RDFLiveness.cpp 40.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
//===- RDFLiveness.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Computation of the liveness information from the data-flow graph.
//
// The main functionality of this code is to compute block live-in
// information. With the live-in information in place, the placement
// of kill flags can also be recalculated.
//
// The block live-in calculation is based on the ideas from the following
// publication:
//
// Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin.
// "Efficient Liveness Computation Using Merge Sets and DJ-Graphs."
// ACM Transactions on Architecture and Code Optimization, Association for
// Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance
// and Embedded Architectures and Compilers", 8 (4),
// <10.1145/2086696.2086706>. <hal-00647369>
//
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominanceFrontier.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/RDFLiveness.h"
#include "llvm/CodeGen/RDFGraph.h"
#include "llvm/CodeGen/RDFRegisters.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <map>
#include <utility>
#include <vector>

using namespace llvm;
using namespace rdf;

static cl::opt<unsigned> MaxRecNest("rdf-liveness-max-rec", cl::init(25),
  cl::Hidden, cl::desc("Maximum recursion level"));

namespace llvm {
namespace rdf {

  raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) {
    OS << '{';
    for (auto &I : P.Obj) {
      OS << ' ' << printReg(I.first, &P.G.getTRI()) << '{';
      for (auto J = I.second.begin(), E = I.second.end(); J != E; ) {
        OS << Print<NodeId>(J->first, P.G) << PrintLaneMaskOpt(J->second);
        if (++J != E)
          OS << ',';
      }
      OS << '}';
    }
    OS << " }";
    return OS;
  }

} // end namespace rdf
} // end namespace llvm

// The order in the returned sequence is the order of reaching defs in the
// upward traversal: the first def is the closest to the given reference RefA,
// the next one is further up, and so on.
// The list ends at a reaching phi def, or when the reference from RefA is
// covered by the defs in the list (see FullChain).
// This function provides two modes of operation:
// (1) Returning the sequence of reaching defs for a particular reference
// node. This sequence will terminate at the first phi node [1].
// (2) Returning a partial sequence of reaching defs, where the final goal
// is to traverse past phi nodes to the actual defs arising from the code
// itself.
// In mode (2), the register reference for which the search was started
// may be different from the reference node RefA, for which this call was
// made, hence the argument RefRR, which holds the original register.
// Also, some definitions may have already been encountered in a previous
// call that will influence register covering. The register references
// already defined are passed in through DefRRs.
// In mode (1), the "continuation" considerations do not apply, and the
// RefRR is the same as the register in RefA, and the set DefRRs is empty.
//
// [1] It is possible for multiple phi nodes to be included in the returned
// sequence:
//   SubA = phi ...
//   SubB = phi ...
//   ...  = SuperAB(rdef:SubA), SuperAB"(rdef:SubB)
// However, these phi nodes are independent from one another in terms of
// the data-flow.

NodeList Liveness::getAllReachingDefs(RegisterRef RefRR,
      NodeAddr<RefNode*> RefA, bool TopShadows, bool FullChain,
      const RegisterAggr &DefRRs) {
  NodeList RDefs; // Return value.
  SetVector<NodeId> DefQ;
  SetVector<NodeId> Owners;

  // Dead defs will be treated as if they were live, since they are actually
  // on the data-flow path. They cannot be ignored because even though they
  // do not generate meaningful values, they still modify registers.

  // If the reference is undefined, there is nothing to do.
  if (RefA.Addr->getFlags() & NodeAttrs::Undef)
    return RDefs;

  // The initial queue should not have reaching defs for shadows. The
  // whole point of a shadow is that it will have a reaching def that
  // is not aliased to the reaching defs of the related shadows.
  NodeId Start = RefA.Id;
  auto SNA = DFG.addr<RefNode*>(Start);
  if (NodeId RD = SNA.Addr->getReachingDef())
    DefQ.insert(RD);
  if (TopShadows) {
    for (auto S : DFG.getRelatedRefs(RefA.Addr->getOwner(DFG), RefA))
      if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
        DefQ.insert(RD);
  }

  // Collect all the reaching defs, going up until a phi node is encountered,
  // or there are no more reaching defs. From this set, the actual set of
  // reaching defs will be selected.
  // The traversal upwards must go on until a covering def is encountered.
  // It is possible that a collection of non-covering (individually) defs
  // will be sufficient, but keep going until a covering one is found.
  for (unsigned i = 0; i < DefQ.size(); ++i) {
    auto TA = DFG.addr<DefNode*>(DefQ[i]);
    if (TA.Addr->getFlags() & NodeAttrs::PhiRef)
      continue;
    // Stop at the covering/overwriting def of the initial register reference.
    RegisterRef RR = TA.Addr->getRegRef(DFG);
    if (!DFG.IsPreservingDef(TA))
      if (RegisterAggr::isCoverOf(RR, RefRR, PRI))
        continue;
    // Get the next level of reaching defs. This will include multiple
    // reaching defs for shadows.
    for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA))
      if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
        DefQ.insert(RD);
  }

