ReachingDefAnalysis.cpp 21.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
//===---- ReachingDefAnalysis.cpp - Reaching Def Analysis ---*- C++ -*-----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/ReachingDefAnalysis.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Support/Debug.h"

using namespace llvm;

#define DEBUG_TYPE "reaching-deps-analysis"

char ReachingDefAnalysis::ID = 0;
INITIALIZE_PASS(ReachingDefAnalysis, DEBUG_TYPE, "ReachingDefAnalysis", false,
                true)

static bool isValidReg(const MachineOperand &MO) {
  return MO.isReg() && MO.getReg();
}

static bool isValidRegUse(const MachineOperand &MO) {
  return isValidReg(MO) && MO.isUse();
}

static bool isValidRegUseOf(const MachineOperand &MO, int PhysReg) {
  return isValidRegUse(MO) && MO.getReg() == PhysReg;
}

static bool isValidRegDef(const MachineOperand &MO) {
  return isValidReg(MO) && MO.isDef();
}

static bool isValidRegDefOf(const MachineOperand &MO, int PhysReg) {
  return isValidRegDef(MO) && MO.getReg() == PhysReg;
}

void ReachingDefAnalysis::enterBasicBlock(MachineBasicBlock *MBB) {
  unsigned MBBNumber = MBB->getNumber();
  assert(MBBNumber < MBBReachingDefs.size() &&
         "Unexpected basic block number.");
  MBBReachingDefs[MBBNumber].resize(NumRegUnits);

  // Reset instruction counter in each basic block.
  CurInstr = 0;

  // Set up LiveRegs to represent registers entering MBB.
  // Default values are 'nothing happened a long time ago'.
  if (LiveRegs.empty())
    LiveRegs.assign(NumRegUnits, ReachingDefDefaultVal);

  // This is the entry block.
  if (MBB->pred_empty()) {
    for (const auto &LI : MBB->liveins()) {
      for (MCRegUnitIterator Unit(LI.PhysReg, TRI); Unit.isValid(); ++Unit) {
        // Treat function live-ins as if they were defined just before the first
        // instruction.  Usually, function arguments are set up immediately
        // before the call.
        if (LiveRegs[*Unit] != -1) {
          LiveRegs[*Unit] = -1;
          MBBReachingDefs[MBBNumber][*Unit].push_back(-1);
        }
      }
    }
    LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": entry\n");
    return;
  }

  // Try to coalesce live-out registers from predecessors.
  for (MachineBasicBlock *pred : MBB->predecessors()) {
    assert(unsigned(pred->getNumber()) < MBBOutRegsInfos.size() &&
           "Should have pre-allocated MBBInfos for all MBBs");
    const LiveRegsDefInfo &Incoming = MBBOutRegsInfos[pred->getNumber()];
    // Incoming is null if this is a backedge from a BB
    // we haven't processed yet
    if (Incoming.empty())
      continue;

    // Find the most recent reaching definition from a predecessor.
    for (unsigned Unit = 0; Unit != NumRegUnits; ++Unit)
      LiveRegs[Unit] = std::max(LiveRegs[Unit], Incoming[Unit]);
  }

  // Insert the most recent reaching definition we found.
  for (unsigned Unit = 0; Unit != NumRegUnits; ++Unit)
    if (LiveRegs[Unit] != ReachingDefDefaultVal)
      MBBReachingDefs[MBBNumber][Unit].push_back(LiveRegs[Unit]);
}

void ReachingDefAnalysis::leaveBasicBlock(MachineBasicBlock *MBB) {
  assert(!LiveRegs.empty() && "Must enter basic block first.");
  unsigned MBBNumber = MBB->getNumber();
  assert(MBBNumber < MBBOutRegsInfos.size() &&
         "Unexpected basic block number.");
  // Save register clearances at end of MBB - used by enterBasicBlock().
  MBBOutRegsInfos[MBBNumber] = LiveRegs;

