
  }
  export interface ListTrialsResponse {
    /**
     * A list of the summaries of your trials.
     */
    TrialSummaries?: TrialSummaries;
    /**
     * A token for getting the next set of trials, if there are any.
     */
    NextToken?: NextToken;
  }
  export interface ListUserProfilesRequest {
    /**
     * If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
     */
    NextToken?: NextToken;
    /**
     * Returns a list up to a specified limit.
     */
    MaxResults?: MaxResults;
    /**
     * The sort order for the results. The default is Ascending.
     */
    SortOrder?: SortOrder;
    /**
     * The parameter by which to sort the results. The default is CreationTime.
     */
    SortBy?: UserProfileSortKey;
    /**
     * A parameter by which to filter the results.
     */
    DomainIdEquals?: DomainId;
    /**
     * A parameter by which to filter the results.
     */
    UserProfileNameContains?: UserProfileName;
  }
  export interface ListUserProfilesResponse {
    /**
     * The list of user profiles.
     */
    UserProfiles?: UserProfileList;
    /**
     * If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
     */
    NextToken?: NextToken;
  }
  export interface ListWorkforcesRequest {
    /**
     * Sort workforces using the workforce name or creation date.
     */
    SortBy?: ListWorkforcesSortByOptions;
    /**
     * Sort workforces in ascending or descending order.
     */
    SortOrder?: SortOrder;
    /**
     * A filter you can use to search for workforces using part of the workforce name.
     */
    NameContains?: WorkforceName;
    /**
     * A token to resume pagination.
     */
    NextToken?: NextToken;
    /**
     * The maximum number of workforces returned in the response.
     */
    MaxResults?: MaxResults;
  }
  export interface ListWorkforcesResponse {
    /**
     * A list containing information about your workforce.
     */
    Workforces: Workforces;
    /**
     * A token to resume pagination.
     */
    NextToken?: NextToken;
  }
  export type ListWorkforcesSortByOptions = "Name"|"CreateDate"|string;
  export interface ListWorkteamsRequest {
    /**
     * The field to sort results by. The default is CreationTime.
     */
    SortBy?: ListWorkteamsSortByOptions;
    /**
     * The sort order for results. The default is Ascending.
     */
    SortOrder?: SortOrder;
    /**
     * A string in the work team's name. This filter returns only work teams whose name contains the specified string.
     */
    NameContains?: WorkteamName;
    /**
     * If the result of the previous ListWorkteams request was truncated, the response includes a NextToken. To retrieve the next set of labeling jobs, use the token in the next request.
     */
    NextToken?: NextToken;
    /**
     * The maximum number of work teams to return in each page of the response.
     */
    MaxResults?: MaxResults;
  }
  export interface ListWorkteamsResponse {
    /**
     * An array of Workteam objects, each describing a work team.
     */
    Workteams: Workteams;
    /**
     * If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of work teams, use it in the subsequent request.
     */
    NextToken?: NextToken;
  }
  export type ListWorkteamsSortByOptions = "Name"|"CreateDate"|string;
  export type MaxAutoMLJobRuntimeInSeconds = number;
  export type MaxCandidates = number;
  export type MaxConcurrentTaskCount = number;
  export type MaxConcurrentTransforms = number;
  export type MaxHumanLabeledObjectCount = number;
  export type MaxNumberOfTrainingJobs = number;
  export type MaxParallelTrainingJobs = number;
  export type MaxPayloadInMB = number;
  export type MaxPercentageOfInputDatasetLabeled = number;
  export type MaxResults = number;
  export type MaxRuntimeInSeconds = number;
  export type MaxRuntimePerTrainingJobInSeconds = number;
  export type MaxWaitTimeInSeconds = number;
  export type MediaType = string;
  export interface MemberDefinition {
    /**
     * The Amazon Cognito user group that is part of the work team.
     */
    CognitoMemberDefinition?: CognitoMemberDefinition;
    /**
     * A list user groups that exist in your OIDC Identity Provider (IdP). One to ten groups can be used to create a single private work team. When you add a user group to the list of Groups, you can add that user group to one or more private work teams. If you add a user group to a private work team, all workers in that user group are added to the work team.
     */
    OidcMemberDefinition?: OidcMemberDefinition;
  }
  export type MemberDefinitions = MemberDefinition[];
  export interface MetricData {
    /**
     * The name of the metric.
     */
    MetricName?: MetricName;
    /**
     * The value of the metric.
     */
    Value?: Float;
    /**
     * The date and time that the algorithm emitted the metric.
     */
    Timestamp?: Timestamp;
  }
  export interface MetricDefinition {
    /**
     * The name of the metric.
     */
    Name: MetricName;
    /**
     * A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics.
     */
    Regex: MetricRegex;
  }
  export type MetricDefinitionList = MetricDefinition[];
  export type MetricName = string;
  export type MetricRegex = string;
  export type MetricValue = number;
  export type ModelArn = string;
  export interface ModelArtifacts {
    /**
     * The path of the S3 object that contains the model artifacts. For example, s3://bucket-name/keynameprefix/model.tar.gz.
     */
    S3ModelArtifacts: S3Uri;
  }
  export interface ModelClientConfig {
    /**
     * The timeout value in seconds for an invocation request.
     */
    InvocationsTimeoutInSeconds?: InvocationsTimeoutInSeconds;
    /**
     * The maximum number of retries when invocation requests are failing.
     */
    InvocationsMaxRetries?: InvocationsMaxRetries;
  }
  export type ModelName = string;
  export type ModelNameContains = string;
  export type ModelPackageArn = string;
  export interface ModelPackageContainerDefinition {
    /**
     * The DNS host name for the Docker container.
     */
    ContainerHostname?: ContainerHostname;
    /**
     * The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored. If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker, the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
     */
    Image: ContainerImage;
    /**
     * An MD5 hash of the training algorithm that identifies the Docker image used for training.
     */
    ImageDigest?: ImageDigest;
    /**
     * The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).  The model artifacts must be in an S3 bucket that is in the same region as the model package. 
     */
    ModelDataUrl?: Url;
    /**
     * The AWS Marketplace product ID of the model package.
     */
    ProductId?: ProductId;
  }
  export type ModelPackageContainerDefinitionList = ModelPackageContainerDefinition[];
  export type ModelPackageSortBy = "Name"|"CreationTime"|string;
  export type ModelPackageStatus = "Pending"|"InProgress"|"Completed"|"Failed"|"Deleting"|string;
  export interface ModelPackageStatusDetails {
    /**
     * The validation status of the model package.
     */
    ValidationStatuses: ModelPackageStatusItemList;
    /**
     * The status of the scan of the Docker image container for the model package.
     */
    ImageScanStatuses?: ModelPackageStatusItemList;
  }
  export interface ModelPackageStatusItem {
    /**
     * The name of the model package for which the overall status is being reported.
     */
    Name: EntityName;
    /**
     * The current status.
     */
    Status: DetailedModelPackageStatus;
    /**
     * if the overall status is Failed, the reason for the failure.
     */
    FailureReason?: String;
  }
  export type ModelPackageStatusItemList = ModelPackageStatusItem[];
  export interface ModelPackageSummary {
    /**
     * The name of the model package.
     */
    ModelPackageName: EntityName;
    /**
     * The Amazon Resource Name (ARN) of the model package.
     */
    ModelPackageArn: ModelPackageArn;
    /**
     * A brief description of the model package.
     */
    ModelPackageDescription?: EntityDescription;
    /**
     * A timestamp that shows when the model package was created.
     */
    CreationTime: CreationTime;
    /**
     * The overall status of the model package.
     */
    ModelPackageStatus: ModelPackageStatus;
  }
  export type ModelPackageSummaryList = ModelPackageSummary[];
  export interface ModelPackageValidationProfile {
    /**
     * The name of the profile for the model package.
     */
    ProfileName: EntityName;
    /**
     * The TransformJobDefinition object that describes the transform job used for the validation of the model package.
     */
    TransformJobDefinition: TransformJobDefinition;
  }
  export type ModelPackageValidationProfiles = ModelPackageValidationProfile[];
  export interface ModelPackageValidationSpecification {
    /**
     * The IAM roles to be used for the validation of the model package.
     */
    ValidationRole: RoleArn;
    /**
     * An array of ModelPackageValidationProfile objects, each of which specifies a batch transform job that Amazon SageMaker runs to validate your model package.
     */
    ValidationProfiles: ModelPackageValidationProfiles;
  }
  export type ModelSortKey = "Name"|"CreationTime"|string;
  export interface ModelSummary {
    /**
     * The name of the model that you want a summary for.
     */
    ModelName: ModelName;
    /**
     * The Amazon Resource Name (ARN) of the model.
     */
    ModelArn: ModelArn;
    /**
     * A timestamp that indicates when the model was created.
     */
    CreationTime: Timestamp;
  }
  export type ModelSummaryList = ModelSummary[];
  export interface MonitoringAppSpecification {
    /**
     * The container image to be run by the monitoring job.
     */
    ImageUri: ImageUri;
    /**
     * Specifies the entrypoint for a container used to run the monitoring job.
     */
    ContainerEntrypoint?: ContainerEntrypoint;
    /**
     * An array of arguments for the container used to run the monitoring job.
     */
    ContainerArguments?: MonitoringContainerArguments;
    /**
     * An Amazon S3 URI to a script that is called per row prior to running analysis. It can base64 decode the payload and convert it into a flatted json so that the built-in container can use the converted data. Applicable only for the built-in (first party) containers.
     */
    RecordPreprocessorSourceUri?: S3Uri;
    /**
     * An Amazon S3 URI to a script that is called after analysis has been performed. Applicable only for the built-in (first party) containers.
     */
    PostAnalyticsProcessorSourceUri?: S3Uri;
  }
  export interface MonitoringBaselineConfig {
    /**
     * The baseline constraint file in Amazon S3 that the current monitoring job should validated against.
     */
    ConstraintsResource?: MonitoringConstraintsResource;
    /**
     * The baseline statistics file in Amazon S3 that the current monitoring job should be validated against.
     */
    StatisticsResource?: MonitoringStatisticsResource;
  }
  export interface MonitoringClusterConfig {
    /**
     * The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.
     */
    InstanceCount: ProcessingInstanceCount;
    /**
     * The ML compute instance type for the processing job.
     */
    InstanceType: ProcessingInstanceType;
    /**
     * The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.
     */
    VolumeSizeInGB: ProcessingVolumeSizeInGB;
    /**
     * The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.
     */
    VolumeKmsKeyId?: KmsKeyId;
  }
  export interface MonitoringConstraintsResource {
    /**
     * The Amazon S3 URI for the constraints resource.
     */
    S3Uri?: S3Uri;
  }
  export type MonitoringContainerArguments = ContainerArgument[];
  export type MonitoringEnvironmentMap = {[key: string]: ProcessingEnvironmentValue};
  export type MonitoringExecutionSortKey = "CreationTime"|"ScheduledTime"|"Status"|string;
  export interface MonitoringExecutionSummary {
    /**
     * The name of the monitoring schedule.
     */
    MonitoringScheduleName: MonitoringScheduleName;
    /**
     * The time the monitoring job was scheduled.
     */
    ScheduledTime: Timestamp;
    /**
     * The time at which the monitoring job was created.
     */
    CreationTime: Timestamp;
    /**
     * A timestamp that indicates the last time the monitoring job was modified.
     */
    LastModifiedTime: Timestamp;
    /**
     * The status of the monitoring job.
     */
    MonitoringExecutionStatus: ExecutionStatus;
    /**
     * The Amazon Resource Name (ARN) of the monitoring job.
     */
    ProcessingJobArn?: ProcessingJobArn;
    /**
     * The name of teh endpoint used to run the monitoring job.
     */
    EndpointName?: EndpointName;
    /**
     * Contains the reason a monitoring job failed, if it failed.
     */
    FailureReason?: FailureReason;
  }
  export type MonitoringExecutionSummaryList = MonitoringExecutionSummary[];
  export interface MonitoringInput {
    /**
     * The endpoint for a monitoring job.
     */
    EndpointInput: EndpointInput;
  }
  export type MonitoringInputs = MonitoringInput[];
  export interface MonitoringJobDefinition {
    /**
     * Baseline configuration used to validate that the data conforms to the specified constraints and statistics
     */
    BaselineConfig?: MonitoringBaselineConfig;
    /**
     * The array of inputs for the monitoring job. Currently we support monitoring an Amazon SageMaker Endpoint.
     */
    MonitoringInputs: MonitoringInputs;
    /**
     * The array of outputs from the monitoring job to be uploaded to Amazon Simple Storage Service (Amazon S3).
     */
    MonitoringOutputConfig: MonitoringOutputConfig;
    /**
     * Identifies the resources, ML compute instances, and ML storage volumes to deploy for a monitoring job. In distributed processing, you specify more than one instance.
     */
    MonitoringResources: MonitoringResources;
    /**
     * Configures the monitoring job to run a specified Docker container image.
     */
    MonitoringAppSpecification: MonitoringAppSpecification;
    /**
     * Specifies a time limit for how long the monitoring job is allowed to run.
     */
    StoppingCondition?: MonitoringStoppingCondition;
    /**
     * Sets the environment variables in the Docker container.
     */
    Environment?: MonitoringEnvironmentMap;
    /**
     * Specifies networking options for an monitoring job.
     */
    NetworkConfig?: NetworkConfig;
    /**
     * The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
     */
    RoleArn: RoleArn;
  }
  export type MonitoringMaxRuntimeInSeconds = number;
  export interface MonitoringOutput {
    /**
     * The Amazon S3 storage location where the results of a monitoring job are saved.
     */
    S3Output: MonitoringS3Output;
  }
  export interface MonitoringOutputConfig {
    /**
     * Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.
     */
    MonitoringOutputs: MonitoringOutputs;
    /**
     * The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
     */
    KmsKeyId?: KmsKeyId;
  }
  export type MonitoringOutputs = MonitoringOutput[];
  export interface MonitoringResources {
    /**
     * The configuration for the cluster resources used to run the processing job.
     */
    ClusterConfig: MonitoringClusterConfig;
  }
  export interface MonitoringS3Output {
    /**
     * A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.