  // Remove all non-phi defs that are not aliased to RefRR, and collect
  // the owners of the remaining defs.
  SetVector<NodeId> Defs;
  for (NodeId N : DefQ) {
    auto TA = DFG.addr<DefNode*>(N);
    bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef;
    if (!IsPhi && !PRI.alias(RefRR, TA.Addr->getRegRef(DFG)))
      continue;
    Defs.insert(TA.Id);
    Owners.insert(TA.Addr->getOwner(DFG).Id);
  }

  // Return the MachineBasicBlock containing a given instruction.
  auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* {
    if (IA.Addr->getKind() == NodeAttrs::Stmt)
      return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent();
    assert(IA.Addr->getKind() == NodeAttrs::Phi);
    NodeAddr<PhiNode*> PA = IA;
    NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG);
    return BA.Addr->getCode();
  };
  // Less(A,B) iff instruction A is further down in the dominator tree than B.
  auto Less = [&Block,this] (NodeId A, NodeId B) -> bool {
    if (A == B)
      return false;
    auto OA = DFG.addr<InstrNode*>(A), OB = DFG.addr<InstrNode*>(B);
    MachineBasicBlock *BA = Block(OA), *BB = Block(OB);
    if (BA != BB)
      return MDT.dominates(BB, BA);
    // They are in the same block.
    bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt;
    bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt;
    if (StmtA) {
      if (!StmtB)   // OB is a phi and phis dominate statements.
        return true;
      MachineInstr *CA = NodeAddr<StmtNode*>(OA).Addr->getCode();
      MachineInstr *CB = NodeAddr<StmtNode*>(OB).Addr->getCode();
      // The order must be linear, so tie-break such equalities.
      if (CA == CB)
        return A < B;
      return MDT.dominates(CB, CA);
    } else {
      // OA is a phi.
      if (StmtB)
        return false;
      // Both are phis. There is no ordering between phis (in terms of
      // the data-flow), so tie-break this via node id comparison.
      return A < B;
    }
  };

  std::vector<NodeId> Tmp(Owners.begin(), Owners.end());
  llvm::sort(Tmp, Less);

  // The vector is a list of instructions, so that defs coming from
  // the same instruction don't need to be artificially ordered.
  // Then, when computing the initial segment, and iterating over an
  // instruction, pick the defs that contribute to the covering (i.e. is
  // not covered by previously added defs). Check the defs individually,
  // i.e. first check each def if is covered or not (without adding them
  // to the tracking set), and then add all the selected ones.

  // The reason for this is this example:
  // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes).
  // *d3<C>              If A \incl BuC, and B \incl AuC, then *d2 would be
  //                     covered if we added A first, and A would be covered
  //                     if we added B first.

  RegisterAggr RRs(DefRRs);

  auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool {
    return TA.Addr->getKind() == NodeAttrs::Def &&
           Defs.count(TA.Id);
  };
  for (NodeId T : Tmp) {
    if (!FullChain && RRs.hasCoverOf(RefRR))
      break;
    auto TA = DFG.addr<InstrNode*>(T);
    bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA);
    NodeList Ds;
    for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) {
      RegisterRef QR = DA.Addr->getRegRef(DFG);
      // Add phi defs even if they are covered by subsequent defs. This is
      // for cases where the reached use is not covered by any of the defs
      // encountered so far: the phi def is needed to expose the liveness
      // of that use to the entry of the block.
      // Example:
      //   phi d1<R3>(,d2,), ...  Phi def d1 is covered by d2.
      //   d2<R3>(d1,,u3), ...
      //   ..., u3<D1>(d2)        This use needs to be live on entry.
      if (FullChain || IsPhi || !RRs.hasCoverOf(QR))
        Ds.push_back(DA);
    }
    RDefs.insert(RDefs.end(), Ds.begin(), Ds.end());
    for (NodeAddr<DefNode*> DA : Ds) {
      // When collecting a full chain of definitions, do not consider phi
      // defs to actually define a register.
      uint16_t Flags = DA.Addr->getFlags();
      if (!FullChain || !(Flags & NodeAttrs::PhiRef))
        if (!(Flags & NodeAttrs::Preserving)) // Don't care about Undef here.
          RRs.insert(DA.Addr->getRegRef(DFG));
    }
  }

  auto DeadP = [](const NodeAddr<DefNode*> DA) -> bool {
    return DA.Addr->getFlags() & NodeAttrs::Dead;
  };
  RDefs.resize(std::distance(RDefs.begin(), llvm::remove_if(RDefs, DeadP)));

  return RDefs;
}

std::pair<NodeSet,bool>
Liveness::getAllReachingDefsRec(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
      NodeSet &Visited, const NodeSet &Defs) {
  return getAllReachingDefsRecImpl(RefRR, RefA, Visited, Defs, 0, MaxRecNest);
}

std::pair<NodeSet,bool>
Liveness::getAllReachingDefsRecImpl(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
      NodeSet &Visited, const NodeSet &Defs, unsigned Nest, unsigned MaxNest) {
  if (Nest > MaxNest)
    return { NodeSet(), false };
  // Collect all defined registers. Do not consider phis to be defining
  // anything, only collect "real" definitions.
  RegisterAggr DefRRs(PRI);
  for (NodeId D : Defs) {
    const auto DA = DFG.addr<const DefNode*>(D);
    if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
      DefRRs.insert(DA.Addr->getRegRef(DFG));
  }