  // While processing the basic block, we kept `Def` relative to the start
  // of the basic block for convenience. However, future use of this information
  // only cares about the clearance from the end of the block, so adjust
  // everything to be relative to the end of the basic block.
  for (int &OutLiveReg : MBBOutRegsInfos[MBBNumber])
    if (OutLiveReg != ReachingDefDefaultVal)
      OutLiveReg -= CurInstr;
  LiveRegs.clear();
}

void ReachingDefAnalysis::processDefs(MachineInstr *MI) {
  assert(!MI->isDebugInstr() && "Won't process debug instructions");

  unsigned MBBNumber = MI->getParent()->getNumber();
  assert(MBBNumber < MBBReachingDefs.size() &&
         "Unexpected basic block number.");

  for (auto &MO : MI->operands()) {
    if (!isValidRegDef(MO))
      continue;
    for (MCRegUnitIterator Unit(MO.getReg(), TRI); Unit.isValid(); ++Unit) {
      // This instruction explicitly defines the current reg unit.
      LLVM_DEBUG(dbgs() << printReg(*Unit, TRI) << ":\t" << CurInstr
                        << '\t' << *MI);

      // How many instructions since this reg unit was last written?
      if (LiveRegs[*Unit] != CurInstr) {
        LiveRegs[*Unit] = CurInstr;
        MBBReachingDefs[MBBNumber][*Unit].push_back(CurInstr);
      }
    }
  }
  InstIds[MI] = CurInstr;
  ++CurInstr;
}

void ReachingDefAnalysis::reprocessBasicBlock(MachineBasicBlock *MBB) {
  unsigned MBBNumber = MBB->getNumber();
  assert(MBBNumber < MBBReachingDefs.size() &&
         "Unexpected basic block number.");

  // Count number of non-debug instructions for end of block adjustment.
  int NumInsts = 0;
  for (const MachineInstr &MI : *MBB)
    if (!MI.isDebugInstr())
      NumInsts++;

  // When reprocessing a block, the only thing we need to do is check whether
  // there is now a more recent incoming reaching definition from a predecessor.
  for (MachineBasicBlock *pred : MBB->predecessors()) {
    assert(unsigned(pred->getNumber()) < MBBOutRegsInfos.size() &&
           "Should have pre-allocated MBBInfos for all MBBs");
    const LiveRegsDefInfo &Incoming = MBBOutRegsInfos[pred->getNumber()];
    // Incoming may be empty for dead predecessors.
    if (Incoming.empty())
      continue;

    for (unsigned Unit = 0; Unit != NumRegUnits; ++Unit) {
      int Def = Incoming[Unit];
      if (Def == ReachingDefDefaultVal)
        continue;

      auto Start = MBBReachingDefs[MBBNumber][Unit].begin();
      if (Start != MBBReachingDefs[MBBNumber][Unit].end() && *Start < 0) {
        if (*Start >= Def)
          continue;

        // Update existing reaching def from predecessor to a more recent one.
        *Start = Def;
      } else {
        // Insert new reaching def from predecessor.
        MBBReachingDefs[MBBNumber][Unit].insert(Start, Def);
      }

      // Update reaching def at end of of BB. Keep in mind that these are
      // adjusted relative to the end of the basic block.
      if (MBBOutRegsInfos[MBBNumber][Unit] < Def - NumInsts)
        MBBOutRegsInfos[MBBNumber][Unit] = Def - NumInsts;
    }
  }
}

void ReachingDefAnalysis::processBasicBlock(
    const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
  MachineBasicBlock *MBB = TraversedMBB.MBB;
  LLVM_DEBUG(dbgs() << printMBBReference(*MBB)
                    << (!TraversedMBB.IsDone ? ": incomplete\n"
                                             : ": all preds known\n"));

  if (!TraversedMBB.PrimaryPass) {
    // Reprocess MBB that is part of a loop.
    reprocessBasicBlock(MBB);
    return;
  }

  enterBasicBlock(MBB);
  for (MachineInstr &MI : *MBB) {
    if (!MI.isDebugInstr())
      processDefs(&MI);
  }
  leaveBasicBlock(MBB);
}

bool ReachingDefAnalysis::runOnMachineFunction(MachineFunction &mf) {
  MF = &mf;
  TRI = MF->getSubtarget().getRegisterInfo();
  LLVM_DEBUG(dbgs() << "********** REACHING DEFINITION ANALYSIS **********\n");
  init();
  traverse();
  return false;
}

void ReachingDefAnalysis::releaseMemory() {
  // Clear the internal vectors.
  MBBOutRegsInfos.clear();
  MBBReachingDefs.clear();
  InstIds.clear();
  LiveRegs.clear();
}

