ReachingDefAnalysis.cpp
21.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
//===---- ReachingDefAnalysis.cpp - Reaching Def Analysis ---*- C++ -*-----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/ReachingDefAnalysis.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "reaching-deps-analysis"
char ReachingDefAnalysis::ID = 0;
INITIALIZE_PASS(ReachingDefAnalysis, DEBUG_TYPE, "ReachingDefAnalysis", false,
true)
static bool isValidReg(const MachineOperand &MO) {
return MO.isReg() && MO.getReg();
}
static bool isValidRegUse(const MachineOperand &MO) {
return isValidReg(MO) && MO.isUse();
}
static bool isValidRegUseOf(const MachineOperand &MO, int PhysReg) {
return isValidRegUse(MO) && MO.getReg() == PhysReg;
}
static bool isValidRegDef(const MachineOperand &MO) {
return isValidReg(MO) && MO.isDef();
}
static bool isValidRegDefOf(const MachineOperand &MO, int PhysReg) {
return isValidRegDef(MO) && MO.getReg() == PhysReg;
}
void ReachingDefAnalysis::enterBasicBlock(MachineBasicBlock *MBB) {
unsigned MBBNumber = MBB->getNumber();
assert(MBBNumber < MBBReachingDefs.size() &&
"Unexpected basic block number.");
MBBReachingDefs[MBBNumber].resize(NumRegUnits);
// Reset instruction counter in each basic block.
CurInstr = 0;
// Set up LiveRegs to represent registers entering MBB.
// Default values are 'nothing happened a long time ago'.
if (LiveRegs.empty())
LiveRegs.assign(NumRegUnits, ReachingDefDefaultVal);
// This is the entry block.
if (MBB->pred_empty()) {
for (const auto &LI : MBB->liveins()) {
for (MCRegUnitIterator Unit(LI.PhysReg, TRI); Unit.isValid(); ++Unit) {
// Treat function live-ins as if they were defined just before the first
// instruction. Usually, function arguments are set up immediately
// before the call.
if (LiveRegs[*Unit] != -1) {
LiveRegs[*Unit] = -1;
MBBReachingDefs[MBBNumber][*Unit].push_back(-1);
}
}
}
LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": entry\n");
return;
}
// Try to coalesce live-out registers from predecessors.
for (MachineBasicBlock *pred : MBB->predecessors()) {
assert(unsigned(pred->getNumber()) < MBBOutRegsInfos.size() &&
"Should have pre-allocated MBBInfos for all MBBs");
const LiveRegsDefInfo &Incoming = MBBOutRegsInfos[pred->getNumber()];
// Incoming is null if this is a backedge from a BB
// we haven't processed yet
if (Incoming.empty())
continue;
// Find the most recent reaching definition from a predecessor.
for (unsigned Unit = 0; Unit != NumRegUnits; ++Unit)
LiveRegs[Unit] = std::max(LiveRegs[Unit], Incoming[Unit]);
}
// Insert the most recent reaching definition we found.
for (unsigned Unit = 0; Unit != NumRegUnits; ++Unit)
if (LiveRegs[Unit] != ReachingDefDefaultVal)
MBBReachingDefs[MBBNumber][Unit].push_back(LiveRegs[Unit]);
}
void ReachingDefAnalysis::leaveBasicBlock(MachineBasicBlock *MBB) {
assert(!LiveRegs.empty() && "Must enter basic block first.");
unsigned MBBNumber = MBB->getNumber();
assert(MBBNumber < MBBOutRegsInfos.size() &&
"Unexpected basic block number.");
// Save register clearances at end of MBB - used by enterBasicBlock().