     */
    S3Uri: MonitoringS3Uri;
    /**
     * The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.
     */
    LocalPath: ProcessingLocalPath;
    /**
     * Whether to upload the results of the monitoring job continuously or after the job completes.
     */
    S3UploadMode?: ProcessingS3UploadMode;
  }
  export type MonitoringS3Uri = string;
  export type MonitoringScheduleArn = string;
  export interface MonitoringScheduleConfig {
    /**
     * Configures the monitoring schedule.
     */
    ScheduleConfig?: ScheduleConfig;
    /**
     * Defines the monitoring job.
     */
    MonitoringJobDefinition: MonitoringJobDefinition;
  }
  export type MonitoringScheduleName = string;
  export type MonitoringScheduleSortKey = "Name"|"CreationTime"|"Status"|string;
  export interface MonitoringScheduleSummary {
    /**
     * The name of the monitoring schedule.
     */
    MonitoringScheduleName: MonitoringScheduleName;
    /**
     * The Amazon Resource Name (ARN) of the monitoring schedule.
     */
    MonitoringScheduleArn: MonitoringScheduleArn;
    /**
     * The creation time of the monitoring schedule.
     */
    CreationTime: Timestamp;
    /**
     * The last time the monitoring schedule was modified.
     */
    LastModifiedTime: Timestamp;
    /**
     * The status of the monitoring schedule.
     */
    MonitoringScheduleStatus: ScheduleStatus;
    /**
     * The name of the endpoint using the monitoring schedule.
     */
    EndpointName?: EndpointName;
  }
  export type MonitoringScheduleSummaryList = MonitoringScheduleSummary[];
  export interface MonitoringStatisticsResource {
    /**
     * The Amazon S3 URI for the statistics resource.
     */
    S3Uri?: S3Uri;
  }
  export interface MonitoringStoppingCondition {
    /**
     * The maximum runtime allowed in seconds.
     */
    MaxRuntimeInSeconds: MonitoringMaxRuntimeInSeconds;
  }
  export type NameContains = string;
  export interface NestedFilters {
    /**
     * The name of the property to use in the nested filters. The value must match a listed property name, such as InputDataConfig.
     */
    NestedPropertyName: ResourcePropertyName;
    /**
     * A list of filters. Each filter acts on a property. Filters must contain at least one Filters value. For example, a NestedFilters call might include a filter on the PropertyName parameter of the InputDataConfig property: InputDataConfig.DataSource.S3DataSource.S3Uri.
     */
    Filters: FilterList;
  }
  export type NestedFiltersList = NestedFilters[];
  export interface NetworkConfig {
    /**
     * Whether to encrypt all communications between distributed processing jobs. Choose True to encrypt communications. Encryption provides greater security for distributed processing jobs, but the processing might take longer.
     */
    EnableInterContainerTrafficEncryption?: Boolean;
    /**
     * Whether to allow inbound and outbound network calls to and from the containers used for the processing job.
     */
    EnableNetworkIsolation?: Boolean;
    VpcConfig?: VpcConfig;
  }
  export type NetworkInterfaceId = string;
  export type NextToken = string;
  export type NotebookInstanceAcceleratorType = "ml.eia1.medium"|"ml.eia1.large"|"ml.eia1.xlarge"|"ml.eia2.medium"|"ml.eia2.large"|"ml.eia2.xlarge"|string;
  export type NotebookInstanceAcceleratorTypes = NotebookInstanceAcceleratorType[];
  export type NotebookInstanceArn = string;
  export type NotebookInstanceLifecycleConfigArn = string;
  export type NotebookInstanceLifecycleConfigContent = string;
  export type NotebookInstanceLifecycleConfigList = NotebookInstanceLifecycleHook[];
  export type NotebookInstanceLifecycleConfigName = string;
  export type NotebookInstanceLifecycleConfigNameContains = string;
  export type NotebookInstanceLifecycleConfigSortKey = "Name"|"CreationTime"|"LastModifiedTime"|string;
  export type NotebookInstanceLifecycleConfigSortOrder = "Ascending"|"Descending"|string;
  export interface NotebookInstanceLifecycleConfigSummary {
    /**
     * The name of the lifecycle configuration.
     */
    NotebookInstanceLifecycleConfigName: NotebookInstanceLifecycleConfigName;
    /**
     * The Amazon Resource Name (ARN) of the lifecycle configuration.
     */
    NotebookInstanceLifecycleConfigArn: NotebookInstanceLifecycleConfigArn;
    /**
     * A timestamp that tells when the lifecycle configuration was created.
     */
    CreationTime?: CreationTime;
    /**
     * A timestamp that tells when the lifecycle configuration was last modified.
     */
    LastModifiedTime?: LastModifiedTime;
  }
  export type NotebookInstanceLifecycleConfigSummaryList = NotebookInstanceLifecycleConfigSummary[];
  export interface NotebookInstanceLifecycleHook {
    /**
     * A base64-encoded string that contains a shell script for a notebook instance lifecycle configuration.
     */
    Content?: NotebookInstanceLifecycleConfigContent;
  }
  export type NotebookInstanceName = string;
  export type NotebookInstanceNameContains = string;
  export type NotebookInstanceSortKey = "Name"|"CreationTime"|"Status"|string;
  export type NotebookInstanceSortOrder = "Ascending"|"Descending"|string;
  export type NotebookInstanceStatus = "Pending"|"InService"|"Stopping"|"Stopped"|"Failed"|"Deleting"|"Updating"|string;
  export interface NotebookInstanceSummary {
    /**
     * The name of the notebook instance that you want a summary for.
     */
    NotebookInstanceName: NotebookInstanceName;
    /**
     * The Amazon Resource Name (ARN) of the notebook instance.
     */
    NotebookInstanceArn: NotebookInstanceArn;
    /**
     * The status of the notebook instance.
     */
    NotebookInstanceStatus?: NotebookInstanceStatus;
    /**
     * The URL that you use to connect to the Jupyter instance running in your notebook instance. 
     */
    Url?: NotebookInstanceUrl;
    /**
     * The type of ML compute instance that the notebook instance is running on.
     */
    InstanceType?: InstanceType;
    /**
     * A timestamp that shows when the notebook instance was created.
     */
    CreationTime?: CreationTime;
    /**
     * A timestamp that shows when the notebook instance was last modified.
     */
    LastModifiedTime?: LastModifiedTime;
    /**
     * The name of a notebook instance lifecycle configuration associated with this notebook instance. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
     */
    NotebookInstanceLifecycleConfigName?: NotebookInstanceLifecycleConfigName;
    /**
     * The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
     */
    DefaultCodeRepository?: CodeRepositoryNameOrUrl;
    /**
     * An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
     */
    AdditionalCodeRepositories?: AdditionalCodeRepositoryNamesOrUrls;
  }
  export type NotebookInstanceSummaryList = NotebookInstanceSummary[];
  export type NotebookInstanceUrl = string;
  export type NotebookInstanceVolumeSizeInGB = number;
  export type NotebookOutputOption = "Allowed"|"Disabled"|string;
  export interface NotificationConfiguration {
    /**
     * The ARN for the SNS topic to which notifications should be published.
     */
    NotificationTopicArn?: NotificationTopicArn;
  }
  export type NotificationTopicArn = string;
  export type NumberOfHumanWorkersPerDataObject = number;
  export type ObjectiveStatus = "Succeeded"|"Pending"|"Failed"|string;
  export type ObjectiveStatusCounter = number;
  export interface ObjectiveStatusCounters {
    /**
     * The number of training jobs whose final objective metric was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process.
     */
    Succeeded?: ObjectiveStatusCounter;
    /**
     * The number of training jobs that are in progress and pending evaluation of their final objective metric.
     */
    Pending?: ObjectiveStatusCounter;
    /**
     * The number of training jobs whose final objective metric was not evaluated and used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.
     */
    Failed?: ObjectiveStatusCounter;
  }
  export interface OidcConfig {
    /**
     * The OIDC IdP client ID used to configure your private workforce.
     */
    ClientId: ClientId;
    /**
     * The OIDC IdP client secret used to configure your private workforce.
     */
    ClientSecret: ClientSecret;
    /**
     * The OIDC IdP issuer used to configure your private workforce.
     */
    Issuer: OidcEndpoint;
    /**
     * The OIDC IdP authorization endpoint used to configure your private workforce.
     */
    AuthorizationEndpoint: OidcEndpoint;
    /**
     * The OIDC IdP token endpoint used to configure your private workforce.
     */
    TokenEndpoint: OidcEndpoint;
    /**
     * The OIDC IdP user information endpoint used to configure your private workforce.
     */
    UserInfoEndpoint: OidcEndpoint;
    /**
     * The OIDC IdP logout endpoint used to configure your private workforce.
     */
    LogoutEndpoint: OidcEndpoint;
    /**
     * The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private workforce.
     */
    JwksUri: OidcEndpoint;
  }
  export interface OidcConfigForResponse {
    /**
     * The OIDC IdP client ID used to configure your private workforce.
     */
    ClientId?: ClientId;
    /**
     * The OIDC IdP issuer used to configure your private workforce.
     */
    Issuer?: OidcEndpoint;
    /**
     * The OIDC IdP authorization endpoint used to configure your private workforce.
     */
    AuthorizationEndpoint?: OidcEndpoint;
    /**
     * The OIDC IdP token endpoint used to configure your private workforce.
     */
    TokenEndpoint?: OidcEndpoint;
    /**
     * The OIDC IdP user information endpoint used to configure your private workforce.
     */
    UserInfoEndpoint?: OidcEndpoint;
    /**
     * The OIDC IdP logout endpoint used to configure your private workforce.
     */
    LogoutEndpoint?: OidcEndpoint;
    /**
     * The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private workforce.
     */
    JwksUri?: OidcEndpoint;
  }
  export type OidcEndpoint = string;
  export interface OidcMemberDefinition {
    /**
     * A list of comma seperated strings that identifies user groups in your OIDC IdP. Each user group is made up of a group of private workers.
     */
    Groups: Groups;
  }
  export type Operator = "Equals"|"NotEquals"|"GreaterThan"|"GreaterThanOrEqualTo"|"LessThan"|"LessThanOrEqualTo"|"Contains"|"Exists"|"NotExists"|"In"|string;
  export type OptionalDouble = number;
  export type OptionalInteger = number;
  export type OptionalVolumeSizeInGB = number;
  export type OrderKey = "Ascending"|"Descending"|string;
  export interface OutputConfig {
    /**
     * Identifies the S3 bucket where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix.
     */
    S3OutputLocation: S3Uri;
    /**
     * Identifies the target device or the machine learning instance that you want to run your model on after the compilation has completed. Alternatively, you can specify OS, architecture, and accelerator using TargetPlatform fields. It can be used instead of TargetPlatform.
     */
    TargetDevice?: TargetDevice;
    /**
     * Contains information about a target platform that you want your model to run on, such as OS, architecture, and accelerators. It is an alternative of TargetDevice. The following examples show how to configure the TargetPlatform and CompilerOptions JSON strings for popular target platforms:    Raspberry Pi 3 Model B+  "TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"},    "CompilerOptions": {'mattr': ['+neon']}    Jetson TX2  "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "NVIDIA"},    "CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver': '6.0.1', 'cuda-ver': '10.0'}    EC2 m5.2xlarge instance OS  "TargetPlatform": {"Os": "LINUX", "Arch": "X86_64", "Accelerator": "NVIDIA"},    "CompilerOptions": {'mcpu': 'skylake-avx512'}    RK3399  "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "MALI"}    ARMv7 phone (CPU)  "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"},    "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']}    ARMv8 phone (CPU)  "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"},    "CompilerOptions": {'ANDROID_PLATFORM': 29}   
     */
    TargetPlatform?: TargetPlatform;
    /**
     * Specifies additional parameters for compiler options in JSON format. The compiler options are TargetPlatform specific. It is required for NVIDIA accelerators and highly recommended for CPU compilations. For any other cases, it is optional to specify CompilerOptions.     CPU: Compilation for CPU supports the following compiler options.    mcpu: CPU micro-architecture. For example, {'mcpu': 'skylake-avx512'}     mattr: CPU flags. For example, {'mattr': ['+neon', '+vfpv4']}       ARM: Details of ARM CPU compilations.    NEON: NEON is an implementation of the Advanced SIMD extension used in ARMv7 processors. For example, add {'mattr': ['+neon']} to the compiler options if compiling for ARM 32-bit platform with the NEON support.      NVIDIA: Compilation for NVIDIA GPU supports the following compiler options.    gpu_code: Specifies the targeted architecture.    trt-ver: Specifies the TensorRT versions in x.y.z. format.    cuda-ver: Specifies the CUDA version in x.y format.   For example, {'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'}     ANDROID: Compilation for the Android OS supports the following compiler options:    ANDROID_PLATFORM: Specifies the Android API levels. Available levels range from 21 to 29. For example, {'ANDROID_PLATFORM': 28}.    mattr: Add {'mattr': ['+neon']} to compiler options if compiling for ARM 32-bit platform with NEON support.      CoreML: Compilation for the CoreML OutputConfig$TargetDevice supports the following compiler options:    class_labels: Specifies the classification labels file name inside input tar.gz file. For example, {"class_labels": "imagenet_labels_1000.txt"}. Labels inside the txt file should be separated by newlines.    
     */
    CompilerOptions?: CompilerOptions;
  }
  export interface OutputDataConfig {
    /**
     * The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:    // KMS Key ID  "1234abcd-12ab-34cd-56ef-1234567890ab"    // Amazon Resource Name (ARN) of a KMS Key  "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"    // KMS Key Alias  "alias/ExampleAlias"    // Amazon Resource Name (ARN) of a KMS Key Alias  "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"    If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must include permissions to call kms:Encrypt. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS-managed keys for OutputDataConfig. If you use a bucket policy with an s3:PutObject permission that only allows objects with server-side encryption, set the condition key of s3:x-amz-server-side-encryption to "aws:kms". For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.  The KMS key policy must grant permission to the IAM role that you specify in your CreateTrainingJob, CreateTransformJob, or CreateHyperParameterTuningJob requests. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide.