  NodeList RDs = getAllReachingDefs(RefRR, RefA, false, true, DefRRs);
  if (RDs.empty())
    return { Defs, true };

  // Make a copy of the preexisting definitions and add the newly found ones.
  NodeSet TmpDefs = Defs;
  for (NodeAddr<NodeBase*> R : RDs)
    TmpDefs.insert(R.Id);

  NodeSet Result = Defs;

  for (NodeAddr<DefNode*> DA : RDs) {
    Result.insert(DA.Id);
    if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
      continue;
    NodeAddr<PhiNode*> PA = DA.Addr->getOwner(DFG);
    if (Visited.count(PA.Id))
      continue;
    Visited.insert(PA.Id);
    // Go over all phi uses and get the reaching defs for each use.
    for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
      const auto &T = getAllReachingDefsRecImpl(RefRR, U, Visited, TmpDefs,
                                                Nest+1, MaxNest);
      if (!T.second)
        return { T.first, false };
      Result.insert(T.first.begin(), T.first.end());
    }
  }

  return { Result, true };
}

/// Find the nearest ref node aliased to RefRR, going upwards in the data
/// flow, starting from the instruction immediately preceding Inst.
NodeAddr<RefNode*> Liveness::getNearestAliasedRef(RegisterRef RefRR,
      NodeAddr<InstrNode*> IA) {
  NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
  NodeList Ins = BA.Addr->members(DFG);
  NodeId FindId = IA.Id;
  auto E = Ins.rend();
  auto B = std::find_if(Ins.rbegin(), E,
                        [FindId] (const NodeAddr<InstrNode*> T) {
                          return T.Id == FindId;
                        });
  // Do not scan IA (which is what B would point to).
  if (B != E)
    ++B;

  do {
    // Process the range of instructions from B to E.
    for (NodeAddr<InstrNode*> I : make_range(B, E)) {
      NodeList Refs = I.Addr->members(DFG);
      NodeAddr<RefNode*> Clob, Use;
      // Scan all the refs in I aliased to RefRR, and return the one that
      // is the closest to the output of I, i.e. def > clobber > use.
      for (NodeAddr<RefNode*> R : Refs) {
        if (!PRI.alias(R.Addr->getRegRef(DFG), RefRR))
          continue;
        if (DFG.IsDef(R)) {
          // If it's a non-clobbering def, just return it.
          if (!(R.Addr->getFlags() & NodeAttrs::Clobbering))
            return R;
          Clob = R;
        } else {
          Use = R;
        }
      }
      if (Clob.Id != 0)
        return Clob;
      if (Use.Id != 0)
        return Use;
    }

    // Go up to the immediate dominator, if any.
    MachineBasicBlock *BB = BA.Addr->getCode();
    BA = NodeAddr<BlockNode*>();
    if (MachineDomTreeNode *N = MDT.getNode(BB)) {
      if ((N = N->getIDom()))
        BA = DFG.findBlock(N->getBlock());
    }
    if (!BA.Id)
      break;

    Ins = BA.Addr->members(DFG);
    B = Ins.rbegin();
    E = Ins.rend();
  } while (true);

  return NodeAddr<RefNode*>();
}

NodeSet Liveness::getAllReachedUses(RegisterRef RefRR,
      NodeAddr<DefNode*> DefA, const RegisterAggr &DefRRs) {
  NodeSet Uses;

  // If the original register is already covered by all the intervening
  // defs, no more uses can be reached.
  if (DefRRs.hasCoverOf(RefRR))
    return Uses;

  // Add all directly reached uses.
  // If the def is dead, it does not provide a value for any use.
  bool IsDead = DefA.Addr->getFlags() & NodeAttrs::Dead;
  NodeId U = !IsDead ? DefA.Addr->getReachedUse() : 0;
  while (U != 0) {
    auto UA = DFG.addr<UseNode*>(U);
    if (!(UA.Addr->getFlags() & NodeAttrs::Undef)) {
      RegisterRef UR = UA.Addr->getRegRef(DFG);
      if (PRI.alias(RefRR, UR) && !DefRRs.hasCoverOf(UR))
        Uses.insert(U);
    }
    U = UA.Addr->getSibling();
  }

  // Traverse all reached defs. This time dead defs cannot be ignored.
  for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) {
    auto DA = DFG.addr<DefNode*>(D);
    NextD = DA.Addr->getSibling();
    RegisterRef DR = DA.Addr->getRegRef(DFG);
    // If this def is already covered, it cannot reach anything new.
    // Similarly, skip it if it is not aliased to the interesting register.
    if (DefRRs.hasCoverOf(DR) || !PRI.alias(RefRR, DR))
      continue;
    NodeSet T;
    if (DFG.IsPreservingDef(DA)) {
      // If it is a preserving def, do not update the set of intervening defs.
      T = getAllReachedUses(RefRR, DA, DefRRs);
    } else {
      RegisterAggr NewDefRRs = DefRRs;
      NewDefRRs.insert(DR);
      T = getAllReachedUses(RefRR, DA, NewDefRRs);
    }
    Uses.insert(T.begin(), T.end());
  }
  return Uses;
}

void Liveness::computePhiInfo() {
  RealUseMap.clear();