MBBOutRegsInfos[MBBNumber] = LiveRegs;
// While processing the basic block, we kept `Def` relative to the start
// of the basic block for convenience. However, future use of this information
// only cares about the clearance from the end of the block, so adjust
// everything to be relative to the end of the basic block.
for (int &OutLiveReg : MBBOutRegsInfos[MBBNumber])
if (OutLiveReg != ReachingDefDefaultVal)
OutLiveReg -= CurInstr;
LiveRegs.clear();
}
void ReachingDefAnalysis::processDefs(MachineInstr *MI) {
assert(!MI->isDebugInstr() && "Won't process debug instructions");
unsigned MBBNumber = MI->getParent()->getNumber();
assert(MBBNumber < MBBReachingDefs.size() &&
"Unexpected basic block number.");
for (auto &MO : MI->operands()) {
if (!isValidRegDef(MO))
continue;
for (MCRegUnitIterator Unit(MO.getReg(), TRI); Unit.isValid(); ++Unit) {
// This instruction explicitly defines the current reg unit.
LLVM_DEBUG(dbgs() << printReg(*Unit, TRI) << ":\t" << CurInstr
<< '\t' << *MI);
// How many instructions since this reg unit was last written?
if (LiveRegs[*Unit] != CurInstr) {
LiveRegs[*Unit] = CurInstr;
MBBReachingDefs[MBBNumber][*Unit].push_back(CurInstr);
}
}
}
InstIds[MI] = CurInstr;
++CurInstr;
}
void ReachingDefAnalysis::reprocessBasicBlock(MachineBasicBlock *MBB) {
unsigned MBBNumber = MBB->getNumber();
assert(MBBNumber < MBBReachingDefs.size() &&
"Unexpected basic block number.");
// Count number of non-debug instructions for end of block adjustment.
int NumInsts = 0;
for (const MachineInstr &MI : *MBB)
if (!MI.isDebugInstr())
NumInsts++;
// When reprocessing a block, the only thing we need to do is check whether
// there is now a more recent incoming reaching definition from a predecessor.
for (MachineBasicBlock *pred : MBB->predecessors()) {
assert(unsigned(pred->getNumber()) < MBBOutRegsInfos.size() &&
"Should have pre-allocated MBBInfos for all MBBs");
const LiveRegsDefInfo &Incoming = MBBOutRegsInfos[pred->getNumber()];
// Incoming may be empty for dead predecessors.
if (Incoming.empty())
continue;
for (unsigned Unit = 0; Unit != NumRegUnits; ++Unit) {
int Def = Incoming[Unit];
if (Def == ReachingDefDefaultVal)
continue;
auto Start = MBBReachingDefs[MBBNumber][Unit].begin();
if (Start != MBBReachingDefs[MBBNumber][Unit].end() && *Start < 0) {
if (*Start >= Def)
continue;
// Update existing reaching def from predecessor to a more recent one.
*Start = Def;
} else {
// Insert new reaching def from predecessor.
MBBReachingDefs[MBBNumber][Unit].insert(Start, Def);
}
// Update reaching def at end of of BB. Keep in mind that these are
// adjusted relative to the end of the basic block.
if (MBBOutRegsInfos[MBBNumber][Unit] < Def - NumInsts)
MBBOutRegsInfos[MBBNumber][Unit] = Def - NumInsts;
}
}
}
void ReachingDefAnalysis::processBasicBlock(
const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
MachineBasicBlock *MBB = TraversedMBB.MBB;
LLVM_DEBUG(dbgs() << printMBBReference(*MBB)
<< (!TraversedMBB.IsDone ? ": incomplete\n"
: ": all preds known\n"));
if (!TraversedMBB.PrimaryPass) {
// Reprocess MBB that is part of a loop.
reprocessBasicBlock(MBB);
return;
}
enterBasicBlock(MBB);
for (MachineInstr &MI : *MBB) {
if (!MI.isDebugInstr())
processDefs(&MI);
}
leaveBasicBlock(MBB);
}
bool ReachingDefAnalysis::runOnMachineFunction(MachineFunction &mf) {
MF = &mf;
TRI = MF->getSubtarget().getRegisterInfo();
LLVM_DEBUG(dbgs() << "********** REACHING DEFINITION ANALYSIS **********\n");
init();
traverse();
return false;
}
void ReachingDefAnalysis::releaseMemory() {
// Clear the internal vectors.