     */
    KmsKeyId?: KmsKeyId;
    /**
     * Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix. 
     */
    S3OutputPath: S3Uri;
  }
  export type PaginationToken = string;
  export type ParameterKey = string;
  export type ParameterName = string;
  export interface ParameterRange {
    /**
     * A IntegerParameterRangeSpecification object that defines the possible values for an integer hyperparameter.
     */
    IntegerParameterRangeSpecification?: IntegerParameterRangeSpecification;
    /**
     * A ContinuousParameterRangeSpecification object that defines the possible values for a continuous hyperparameter.
     */
    ContinuousParameterRangeSpecification?: ContinuousParameterRangeSpecification;
    /**
     * A CategoricalParameterRangeSpecification object that defines the possible values for a categorical hyperparameter.
     */
    CategoricalParameterRangeSpecification?: CategoricalParameterRangeSpecification;
  }
  export interface ParameterRanges {
    /**
     * The array of IntegerParameterRange objects that specify ranges of integer hyperparameters that a hyperparameter tuning job searches.
     */
    IntegerParameterRanges?: IntegerParameterRanges;
    /**
     * The array of ContinuousParameterRange objects that specify ranges of continuous hyperparameters that a hyperparameter tuning job searches.
     */
    ContinuousParameterRanges?: ContinuousParameterRanges;
    /**
     * The array of CategoricalParameterRange objects that specify ranges of categorical hyperparameters that a hyperparameter tuning job searches.
     */
    CategoricalParameterRanges?: CategoricalParameterRanges;
  }
  export type ParameterType = "Integer"|"Continuous"|"Categorical"|"FreeText"|string;
  export type ParameterValue = string;
  export type ParameterValues = ParameterValue[];
  export interface Parent {
    /**
     * The name of the trial.
     */
    TrialName?: ExperimentEntityName;
    /**
     * The name of the experiment.
     */
    ExperimentName?: ExperimentEntityName;
  }
  export interface ParentHyperParameterTuningJob {
    /**
     * The name of the hyperparameter tuning job to be used as a starting point for a new hyperparameter tuning job.
     */
    HyperParameterTuningJobName?: HyperParameterTuningJobName;
  }
  export type ParentHyperParameterTuningJobs = ParentHyperParameterTuningJob[];
  export type Parents = Parent[];
  export type PresignedDomainUrl = string;
  export type ProblemType = "BinaryClassification"|"MulticlassClassification"|"Regression"|string;
  export interface ProcessingClusterConfig {
    /**
     * The number of ML compute instances to use in the processing job. For distributed processing jobs, specify a value greater than 1. The default value is 1.
     */
    InstanceCount: ProcessingInstanceCount;
    /**
     * The ML compute instance type for the processing job.
     */
    InstanceType: ProcessingInstanceType;
    /**
     * The size of the ML storage volume in gigabytes that you want to provision. You must specify sufficient ML storage for your scenario.
     */
    VolumeSizeInGB: ProcessingVolumeSizeInGB;
    /**
     * The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the processing job. 
     */
    VolumeKmsKeyId?: KmsKeyId;
  }
  export type ProcessingEnvironmentKey = string;
  export type ProcessingEnvironmentMap = {[key: string]: ProcessingEnvironmentValue};
  export type ProcessingEnvironmentValue = string;
  export interface ProcessingInput {
    /**
     * The name of the inputs for the processing job.
     */
    InputName: String;
    /**
     * The S3 inputs for the processing job. 
     */
    S3Input: ProcessingS3Input;
  }
  export type ProcessingInputs = ProcessingInput[];
  export type ProcessingInstanceCount = number;
  export type ProcessingInstanceType = "ml.t3.medium"|"ml.t3.large"|"ml.t3.xlarge"|"ml.t3.2xlarge"|"ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.r5.large"|"ml.r5.xlarge"|"ml.r5.2xlarge"|"ml.r5.4xlarge"|"ml.r5.8xlarge"|"ml.r5.12xlarge"|"ml.r5.16xlarge"|"ml.r5.24xlarge"|string;
  export interface ProcessingJob {
    /**
     * For each input, data is downloaded from S3 into the processing container before the processing job begins running if "S3InputMode" is set to File.
     */
    ProcessingInputs?: ProcessingInputs;
    ProcessingOutputConfig?: ProcessingOutputConfig;
    /**
     * The name of the processing job.
     */
    ProcessingJobName?: ProcessingJobName;
    ProcessingResources?: ProcessingResources;
    StoppingCondition?: ProcessingStoppingCondition;
    AppSpecification?: AppSpecification;
    /**
     * Sets the environment variables in the Docker container.
     */
    Environment?: ProcessingEnvironmentMap;
    NetworkConfig?: NetworkConfig;
    /**
     * The ARN of the role used to create the processing job.
     */
    RoleArn?: RoleArn;
    ExperimentConfig?: ExperimentConfig;
    /**
     * The ARN of the processing job.
     */
    ProcessingJobArn?: ProcessingJobArn;
    /**
     * The status of the processing job.
     */
    ProcessingJobStatus?: ProcessingJobStatus;
    /**
     * A string, up to one KB in size, that contains metadata from the processing container when the processing job exits.
     */
    ExitMessage?: ExitMessage;
    /**
     * A string, up to one KB in size, that contains the reason a processing job failed, if it failed.
     */
    FailureReason?: FailureReason;
    /**
     * The time that the processing job ended.
     */
    ProcessingEndTime?: Timestamp;
    /**
     * The time that the processing job started.
     */
    ProcessingStartTime?: Timestamp;
    /**
     * The time the processing job was last modified.
     */
    LastModifiedTime?: Timestamp;
    /**
     * The time the processing job was created.
     */
    CreationTime?: Timestamp;
    /**
     * The ARN of a monitoring schedule for an endpoint associated with this processing job.
     */
    MonitoringScheduleArn?: MonitoringScheduleArn;
    /**
     * The Amazon Resource Name (ARN) of the AutoML job associated with this processing job.
     */
    AutoMLJobArn?: AutoMLJobArn;
    /**
     * The ARN of the training job associated with this processing job.
     */
    TrainingJobArn?: TrainingJobArn;
    /**
     * An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
     */
    Tags?: TagList;
  }
  export type ProcessingJobArn = string;
  export type ProcessingJobName = string;
  export type ProcessingJobStatus = "InProgress"|"Completed"|"Failed"|"Stopping"|"Stopped"|string;
  export type ProcessingJobSummaries = ProcessingJobSummary[];
  export interface ProcessingJobSummary {
    /**
     * The name of the processing job.
     */
    ProcessingJobName: ProcessingJobName;
    /**
     * The Amazon Resource Name (ARN) of the processing job..
     */
    ProcessingJobArn: ProcessingJobArn;
    /**
     * The time at which the processing job was created.
     */
    CreationTime: Timestamp;
    /**
     * The time at which the processing job completed.
     */
    ProcessingEndTime?: Timestamp;
    /**
     * A timestamp that indicates the last time the processing job was modified.
     */
    LastModifiedTime?: Timestamp;
    /**
     * The status of the processing job.
     */
    ProcessingJobStatus: ProcessingJobStatus;
    /**
     * A string, up to one KB in size, that contains the reason a processing job failed, if it failed.
     */
    FailureReason?: FailureReason;
    /**
     * An optional string, up to one KB in size, that contains metadata from the processing container when the processing job exits.
     */
    ExitMessage?: ExitMessage;
  }
  export type ProcessingLocalPath = string;
  export type ProcessingMaxRuntimeInSeconds = number;
  export interface ProcessingOutput {
    /**
     * The name for the processing job output.
     */
    OutputName: String;
    /**
     * Configuration for processing job outputs in Amazon S3.
     */
    S3Output: ProcessingS3Output;
  }
  export interface ProcessingOutputConfig {
    /**
     * Output configuration information for a processing job.
     */
    Outputs: ProcessingOutputs;
    /**
     * The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the processing job output. KmsKeyId can be an ID of a KMS key, ARN of a KMS key, alias of a KMS key, or alias of a KMS key. The KmsKeyId is applied to all outputs.
     */
    KmsKeyId?: KmsKeyId;
  }
  export type ProcessingOutputs = ProcessingOutput[];
  export interface ProcessingResources {
    /**
     * The configuration for the resources in a cluster used to run the processing job.
     */
    ClusterConfig: ProcessingClusterConfig;
  }
  export type ProcessingS3CompressionType = "None"|"Gzip"|string;
  export type ProcessingS3DataDistributionType = "FullyReplicated"|"ShardedByS3Key"|string;
  export type ProcessingS3DataType = "ManifestFile"|"S3Prefix"|string;
  export interface ProcessingS3Input {
    /**
     * The URI for the Amazon S3 storage where you want Amazon SageMaker to download the artifacts needed to run a processing job.
     */
    S3Uri: S3Uri;
    /**
     * The local path to the Amazon S3 bucket where you want Amazon SageMaker to download the inputs to run a processing job. LocalPath is an absolute path to the input data.
     */
    LocalPath: ProcessingLocalPath;
    /**
     * Whether you use an S3Prefix or a ManifestFile for the data type. If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for the processing job. If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for the processing job.
     */
    S3DataType: ProcessingS3DataType;
    /**
     * Whether to use File or Pipe input mode. In File mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode. In Pipe mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.
     */
    S3InputMode: ProcessingS3InputMode;
    /**
     * Whether the data stored in Amazon S3 is FullyReplicated or ShardedByS3Key.
     */
    S3DataDistributionType?: ProcessingS3DataDistributionType;
    /**
     * Whether to use Gzip compression for Amazon S3 storage.
     */
    S3CompressionType?: ProcessingS3CompressionType;
  }
  export type ProcessingS3InputMode = "Pipe"|"File"|string;
  export interface ProcessingS3Output {
    /**
     * A URI that identifies the Amazon S3 bucket where you want Amazon SageMaker to save the results of a processing job.
     */
    S3Uri: S3Uri;
    /**
     * The local path to the Amazon S3 bucket where you want Amazon SageMaker to save the results of an processing job. LocalPath is an absolute path to the input data.
     */
    LocalPath: ProcessingLocalPath;
    /**
     * Whether to upload the results of the processing job continuously or after the job completes.
     */
    S3UploadMode: ProcessingS3UploadMode;
  }
  export type ProcessingS3UploadMode = "Continuous"|"EndOfJob"|string;
  export interface ProcessingStoppingCondition {
    /**
     * Specifies the maximum runtime in seconds.
     */
    MaxRuntimeInSeconds: ProcessingMaxRuntimeInSeconds;
  }
  export type ProcessingVolumeSizeInGB = number;
  export type ProductId = string;
  export type ProductListings = String[];
  export interface ProductionVariant {
    /**
     * The name of the production variant.
     */
    VariantName: VariantName;
    /**
     * The name of the model that you want to host. This is the name that you specified when creating the model.
     */
    ModelName: ModelName;
    /**
     * Number of instances to launch initially.
     */
    InitialInstanceCount: TaskCount;
    /**
     * The ML compute instance type.
     */
    InstanceType: ProductionVariantInstanceType;
    /**
     * Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to 1.0. 
     */
    InitialVariantWeight?: VariantWeight;
    /**
     * The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.
     */
    AcceleratorType?: ProductionVariantAcceleratorType;
  }
  export type ProductionVariantAcceleratorType = "ml.eia1.medium"|"ml.eia1.large"|"ml.eia1.xlarge"|"ml.eia2.medium"|"ml.eia2.large"|"ml.eia2.xlarge"|string;
  export type ProductionVariantInstanceType = "ml.t2.medium"|"ml.t2.large"|"ml.t2.xlarge"|"ml.t2.2xlarge"|"ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.m5d.large"|"ml.m5d.xlarge"|"ml.m5d.2xlarge"|"ml.m5d.4xlarge"|"ml.m5d.12xlarge"|"ml.m5d.24xlarge"|"ml.c4.large"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.c5.large"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5d.large"|"ml.c5d.xlarge"|"ml.c5d.2xlarge"|"ml.c5d.4xlarge"|"ml.c5d.9xlarge"|"ml.c5d.18xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|"ml.r5.large"|"ml.r5.xlarge"|"ml.r5.2xlarge"|"ml.r5.4xlarge"|"ml.r5.12xlarge"|"ml.r5.24xlarge"|"ml.r5d.large"|"ml.r5d.xlarge"|"ml.r5d.2xlarge"|"ml.r5d.4xlarge"|"ml.r5d.12xlarge"|"ml.r5d.24xlarge"|"ml.inf1.xlarge"|"ml.inf1.2xlarge"|"ml.inf1.6xlarge"|"ml.inf1.24xlarge"|string;
  export type ProductionVariantList = ProductionVariant[];
  export interface ProductionVariantSummary {
    /**
     * The name of the variant.
     */
    VariantName: VariantName;
    /**
     * An array of DeployedImage objects that specify the Amazon EC2 Container Registry paths of the inference images deployed on instances of this ProductionVariant.
     */
    DeployedImages?: DeployedImages;
    /**
     * The weight associated with the variant.
     */
    CurrentWeight?: VariantWeight;
    /**
     * The requested weight, as specified in the UpdateEndpointWeightsAndCapacities request. 
     */
    DesiredWeight?: VariantWeight;
    /**
     * The number of instances associated with the variant.
     */
    CurrentInstanceCount?: TaskCount;
    /**
     * The number of instances requested in the UpdateEndpointWeightsAndCapacities request. 
     */
    DesiredInstanceCount?: TaskCount;
  }
  export type ProductionVariantSummaryList = ProductionVariantSummary[];
  export type PropertyNameHint = string;
  export interface PropertyNameQuery {
    /**
     * Text that begins a property's name.
     */
    PropertyNameHint: PropertyNameHint;
  }
  export interface PropertyNameSuggestion {
    /**
     * A suggested property name based on what you entered in the search textbox in the Amazon SageMaker console.
     */
    PropertyName?: ResourcePropertyName;
  }
  export type PropertyNameSuggestionList = PropertyNameSuggestion[];
  export interface PublicWorkforceTaskPrice {
    /**
     * Defines the amount of money paid to an Amazon Mechanical Turk worker in United States dollars.