void ReachingDefAnalysis::reset() {
  releaseMemory();
  init();
  traverse();
}

void ReachingDefAnalysis::init() {
  NumRegUnits = TRI->getNumRegUnits();
  MBBReachingDefs.resize(MF->getNumBlockIDs());
  // Initialize the MBBOutRegsInfos
  MBBOutRegsInfos.resize(MF->getNumBlockIDs());
  LoopTraversal Traversal;
  TraversedMBBOrder = Traversal.traverse(*MF);
}

void ReachingDefAnalysis::traverse() {
  // Traverse the basic blocks.
  for (LoopTraversal::TraversedMBBInfo TraversedMBB : TraversedMBBOrder)
    processBasicBlock(TraversedMBB);
#ifndef NDEBUG
  // Make sure reaching defs are sorted and unique.
  for (MBBDefsInfo &MBBDefs : MBBReachingDefs) {
    for (MBBRegUnitDefs &RegUnitDefs : MBBDefs) {
      int LastDef = ReachingDefDefaultVal;
      for (int Def : RegUnitDefs) {
        assert(Def > LastDef && "Defs must be sorted and unique");
        LastDef = Def;
      }
    }
  }
#endif
}

int ReachingDefAnalysis::getReachingDef(MachineInstr *MI, int PhysReg) const {
  assert(InstIds.count(MI) && "Unexpected machine instuction.");
  int InstId = InstIds.lookup(MI);
  int DefRes = ReachingDefDefaultVal;
  unsigned MBBNumber = MI->getParent()->getNumber();
  assert(MBBNumber < MBBReachingDefs.size() &&
         "Unexpected basic block number.");
  int LatestDef = ReachingDefDefaultVal;
  for (MCRegUnitIterator Unit(PhysReg, TRI); Unit.isValid(); ++Unit) {
    for (int Def : MBBReachingDefs[MBBNumber][*Unit]) {
      if (Def >= InstId)
        break;
      DefRes = Def;
    }
    LatestDef = std::max(LatestDef, DefRes);
  }
  return LatestDef;
}

MachineInstr* ReachingDefAnalysis::getReachingLocalMIDef(MachineInstr *MI,
                                                    int PhysReg) const {
  return getInstFromId(MI->getParent(), getReachingDef(MI, PhysReg));
}

bool ReachingDefAnalysis::hasSameReachingDef(MachineInstr *A, MachineInstr *B,
                                             int PhysReg) const {
  MachineBasicBlock *ParentA = A->getParent();
  MachineBasicBlock *ParentB = B->getParent();
  if (ParentA != ParentB)
    return false;

  return getReachingDef(A, PhysReg) == getReachingDef(B, PhysReg);
}

MachineInstr *ReachingDefAnalysis::getInstFromId(MachineBasicBlock *MBB,
                                                 int InstId) const {
  assert(static_cast<size_t>(MBB->getNumber()) < MBBReachingDefs.size() &&
         "Unexpected basic block number.");
  assert(InstId < static_cast<int>(MBB->size()) &&
         "Unexpected instruction id.");

  if (InstId < 0)
    return nullptr;

  for (auto &MI : *MBB) {
    auto F = InstIds.find(&MI);
    if (F != InstIds.end() && F->second == InstId)
      return &MI;
  }

  return nullptr;
}

int
ReachingDefAnalysis::getClearance(MachineInstr *MI, MCPhysReg PhysReg) const {
  assert(InstIds.count(MI) && "Unexpected machine instuction.");
  return InstIds.lookup(MI) - getReachingDef(MI, PhysReg);
}

bool
ReachingDefAnalysis::hasLocalDefBefore(MachineInstr *MI, int PhysReg) const {
  return getReachingDef(MI, PhysReg) >= 0;
}

void ReachingDefAnalysis::getReachingLocalUses(MachineInstr *Def, int PhysReg,
                                               InstSet &Uses) const {
  MachineBasicBlock *MBB = Def->getParent();
  MachineBasicBlock::iterator MI = MachineBasicBlock::iterator(Def);
  while (++MI != MBB->end()) {
    if (MI->isDebugInstr())
      continue;

    // If/when we find a new reaching def, we know that there's no more uses
    // of 'Def'.
    if (getReachingLocalMIDef(&*MI, PhysReg) != Def)
      return;

    for (auto &MO : MI->operands()) {
      if (!isValidRegUseOf(MO, PhysReg))
        continue;