MBBOutRegsInfos.clear();
MBBReachingDefs.clear();
InstIds.clear();
LiveRegs.clear();
}
void ReachingDefAnalysis::reset() {
releaseMemory();
init();
traverse();
}
void ReachingDefAnalysis::init() {
NumRegUnits = TRI->getNumRegUnits();
MBBReachingDefs.resize(MF->getNumBlockIDs());
// Initialize the MBBOutRegsInfos
MBBOutRegsInfos.resize(MF->getNumBlockIDs());
LoopTraversal Traversal;
TraversedMBBOrder = Traversal.traverse(*MF);
}
void ReachingDefAnalysis::traverse() {
// Traverse the basic blocks.
for (LoopTraversal::TraversedMBBInfo TraversedMBB : TraversedMBBOrder)
processBasicBlock(TraversedMBB);
#ifndef NDEBUG
// Make sure reaching defs are sorted and unique.
for (MBBDefsInfo &MBBDefs : MBBReachingDefs) {
for (MBBRegUnitDefs &RegUnitDefs : MBBDefs) {
int LastDef = ReachingDefDefaultVal;
for (int Def : RegUnitDefs) {
assert(Def > LastDef && "Defs must be sorted and unique");
LastDef = Def;
}
}
}
#endif
}
int ReachingDefAnalysis::getReachingDef(MachineInstr *MI, int PhysReg) const {
assert(InstIds.count(MI) && "Unexpected machine instuction.");
int InstId = InstIds.lookup(MI);
int DefRes = ReachingDefDefaultVal;
unsigned MBBNumber = MI->getParent()->getNumber();
assert(MBBNumber < MBBReachingDefs.size() &&
"Unexpected basic block number.");
int LatestDef = ReachingDefDefaultVal;
for (MCRegUnitIterator Unit(PhysReg, TRI); Unit.isValid(); ++Unit) {
for (int Def : MBBReachingDefs[MBBNumber][*Unit]) {
if (Def >= InstId)
break;
DefRes = Def;
}
LatestDef = std::max(LatestDef, DefRes);
}
return LatestDef;
}
MachineInstr* ReachingDefAnalysis::getReachingLocalMIDef(MachineInstr *MI,
int PhysReg) const {
return getInstFromId(MI->getParent(), getReachingDef(MI, PhysReg));
}
bool ReachingDefAnalysis::hasSameReachingDef(MachineInstr *A, MachineInstr *B,
int PhysReg) const {
MachineBasicBlock *ParentA = A->getParent();
MachineBasicBlock *ParentB = B->getParent();
if (ParentA != ParentB)
return false;
return getReachingDef(A, PhysReg) == getReachingDef(B, PhysReg);
}
MachineInstr *ReachingDefAnalysis::getInstFromId(MachineBasicBlock *MBB,
int InstId) const {
assert(static_cast<size_t>(MBB->getNumber()) < MBBReachingDefs.size() &&
"Unexpected basic block number.");
assert(InstId < static_cast<int>(MBB->size()) &&
"Unexpected instruction id.");
if (InstId < 0)
return nullptr;
for (auto &MI : *MBB) {
auto F = InstIds.find(&MI);
if (F != InstIds.end() && F->second == InstId)
return &MI;
}
return nullptr;
}
int
ReachingDefAnalysis::getClearance(MachineInstr *MI, MCPhysReg PhysReg) const {
assert(InstIds.count(MI) && "Unexpected machine instuction.");
return InstIds.lookup(MI) - getReachingDef(MI, PhysReg);
}
bool
ReachingDefAnalysis::hasLocalDefBefore(MachineInstr *MI, int PhysReg) const {
return getReachingDef(MI, PhysReg) >= 0;
}
void ReachingDefAnalysis::getReachingLocalUses(MachineInstr *Def, int PhysReg,
InstSet &Uses) const {
MachineBasicBlock *MBB = Def->getParent();
MachineBasicBlock::iterator MI = MachineBasicBlock::iterator(Def);
while (++MI != MBB->end()) {
if (MI->isDebugInstr())
continue;
// If/when we find a new reaching def, we know that there's no more uses
// of 'Def'.