     */
    AmountInUsd?: USD;
  }
  export type RealtimeInferenceInstanceTypes = ProductionVariantInstanceType[];
  export type RecordWrapper = "None"|"RecordIO"|string;
  export interface RenderUiTemplateRequest {
    /**
     * A Template object containing the worker UI template to render.
     */
    UiTemplate?: UiTemplate;
    /**
     * A RenderableTask object containing a representative task to render.
     */
    Task: RenderableTask;
    /**
     * The Amazon Resource Name (ARN) that has access to the S3 objects that are used by the template.
     */
    RoleArn: RoleArn;
    /**
     * The HumanTaskUiArn of the worker UI that you want to render. Do not provide a HumanTaskUiArn if you use the UiTemplate parameter. See a list of available Human Ui Amazon Resource Names (ARNs) in UiConfig.
     */
    HumanTaskUiArn?: HumanTaskUiArn;
  }
  export interface RenderUiTemplateResponse {
    /**
     * A Liquid template that renders the HTML for the worker UI.
     */
    RenderedContent: String;
    /**
     * A list of one or more RenderingError objects if any were encountered while rendering the template. If there were no errors, the list is empty.
     */
    Errors: RenderingErrorList;
  }
  export interface RenderableTask {
    /**
     * A JSON object that contains values for the variables defined in the template. It is made available to the template under the substitution variable task.input. For example, if you define a variable task.input.text in your template, you can supply the variable in the JSON object as "text": "sample text".
     */
    Input: TaskInput;
  }
  export interface RenderingError {
    /**
     * A unique identifier for a specific class of errors.
     */
    Code: String;
    /**
     * A human-readable message describing the error.
     */
    Message: String;
  }
  export type RenderingErrorList = RenderingError[];
  export type RepositoryAccessMode = "Platform"|"Vpc"|string;
  export interface ResolvedAttributes {
    AutoMLJobObjective?: AutoMLJobObjective;
    /**
     * The problem type.
     */
    ProblemType?: ProblemType;
    CompletionCriteria?: AutoMLJobCompletionCriteria;
  }
  export type ResourceArn = string;
  export interface ResourceConfig {
    /**
     * The ML compute instance type. 
     */
    InstanceType: TrainingInstanceType;
    /**
     * The number of ML compute instances to use. For distributed training, provide a value greater than 1. 
     */
    InstanceCount: TrainingInstanceCount;
    /**
     * The size of the ML storage volume that you want to provision.  ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.  You must specify sufficient ML storage for your scenario.    Amazon SageMaker supports only the General Purpose SSD (gp2) ML storage volume type.    Certain Nitro-based instances include local storage with a fixed total size, dependent on the instance type. When using these instances for training, Amazon SageMaker mounts the local instance storage instead of Amazon EBS gp2 storage. You can't request a VolumeSizeInGB greater than the total size of the local instance storage. For a list of instance types that support local instance storage, including the total size per instance type, see Instance Store Volumes. 
     */
    VolumeSizeInGB: VolumeSizeInGB;
    /**
     * The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.  Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage. For a list of instance types that support local instance storage, see Instance Store Volumes. For more information about local instance storage encryption, see SSD Instance Store Volumes.  The VolumeKmsKeyId can be in any of the following formats:   // KMS Key ID  "1234abcd-12ab-34cd-56ef-1234567890ab"    // Amazon Resource Name (ARN) of a KMS Key  "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"   
     */
    VolumeKmsKeyId?: KmsKeyId;
  }
  export type ResourceId = string;
  export interface ResourceLimits {
    /**
     * The maximum number of training jobs that a hyperparameter tuning job can launch.
     */
    MaxNumberOfTrainingJobs: MaxNumberOfTrainingJobs;
    /**
     * The maximum number of concurrent training jobs that a hyperparameter tuning job can launch.
     */
    MaxParallelTrainingJobs: MaxParallelTrainingJobs;
  }
  export type ResourcePropertyName = string;
  export interface ResourceSpec {
    /**
     * The Amazon Resource Name (ARN) of the SageMaker image created on the instance.
     */
    SageMakerImageArn?: ImageArn;
    /**
     * The instance type.
     */
    InstanceType?: AppInstanceType;
  }
  export type ResourceType = "TrainingJob"|"Experiment"|"ExperimentTrial"|"ExperimentTrialComponent"|string;
  export type ResponseMIMEType = string;
  export type ResponseMIMETypes = ResponseMIMEType[];
  export interface RetentionPolicy {
    /**
     * The default is Retain, which specifies to keep the data stored on the EFS volume. Specify Delete to delete the data stored on the EFS volume.
     */
    HomeEfsFileSystem?: RetentionType;
  }
  export type RetentionType = "Retain"|"Delete"|string;
  export type RoleArn = string;
  export type RootAccess = "Enabled"|"Disabled"|string;
  export type RuleConfigurationName = string;
  export type RuleEvaluationStatus = "InProgress"|"NoIssuesFound"|"IssuesFound"|"Error"|"Stopping"|"Stopped"|string;
  export type RuleParameters = {[key: string]: ConfigValue};
  export type S3DataDistribution = "FullyReplicated"|"ShardedByS3Key"|string;
  export interface S3DataSource {
    /**
     * If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects that match the specified key name prefix for model training.  If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for model training.  If you choose AugmentedManifestFile, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel's input mode is Pipe.
     */
    S3DataType: S3DataType;
    /**
     * Depending on the value specified for the S3DataType, identifies either a key name prefix or a manifest. For example:     A key name prefix might look like this: s3://bucketname/exampleprefix     A manifest might look like this: s3://bucketname/example.manifest   A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of S3Uri. Note that the prefix must be a valid non-empty S3Uri that precludes users from specifying a manifest whose individual S3Uri is sourced from different S3 buckets.  The following code example shows a valid manifest format:   [ {"prefix": "s3://customer_bucket/some/prefix/"},    "relative/path/to/custdata-1",    "relative/path/custdata-2",    ...    "relative/path/custdata-N"   ]   This JSON is equivalent to the following S3Uri list:  s3://customer_bucket/some/prefix/relative/path/to/custdata-1   s3://customer_bucket/some/prefix/relative/path/custdata-2   ...   s3://customer_bucket/some/prefix/relative/path/custdata-N  The complete set of S3Uri in this manifest is the input data for the channel for this data source. The object that each S3Uri points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.   
     */
    S3Uri: S3Uri;
    /**
     * If you want Amazon SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated.  If you want Amazon SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key. If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.  Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.  In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key. If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File), this copies 1/n of the number of objects. 
     */
    S3DataDistributionType?: S3DataDistribution;
    /**
     * A list of one or more attribute names to use that are found in a specified augmented manifest file.
     */
    AttributeNames?: AttributeNames;
  }
  export type S3DataType = "ManifestFile"|"S3Prefix"|"AugmentedManifestFile"|string;
  export type S3Uri = string;
  export type SamplingPercentage = number;
  export interface ScheduleConfig {
    /**
     * A cron expression that describes details about the monitoring schedule. Currently the only supported cron expressions are:   If you want to set the job to start every hour, please use the following:  Hourly: cron(0 * ? * * *)    If you want to start the job daily:  cron(0 [00-23] ? * * *)    For example, the following are valid cron expressions:   Daily at noon UTC: cron(0 12 ? * * *)    Daily at midnight UTC: cron(0 0 ? * * *)    To support running every 6, 12 hours, the following are also supported:  cron(0 [00-23]/[01-24] ? * * *)  For example, the following are valid cron expressions:   Every 12 hours, starting at 5pm UTC: cron(0 17/12 ? * * *)    Every two hours starting at midnight: cron(0 0/2 ? * * *)       Even though the cron expression is set to start at 5PM UTC, note that there could be a delay of 0-20 minutes from the actual requested time to run the execution.    We recommend that if you would like a daily schedule, you do not provide this parameter. Amazon SageMaker will pick a time for running every day.   
     */
    ScheduleExpression: ScheduleExpression;
  }
  export type ScheduleExpression = string;
  export type ScheduleStatus = "Pending"|"Failed"|"Scheduled"|"Stopped"|string;
  export interface SearchExpression {
    /**
     * A list of filter objects.
     */
    Filters?: FilterList;
    /**
     * A list of nested filter objects.
     */
    NestedFilters?: NestedFiltersList;
    /**
     * A list of search expression objects.
     */
    SubExpressions?: SearchExpressionList;
    /**
     * A Boolean operator used to evaluate the search expression. If you want every conditional statement in all lists to be satisfied for the entire search expression to be true, specify And. If only a single conditional statement needs to be true for the entire search expression to be true, specify Or. The default value is And.
     */
    Operator?: BooleanOperator;
  }
  export type SearchExpressionList = SearchExpression[];
  export interface SearchRecord {
    /**
     * The properties of a training job.
     */
    TrainingJob?: TrainingJob;
    /**
     * The properties of an experiment.
     */
    Experiment?: Experiment;
    /**
     * The properties of a trial.
     */
    Trial?: Trial;
    /**
     * The properties of a trial component.
     */
    TrialComponent?: TrialComponent;
  }
  export interface SearchRequest {
    /**
     * The name of the Amazon SageMaker resource to search for.
     */
    Resource: ResourceType;
    /**
     * A Boolean conditional statement. Resources must satisfy this condition to be included in search results. You must provide at least one subexpression, filter, or nested filter. The maximum number of recursive SubExpressions, NestedFilters, and Filters that can be included in a SearchExpression object is 50.
     */
    SearchExpression?: SearchExpression;
    /**
     * The name of the resource property used to sort the SearchResults. The default is LastModifiedTime.
     */
    SortBy?: ResourcePropertyName;
    /**
     * How SearchResults are ordered. Valid values are Ascending or Descending. The default is Descending.
     */
    SortOrder?: SearchSortOrder;
    /**
     * If more than MaxResults resources match the specified SearchExpression, the response includes a NextToken. The NextToken can be passed to the next SearchRequest to continue retrieving results.
     */
    NextToken?: NextToken;
    /**
     * The maximum number of results to return.
     */
    MaxResults?: MaxResults;
  }
  export interface SearchResponse {
    /**
     * A list of SearchRecord objects.
     */
    Results?: SearchResultsList;
    /**
     * If the result of the previous Search request was truncated, the response includes a NextToken. To retrieve the next set of results, use the token in the next request.
     */
    NextToken?: NextToken;
  }
  export type SearchResultsList = SearchRecord[];
  export type SearchSortOrder = "Ascending"|"Descending"|string;
  export type SecondaryStatus = "Starting"|"LaunchingMLInstances"|"PreparingTrainingStack"|"Downloading"|"DownloadingTrainingImage"|"Training"|"Uploading"|"Stopping"|"Stopped"|"MaxRuntimeExceeded"|"Completed"|"Failed"|"Interrupted"|"MaxWaitTimeExceeded"|string;
  export interface SecondaryStatusTransition {
    /**
     * Contains a secondary status information from a training job. Status might be one of the following secondary statuses:  InProgress     Starting - Starting the training job.    Downloading - An optional stage for algorithms that support File training input mode. It indicates that data is being downloaded to the ML storage volumes.    Training - Training is in progress.    Uploading - Training is complete and the model artifacts are being uploaded to the S3 location.    Completed     Completed - The training job has completed.    Failed     Failed - The training job has failed. The reason for the failure is returned in the FailureReason field of DescribeTrainingJobResponse.    Stopped     MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed runtime.    Stopped - The training job has stopped.    Stopping     Stopping - Stopping the training job.     We no longer support the following secondary statuses:    LaunchingMLInstances     PreparingTrainingStack     DownloadingTrainingImage   
     */
    Status: SecondaryStatus;
    /**
     * A timestamp that shows when the training job transitioned to the current secondary status state.
     */
    StartTime: Timestamp;
    /**
     * A timestamp that shows when the training job transitioned out of this secondary status state into another secondary status state or when the training job has ended.
     */
    EndTime?: Timestamp;
    /**
     * A detailed description of the progress within a secondary status.  Amazon SageMaker provides secondary statuses and status messages that apply to each of them:  Starting    Starting the training job.   Launching requested ML instances.   Insufficient capacity error from EC2 while launching instances, retrying!   Launched instance was unhealthy, replacing it!   Preparing the instances for training.    Training    Downloading the training image.   Training image download completed. Training in progress.      Status messages are subject to change. Therefore, we recommend not including them in code that programmatically initiates actions. For examples, don't use status messages in if statements.  To have an overview of your training job's progress, view TrainingJobStatus and SecondaryStatus in DescribeTrainingJob, and StatusMessage together. For example, at the start of a training job, you might see the following:    TrainingJobStatus - InProgress    SecondaryStatus - Training    StatusMessage - Downloading the training image  
     */
    StatusMessage?: StatusMessage;
  }
  export type SecondaryStatusTransitions = SecondaryStatusTransition[];
  export type SecretArn = string;
  export type SecurityGroupId = string;
  export type SecurityGroupIds = SecurityGroupId[];
  export type Seed = number;
  export type SessionExpirationDurationInSeconds = number;
  export interface SharingSettings {
    /**
     * Whether to include the notebook cell output when sharing the notebook. The default is Disabled.
     */
    NotebookOutputOption?: NotebookOutputOption;
    /**
     * When NotebookOutputOption is Allowed, the Amazon S3 bucket used to save the notebook cell output.
     */
    S3OutputPath?: S3Uri;
    /**
     * When NotebookOutputOption is Allowed, the AWS Key Management Service (KMS) encryption key ID used to encrypt the notebook cell output in the Amazon S3 bucket.
     */
    S3KmsKeyId?: KmsKeyId;
  }
  export interface ShuffleConfig {
    /**
     * Determines the shuffling order in ShuffleConfig value.