      Uses.insert(&*MI);
      if (MO.isKill())
        return;
    }
  }
}

bool
ReachingDefAnalysis::getLiveInUses(MachineBasicBlock *MBB, int PhysReg,
                                   InstSet &Uses) const {
  for (auto &MI : *MBB) {
    if (MI.isDebugInstr())
      continue;
    for (auto &MO : MI.operands()) {
      if (!isValidRegUseOf(MO, PhysReg))
        continue;
      if (getReachingDef(&MI, PhysReg) >= 0)
        return false;
      Uses.insert(&MI);
    }
  }
  return isReachingDefLiveOut(&MBB->back(), PhysReg);
}

void
ReachingDefAnalysis::getGlobalUses(MachineInstr *MI, int PhysReg,
                                   InstSet &Uses) const {
  MachineBasicBlock *MBB = MI->getParent();

  // Collect the uses that each def touches within the block.
  getReachingLocalUses(MI, PhysReg, Uses);

  // Handle live-out values.
  if (auto *LiveOut = getLocalLiveOutMIDef(MI->getParent(), PhysReg)) {
    if (LiveOut != MI)
      return;

    SmallVector<MachineBasicBlock*, 4> ToVisit;
    ToVisit.insert(ToVisit.begin(), MBB->successors().begin(),
                   MBB->successors().end());
    SmallPtrSet<MachineBasicBlock*, 4>Visited;
    while (!ToVisit.empty()) {
      MachineBasicBlock *MBB = ToVisit.back();
      ToVisit.pop_back();
      if (Visited.count(MBB) || !MBB->isLiveIn(PhysReg))
        continue;
      if (getLiveInUses(MBB, PhysReg, Uses))
        ToVisit.insert(ToVisit.end(), MBB->successors().begin(),
                       MBB->successors().end());
      Visited.insert(MBB);
    }
  }
}

void ReachingDefAnalysis::getLiveOuts(MachineBasicBlock *MBB, int PhysReg,
                                      InstSet &Defs) const {
  SmallPtrSet<MachineBasicBlock*, 2> VisitedBBs;
  getLiveOuts(MBB, PhysReg, Defs, VisitedBBs);
}

void
ReachingDefAnalysis::getLiveOuts(MachineBasicBlock *MBB, int PhysReg,
                                 InstSet &Defs, BlockSet &VisitedBBs) const {
  if (VisitedBBs.count(MBB))
    return;

  VisitedBBs.insert(MBB);
  LivePhysRegs LiveRegs(*TRI);
  LiveRegs.addLiveOuts(*MBB);
  if (!LiveRegs.contains(PhysReg))
    return;

  if (auto *Def = getLocalLiveOutMIDef(MBB, PhysReg))
    Defs.insert(Def);
  else
    for (auto *Pred : MBB->predecessors())
      getLiveOuts(Pred, PhysReg, Defs, VisitedBBs);
}

MachineInstr *ReachingDefAnalysis::getUniqueReachingMIDef(MachineInstr *MI,
                                                          int PhysReg) const {
  // If there's a local def before MI, return it.
  MachineInstr *LocalDef = getReachingLocalMIDef(MI, PhysReg);
  if (LocalDef && InstIds.lookup(LocalDef) < InstIds.lookup(MI))
    return LocalDef;

  SmallPtrSet<MachineBasicBlock*, 4> VisitedBBs;
  SmallPtrSet<MachineInstr*, 2> Incoming;
  for (auto *Pred : MI->getParent()->predecessors())
    getLiveOuts(Pred, PhysReg, Incoming, VisitedBBs);

  // If we have a local def and an incoming instruction, then there's not a
  // unique instruction def.
  if (!Incoming.empty() && LocalDef)
    return nullptr;
  else if (Incoming.size() == 1)
    return *Incoming.begin();
  else
    return LocalDef;
}

MachineInstr *ReachingDefAnalysis::getMIOperand(MachineInstr *MI,
                                                unsigned Idx) const {
  assert(MI->getOperand(Idx).isReg() && "Expected register operand");
  return getUniqueReachingMIDef(MI, MI->getOperand(Idx).getReg());
}