if (getReachingLocalMIDef(&*MI, PhysReg) != Def)
return;
for (auto &MO : MI->operands()) {
if (!isValidRegUseOf(MO, PhysReg))
continue;
Uses.insert(&*MI);
if (MO.isKill())
return;
}
}
}
bool
ReachingDefAnalysis::getLiveInUses(MachineBasicBlock *MBB, int PhysReg,
InstSet &Uses) const {
for (auto &MI : *MBB) {
if (MI.isDebugInstr())
continue;
for (auto &MO : MI.operands()) {
if (!isValidRegUseOf(MO, PhysReg))
continue;
if (getReachingDef(&MI, PhysReg) >= 0)
return false;
Uses.insert(&MI);
}
}
return isReachingDefLiveOut(&MBB->back(), PhysReg);
}
void
ReachingDefAnalysis::getGlobalUses(MachineInstr *MI, int PhysReg,
InstSet &Uses) const {
MachineBasicBlock *MBB = MI->getParent();
// Collect the uses that each def touches within the block.
getReachingLocalUses(MI, PhysReg, Uses);
// Handle live-out values.
if (auto *LiveOut = getLocalLiveOutMIDef(MI->getParent(), PhysReg)) {
if (LiveOut != MI)
return;
SmallVector<MachineBasicBlock*, 4> ToVisit;
ToVisit.insert(ToVisit.begin(), MBB->successors().begin(),
MBB->successors().end());
SmallPtrSet<MachineBasicBlock*, 4>Visited;
while (!ToVisit.empty()) {
MachineBasicBlock *MBB = ToVisit.back();
ToVisit.pop_back();
if (Visited.count(MBB) || !MBB->isLiveIn(PhysReg))
continue;
if (getLiveInUses(MBB, PhysReg, Uses))
ToVisit.insert(ToVisit.end(), MBB->successors().begin(),
MBB->successors().end());
Visited.insert(MBB);
}
}
}
void ReachingDefAnalysis::getLiveOuts(MachineBasicBlock *MBB, int PhysReg,
InstSet &Defs) const {
SmallPtrSet<MachineBasicBlock*, 2> VisitedBBs;
getLiveOuts(MBB, PhysReg, Defs, VisitedBBs);
}
void
ReachingDefAnalysis::getLiveOuts(MachineBasicBlock *MBB, int PhysReg,
InstSet &Defs, BlockSet &VisitedBBs) const {
if (VisitedBBs.count(MBB))
return;
VisitedBBs.insert(MBB);
LivePhysRegs LiveRegs(*TRI);
LiveRegs.addLiveOuts(*MBB);
if (!LiveRegs.contains(PhysReg))
return;
if (auto *Def = getLocalLiveOutMIDef(MBB, PhysReg))
Defs.insert(Def);
else
for (auto *Pred : MBB->predecessors())
getLiveOuts(Pred, PhysReg, Defs, VisitedBBs);
}
MachineInstr *ReachingDefAnalysis::getUniqueReachingMIDef(MachineInstr *MI,
int PhysReg) const {
// If there's a local def before MI, return it.
MachineInstr *LocalDef = getReachingLocalMIDef(MI, PhysReg);
if (LocalDef && InstIds.lookup(LocalDef) < InstIds.lookup(MI))
return LocalDef;
SmallPtrSet<MachineBasicBlock*, 4> VisitedBBs;
SmallPtrSet<MachineInstr*, 2> Incoming;
for (auto *Pred : MI->getParent()->predecessors())
getLiveOuts(Pred, PhysReg, Incoming, VisitedBBs);
// If we have a local def and an incoming instruction, then there's not a
// unique instruction def.