     */
    Seed: Seed;
  }
  export type SingleSignOnUserIdentifier = string;
  export type SnsTopicArn = string;
  export type SortBy = "Name"|"CreationTime"|"Status"|string;
  export type SortExperimentsBy = "Name"|"CreationTime"|string;
  export type SortOrder = "Ascending"|"Descending"|string;
  export type SortTrialComponentsBy = "Name"|"CreationTime"|string;
  export type SortTrialsBy = "Name"|"CreationTime"|string;
  export interface SourceAlgorithm {
    /**
     * The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).  The model artifacts must be in an S3 bucket that is in the same region as the algorithm. 
     */
    ModelDataUrl?: Url;
    /**
     * The name of an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your Amazon SageMaker account or an algorithm in AWS Marketplace that you are subscribed to.
     */
    AlgorithmName: ArnOrName;
  }
  export type SourceAlgorithmList = SourceAlgorithm[];
  export interface SourceAlgorithmSpecification {
    /**
     * A list of the algorithms that were used to create a model package.
     */
    SourceAlgorithms: SourceAlgorithmList;
  }
  export interface SourceIpConfig {
    /**
     * A list of one to ten Classless Inter-Domain Routing (CIDR) values. Maximum: Ten CIDR values  The following Length Constraints apply to individual CIDR values in the CIDR value list. 
     */
    Cidrs: Cidrs;
  }
  export type SourceType = string;
  export type SplitType = "None"|"Line"|"RecordIO"|"TFRecord"|string;
  export interface StartMonitoringScheduleRequest {
    /**
     * The name of the schedule to start.
     */
    MonitoringScheduleName: MonitoringScheduleName;
  }
  export interface StartNotebookInstanceInput {
    /**
     * The name of the notebook instance to start.
     */
    NotebookInstanceName: NotebookInstanceName;
  }
  export type StatusDetails = string;
  export type StatusMessage = string;
  export interface StopAutoMLJobRequest {
    /**
     * The name of the object you are requesting.
     */
    AutoMLJobName: AutoMLJobName;
  }
  export interface StopCompilationJobRequest {
    /**
     * The name of the model compilation job to stop.
     */
    CompilationJobName: EntityName;
  }
  export interface StopHyperParameterTuningJobRequest {
    /**
     * The name of the tuning job to stop.
     */
    HyperParameterTuningJobName: HyperParameterTuningJobName;
  }
  export interface StopLabelingJobRequest {
    /**
     * The name of the labeling job to stop.
     */
    LabelingJobName: LabelingJobName;
  }
  export interface StopMonitoringScheduleRequest {
    /**
     * The name of the schedule to stop.
     */
    MonitoringScheduleName: MonitoringScheduleName;
  }
  export interface StopNotebookInstanceInput {
    /**
     * The name of the notebook instance to terminate.
     */
    NotebookInstanceName: NotebookInstanceName;
  }
  export interface StopProcessingJobRequest {
    /**
     * The name of the processing job to stop.
     */
    ProcessingJobName: ProcessingJobName;
  }
  export interface StopTrainingJobRequest {
    /**
     * The name of the training job to stop.
     */
    TrainingJobName: TrainingJobName;
  }
  export interface StopTransformJobRequest {
    /**
     * The name of the transform job to stop.
     */
    TransformJobName: TransformJobName;
  }
  export interface StoppingCondition {
    /**
     * The maximum length of time, in seconds, that the training or compilation job can run. If job does not complete during this time, Amazon SageMaker ends the job. If value is not specified, default value is 1 day. The maximum value is 28 days.
     */
    MaxRuntimeInSeconds?: MaxRuntimeInSeconds;
    /**
     * The maximum length of time, in seconds, how long you are willing to wait for a managed spot training job to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the training job runs. It must be equal to or greater than MaxRuntimeInSeconds. 
     */
    MaxWaitTimeInSeconds?: MaxWaitTimeInSeconds;
  }
  export type String = string;
  export type String1024 = string;
  export type String200 = string;
  export type String256 = string;
  export type StringParameterValue = string;
  export type SubnetId = string;
  export type Subnets = SubnetId[];
  export interface SubscribedWorkteam {
    /**
     * The Amazon Resource Name (ARN) of the vendor that you have subscribed.
     */
    WorkteamArn: WorkteamArn;
    /**
     * The title of the service provided by the vendor in the Amazon Marketplace.
     */
    MarketplaceTitle?: String200;
    /**
     * The name of the vendor in the Amazon Marketplace.
     */
    SellerName?: String;
    /**
     * The description of the vendor from the Amazon Marketplace.
     */
    MarketplaceDescription?: String200;
    /**
     * Marketplace product listing ID.
     */
    ListingId?: String;
  }
  export type SubscribedWorkteams = SubscribedWorkteam[];
  export type Success = boolean;
  export interface SuggestionQuery {
    /**
     * Defines a property name hint. Only property names that begin with the specified hint are included in the response.
     */
    PropertyNameQuery?: PropertyNameQuery;
  }
  export interface Tag {
    /**
     * The tag key.
     */
    Key: TagKey;
    /**
     * The tag value.
     */
    Value: TagValue;
  }
  export type TagKey = string;
  export type TagKeyList = TagKey[];
  export type TagList = Tag[];
  export type TagValue = string;
  export type TargetAttributeName = string;
  export type TargetDevice = "lambda"|"ml_m4"|"ml_m5"|"ml_c4"|"ml_c5"|"ml_p2"|"ml_p3"|"ml_g4dn"|"ml_inf1"|"jetson_tx1"|"jetson_tx2"|"jetson_nano"|"jetson_xavier"|"rasp3b"|"imx8qm"|"deeplens"|"rk3399"|"rk3288"|"aisage"|"sbe_c"|"qcs605"|"qcs603"|"sitara_am57x"|"amba_cv22"|"x86_win32"|"x86_win64"|"coreml"|string;
  export type TargetObjectiveMetricValue = number;
  export interface TargetPlatform {
    /**
     * Specifies a target platform OS.    LINUX: Linux-based operating systems.    ANDROID: Android operating systems. Android API level can be specified using the ANDROID_PLATFORM compiler option. For example, "CompilerOptions": {'ANDROID_PLATFORM': 28}   
     */
    Os: TargetPlatformOs;
    /**
     * Specifies a target platform architecture.    X86_64: 64-bit version of the x86 instruction set.    X86: 32-bit version of the x86 instruction set.    ARM64: ARMv8 64-bit CPU.    ARM_EABIHF: ARMv7 32-bit, Hard Float.    ARM_EABI: ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM platform.  
     */
    Arch: TargetPlatformArch;
    /**
     * Specifies a target platform accelerator (optional).    NVIDIA: Nvidia graphics processing unit. It also requires gpu-code, trt-ver, cuda-ver compiler options    MALI: ARM Mali graphics processor    INTEL_GRAPHICS: Integrated Intel graphics  
     */
    Accelerator?: TargetPlatformAccelerator;
  }
  export type TargetPlatformAccelerator = "INTEL_GRAPHICS"|"MALI"|"NVIDIA"|string;
  export type TargetPlatformArch = "X86_64"|"X86"|"ARM64"|"ARM_EABI"|"ARM_EABIHF"|string;
  export type TargetPlatformOs = "ANDROID"|"LINUX"|string;
  export type TaskAvailabilityLifetimeInSeconds = number;
  export type TaskCount = number;
  export type TaskDescription = string;
  export type TaskInput = string;
  export type TaskKeyword = string;
  export type TaskKeywords = TaskKeyword[];
  export type TaskTimeLimitInSeconds = number;
  export type TaskTitle = string;
  export type TemplateContent = string;
  export type TemplateContentSha256 = string;
  export type TemplateUrl = string;
  export interface TensorBoardAppSettings {
    /**
     * The default instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
     */
    DefaultResourceSpec?: ResourceSpec;
  }
  export interface TensorBoardOutputConfig {
    /**
     * Path to local storage location for tensorBoard output. Defaults to /opt/ml/output/tensorboard.
     */
    LocalPath?: DirectoryPath;
    /**
     * Path to Amazon S3 storage location for TensorBoard output.
     */
    S3OutputPath: S3Uri;
  }
  export type TenthFractionsOfACent = number;
  export type Timestamp = Date;
  export type TrainingInputMode = "Pipe"|"File"|string;
  export type TrainingInstanceCount = number;
  export type TrainingInstanceType = "ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.p3dn.24xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5n.xlarge"|"ml.c5n.2xlarge"|"ml.c5n.4xlarge"|"ml.c5n.9xlarge"|"ml.c5n.18xlarge"|string;
  export type TrainingInstanceTypes = TrainingInstanceType[];
  export interface TrainingJob {
    /**
     * The name of the training job.
     */
    TrainingJobName?: TrainingJobName;
    /**
     * The Amazon Resource Name (ARN) of the training job.
     */
    TrainingJobArn?: TrainingJobArn;
    /**
     * The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.
     */
    TuningJobArn?: HyperParameterTuningJobArn;
    /**
     * The Amazon Resource Name (ARN) of the labeling job.
     */
    LabelingJobArn?: LabelingJobArn;
    /**
     * The Amazon Resource Name (ARN) of the job.
     */
    AutoMLJobArn?: AutoMLJobArn;
    /**
     * Information about the Amazon S3 location that is configured for storing model artifacts.
     */
    ModelArtifacts?: ModelArtifacts;
    /**
     * The status of the training job. Training job statuses are:    InProgress - The training is in progress.    Completed - The training job has completed.    Failed - The training job has failed. To see the reason for the failure, see the FailureReason field in the response to a DescribeTrainingJobResponse call.    Stopping - The training job is stopping.    Stopped - The training job has stopped.   For more detailed information, see SecondaryStatus. 
     */
    TrainingJobStatus?: TrainingJobStatus;
    /**
     *  Provides detailed information about the state of the training job. For detailed information about the secondary status of the training job, see StatusMessage under SecondaryStatusTransition. Amazon SageMaker provides primary statuses and secondary statuses that apply to each of them:  InProgress     Starting - Starting the training job.    Downloading - An optional stage for algorithms that support File training input mode. It indicates that data is being downloaded to the ML storage volumes.    Training - Training is in progress.    Uploading - Training is complete and the model artifacts are being uploaded to the S3 location.    Completed     Completed - The training job has completed.    Failed     Failed - The training job has failed. The reason for the failure is returned in the FailureReason field of DescribeTrainingJobResponse.    Stopped     MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed runtime.    Stopped - The training job has stopped.    Stopping     Stopping - Stopping the training job.      Valid values for SecondaryStatus are subject to change.   We no longer support the following secondary statuses:    LaunchingMLInstances     PreparingTrainingStack     DownloadingTrainingImage   
     */
    SecondaryStatus?: SecondaryStatus;
    /**
     * If the training job failed, the reason it failed.
     */
    FailureReason?: FailureReason;
    /**
     * Algorithm-specific parameters.
     */
    HyperParameters?: HyperParameters;
    /**
     * Information about the algorithm used for training, and algorithm metadata.
     */
    AlgorithmSpecification?: AlgorithmSpecification;
    /**
     * The AWS Identity and Access Management (IAM) role configured for the training job.
     */
    RoleArn?: RoleArn;
    /**
     * An array of Channel objects that describes each data input channel.
     */
    InputDataConfig?: InputDataConfig;
    /**
     * The S3 path where model artifacts that you configured when creating the job are stored. Amazon SageMaker creates subfolders for model artifacts.
     */
    OutputDataConfig?: OutputDataConfig;
    /**
     * Resources, including ML compute instances and ML storage volumes, that are configured for model training.
     */
    ResourceConfig?: ResourceConfig;
    /**
     * A VpcConfig object that specifies the VPC that this training job has access to. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
     */
    VpcConfig?: VpcConfig;
    /**
     * Specifies a limit to how long a model training job can run. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost. 
     */
    StoppingCondition?: StoppingCondition;
    /**
     * A timestamp that indicates when the training job was created.
     */
    CreationTime?: Timestamp;
    /**
     * Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of TrainingEndTime. The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.
     */
    TrainingStartTime?: Timestamp;
    /**
     * Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of TrainingStartTime and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.
     */
    TrainingEndTime?: Timestamp;
    /**
     * A timestamp that indicates when the status of the training job was last modified.
     */
    LastModifiedTime?: Timestamp;
    /**
     * A history of all of the secondary statuses that the training job has transitioned through.
     */
    SecondaryStatusTransitions?: SecondaryStatusTransitions;
    /**
     * A list of final metric values that are set when the training job completes. Used only if the training job was configured to use metrics.
     */
    FinalMetricDataList?: FinalMetricDataList;
    /**
     * If the TrainingJob was created with network isolation, the value is set to true. If network isolation is enabled, nodes can't communicate beyond the VPC they run in.
     */
    EnableNetworkIsolation?: Boolean;
    /**
     * To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.
     */
    EnableInterContainerTrafficEncryption?: Boolean;
    /**
     * When true, enables managed spot training using Amazon EC2 Spot instances to run training jobs instead of on-demand instances. For more information, see Managed Spot Training.
     */
    EnableManagedSpotTraining?: Boolean;
    CheckpointConfig?: CheckpointConfig;
    /**
     * The training time in seconds.
     */
    TrainingTimeInSeconds?: TrainingTimeInSeconds;
    /**
     * The billable time in seconds.
     */
    BillableTimeInSeconds?: BillableTimeInSeconds;
    DebugHookConfig?: DebugHookConfig;
    ExperimentConfig?: ExperimentConfig;
    /**
     * Information about the debug rule configuration.
     */
    DebugRuleConfigurations?: DebugRuleConfigurations;
    TensorBoardOutputConfig?: TensorBoardOutputConfig;
    /**
     * Information about the evaluation status of the rules for the training job.
     */
    DebugRuleEvaluationStatuses?: DebugRuleEvaluationStatuses;
    /**
     * An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.
     */
    Tags?: TagList;
  }
  export type TrainingJobArn = string;
  export interface TrainingJobDefinition {
    /**
     * The input mode used by the algorithm for the training job. For the input modes that Amazon SageMaker algorithms support, see Algorithms. If an algorithm supports the File input mode, Amazon SageMaker downloads the training data from S3 to the provisioned ML storage Volume, and mounts the directory to docker volume for training container. If an algorithm supports the Pipe input mode, Amazon SageMaker streams data directly from S3 to the container.