MachineInstr *ReachingDefAnalysis::getMIOperand(MachineInstr *MI,
                                                MachineOperand &MO) const {
  assert(MO.isReg() && "Expected register operand");
  return getUniqueReachingMIDef(MI, MO.getReg());
}

bool ReachingDefAnalysis::isRegUsedAfter(MachineInstr *MI, int PhysReg) const {
  MachineBasicBlock *MBB = MI->getParent();
  LivePhysRegs LiveRegs(*TRI);
  LiveRegs.addLiveOuts(*MBB);

  // Yes if the register is live out of the basic block.
  if (LiveRegs.contains(PhysReg))
    return true;

  // Walk backwards through the block to see if the register is live at some
  // point.
  for (auto Last = MBB->rbegin(), End = MBB->rend(); Last != End; ++Last) {
    LiveRegs.stepBackward(*Last);
    if (LiveRegs.contains(PhysReg))
      return InstIds.lookup(&*Last) > InstIds.lookup(MI);
  }
  return false;
}

bool ReachingDefAnalysis::isRegDefinedAfter(MachineInstr *MI,
                                            int PhysReg) const {
  MachineBasicBlock *MBB = MI->getParent();
  if (getReachingDef(MI, PhysReg) != getReachingDef(&MBB->back(), PhysReg))
    return true;

  if (auto *Def = getLocalLiveOutMIDef(MBB, PhysReg))
    return Def == getReachingLocalMIDef(MI, PhysReg);

  return false;
}

bool
ReachingDefAnalysis::isReachingDefLiveOut(MachineInstr *MI, int PhysReg) const {
  MachineBasicBlock *MBB = MI->getParent();
  LivePhysRegs LiveRegs(*TRI);
  LiveRegs.addLiveOuts(*MBB);
  if (!LiveRegs.contains(PhysReg))
    return false;

  MachineInstr *Last = &MBB->back();
  int Def = getReachingDef(MI, PhysReg);
  if (getReachingDef(Last, PhysReg) != Def)
    return false;

  // Finally check that the last instruction doesn't redefine the register.
  for (auto &MO : Last->operands())
    if (isValidRegDefOf(MO, PhysReg))
      return false;

  return true;
}

MachineInstr* ReachingDefAnalysis::getLocalLiveOutMIDef(MachineBasicBlock *MBB,
                                                        int PhysReg) const {
  LivePhysRegs LiveRegs(*TRI);
  LiveRegs.addLiveOuts(*MBB);
  if (!LiveRegs.contains(PhysReg))
    return nullptr;

  MachineInstr *Last = &MBB->back();
  int Def = getReachingDef(Last, PhysReg);
  for (auto &MO : Last->operands())
    if (isValidRegDefOf(MO, PhysReg))
      return Last;

  return Def < 0 ? nullptr : getInstFromId(MBB, Def);
}

static bool mayHaveSideEffects(MachineInstr &MI) {
  return MI.mayLoadOrStore() || MI.mayRaiseFPException() ||
         MI.hasUnmodeledSideEffects() || MI.isTerminator() ||
         MI.isCall() || MI.isBarrier() || MI.isBranch() || MI.isReturn();
}

// Can we safely move 'From' to just before 'To'? To satisfy this, 'From' must
// not define a register that is used by any instructions, after and including,
// 'To'. These instructions also must not redefine any of Froms operands.
template<typename Iterator>
bool ReachingDefAnalysis::isSafeToMove(MachineInstr *From,
                                       MachineInstr *To) const {
  if (From->getParent() != To->getParent())
    return false;

  SmallSet<int, 2> Defs;
  // First check that From would compute the same value if moved.
  for (auto &MO : From->operands()) {
    if (!isValidReg(MO))
      continue;
    if (MO.isDef())
      Defs.insert(MO.getReg());
    else if (!hasSameReachingDef(From, To, MO.getReg()))
      return false;
  }