if (!Incoming.empty() && LocalDef)
return nullptr;
else if (Incoming.size() == 1)
return *Incoming.begin();
else
return LocalDef;
}
MachineInstr *ReachingDefAnalysis::getMIOperand(MachineInstr *MI,
unsigned Idx) const {
assert(MI->getOperand(Idx).isReg() && "Expected register operand");
return getUniqueReachingMIDef(MI, MI->getOperand(Idx).getReg());
}
MachineInstr *ReachingDefAnalysis::getMIOperand(MachineInstr *MI,
MachineOperand &MO) const {
assert(MO.isReg() && "Expected register operand");
return getUniqueReachingMIDef(MI, MO.getReg());
}
bool ReachingDefAnalysis::isRegUsedAfter(MachineInstr *MI, int PhysReg) const {
MachineBasicBlock *MBB = MI->getParent();
LivePhysRegs LiveRegs(*TRI);
LiveRegs.addLiveOuts(*MBB);
// Yes if the register is live out of the basic block.
if (LiveRegs.contains(PhysReg))
return true;
// Walk backwards through the block to see if the register is live at some
// point.
for (auto Last = MBB->rbegin(), End = MBB->rend(); Last != End; ++Last) {
LiveRegs.stepBackward(*Last);
if (LiveRegs.contains(PhysReg))
return InstIds.lookup(&*Last) > InstIds.lookup(MI);
}
return false;
}
bool ReachingDefAnalysis::isRegDefinedAfter(MachineInstr *MI,
int PhysReg) const {
MachineBasicBlock *MBB = MI->getParent();
if (getReachingDef(MI, PhysReg) != getReachingDef(&MBB->back(), PhysReg))
return true;
if (auto *Def = getLocalLiveOutMIDef(MBB, PhysReg))
return Def == getReachingLocalMIDef(MI, PhysReg);
return false;
}
bool
ReachingDefAnalysis::isReachingDefLiveOut(MachineInstr *MI, int PhysReg) const {
MachineBasicBlock *MBB = MI->getParent();
LivePhysRegs LiveRegs(*TRI);
LiveRegs.addLiveOuts(*MBB);
if (!LiveRegs.contains(PhysReg))
return false;
MachineInstr *Last = &MBB->back();
int Def = getReachingDef(MI, PhysReg);
if (getReachingDef(Last, PhysReg) != Def)
return false;
// Finally check that the last instruction doesn't redefine the register.
for (auto &MO : Last->operands())
if (isValidRegDefOf(MO, PhysReg))
return false;
return true;
}
MachineInstr* ReachingDefAnalysis::getLocalLiveOutMIDef(MachineBasicBlock *MBB,
int PhysReg) const {
LivePhysRegs LiveRegs(*TRI);
LiveRegs.addLiveOuts(*MBB);
if (!LiveRegs.contains(PhysReg))
return nullptr;
MachineInstr *Last = &MBB->back();
int Def = getReachingDef(Last, PhysReg);
for (auto &MO : Last->operands())
if (isValidRegDefOf(MO, PhysReg))
return Last;
return Def < 0 ? nullptr : getInstFromId(MBB, Def);
}
static bool mayHaveSideEffects(MachineInstr &MI) {
return MI.mayLoadOrStore() || MI.mayRaiseFPException() ||
MI.hasUnmodeledSideEffects() || MI.isTerminator() ||
MI.isCall() || MI.isBarrier() || MI.isBranch() || MI.isReturn();
}
// Can we safely move 'From' to just before 'To'? To satisfy this, 'From' must
// not define a register that is used by any instructions, after and including,
// 'To'. These instructions also must not redefine any of Froms operands.
template<typename Iterator>
bool ReachingDefAnalysis::isSafeToMove(MachineInstr *From,
MachineInstr *To) const {
if (From->getParent() != To->getParent())
return false;
SmallSet<int, 2> Defs;
// First check that From would compute the same value if moved.
for (auto &MO : From->operands()) {
if (!isValidReg(MO))
continue;
if (MO.isDef())
Defs.insert(MO.getReg());
else if (!hasSameReachingDef(From, To, MO.getReg()))
return false;
}
// Now walk checking that the rest of the instructions will compute the same
// value and that we're not overwriting anything. Don't move the instruction
// past any memory, control-flow or other ambiguous instructions.