     */
    TrainingInputMode: TrainingInputMode;
    /**
     * The hyperparameters used for the training job.
     */
    HyperParameters?: HyperParameters;
    /**
     * An array of Channel objects, each of which specifies an input source.
     */
    InputDataConfig: InputDataConfig;
    /**
     * the path to the S3 bucket where you want to store model artifacts. Amazon SageMaker creates subfolders for the artifacts.
     */
    OutputDataConfig: OutputDataConfig;
    /**
     * The resources, including the ML compute instances and ML storage volumes, to use for model training.
     */
    ResourceConfig: ResourceConfig;
    /**
     * Specifies a limit to how long a model training job can run. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts.
     */
    StoppingCondition: StoppingCondition;
  }
  export type TrainingJobEarlyStoppingType = "Off"|"Auto"|string;
  export type TrainingJobName = string;
  export type TrainingJobSortByOptions = "Name"|"CreationTime"|"Status"|"FinalObjectiveMetricValue"|string;
  export type TrainingJobStatus = "InProgress"|"Completed"|"Failed"|"Stopping"|"Stopped"|string;
  export type TrainingJobStatusCounter = number;
  export interface TrainingJobStatusCounters {
    /**
     * The number of completed training jobs launched by the hyperparameter tuning job.
     */
    Completed?: TrainingJobStatusCounter;
    /**
     * The number of in-progress training jobs launched by a hyperparameter tuning job.
     */
    InProgress?: TrainingJobStatusCounter;
    /**
     * The number of training jobs that failed, but can be retried. A failed training job can be retried only if it failed because an internal service error occurred.
     */
    RetryableError?: TrainingJobStatusCounter;
    /**
     * The number of training jobs that failed and can't be retried. A failed training job can't be retried if it failed because a client error occurred.
     */
    NonRetryableError?: TrainingJobStatusCounter;
    /**
     * The number of training jobs launched by a hyperparameter tuning job that were manually stopped.
     */
    Stopped?: TrainingJobStatusCounter;
  }
  export type TrainingJobSummaries = TrainingJobSummary[];
  export interface TrainingJobSummary {
    /**
     * The name of the training job that you want a summary for.
     */
    TrainingJobName: TrainingJobName;
    /**
     * The Amazon Resource Name (ARN) of the training job.
     */
    TrainingJobArn: TrainingJobArn;
    /**
     * A timestamp that shows when the training job was created.
     */
    CreationTime: Timestamp;
    /**
     * A timestamp that shows when the training job ended. This field is set only if the training job has one of the terminal statuses (Completed, Failed, or Stopped). 
     */
    TrainingEndTime?: Timestamp;
    /**
     *  Timestamp when the training job was last modified. 
     */
    LastModifiedTime?: Timestamp;
    /**
     * The status of the training job.
     */
    TrainingJobStatus: TrainingJobStatus;
  }
  export interface TrainingSpecification {
    /**
     * The Amazon ECR registry path of the Docker image that contains the training algorithm.
     */
    TrainingImage: ContainerImage;
    /**
     * An MD5 hash of the training algorithm that identifies the Docker image used for training.
     */
    TrainingImageDigest?: ImageDigest;
    /**
     * A list of the HyperParameterSpecification objects, that define the supported hyperparameters. This is required if the algorithm supports automatic model tuning.&gt;
     */
    SupportedHyperParameters?: HyperParameterSpecifications;
    /**
     * A list of the instance types that this algorithm can use for training.
     */
    SupportedTrainingInstanceTypes: TrainingInstanceTypes;
    /**
     * Indicates whether the algorithm supports distributed training. If set to false, buyers can't request more than one instance during training.
     */
    SupportsDistributedTraining?: Boolean;
    /**
     * A list of MetricDefinition objects, which are used for parsing metrics generated by the algorithm.
     */
    MetricDefinitions?: MetricDefinitionList;
    /**
     * A list of ChannelSpecification objects, which specify the input sources to be used by the algorithm.
     */
    TrainingChannels: ChannelSpecifications;
    /**
     * A list of the metrics that the algorithm emits that can be used as the objective metric in a hyperparameter tuning job.
     */
    SupportedTuningJobObjectiveMetrics?: HyperParameterTuningJobObjectives;
  }
  export type TrainingTimeInSeconds = number;
  export interface TransformDataSource {
    /**
     * The S3 location of the data source that is associated with a channel.
     */
    S3DataSource: TransformS3DataSource;
  }
  export type TransformEnvironmentKey = string;
  export type TransformEnvironmentMap = {[key: string]: TransformEnvironmentValue};
  export type TransformEnvironmentValue = string;
  export interface TransformInput {
    /**
     * Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.
     */
    DataSource: TransformDataSource;
    /**
     * The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.
     */
    ContentType?: ContentType;
    /**
     * If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is None.
     */
    CompressionType?: CompressionType;
    /**
     * The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for SplitType is None, which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to Line to split records on a newline character boundary. SplitType also supports a number of record-oriented binary data formats. Currently, the supported record formats are:   RecordIO   TFRecord   When splitting is enabled, the size of a mini-batch depends on the values of the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy is MultiRecord, Amazon SageMaker sends the maximum number of records in each request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is SingleRecord, Amazon SageMaker sends individual records in each request.  Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of BatchStrategy is set to SingleRecord. Padding is not removed if the value of BatchStrategy is set to MultiRecord. For more information about RecordIO, see Create a Dataset Using RecordIO in the MXNet documentation. For more information about TFRecord, see Consuming TFRecord data in the TensorFlow documentation. 
     */
    SplitType?: SplitType;
  }
  export type TransformInstanceCount = number;
  export type TransformInstanceType = "ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|string;
  export type TransformInstanceTypes = TransformInstanceType[];
  export interface TransformJob {
    /**
     * The name of the transform job.
     */
    TransformJobName?: TransformJobName;
    /**
     * The Amazon Resource Name (ARN) of the transform job.
     */
    TransformJobArn?: TransformJobArn;
    /**
     * The status of the transform job. Transform job statuses are:    InProgress - The job is in progress.    Completed - The job has completed.    Failed - The transform job has failed. To see the reason for the failure, see the FailureReason field in the response to a DescribeTransformJob call.    Stopping - The transform job is stopping.    Stopped - The transform job has stopped.  
     */
    TransformJobStatus?: TransformJobStatus;
    /**
     * If the transform job failed, the reason it failed.
     */
    FailureReason?: FailureReason;
    /**
     * The name of the model associated with the transform job.
     */
    ModelName?: ModelName;
    /**
     * The maximum number of parallel requests that can be sent to each instance in a transform job. If MaxConcurrentTransforms is set to 0 or left unset, SageMaker checks the optional execution-parameters to determine the settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is 1. For built-in algorithms, you don't need to set a value for MaxConcurrentTransforms.
     */
    MaxConcurrentTransforms?: MaxConcurrentTransforms;
    ModelClientConfig?: ModelClientConfig;
    /**
     * The maximum allowed size of the payload, in MB. A payload is the data portion of a record (without metadata). The value in MaxPayloadInMB must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is 6 MB. For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to 0. This feature works only in supported algorithms. Currently, SageMaker built-in algorithms do not support HTTP chunked encoding.
     */
    MaxPayloadInMB?: MaxPayloadInMB;
    /**
     * Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.
     */
    BatchStrategy?: BatchStrategy;
    /**
     * The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
     */
    Environment?: TransformEnvironmentMap;
    TransformInput?: TransformInput;
    TransformOutput?: TransformOutput;
    TransformResources?: TransformResources;
    /**
     * A timestamp that shows when the transform Job was created.
     */
    CreationTime?: Timestamp;
    /**
     * Indicates when the transform job starts on ML instances. You are billed for the time interval between this time and the value of TransformEndTime.
     */
    TransformStartTime?: Timestamp;
    /**
     * Indicates when the transform job has been completed, or has stopped or failed. You are billed for the time interval between this time and the value of TransformStartTime.
     */
    TransformEndTime?: Timestamp;
    /**
     * The Amazon Resource Name (ARN) of the labeling job that created the transform job.
     */
    LabelingJobArn?: LabelingJobArn;
    /**
     * The Amazon Resource Name (ARN) of the AutoML job that created the transform job.
     */
    AutoMLJobArn?: AutoMLJobArn;
    DataProcessing?: DataProcessing;
    ExperimentConfig?: ExperimentConfig;
    /**
     * A list of tags associated with the transform job.
     */
    Tags?: TagList;
  }
  export type TransformJobArn = string;
  export interface TransformJobDefinition {
    /**
     * The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.
     */
    MaxConcurrentTransforms?: MaxConcurrentTransforms;
    /**
     * The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).
     */
    MaxPayloadInMB?: MaxPayloadInMB;
    /**
     * A string that determines the number of records included in a single mini-batch.  SingleRecord means only one record is used per mini-batch. MultiRecord means a mini-batch is set to contain as many records that can fit within the MaxPayloadInMB limit.
     */
    BatchStrategy?: BatchStrategy;
    /**
     * The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
     */
    Environment?: TransformEnvironmentMap;
    /**
     * A description of the input source and the way the transform job consumes it.
     */
    TransformInput: TransformInput;
    /**
     * Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.
     */
    TransformOutput: TransformOutput;
    /**
     * Identifies the ML compute instances for the transform job.
     */
    TransformResources: TransformResources;
  }
  export type TransformJobName = string;
  export type TransformJobStatus = "InProgress"|"Completed"|"Failed"|"Stopping"|"Stopped"|string;
  export type TransformJobSummaries = TransformJobSummary[];
  export interface TransformJobSummary {
    /**
     * The name of the transform job.
     */
    TransformJobName: TransformJobName;
    /**
     * The Amazon Resource Name (ARN) of the transform job.
     */
    TransformJobArn: TransformJobArn;
    /**
     * A timestamp that shows when the transform Job was created.
     */
    CreationTime: Timestamp;
    /**
     * Indicates when the transform job ends on compute instances. For successful jobs and stopped jobs, this is the exact time recorded after the results are uploaded. For failed jobs, this is when Amazon SageMaker detected that the job failed.
     */
    TransformEndTime?: Timestamp;
    /**
     * Indicates when the transform job was last modified.
     */
    LastModifiedTime?: Timestamp;
    /**
     * The status of the transform job.
     */
    TransformJobStatus: TransformJobStatus;
    /**
     * If the transform job failed, the reason it failed.
     */
    FailureReason?: FailureReason;
  }
  export interface TransformOutput {
    /**
     * The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, s3://bucket-name/key-name-prefix. For every S3 object used as input for the transform job, batch transform stores the transformed data with an .out suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at s3://bucket-name/input-name-prefix/dataset01/data.csv, batch transform stores the transformed data at s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out. Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an .out file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.
     */
    S3OutputPath: S3Uri;
    /**
     * The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.
     */
    Accept?: Accept;
    /**
     * Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify None. To add a newline character at the end of every transformed record, specify Line.
     */
    AssembleWith?: AssemblyType;
    /**
     * The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats:    Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab    Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab    Alias name: alias/ExampleAlias    Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias    If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.  The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide.
     */
    KmsKeyId?: KmsKeyId;
  }
  export interface TransformResources {
    /**
     * The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or ml.m5.large instance types.
     */
    InstanceType: TransformInstanceType;
    /**
     * The number of ML compute instances to use in the transform job. For distributed transform jobs, specify a value greater than 1. The default value is 1.
     */
    InstanceCount: TransformInstanceCount;
    /**
     * The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job. The VolumeKmsKeyId can be any of the following formats:   Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab    Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab    Alias name: alias/ExampleAlias    Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias   
     */
    VolumeKmsKeyId?: KmsKeyId;
  }
  export interface TransformS3DataSource {
    /**
     * If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.  If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.  The following values are compatible: ManifestFile, S3Prefix  The following value is not compatible: AugmentedManifestFile 
     */
    S3DataType: S3DataType;
    /**
     * Depending on the value specified for the S3DataType, identifies either a key name prefix or a manifest. For example:    A key name prefix might look like this: s3://bucketname/exampleprefix.     A manifest might look like this: s3://bucketname/example.manifest   The manifest is an S3 object which is a JSON file with the following format:   [ {"prefix": "s3://customer_bucket/some/prefix/"},   "relative/path/to/custdata-1",   "relative/path/custdata-2",   ...   "relative/path/custdata-N"   ]   The preceding JSON matches the following S3Uris:   s3://customer_bucket/some/prefix/relative/path/to/custdata-1   s3://customer_bucket/some/prefix/relative/path/custdata-2   ...   s3://customer_bucket/some/prefix/relative/path/custdata-N   The complete set of S3Uris in this manifest constitutes the input data for the channel for this datasource. The object that each S3Uris points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.  
     */
    S3Uri: S3Uri;
  }
  export interface Trial {
    /**
     * The name of the trial.
     */
    TrialName?: ExperimentEntityName;
    /**
     * The Amazon Resource Name (ARN) of the trial.
     */
    TrialArn?: TrialArn;
    /**
     * The name of the trial as displayed. If DisplayName isn't specified, TrialName is displayed.
     */
    DisplayName?: ExperimentEntityName;
    /**
     * The name of the experiment the trial is part of.
     */
    ExperimentName?: ExperimentEntityName;
    Source?: TrialSource;
    /**
     * When the trial was created.
     */
    CreationTime?: Timestamp;
    CreatedBy?: UserContext;
    /**
     * Who last modified the trial.
     */
    LastModifiedTime?: Timestamp;
    LastModifiedBy?: UserContext;
    /**
     * The list of tags that are associated with the trial. You can use Search API to search on the tags.
     */
    Tags?: TagList;
    /**
     * A list of the components associated with the trial. For each component, a summary of the component's properties is included.
     */
    TrialComponentSummaries?: TrialComponentSimpleSummaries;
  }
  export type TrialArn = string;
  export interface TrialComponent {
    /**
     * The name of the trial component.
     */
    TrialComponentName?: ExperimentEntityName;
    /**
     * The name of the component as displayed. If DisplayName isn't specified, TrialComponentName is displayed.
     */
    DisplayName?: ExperimentEntityName;
    /**
     * The Amazon Resource Name (ARN) of the trial component.