  NodeList Phis;
  NodeAddr<FuncNode*> FA = DFG.getFunc();
  NodeList Blocks = FA.Addr->members(DFG);
  for (NodeAddr<BlockNode*> BA : Blocks) {
    auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
    Phis.insert(Phis.end(), Ps.begin(), Ps.end());
  }

  // phi use -> (map: reaching phi -> set of registers defined in between)
  std::map<NodeId,std::map<NodeId,RegisterAggr>> PhiUp;
  std::vector<NodeId> PhiUQ;  // Work list of phis for upward propagation.
  std::map<NodeId,RegisterAggr> PhiDRs;  // Phi -> registers defined by it.

  // Go over all phis.
  for (NodeAddr<PhiNode*> PhiA : Phis) {
    // Go over all defs and collect the reached uses that are non-phi uses
    // (i.e. the "real uses").
    RefMap &RealUses = RealUseMap[PhiA.Id];
    NodeList PhiRefs = PhiA.Addr->members(DFG);

    // Have a work queue of defs whose reached uses need to be found.
    // For each def, add to the queue all reached (non-phi) defs.
    SetVector<NodeId> DefQ;
    NodeSet PhiDefs;
    RegisterAggr DRs(PRI);
    for (NodeAddr<RefNode*> R : PhiRefs) {
      if (!DFG.IsRef<NodeAttrs::Def>(R))
        continue;
      DRs.insert(R.Addr->getRegRef(DFG));
      DefQ.insert(R.Id);
      PhiDefs.insert(R.Id);
    }
    PhiDRs.insert(std::make_pair(PhiA.Id, DRs));

    // Collect the super-set of all possible reached uses. This set will
    // contain all uses reached from this phi, either directly from the
    // phi defs, or (recursively) via non-phi defs reached by the phi defs.
    // This set of uses will later be trimmed to only contain these uses that
    // are actually reached by the phi defs.
    for (unsigned i = 0; i < DefQ.size(); ++i) {
      NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]);
      // Visit all reached uses. Phi defs should not really have the "dead"
      // flag set, but check it anyway for consistency.
      bool IsDead = DA.Addr->getFlags() & NodeAttrs::Dead;
      NodeId UN = !IsDead ? DA.Addr->getReachedUse() : 0;
      while (UN != 0) {
        NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN);
        uint16_t F = A.Addr->getFlags();
        if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) {
          RegisterRef R = PRI.normalize(A.Addr->getRegRef(DFG));
          RealUses[R.Reg].insert({A.Id,R.Mask});
        }
        UN = A.Addr->getSibling();
      }
      // Visit all reached defs, and add them to the queue. These defs may
      // override some of the uses collected here, but that will be handled
      // later.
      NodeId DN = DA.Addr->getReachedDef();
      while (DN != 0) {
        NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN);
        for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) {
          uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags();
          // Must traverse the reached-def chain. Consider:
          //   def(D0) -> def(R0) -> def(R0) -> use(D0)
          // The reachable use of D0 passes through a def of R0.
          if (!(Flags & NodeAttrs::PhiRef))
            DefQ.insert(T.Id);
        }
        DN = A.Addr->getSibling();
      }
    }
    // Filter out these uses that appear to be reachable, but really
    // are not. For example:
    //
    // R1:0 =          d1
    //      = R1:0     u2     Reached by d1.
    //   R0 =          d3
    //      = R1:0     u4     Still reached by d1: indirectly through
    //                        the def d3.
    //   R1 =          d5
    //      = R1:0     u6     Not reached by d1 (covered collectively
    //                        by d3 and d5), but following reached
    //                        defs and uses from d1 will lead here.
    for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) {
      // For each reached register UI->first, there is a set UI->second, of
      // uses of it. For each such use, check if it is reached by this phi,
      // i.e. check if the set of its reaching uses intersects the set of
      // this phi's defs.
      NodeRefSet Uses = UI->second;
      UI->second.clear();
      for (std::pair<NodeId,LaneBitmask> I : Uses) {
        auto UA = DFG.addr<UseNode*>(I.first);
        // Undef flag is checked above.
        assert((UA.Addr->getFlags() & NodeAttrs::Undef) == 0);
        RegisterRef R(UI->first, I.second);
        // Calculate the exposed part of the reached use.
        RegisterAggr Covered(PRI);
        for (NodeAddr<DefNode*> DA : getAllReachingDefs(R, UA)) {
          if (PhiDefs.count(DA.Id))
            break;
          Covered.insert(DA.Addr->getRegRef(DFG));
        }
        if (RegisterRef RC = Covered.clearIn(R)) {
          // We are updating the map for register UI->first, so we need
          // to map RC to be expressed in terms of that register.
          RegisterRef S = PRI.mapTo(RC, UI->first);
          UI->second.insert({I.first, S.Mask});
        }
      }
      UI = UI->second.empty() ? RealUses.erase(UI) : std::next(UI);
    }