  // Now walk checking that the rest of the instructions will compute the same
  // value and that we're not overwriting anything. Don't move the instruction
  // past any memory, control-flow or other ambiguous instructions.
  for (auto I = ++Iterator(From), E = Iterator(To); I != E; ++I) {
    if (mayHaveSideEffects(*I))
      return false;
    for (auto &MO : I->operands())
      if (MO.isReg() && MO.getReg() && Defs.count(MO.getReg()))
        return false;
  }
  return true;
}

bool ReachingDefAnalysis::isSafeToMoveForwards(MachineInstr *From,
                                               MachineInstr *To) const {
  return isSafeToMove<MachineBasicBlock::reverse_iterator>(From, To);
}

bool ReachingDefAnalysis::isSafeToMoveBackwards(MachineInstr *From,
                                                MachineInstr *To) const {
  return isSafeToMove<MachineBasicBlock::iterator>(From, To);
}

bool ReachingDefAnalysis::isSafeToRemove(MachineInstr *MI,
                                         InstSet &ToRemove) const {
  SmallPtrSet<MachineInstr*, 1> Ignore;
  SmallPtrSet<MachineInstr*, 2> Visited;
  return isSafeToRemove(MI, Visited, ToRemove, Ignore);
}

bool
ReachingDefAnalysis::isSafeToRemove(MachineInstr *MI, InstSet &ToRemove,
                                    InstSet &Ignore) const {
  SmallPtrSet<MachineInstr*, 2> Visited;
  return isSafeToRemove(MI, Visited, ToRemove, Ignore);
}

bool
ReachingDefAnalysis::isSafeToRemove(MachineInstr *MI, InstSet &Visited,
                                    InstSet &ToRemove, InstSet &Ignore) const {
  if (Visited.count(MI) || Ignore.count(MI))
    return true;
  else if (mayHaveSideEffects(*MI)) {
    // Unless told to ignore the instruction, don't remove anything which has
    // side effects.
    return false;
  }

  Visited.insert(MI);
  for (auto &MO : MI->operands()) {
    if (!isValidRegDef(MO))
      continue;

    SmallPtrSet<MachineInstr*, 4> Uses;
    getGlobalUses(MI, MO.getReg(), Uses);

    for (auto I : Uses) {
      if (Ignore.count(I) || ToRemove.count(I))
        continue;
      if (!isSafeToRemove(I, Visited, ToRemove, Ignore))
        return false;
    }
  }
  ToRemove.insert(MI);
  return true;
}

void ReachingDefAnalysis::collectKilledOperands(MachineInstr *MI,
                                                InstSet &Dead) const {
  Dead.insert(MI);
  auto IsDead = [this, &Dead](MachineInstr *Def, int PhysReg) {
    unsigned LiveDefs = 0;
    for (auto &MO : Def->operands()) {
      if (!isValidRegDef(MO))
        continue;
      if (!MO.isDead())
        ++LiveDefs;
    }

    if (LiveDefs > 1)
      return false;

    SmallPtrSet<MachineInstr*, 4> Uses;
    getGlobalUses(Def, PhysReg, Uses);
    for (auto *Use : Uses)
      if (!Dead.count(Use))
        return false;
    return true;
  };

  for (auto &MO : MI->operands()) {
    if (!isValidRegUse(MO))
      continue;
    if (MachineInstr *Def = getMIOperand(MI, MO))
      if (IsDead(Def, MO.getReg()))
        collectKilledOperands(Def, Dead);
  }
}

bool ReachingDefAnalysis::isSafeToDefRegAt(MachineInstr *MI,
                                           int PhysReg) const {
  SmallPtrSet<MachineInstr*, 1> Ignore;
  return isSafeToDefRegAt(MI, PhysReg, Ignore);
}

bool ReachingDefAnalysis::isSafeToDefRegAt(MachineInstr *MI, int PhysReg,
                                           InstSet &Ignore) const {
  // Check for any uses of the register after MI.
  if (isRegUsedAfter(MI, PhysReg)) {
    if (auto *Def = getReachingLocalMIDef(MI, PhysReg)) {
      SmallPtrSet<MachineInstr*, 2> Uses;
      getReachingLocalUses(Def, PhysReg, Uses);
      for (auto *Use : Uses)
        if (!Ignore.count(Use))
          return false;
    } else
      return false;
  }

  MachineBasicBlock *MBB = MI->getParent();
  // Check for any defs after MI.
  if (isRegDefinedAfter(MI, PhysReg)) {
    auto I = MachineBasicBlock::iterator(MI);
    for (auto E = MBB->end(); I != E; ++I) {
      if (Ignore.count(&*I))
        continue;
      for (auto &MO : I->operands())
        if (isValidRegDefOf(MO, PhysReg))
          return false;
    }
  }
  return true;
}