for (auto I = ++Iterator(From), E = Iterator(To); I != E; ++I) {
if (mayHaveSideEffects(*I))
return false;
for (auto &MO : I->operands())
if (MO.isReg() && MO.getReg() && Defs.count(MO.getReg()))
return false;
}
return true;
}
bool ReachingDefAnalysis::isSafeToMoveForwards(MachineInstr *From,
MachineInstr *To) const {
return isSafeToMove<MachineBasicBlock::reverse_iterator>(From, To);
}
bool ReachingDefAnalysis::isSafeToMoveBackwards(MachineInstr *From,
MachineInstr *To) const {
return isSafeToMove<MachineBasicBlock::iterator>(From, To);
}
bool ReachingDefAnalysis::isSafeToRemove(MachineInstr *MI,
InstSet &ToRemove) const {
SmallPtrSet<MachineInstr*, 1> Ignore;
SmallPtrSet<MachineInstr*, 2> Visited;
return isSafeToRemove(MI, Visited, ToRemove, Ignore);
}
bool
ReachingDefAnalysis::isSafeToRemove(MachineInstr *MI, InstSet &ToRemove,
InstSet &Ignore) const {
SmallPtrSet<MachineInstr*, 2> Visited;
return isSafeToRemove(MI, Visited, ToRemove, Ignore);
}
bool
ReachingDefAnalysis::isSafeToRemove(MachineInstr *MI, InstSet &Visited,
InstSet &ToRemove, InstSet &Ignore) const {
if (Visited.count(MI) || Ignore.count(MI))
return true;
else if (mayHaveSideEffects(*MI)) {
// Unless told to ignore the instruction, don't remove anything which has
// side effects.
return false;
}
Visited.insert(MI);
for (auto &MO : MI->operands()) {
if (!isValidRegDef(MO))
continue;
SmallPtrSet<MachineInstr*, 4> Uses;
getGlobalUses(MI, MO.getReg(), Uses);
for (auto I : Uses) {
if (Ignore.count(I) || ToRemove.count(I))
continue;
if (!isSafeToRemove(I, Visited, ToRemove, Ignore))
return false;
}
}
ToRemove.insert(MI);
return true;
}
void ReachingDefAnalysis::collectKilledOperands(MachineInstr *MI,
InstSet &Dead) const {
Dead.insert(MI);
auto IsDead = [this, &Dead](MachineInstr *Def, int PhysReg) {
unsigned LiveDefs = 0;
for (auto &MO : Def->operands()) {
if (!isValidRegDef(MO))
continue;
if (!MO.isDead())
++LiveDefs;
}
if (LiveDefs > 1)
return false;
SmallPtrSet<MachineInstr*, 4> Uses;
getGlobalUses(Def, PhysReg, Uses);
for (auto *Use : Uses)
if (!Dead.count(Use))
return false;
return true;
};
for (auto &MO : MI->operands()) {
if (!isValidRegUse(MO))
continue;
if (MachineInstr *Def = getMIOperand(MI, MO))
if (IsDead(Def, MO.getReg()))
collectKilledOperands(Def, Dead);
}
}
bool ReachingDefAnalysis::isSafeToDefRegAt(MachineInstr *MI,
int PhysReg) const {
SmallPtrSet<MachineInstr*, 1> Ignore;
return isSafeToDefRegAt(MI, PhysReg, Ignore);
}
bool ReachingDefAnalysis::isSafeToDefRegAt(MachineInstr *MI, int PhysReg,
InstSet &Ignore) const {
// Check for any uses of the register after MI.
if (isRegUsedAfter(MI, PhysReg)) {
if (auto *Def = getReachingLocalMIDef(MI, PhysReg)) {
SmallPtrSet<MachineInstr*, 2> Uses;
getReachingLocalUses(Def, PhysReg, Uses);
for (auto *Use : Uses)
if (!Ignore.count(Use))
return false;
} else
return false;
}
MachineBasicBlock *MBB = MI->getParent();
// Check for any defs after MI.
if (isRegDefinedAfter(MI, PhysReg)) {
auto I = MachineBasicBlock::iterator(MI);
for (auto E = MBB->end(); I != E; ++I) {
if (Ignore.count(&*I))
continue;
for (auto &MO : I->operands())
if (isValidRegDefOf(MO, PhysReg))
return false;
}
}
return true;
}