    // If this phi reaches some "real" uses, add it to the queue for upward
    // propagation.
    if (!RealUses.empty())
      PhiUQ.push_back(PhiA.Id);

    // Go over all phi uses and check if the reaching def is another phi.
    // Collect the phis that are among the reaching defs of these uses.
    // While traversing the list of reaching defs for each phi use, accumulate
    // the set of registers defined between this phi (PhiA) and the owner phi
    // of the reaching def.
    NodeSet SeenUses;

    for (auto I : PhiRefs) {
      if (!DFG.IsRef<NodeAttrs::Use>(I) || SeenUses.count(I.Id))
        continue;
      NodeAddr<PhiUseNode*> PUA = I;
      if (PUA.Addr->getReachingDef() == 0)
        continue;

      RegisterRef UR = PUA.Addr->getRegRef(DFG);
      NodeList Ds = getAllReachingDefs(UR, PUA, true, false, NoRegs);
      RegisterAggr DefRRs(PRI);

      for (NodeAddr<DefNode*> D : Ds) {
        if (D.Addr->getFlags() & NodeAttrs::PhiRef) {
          NodeId RP = D.Addr->getOwner(DFG).Id;
          std::map<NodeId,RegisterAggr> &M = PhiUp[PUA.Id];
          auto F = M.find(RP);
          if (F == M.end())
            M.insert(std::make_pair(RP, DefRRs));
          else
            F->second.insert(DefRRs);
        }
        DefRRs.insert(D.Addr->getRegRef(DFG));
      }

      for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PhiA, PUA))
        SeenUses.insert(T.Id);
    }
  }

  if (Trace) {
    dbgs() << "Phi-up-to-phi map with intervening defs:\n";
    for (auto I : PhiUp) {
      dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {";
      for (auto R : I.second)
        dbgs() << ' ' << Print<NodeId>(R.first, DFG)
               << Print<RegisterAggr>(R.second, DFG);
      dbgs() << " }\n";
    }
  }

  // Propagate the reached registers up in the phi chain.
  //
  // The following type of situation needs careful handling:
  //
  //   phi d1<R1:0>  (1)
  //        |
  //   ... d2<R1>
  //        |
  //   phi u3<R1:0>  (2)
  //        |
  //   ... u4<R1>
  //
  // The phi node (2) defines a register pair R1:0, and reaches a "real"
  // use u4 of just R1. The same phi node is also known to reach (upwards)
  // the phi node (1). However, the use u4 is not reached by phi (1),
  // because of the intervening definition d2 of R1. The data flow between
  // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0.
  //
  // When propagating uses up the phi chains, get the all reaching defs
  // for a given phi use, and traverse the list until the propagated ref
  // is covered, or until reaching the final phi. Only assume that the
  // reference reaches the phi in the latter case.

  for (unsigned i = 0; i < PhiUQ.size(); ++i) {
    auto PA = DFG.addr<PhiNode*>(PhiUQ[i]);
    NodeList PUs = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG);
    RefMap &RUM = RealUseMap[PA.Id];

    for (NodeAddr<UseNode*> UA : PUs) {
      std::map<NodeId,RegisterAggr> &PUM = PhiUp[UA.Id];
      RegisterRef UR = PRI.normalize(UA.Addr->getRegRef(DFG));
      for (const std::pair<const NodeId, RegisterAggr> &P : PUM) {
        bool Changed = false;
        const RegisterAggr &MidDefs = P.second;

        // Collect the set PropUp of uses that are reached by the current
        // phi PA, and are not covered by any intervening def between the
        // currently visited use UA and the upward phi P.

        if (MidDefs.hasCoverOf(UR))
          continue;

        // General algorithm:
        //   for each (R,U) : U is use node of R, U is reached by PA
        //     if MidDefs does not cover (R,U)
        //       then add (R-MidDefs,U) to RealUseMap[P]
        //
        for (const std::pair<const RegisterId, NodeRefSet> &T : RUM) {
          RegisterRef R(T.first);
          // The current phi (PA) could be a phi for a regmask. It could
          // reach a whole variety of uses that are not related to the
          // specific upward phi (P.first).
          const RegisterAggr &DRs = PhiDRs.at(P.first);
          if (!DRs.hasAliasOf(R))
            continue;
          R = PRI.mapTo(DRs.intersectWith(R), T.first);
          for (std::pair<NodeId,LaneBitmask> V : T.second) {
            LaneBitmask M = R.Mask & V.second;
            if (M.none())
              continue;
            if (RegisterRef SS = MidDefs.clearIn(RegisterRef(R.Reg, M))) {
              NodeRefSet &RS = RealUseMap[P.first][SS.Reg];
              Changed |= RS.insert({V.first,SS.Mask}).second;
            }
          }
        }

        if (Changed)
          PhiUQ.push_back(P.first);
      }
    }
  }

  if (Trace) {
    dbgs() << "Real use map:\n";
    for (auto I : RealUseMap) {
      dbgs() << "phi " << Print<NodeId>(I.first, DFG);
      NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first);
      NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG);
      if (!Ds.empty()) {
        RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef(DFG);
        dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>';
      } else {
        dbgs() << "<noreg>";
      }
      dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n';
    }
  }
}

void Liveness::computeLiveIns() {
  // Populate the node-to-block map. This speeds up the calculations
  // significantly.
  NBMap.clear();
  for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
    MachineBasicBlock *BB = BA.Addr->getCode();
    for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
      for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
        NBMap.insert(std::make_pair(RA.Id, BB));
      NBMap.insert(std::make_pair(IA.Id, BB));
    }
  }