     */
    TrialComponentArn?: TrialComponentArn;
    /**
     * The Amazon Resource Name (ARN) and job type of the source of the component.
     */
    Source?: TrialComponentSource;
    Status?: TrialComponentStatus;
    /**
     * When the component started.
     */
    StartTime?: Timestamp;
    /**
     * When the component ended.
     */
    EndTime?: Timestamp;
    /**
     * When the component was created.
     */
    CreationTime?: Timestamp;
    CreatedBy?: UserContext;
    /**
     * When the component was last modified.
     */
    LastModifiedTime?: Timestamp;
    LastModifiedBy?: UserContext;
    /**
     * The hyperparameters of the component.
     */
    Parameters?: TrialComponentParameters;
    /**
     * The input artifacts of the component.
     */
    InputArtifacts?: TrialComponentArtifacts;
    /**
     * The output artifacts of the component.
     */
    OutputArtifacts?: TrialComponentArtifacts;
    /**
     * The metrics for the component.
     */
    Metrics?: TrialComponentMetricSummaries;
    /**
     * Details of the source of the component.
     */
    SourceDetail?: TrialComponentSourceDetail;
    /**
     * The list of tags that are associated with the component. You can use Search API to search on the tags.
     */
    Tags?: TagList;
    /**
     * An array of the parents of the component. A parent is a trial the component is associated with and the experiment the trial is part of. A component might not have any parents.
     */
    Parents?: Parents;
  }
  export type TrialComponentArn = string;
  export interface TrialComponentArtifact {
    /**
     * The media type of the artifact, which indicates the type of data in the artifact file. The media type consists of a type and a subtype concatenated with a slash (/) character, for example, text/csv, image/jpeg, and s3/uri. The type specifies the category of the media. The subtype specifies the kind of data.
     */
    MediaType?: MediaType;
    /**
     * The location of the artifact.
     */
    Value: TrialComponentArtifactValue;
  }
  export type TrialComponentArtifactValue = string;
  export type TrialComponentArtifacts = {[key: string]: TrialComponentArtifact};
  export type TrialComponentKey256 = string;
  export type TrialComponentKey64 = string;
  export type TrialComponentMetricSummaries = TrialComponentMetricSummary[];
  export interface TrialComponentMetricSummary {
    /**
     * The name of the metric.
     */
    MetricName?: MetricName;
    /**
     * The Amazon Resource Name (ARN) of the source.
     */
    SourceArn?: TrialComponentSourceArn;
    /**
     * When the metric was last updated.
     */
    TimeStamp?: Timestamp;
    /**
     * The maximum value of the metric.
     */
    Max?: OptionalDouble;
    /**
     * The minimum value of the metric.
     */
    Min?: OptionalDouble;
    /**
     * The most recent value of the metric.
     */
    Last?: OptionalDouble;
    /**
     * The number of samples used to generate the metric.
     */
    Count?: OptionalInteger;
    /**
     * The average value of the metric.
     */
    Avg?: OptionalDouble;
    /**
     * The standard deviation of the metric.
     */
    StdDev?: OptionalDouble;
  }
  export interface TrialComponentParameterValue {
    /**
     * The string value of a categorical hyperparameter. If you specify a value for this parameter, you can't specify the NumberValue parameter.
     */
    StringValue?: StringParameterValue;
    /**
     * The numeric value of a numeric hyperparameter. If you specify a value for this parameter, you can't specify the StringValue parameter.
     */
    NumberValue?: DoubleParameterValue;
  }
  export type TrialComponentParameters = {[key: string]: TrialComponentParameterValue};
  export type TrialComponentPrimaryStatus = "InProgress"|"Completed"|"Failed"|"Stopping"|"Stopped"|string;
  export type TrialComponentSimpleSummaries = TrialComponentSimpleSummary[];
  export interface TrialComponentSimpleSummary {
    /**
     * The name of the trial component.
     */
    TrialComponentName?: ExperimentEntityName;
    /**
     * The Amazon Resource Name (ARN) of the trial component.
     */
    TrialComponentArn?: TrialComponentArn;
    TrialComponentSource?: TrialComponentSource;
    /**
     * When the component was created.
     */
    CreationTime?: Timestamp;
    CreatedBy?: UserContext;
  }
  export interface TrialComponentSource {
    /**
     * The source ARN.
     */
    SourceArn: TrialComponentSourceArn;
    /**
     * The source job type.
     */
    SourceType?: SourceType;
  }
  export type TrialComponentSourceArn = string;
  export interface TrialComponentSourceDetail {
    /**
     * The Amazon Resource Name (ARN) of the source.
     */
    SourceArn?: TrialComponentSourceArn;
    /**
     * Information about a training job that's the source of a trial component.
     */
    TrainingJob?: TrainingJob;
    /**
     * Information about a processing job that's the source of a trial component.
     */
    ProcessingJob?: ProcessingJob;
    /**
     * Information about a transform job that's the source of a trial component.
     */
    TransformJob?: TransformJob;
  }
  export interface TrialComponentStatus {
    /**
     * The status of the trial component.
     */
    PrimaryStatus?: TrialComponentPrimaryStatus;
    /**
     * If the component failed, a message describing why.
     */
    Message?: TrialComponentStatusMessage;
  }
  export type TrialComponentStatusMessage = string;
  export type TrialComponentSummaries = TrialComponentSummary[];
  export interface TrialComponentSummary {
    /**
     * The name of the trial component.
     */
    TrialComponentName?: ExperimentEntityName;
    /**
     * The ARN of the trial component.
     */
    TrialComponentArn?: TrialComponentArn;
    /**
     * The name of the component as displayed. If DisplayName isn't specified, TrialComponentName is displayed.
     */
    DisplayName?: ExperimentEntityName;
    TrialComponentSource?: TrialComponentSource;
    /**
     * The status of the component. States include:   InProgress   Completed   Failed  
     */
    Status?: TrialComponentStatus;
    /**
     * When the component started.
     */
    StartTime?: Timestamp;
    /**
     * When the component ended.
     */
    EndTime?: Timestamp;
    /**
     * When the component was created.
     */
    CreationTime?: Timestamp;
    /**
     * Who created the component.
     */
    CreatedBy?: UserContext;
    /**
     * When the component was last modified.
     */
    LastModifiedTime?: Timestamp;
    /**
     * Who last modified the component.
     */
    LastModifiedBy?: UserContext;
  }
  export interface TrialSource {
    /**
     * The Amazon Resource Name (ARN) of the source.
     */
    SourceArn: TrialSourceArn;
    /**
     * The source job type.
     */
    SourceType?: SourceType;
  }
  export type TrialSourceArn = string;
  export type TrialSummaries = TrialSummary[];
  export interface TrialSummary {
    /**
     * The Amazon Resource Name (ARN) of the trial.
     */
    TrialArn?: TrialArn;
    /**
     * The name of the trial.
     */
    TrialName?: ExperimentEntityName;
    /**
     * The name of the trial as displayed. If DisplayName isn't specified, TrialName is displayed.
     */
    DisplayName?: ExperimentEntityName;
    TrialSource?: TrialSource;
    /**
     * When the trial was created.
     */
    CreationTime?: Timestamp;
    /**
     * When the trial was last modified.
     */
    LastModifiedTime?: Timestamp;
  }
  export interface TuningJobCompletionCriteria {
    /**
     * The value of the objective metric.
     */
    TargetObjectiveMetricValue: TargetObjectiveMetricValue;
  }
  export interface USD {
    /**
     * The whole number of dollars in the amount.
     */
    Dollars?: Dollars;
    /**
     * The fractional portion, in cents, of the amount. 
     */
    Cents?: Cents;
    /**
     * Fractions of a cent, in tenths.
     */
    TenthFractionsOfACent?: TenthFractionsOfACent;
  }
  export interface UiConfig {
    /**
     * The Amazon S3 bucket location of the UI template, or worker task template. This is the template used to render the worker UI and tools for labeling job tasks. For more information about the contents of a UI template, see  Creating Your Custom Labeling Task Template.
     */
    UiTemplateS3Uri?: S3Uri;
    /**
     * The ARN of the worker task template used to render the worker UI and tools for labeling job tasks. Use this parameter when you are creating a labeling job for 3D point cloud and video fram labeling jobs. Use your labeling job task type to select one of the following ARN's and use it with this parameter when you create a labeling job. Replace aws-region with the AWS region you are creating your labeling job in.  3D Point Cloud HumanTaskUiArns  Use this HumanTaskUiArn for 3D point cloud object detection and 3D point cloud object detection adjustment labeling jobs.     arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectDetection     Use this HumanTaskUiArn for 3D point cloud object tracking and 3D point cloud object tracking adjustment labeling jobs.     arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectTracking     Use this HumanTaskUiArn for 3D point cloud semantic segmentation and 3D point cloud semantic segmentation adjustment labeling jobs.    arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudSemanticSegmentation     Video Frame HumanTaskUiArns  Use this HumanTaskUiArn for video frame object detection and video frame object detection adjustment labeling jobs.     arn:aws:sagemaker:region:394669845002:human-task-ui/VideoObjectDetection     Use this HumanTaskUiArn for video frame object tracking and video frame object tracking adjustment labeling jobs.     arn:aws:sagemaker:aws-region:394669845002:human-task-ui/VideoObjectTracking   
     */
    HumanTaskUiArn?: HumanTaskUiArn;
  }
  export interface UiTemplate {
    /**
     * The content of the Liquid template for the worker user interface.
     */
    Content: TemplateContent;
  }
  export interface UiTemplateInfo {
    /**
     * The URL for the user interface template.
     */
    Url?: TemplateUrl;
    /**
     * The SHA-256 digest of the contents of the template.
     */
    ContentSha256?: TemplateContentSha256;
  }
  export interface UpdateCodeRepositoryInput {
    /**
     * The name of the Git repository to update.
     */
    CodeRepositoryName: EntityName;
    /**
     * The configuration of the git repository, including the URL and the Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the repository. The secret must have a staging label of AWSCURRENT and must be in the following format:  {"username": UserName, "password": Password} 
     */
    GitConfig?: GitConfigForUpdate;
  }
  export interface UpdateCodeRepositoryOutput {
    /**
     * The ARN of the Git repository.
     */
    CodeRepositoryArn: CodeRepositoryArn;
  }
  export interface UpdateDomainRequest {
    /**
     * The ID of the domain to be updated.
     */
    DomainId: DomainId;
    /**
     * A collection of settings.
     */
    DefaultUserSettings?: UserSettings;
  }
  export interface UpdateDomainResponse {
    /**
     * The Amazon Resource Name (ARN) of the domain.
     */
    DomainArn?: DomainArn;
  }
  export interface UpdateEndpointInput {
    /**
     * The name of the endpoint whose configuration you want to update.
     */
    EndpointName: EndpointName;
    /**
     * The name of the new endpoint configuration.
     */
    EndpointConfigName: EndpointConfigName;
    /**
     * When updating endpoint resources, enables or disables the retention of variant properties, such as the instance count or the variant weight. To retain the variant properties of an endpoint when updating it, set RetainAllVariantProperties to true. To use the variant properties specified in a new EndpointConfig call when updating an endpoint, set RetainAllVariantProperties to false.
     */
    RetainAllVariantProperties?: Boolean;
    /**
     * When you are updating endpoint resources with UpdateEndpointInput$RetainAllVariantProperties, whose value is set to true, ExcludeRetainedVariantProperties specifies the list of type VariantProperty to override with the values provided by EndpointConfig. If you don't specify a value for ExcludeAllVariantProperties, no variant properties are overridden. 
     */
    ExcludeRetainedVariantProperties?: VariantPropertyList;
  }
  export interface UpdateEndpointOutput {
    /**
     * The Amazon Resource Name (ARN) of the endpoint.
     */
    EndpointArn: EndpointArn;
  }
  export interface UpdateEndpointWeightsAndCapacitiesInput {
    /**
     * The name of an existing Amazon SageMaker endpoint.
     */
    EndpointName: EndpointName;
    /**
     * An object that provides new capacity and weight values for a variant.
     */
    DesiredWeightsAndCapacities: DesiredWeightAndCapacityList;
  }
  export interface UpdateEndpointWeightsAndCapacitiesOutput {
    /**
     * The Amazon Resource Name (ARN) of the updated endpoint.
     */
    EndpointArn: EndpointArn;
  }
  export interface UpdateExperimentRequest {
    /**
     * The name of the experiment to update.
     */
    ExperimentName: ExperimentEntityName;
    /**
     * The name of the experiment as displayed. The name doesn't need to be unique. If DisplayName isn't specified, ExperimentName is displayed.
     */
    DisplayName?: ExperimentEntityName;
    /**
     * The description of the experiment.
     */
    Description?: ExperimentDescription;
  }
  export interface UpdateExperimentResponse {
    /**
     * The Amazon Resource Name (ARN) of the experiment.
     */
    ExperimentArn?: ExperimentArn;
  }
  export interface UpdateMonitoringScheduleRequest {
    /**
     * The name of the monitoring schedule. The name must be unique within an AWS Region within an AWS account.
     */
    MonitoringScheduleName: MonitoringScheduleName;
    /**
     * The configuration object that specifies the monitoring schedule and defines the monitoring job.
     */
    MonitoringScheduleConfig: MonitoringScheduleConfig;
  }
  export interface UpdateMonitoringScheduleResponse {
    /**
     * The Amazon Resource Name (ARN) of the monitoring schedule.
     */
    MonitoringScheduleArn: MonitoringScheduleArn;
  }
  export interface UpdateNotebookInstanceInput {
    /**
     * The name of the notebook instance to update.
     */
    NotebookInstanceName: NotebookInstanceName;
    /**
     * The Amazon ML compute instance type.
     */
    InstanceType?: InstanceType;
    /**
     * The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker can assume to access the notebook instance. For more information, see Amazon SageMaker Roles.   To be able to pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission. 
     */
    RoleArn?: RoleArn;
    /**
     * The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
     */
    LifecycleConfigName?: NotebookInstanceLifecycleConfigName;
    /**
     * Set to true to remove the notebook instance lifecycle configuration currently associated with the notebook instance. This operation is idempotent. If you specify a lifecycle configuration that is not associated with the notebook instance when you call this method, it does not throw an error.