  MachineFunction &MF = DFG.getMF();

  // Compute IDF first, then the inverse.
  decltype(IIDF) IDF;
  for (MachineBasicBlock &B : MF) {
    auto F1 = MDF.find(&B);
    if (F1 == MDF.end())
      continue;
    SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end());
    for (unsigned i = 0; i < IDFB.size(); ++i) {
      auto F2 = MDF.find(IDFB[i]);
      if (F2 != MDF.end())
        IDFB.insert(F2->second.begin(), F2->second.end());
    }
    // Add B to the IDF(B). This will put B in the IIDF(B).
    IDFB.insert(&B);
    IDF[&B].insert(IDFB.begin(), IDFB.end());
  }

  for (auto I : IDF)
    for (auto S : I.second)
      IIDF[S].insert(I.first);

  computePhiInfo();

  NodeAddr<FuncNode*> FA = DFG.getFunc();
  NodeList Blocks = FA.Addr->members(DFG);

  // Build the phi live-on-entry map.
  for (NodeAddr<BlockNode*> BA : Blocks) {
    MachineBasicBlock *MB = BA.Addr->getCode();
    RefMap &LON = PhiLON[MB];
    for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG))
      for (const RefMap::value_type &S : RealUseMap[P.Id])
        LON[S.first].insert(S.second.begin(), S.second.end());
  }

  if (Trace) {
    dbgs() << "Phi live-on-entry map:\n";
    for (auto &I : PhiLON)
      dbgs() << "block #" << I.first->getNumber() << " -> "
             << Print<RefMap>(I.second, DFG) << '\n';
  }

  // Build the phi live-on-exit map. Each phi node has some set of reached
  // "real" uses. Propagate this set backwards into the block predecessors
  // through the reaching defs of the corresponding phi uses.
  for (NodeAddr<BlockNode*> BA : Blocks) {
    NodeList Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
    for (NodeAddr<PhiNode*> PA : Phis) {
      RefMap &RUs = RealUseMap[PA.Id];
      if (RUs.empty())
        continue;

      NodeSet SeenUses;
      for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
        if (!SeenUses.insert(U.Id).second)
          continue;
        NodeAddr<PhiUseNode*> PUA = U;
        if (PUA.Addr->getReachingDef() == 0)
          continue;

        // Each phi has some set (possibly empty) of reached "real" uses,
        // that is, uses that are part of the compiled program. Such a use
        // may be located in some farther block, but following a chain of
        // reaching defs will eventually lead to this phi.
        // Any chain of reaching defs may fork at a phi node, but there
        // will be a path upwards that will lead to this phi. Now, this
        // chain will need to fork at this phi, since some of the reached
        // uses may have definitions joining in from multiple predecessors.
        // For each reached "real" use, identify the set of reaching defs
        // coming from each predecessor P, and add them to PhiLOX[P].
        //
        auto PrA = DFG.addr<BlockNode*>(PUA.Addr->getPredecessor());
        RefMap &LOX = PhiLOX[PrA.Addr->getCode()];

        for (const std::pair<const RegisterId, NodeRefSet> &RS : RUs) {
          // We need to visit each individual use.
          for (std::pair<NodeId,LaneBitmask> P : RS.second) {
            // Create a register ref corresponding to the use, and find
            // all reaching defs starting from the phi use, and treating
            // all related shadows as a single use cluster.
            RegisterRef S(RS.first, P.second);
            NodeList Ds = getAllReachingDefs(S, PUA, true, false, NoRegs);
            for (NodeAddr<DefNode*> D : Ds) {
              // Calculate the mask corresponding to the visited def.
              RegisterAggr TA(PRI);
              TA.insert(D.Addr->getRegRef(DFG)).intersect(S);
              LaneBitmask TM = TA.makeRegRef().Mask;
              LOX[S.Reg].insert({D.Id, TM});
            }
          }
        }

        for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PA, PUA))
          SeenUses.insert(T.Id);
      }  // for U : phi uses
    }  // for P : Phis
  }  // for B : Blocks

  if (Trace) {
    dbgs() << "Phi live-on-exit map:\n";
    for (auto &I : PhiLOX)
      dbgs() << "block #" << I.first->getNumber() << " -> "
             << Print<RefMap>(I.second, DFG) << '\n';
  }

  RefMap LiveIn;
  traverse(&MF.front(), LiveIn);

  // Add function live-ins to the live-in set of the function entry block.
  LiveMap[&MF.front()].insert(DFG.getLiveIns());

  if (Trace) {
    // Dump the liveness map
    for (MachineBasicBlock &B : MF) {
      std::vector<RegisterRef> LV;
      for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
        LV.push_back(RegisterRef(I->PhysReg, I->LaneMask));
      llvm::sort(LV);
      dbgs() << printMBBReference(B) << "\t rec = {";
      for (auto I : LV)
        dbgs() << ' ' << Print<RegisterRef>(I, DFG);
      dbgs() << " }\n";
      //dbgs() << "\tcomp = " << Print<RegisterAggr>(LiveMap[&B], DFG) << '\n';

      LV.clear();
      const RegisterAggr &LG = LiveMap[&B];
      for (auto I = LG.rr_begin(), E = LG.rr_end(); I != E; ++I)
        LV.push_back(*I);
      llvm::sort(LV);
      dbgs() << "\tcomp = {";
      for (auto I : LV)
        dbgs() << ' ' << Print<RegisterRef>(I, DFG);
      dbgs() << " }\n";

    }
  }
}

void Liveness::resetLiveIns() {
  for (auto &B : DFG.getMF()) {
    // Remove all live-ins.
    std::vector<unsigned> T;
    for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
      T.push_back(I->PhysReg);
    for (auto I : T)
      B.removeLiveIn(I);
    // Add the newly computed live-ins.
    const RegisterAggr &LiveIns = LiveMap[&B];
    for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
      RegisterRef R = *I;
      B.addLiveIn({MCPhysReg(R.Reg), R.Mask});
    }
  }
}

void Liveness::resetKills() {
  for (auto &B : DFG.getMF())
    resetKills(&B);
}

void Liveness::resetKills(MachineBasicBlock *B) {
  auto CopyLiveIns = [this] (MachineBasicBlock *B, BitVector &LV) -> void {
    for (auto I : B->liveins()) {
      MCSubRegIndexIterator S(I.PhysReg, &TRI);
      if (!S.isValid()) {
        LV.set(I.PhysReg);
        continue;
      }
      do {
        LaneBitmask M = TRI.getSubRegIndexLaneMask(S.getSubRegIndex());
        if ((M & I.LaneMask).any())
          LV.set(S.getSubReg());
        ++S;
      } while (S.isValid());
    }
  };

  BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs());
  CopyLiveIns(B, LiveIn);
  for (auto SI : B->successors())
    CopyLiveIns(SI, Live);

  for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
    MachineInstr *MI = &*I;
    if (MI->isDebugInstr())
      continue;

    MI->clearKillInfo();
    for (auto &Op : MI->operands()) {
      // An implicit def of a super-register may not necessarily start a
      // live range of it, since an implicit use could be used to keep parts
      // of it live. Instead of analyzing the implicit operands, ignore
      // implicit defs.
      if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
        continue;
      Register R = Op.getReg();
      if (!Register::isPhysicalRegister(R))
        continue;
      for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
        Live.reset(*SR);
    }
    for (auto &Op : MI->operands()) {
      if (!Op.isReg() || !Op.isUse() || Op.isUndef())
        continue;
      Register R = Op.getReg();
      if (!Register::isPhysicalRegister(R))
        continue;
      bool IsLive = false;
      for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) {
        if (!Live[*AR])
          continue;
        IsLive = true;
        break;
      }
      if (!IsLive)
        Op.setIsKill(true);
      for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
        Live.set(*SR);
    }
  }
}

// Helper function to obtain the basic block containing the reaching def
// of the given use.
MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const {
  auto F = NBMap.find(RN);
  if (F != NBMap.end())
    return F->second;
  llvm_unreachable("Node id not in map");
}

void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) {
  // The LiveIn map, for each (physical) register, contains the set of live
  // reaching defs of that register that are live on entry to the associated
  // block.

  // The summary of the traversal algorithm:
  //
  // R is live-in in B, if there exists a U(R), such that rdef(R) dom B
  // and (U \in IDF(B) or B dom U).
  //
  // for (C : children) {
  //   LU = {}
  //   traverse(C, LU)
  //   LiveUses += LU
  // }
  //
  // LiveUses -= Defs(B);
  // LiveUses += UpwardExposedUses(B);
  // for (C : IIDF[B])
  //   for (U : LiveUses)
  //     if (Rdef(U) dom C)
  //       C.addLiveIn(U)
  //

  // Go up the dominator tree (depth-first).
  MachineDomTreeNode *N = MDT.getNode(B);
  for (auto I : *N) {
    RefMap L;
    MachineBasicBlock *SB = I->getBlock();
    traverse(SB, L);

    for (auto S : L)
      LiveIn[S.first].insert(S.second.begin(), S.second.end());
  }

  if (Trace) {
    dbgs() << "\n-- " << printMBBReference(*B) << ": " << __func__
           << " after recursion into: {";
    for (auto I : *N)
      dbgs() << ' ' << I->getBlock()->getNumber();
    dbgs() << " }\n";
    dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
    dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
  }

  // Add reaching defs of phi uses that are live on exit from this block.
  RefMap &PUs = PhiLOX[B];
  for (auto &S : PUs)
    LiveIn[S.first].insert(S.second.begin(), S.second.end());

  if (Trace) {
    dbgs() << "after LOX\n";
    dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
    dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
  }

  // The LiveIn map at this point has all defs that are live-on-exit from B,
  // as if they were live-on-entry to B. First, we need to filter out all
  // defs that are present in this block. Then we will add reaching defs of
  // all upward-exposed uses.