     */
    DisassociateLifecycleConfig?: DisassociateNotebookInstanceLifecycleConfig;
    /**
     * The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB. ML storage volumes are encrypted, so Amazon SageMaker can't determine the amount of available free space on the volume. Because of this, you can increase the volume size when you update a notebook instance, but you can't decrease the volume size. If you want to decrease the size of the ML storage volume in use, create a new notebook instance with the desired size.
     */
    VolumeSizeInGB?: NotebookInstanceVolumeSizeInGB;
    /**
     * The Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in AWS CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
     */
    DefaultCodeRepository?: CodeRepositoryNameOrUrl;
    /**
     * An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in AWS CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with Amazon SageMaker Notebook Instances.
     */
    AdditionalCodeRepositories?: AdditionalCodeRepositoryNamesOrUrls;
    /**
     * A list of the Elastic Inference (EI) instance types to associate with this notebook instance. Currently only one EI instance type can be associated with a notebook instance. For more information, see Using Elastic Inference in Amazon SageMaker.
     */
    AcceleratorTypes?: NotebookInstanceAcceleratorTypes;
    /**
     * A list of the Elastic Inference (EI) instance types to remove from this notebook instance. This operation is idempotent. If you specify an accelerator type that is not associated with the notebook instance when you call this method, it does not throw an error.
     */
    DisassociateAcceleratorTypes?: DisassociateNotebookInstanceAcceleratorTypes;
    /**
     * The name or URL of the default Git repository to remove from this notebook instance. This operation is idempotent. If you specify a Git repository that is not associated with the notebook instance when you call this method, it does not throw an error.
     */
    DisassociateDefaultCodeRepository?: DisassociateDefaultCodeRepository;
    /**
     * A list of names or URLs of the default Git repositories to remove from this notebook instance. This operation is idempotent. If you specify a Git repository that is not associated with the notebook instance when you call this method, it does not throw an error.
     */
    DisassociateAdditionalCodeRepositories?: DisassociateAdditionalCodeRepositories;
    /**
     * Whether root access is enabled or disabled for users of the notebook instance. The default value is Enabled.  If you set this to Disabled, users don't have root access on the notebook instance, but lifecycle configuration scripts still run with root permissions. 
     */
    RootAccess?: RootAccess;
  }
  export interface UpdateNotebookInstanceLifecycleConfigInput {
    /**
     * The name of the lifecycle configuration.
     */
    NotebookInstanceLifecycleConfigName: NotebookInstanceLifecycleConfigName;
    /**
     * The shell script that runs only once, when you create a notebook instance. The shell script must be a base64-encoded string.
     */
    OnCreate?: NotebookInstanceLifecycleConfigList;
    /**
     * The shell script that runs every time you start a notebook instance, including when you create the notebook instance. The shell script must be a base64-encoded string.
     */
    OnStart?: NotebookInstanceLifecycleConfigList;
  }
  export interface UpdateNotebookInstanceLifecycleConfigOutput {
  }
  export interface UpdateNotebookInstanceOutput {
  }
  export interface UpdateTrialComponentRequest {
    /**
     * The name of the component to update.
     */
    TrialComponentName: ExperimentEntityName;
    /**
     * The name of the component as displayed. The name doesn't need to be unique. If DisplayName isn't specified, TrialComponentName is displayed.
     */
    DisplayName?: ExperimentEntityName;
    /**
     * The new status of the component.
     */
    Status?: TrialComponentStatus;
    /**
     * When the component started.
     */
    StartTime?: Timestamp;
    /**
     * When the component ended.
     */
    EndTime?: Timestamp;
    /**
     * Replaces all of the component's hyperparameters with the specified hyperparameters.
     */
    Parameters?: TrialComponentParameters;
    /**
     * The hyperparameters to remove from the component.
     */
    ParametersToRemove?: ListTrialComponentKey256;
    /**
     * Replaces all of the component's input artifacts with the specified artifacts.
     */
    InputArtifacts?: TrialComponentArtifacts;
    /**
     * The input artifacts to remove from the component.
     */
    InputArtifactsToRemove?: ListTrialComponentKey256;
    /**
     * Replaces all of the component's output artifacts with the specified artifacts.
     */
    OutputArtifacts?: TrialComponentArtifacts;
    /**
     * The output artifacts to remove from the component.
     */
    OutputArtifactsToRemove?: ListTrialComponentKey256;
  }
  export interface UpdateTrialComponentResponse {
    /**
     * The Amazon Resource Name (ARN) of the trial component.
     */
    TrialComponentArn?: TrialComponentArn;
  }
  export interface UpdateTrialRequest {
    /**
     * The name of the trial to update.
     */
    TrialName: ExperimentEntityName;
    /**
     * The name of the trial as displayed. The name doesn't need to be unique. If DisplayName isn't specified, TrialName is displayed.
     */
    DisplayName?: ExperimentEntityName;
  }
  export interface UpdateTrialResponse {
    /**
     * The Amazon Resource Name (ARN) of the trial.
     */
    TrialArn?: TrialArn;
  }
  export interface UpdateUserProfileRequest {
    /**
     * The domain ID.
     */
    DomainId: DomainId;
    /**
     * The user profile name.
     */
    UserProfileName: UserProfileName;
    /**
     * A collection of settings.
     */
    UserSettings?: UserSettings;
  }
  export interface UpdateUserProfileResponse {
    /**
     * The user profile Amazon Resource Name (ARN).
     */
    UserProfileArn?: UserProfileArn;
  }
  export interface UpdateWorkforceRequest {
    /**
     * The name of the private workforce that you want to update. You can find your workforce name by using the operation.
     */
    WorkforceName: WorkforceName;
    /**
     * A list of one to ten worker IP address ranges (CIDRs) that can be used to access tasks assigned to this workforce. Maximum: Ten CIDR values
     */
    SourceIpConfig?: SourceIpConfig;
    /**
     * Use this parameter to update your OIDC Identity Provider (IdP) configuration for a workforce made using your own IdP.
     */
    OidcConfig?: OidcConfig;
  }
  export interface UpdateWorkforceResponse {
    /**
     * A single private workforce. You can create one private work force in each AWS Region. By default, any workforce-related API operation used in a specific region will apply to the workforce created in that region. To learn how to create a private workforce, see Create a Private Workforce.
     */
    Workforce: Workforce;
  }
  export interface UpdateWorkteamRequest {
    /**
     * The name of the work team to update.
     */
    WorkteamName: WorkteamName;
    /**
     * A list of MemberDefinition objects that contains objects that identify the workers that make up the work team.  Workforces can be created using Amazon Cognito or your own OIDC Identity Provider (IdP). For private workforces created using Amazon Cognito use CognitoMemberDefinition. For workforces created using your own OIDC identity provider (IdP) use OidcMemberDefinition. You should not provide input for both of these parameters in a single request. For workforces created using Amazon Cognito, private work teams correspond to Amazon Cognito user groups within the user pool used to create a workforce. All of the CognitoMemberDefinition objects that make up the member definition must have the same ClientId and UserPool values. To add a Amazon Cognito user group to an existing worker pool, see Adding groups to a User Pool. For more information about user pools, see Amazon Cognito User Pools. For workforces created using your own OIDC IdP, specify the user groups that you want to include in your private work team in OidcMemberDefinition by listing those groups in Groups. Be aware that user groups that are already in the work team must also be listed in Groups when you make this request to remain on the work team. If you do not include these user groups, they will no longer be associated with the work team you update. 
     */
    MemberDefinitions?: MemberDefinitions;
    /**
     * An updated description for the work team.
     */
    Description?: String200;
    /**
     * Configures SNS topic notifications for available or expiring work items
     */
    NotificationConfiguration?: NotificationConfiguration;
  }
  export interface UpdateWorkteamResponse {
    /**
     * A Workteam object that describes the updated work team.
     */
    Workteam: Workteam;
  }
  export type Url = string;
  export interface UserContext {
    /**
     * The Amazon Resource Name (ARN) of the user's profile.
     */
    UserProfileArn?: String;
    /**
     * The name of the user's profile.
     */
    UserProfileName?: String;
    /**
     * The domain associated with the user.
     */
    DomainId?: String;
  }
  export type UserProfileArn = string;
  export interface UserProfileDetails {
    /**
     * The domain ID.
     */
    DomainId?: DomainId;
    /**
     * The user profile name.
     */
    UserProfileName?: UserProfileName;
    /**
     * The status.
     */
    Status?: UserProfileStatus;
    /**
     * The creation time.
     */
    CreationTime?: CreationTime;
    /**
     * The last modified time.
     */
    LastModifiedTime?: LastModifiedTime;
  }
  export type UserProfileList = UserProfileDetails[];
  export type UserProfileName = string;
  export type UserProfileSortKey = "CreationTime"|"LastModifiedTime"|string;
  export type UserProfileStatus = "Deleting"|"Failed"|"InService"|"Pending"|string;
  export interface UserSettings {
    /**
     * The execution role for the user.
     */
    ExecutionRole?: RoleArn;
    /**
     * The security groups.
     */
    SecurityGroups?: SecurityGroupIds;
    /**
     * The sharing settings.
     */
    SharingSettings?: SharingSettings;
    /**
     * The Jupyter server's app settings.
     */
    JupyterServerAppSettings?: JupyterServerAppSettings;
    /**
     * The kernel gateway app settings.
     */
    KernelGatewayAppSettings?: KernelGatewayAppSettings;
    /**
     * The TensorBoard app settings.
     */
    TensorBoardAppSettings?: TensorBoardAppSettings;
  }
  export type VariantName = string;
  export interface VariantProperty {
    /**
     * The type of variant property. The supported values are:    DesiredInstanceCount: Overrides the existing variant instance counts using the ProductionVariant$InitialInstanceCount values in the CreateEndpointConfigInput$ProductionVariants.    DesiredWeight: Overrides the existing variant weights using the ProductionVariant$InitialVariantWeight values in the CreateEndpointConfigInput$ProductionVariants.    DataCaptureConfig: (Not currently supported.)  
     */
    VariantPropertyType: VariantPropertyType;
  }
  export type VariantPropertyList = VariantProperty[];
  export type VariantPropertyType = "DesiredInstanceCount"|"DesiredWeight"|"DataCaptureConfig"|string;
  export type VariantWeight = number;
  export type VolumeSizeInGB = number;
  export interface VpcConfig {
    /**
     * The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.
     */
    SecurityGroupIds: VpcSecurityGroupIds;
    /**
     * The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.
     */
    Subnets: Subnets;
  }
  export type VpcId = string;
  export type VpcSecurityGroupIds = SecurityGroupId[];
  export interface Workforce {
    /**
     * The name of the private workforce.
     */
    WorkforceName: WorkforceName;
    /**
     * The Amazon Resource Name (ARN) of the private workforce.
     */
    WorkforceArn: WorkforceArn;
    /**
     * The most recent date that was used to successfully add one or more IP address ranges (CIDRs) to a private workforce's allow list.
     */
    LastUpdatedDate?: Timestamp;
    /**
     * A list of one to ten IP address ranges (CIDRs) to be added to the workforce allow list. By default, a workforce isn't restricted to specific IP addresses.
     */
    SourceIpConfig?: SourceIpConfig;
    /**
     * The subdomain for your OIDC Identity Provider.
     */
    SubDomain?: String;
    /**
     * The configuration of an Amazon Cognito workforce. A single Cognito workforce is created using and corresponds to a single  Amazon Cognito user pool.
     */
    CognitoConfig?: CognitoConfig;
    /**
     * The configuration of an OIDC Identity Provider (IdP) private workforce.
     */
    OidcConfig?: OidcConfigForResponse;
    /**
     * The date that the workforce is created.
     */
    CreateDate?: Timestamp;
  }
  export type WorkforceArn = string;
  export type WorkforceName = string;
  export type Workforces = Workforce[];
  export interface Workteam {
    /**
     * The name of the work team.
     */
    WorkteamName: WorkteamName;
    /**
     * A list of MemberDefinition objects that contains objects that identify the workers that make up the work team.  Workforces can be created using Amazon Cognito or your own OIDC Identity Provider (IdP). For private workforces created using Amazon Cognito use CognitoMemberDefinition. For workforces created using your own OIDC identity provider (IdP) use OidcMemberDefinition.
     */
    MemberDefinitions: MemberDefinitions;
    /**
     * The Amazon Resource Name (ARN) that identifies the work team.
     */
    WorkteamArn: WorkteamArn;
    /**
     * The Amazon Resource Name (ARN) of the workforce.
     */
    WorkforceArn?: WorkforceArn;
    /**
     * The Amazon Marketplace identifier for a vendor's work team.
     */
    ProductListingIds?: ProductListings;
    /**
     * A description of the work team.
     */
    Description: String200;
    /**
     * The URI of the labeling job's user interface. Workers open this URI to start labeling your data objects.
     */
    SubDomain?: String;
    /**
     * The date and time that the work team was created (timestamp).
     */
    CreateDate?: Timestamp;
    /**
     * The date and time that the work team was last updated (timestamp).
     */
    LastUpdatedDate?: Timestamp;
    /**
     * Configures SNS notifications of available or expiring work items for work teams.
     */
    NotificationConfiguration?: NotificationConfiguration;
  }
  export type WorkteamArn = string;
  export type WorkteamName = string;
  export type Workteams = Workteam[];
  /**
   * A string in YYYY-MM-DD format that represents the latest possible API version that can be used in this service. Specify 'latest' to use the latest possible version.
   */
  export type apiVersion = "2017-07-24"|"latest"|string;
  export interface ClientApiVersions {
    /**
     * A string in YYYY-MM-DD format that represents the latest possible API version that can be used in this service. Specify 'latest' to use the latest possible version.
     */
    apiVersion?: apiVersion;
  }
  export type ClientConfiguration = ServiceConfigurationOptions & ClientApiVersions;
  /**
   * Contains interfaces for use with the SageMaker client.
   */
  export import Types = SageMaker;
}
export = SageMaker;