  // To filter out the defs, first make a copy of LiveIn, and then re-populate
  // LiveIn with the defs that should remain.
  RefMap LiveInCopy = LiveIn;
  LiveIn.clear();

  for (const std::pair<const RegisterId, NodeRefSet> &LE : LiveInCopy) {
    RegisterRef LRef(LE.first);
    NodeRefSet &NewDefs = LiveIn[LRef.Reg]; // To be filled.
    const NodeRefSet &OldDefs = LE.second;
    for (NodeRef OR : OldDefs) {
      // R is a def node that was live-on-exit
      auto DA = DFG.addr<DefNode*>(OR.first);
      NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
      NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
      if (B != BA.Addr->getCode()) {
        // Defs from a different block need to be preserved. Defs from this
        // block will need to be processed further, except for phi defs, the
        // liveness of which is handled through the PhiLON/PhiLOX maps.
        NewDefs.insert(OR);
        continue;
      }

      // Defs from this block need to stop the liveness from being
      // propagated upwards. This only applies to non-preserving defs,
      // and to the parts of the register actually covered by those defs.
      // (Note that phi defs should always be preserving.)
      RegisterAggr RRs(PRI);
      LRef.Mask = OR.second;

      if (!DFG.IsPreservingDef(DA)) {
        assert(!(IA.Addr->getFlags() & NodeAttrs::Phi));
        // DA is a non-phi def that is live-on-exit from this block, and
        // that is also located in this block. LRef is a register ref
        // whose use this def reaches. If DA covers LRef, then no part
        // of LRef is exposed upwards.A
        if (RRs.insert(DA.Addr->getRegRef(DFG)).hasCoverOf(LRef))
          continue;
      }

      // DA itself was not sufficient to cover LRef. In general, it is
      // the last in a chain of aliased defs before the exit from this block.
      // There could be other defs in this block that are a part of that
      // chain. Check that now: accumulate the registers from these defs,
      // and if they all together cover LRef, it is not live-on-entry.
      for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) {
        // DefNode -> InstrNode -> BlockNode.
        NodeAddr<InstrNode*> ITA = TA.Addr->getOwner(DFG);
        NodeAddr<BlockNode*> BTA = ITA.Addr->getOwner(DFG);
        // Reaching defs are ordered in the upward direction.
        if (BTA.Addr->getCode() != B) {
          // We have reached past the beginning of B, and the accumulated
          // registers are not covering LRef. The first def from the
          // upward chain will be live.
          // Subtract all accumulated defs (RRs) from LRef.
          RegisterRef T = RRs.clearIn(LRef);
          assert(T);
          NewDefs.insert({TA.Id,T.Mask});
          break;
        }

        // TA is in B. Only add this def to the accumulated cover if it is
        // not preserving.
        if (!(TA.Addr->getFlags() & NodeAttrs::Preserving))
          RRs.insert(TA.Addr->getRegRef(DFG));
        // If this is enough to cover LRef, then stop.
        if (RRs.hasCoverOf(LRef))
          break;
      }
    }
  }

  emptify(LiveIn);

  if (Trace) {
    dbgs() << "after defs in block\n";
    dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
    dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
  }

  // Scan the block for upward-exposed uses and add them to the tracking set.
  for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) {
    NodeAddr<InstrNode*> IA = I;
    if (IA.Addr->getKind() != NodeAttrs::Stmt)
      continue;
    for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
      if (UA.Addr->getFlags() & NodeAttrs::Undef)
        continue;
      RegisterRef RR = PRI.normalize(UA.Addr->getRegRef(DFG));
      for (NodeAddr<DefNode*> D : getAllReachingDefs(UA))
        if (getBlockWithRef(D.Id) != B)
          LiveIn[RR.Reg].insert({D.Id,RR.Mask});
    }
  }

  if (Trace) {
    dbgs() << "after uses in block\n";
    dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
    dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
  }

  // Phi uses should not be propagated up the dominator tree, since they
  // are not dominated by their corresponding reaching defs.
  RegisterAggr &Local = LiveMap[B];
  RefMap &LON = PhiLON[B];
  for (auto &R : LON) {
    LaneBitmask M;
    for (auto P : R.second)
      M |= P.second;
    Local.insert(RegisterRef(R.first,M));
  }

  if (Trace) {
    dbgs() << "after phi uses in block\n";
    dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
    dbgs() << "  Local:  " << Print<RegisterAggr>(Local, DFG) << '\n';
  }

  for (auto C : IIDF[B]) {
    RegisterAggr &LiveC = LiveMap[C];
    for (const std::pair<const RegisterId, NodeRefSet> &S : LiveIn)
      for (auto R : S.second)
        if (MDT.properlyDominates(getBlockWithRef(R.first), C))
          LiveC.insert(RegisterRef(S.first, R.second));
  }
}

void Liveness::emptify(RefMap &M) {
  for (auto I = M.begin(), E = M.end(); I != E; )
    I = I->second.empty() ? M.erase(I) : std::next(I);
}